ISSN 2074-1871 Ydbumcknii matemaTuyecknii xypHan. Tom 17. Ne 2 (2025). C. 138-151.

KRAUSE MEAN PROCESSES GENERATED BY CUBIC
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Abstract. The Krause mean process serves as a comprehensive model for the dynamics of
opinion exchange within multi-agent system wherein opinions are represented as vectors. In
this paper, we propose a framework for opinion exchange dynamics by means of the Krause
mean process that is generated by a cubic doubly stochastic matrix with positive influences.
The primary objective is to establish a consensus within the multi-agent system.
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1. INTRODUCTION

The concept of achieving consensus within a structured, time—invariant, and synchronous
environment was initially introduced by DeGroot [4]. Subsequently, Chatterjee and Seneta
[3] extended DeGroot’s model to encompass structured, time—varying, and synchronous en-
vironments. These models depict the opinion—sharing dynamics of structured, time—varying,
and synchronous multi-agent systems through the concept of the backward product of square
stochastic matrices [1]. In contrast, the concept of a non-homogeneous Markov chain is repre-
sented by the forward product of square stochastic matrices. Consequently, achieving consensus
within a multi-agent system and ensuring the ergodicity of the Markov chain are inherently
interconnected problems.

More recently, nonlinear models have emerged to characterize opinion dynamics within social
communities [6]-[11]. A more comprehensive model for opinion—sharing dynamics is the Krause
mean process, wherein opinions are represented as vectors. For a comprehensive understanding
of the Krause mean process, readers may refer to the monograph [12]. In contrast, the qua-
dratic stochastic operator is the simplest nonlinear Markov operator [5], |21]. This assertion is
supported by its representation in transition dependent matrix form. In a series of papers [2],
[13]-]20], the correlation between the Krause mean processes and quadratic stochastic processes
was established.

In this paper, we introduce a framework for modeling opinion—sharing dynamics through the
usage of Krause mean processes generated by cubic doubly stochastic matrices with positive
influences. We then proceed to establish a consensus within the multi-agent system. The main
result of this paper, Theorem 4.1, extends and generalizes all results of the papers [2], [13]-]20].
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2. KRAUSE MEAN PROCESSES

We first provide some necessary notions and notation, which will be used throughout this
paper. Let {e,}7", be the standard basis of space R™. Suppose that R™ is equipped with the

l{—norm

el =3
where x = (21, ,x ) € Rm We say that x > 0 (respectively, x > 0) if z, > 0 (respectively,
xk>0)f0rallk€I = {1, ,---,m}.Let

T={xeR":x20, x| =1}

be the (m — 1)—dimensional standard simplex. An element of the simplex S™=1 is called a
stochastic vector. Let ¢ = (£,---, L)T be the center of the simplex S™~! and

riS" ! ={xeS"!': x>0} and 9S™ ' =S""'\riS"!

be, respectively, a relative interior and boundary of the simplex S™~!,

We now examine a comprehensive model of opinion—sharing dynamics within a multi-agent
system as outlined in the paper by Hegselmann and Krause [6]. This model encompasses all
classical approaches to opinion—sharing dynamics [4], [3], [1]. In this model, we consider a group
of m individuals denoted as I, :== {1,--- ,m}, who collaborate as a team or committee. Each
individual within this group has the capacity to define their own subjective distribution for a
given task. It is assumed that when individual ¢ becomes aware of the distributions specified
by each of the other group members, they may opt to revise their own subjective distribution
to incorporate this additional information.

By x(t) = (z1(t),--- ,xm(t))" we denote the subjective distributions of the multi-agent
system at time ¢, where > " x;(t) = 1 and x;(¢) > 0 for all individuals ¢ € I,,,. Additionally,
let p;;(t,x(t)) represent the weight that the individual 7 assigns to x;(¢) when making revisions
at time ¢ + 1. We assume that the sum of weights assigned by individual 7 to all others equals
1, i.e.,

X)Mtx )=1 and p;(t,x(t)) =0, i,j€l,.

After being informed of the subjective distributions of the other group members, the indi-
vidual 7 revises his/her own subjective distribution from xz;(t) to x;(t + 1) using the following
rule

zi(t+1) prtx z;(t), i€,

Let P (t,x(t)) represent an m x m row—stochastlc matrix with its (ij) element denoted as
pij(t,x(t)). We define a general model for the structured time-varying synchronous system as

x(t+1) =P (t,x(t) x(t), teN. (2.1)

By appropriately selecting matrices P (¢,x(t)), we can derive all classical models [4], [1], [3],
[6], [7] from a general model (2.1) for structured time—varying synchronous multi-agent system.

We say that a consensus is achieved in the structured time—varying synchronous multi-agent
system (2.1) if x(¢) converges to ¢ = (¢,--,c)T as t — oo. It is important to note that the
consensus ¢ = ¢(x(0)) may rely on the initial opinion state x(0).

A broader and more comprehensive model for opinion—sharing dynamics is the Krause mean
process wherein opinions are expressed as vectors. For a detailed and in—depth explanation of
the mean processes, readers are encouraged to consult the excellent monograph by Krause [12].

Let S be a non-empty convex subset of R? and S™ be the m-fold Cartesian product of S.



140 Kh. SABUROV, Kh. SABUROV, M. ALP

Definition 2.1 ( Krause mean process [12]). A given sequence {x(t)};2, C S™ where
x(t) = (z1(t), - , 2 (t))T is called a Krause mean process on S™ if one has that

zi(t+1) € conv{z(t), - ,z,(t)}, i€l,, tel,
where conv{-} is a convezr hull of a set.
In other words, a given sequence {x(t)}°, C S™ is the Krause mean process if one has that
conv{z;(t+1), -+ ,z,(t+1)} C conv{zi(t), -+ ,z,(t)}, teN

Definition 2.2 ( Krause mean operator [12]). A mapping T : S™ — S™ is called a Krause
mean operator if its trajectory {x(t)}2,, x(t) = T*(x(0)) starting from any initial point x(0) €
S™ generates a Krause mean process on S™.

It is noteworthy to mention that the nonlinear model of opinion—sharing dynamics given by
(2.1) is the Krause mean process due to the fact that the action of a row—stochastic matrix

P (t,x(t)) = (pi; (t,x(t)))7_, on a vector x(t) = (z1(t), -+ ,x,m(t))" can be interpreted as

ij=1
formation of arithmetic means

zi(t+1) = (P(t,x(t)x(t)), = Zpij (t,x(t)) z;(t), iel,
with weights p;; (t,x(t)) > 0 such that
Zpij(t,x(t)) = 1.

The various kinds of nonlinear models of mean processes were investigated in the papers [6],
171, 18], [9], [10], [11].

3. KRAUSE MEAN PROCESS VIA QUADRATIC STOCHASTIC OPERATOR

Within this section, we aim to establish a correlation between the Krause mean processes
and quadratic stochastic operators.

Definition 3.1. A cubic matriz P = (pir)i 1=, s said to be
e stochastic if it satisfies the conditions

m
k=1
e doubly stochastic if it satisfies the conditions
m m
> pik =Y pigk =1, Pijk 20, 4,5,k € Iy
j=1 k=1
e triply stochastic if it satisfies the conditions
m m m
Zpijk = sz’jk = Zpijk =1, pije =0, 1,5,k € L.
i=1 j=1 k=1

Throughout this paper, we always assume that a cubic matrix P = (pijk)%’kzl is doubly
stochastic unless explicitly specified otherwise. Furthermore, it is important to emphasize that
we do not impose the condition p;;r = pji for all 4,5,k € I,. For a more comprehensive
understanding of these assumptions and a detailed comparison of the outcomes in both cubic
doubly and triply stochastic matrices cases, the readers may refer to the next sections.
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Let P = (pijk)%’kzl be a cubic doubly stochastic matrix, and let Peer = (piji)i’=; denote
a square matrix for a fixed k € L,. It is evident that P = (pix)i—; is also a square
stochastic matrix. In the following, we express P = (Peo1|- - - |Peem) to represent the cubic
doubly stochastic matrix P = (pjx);’ 4=, We now define a quadratic stochastic operator Q :

S™~1 — S™~1 that is associated with the cubic doubly stochastic matrix P = (Pee1| - - |Peem)
as follows

= Z L3l jPijk ke Im- (31)

i,j=1

We now define an m x m matrix P(x) = (pkj(x)):jzl

pk] szpz]ka k J € Im (32)

We show that P(x) is a square doubly stochastic matrix for every x € S™~1. In fact, we have

gpka ,é (Z szzgk) = z; (prk> v = zi?x _ 1,
]Zj;pkj jz: (Z szzgk) = Z; (Z_:ngk> v = Z:::c —1.

Hence, it follows from (3.1) and (3.2) that
Q(x) = P(x)x (3.3)

and it is called a density dependent matrix form of the quadratic stochastic operator Q :
S™=1 — §™~1 that is associated with the cubic doubly stochastic matrix P = (Pee1| -+ - |Peerm)-

We are now ready to present a protocol generated by cubic doubly stochastic matrices (for
short, we use CDSM).

Protocol-CDSM: Let P = (Pee1| - |Peern) be a cubic doubly stochastic matrix and Q :
Sm=1 — S™~! be a quadratic stochastic operator associated with a cubic doubly stochastic
matrix P = (Peer| - - |Peern). Suppose that an opinion sharing dynamics of the multi-agent
system is generated by a quadratic stochastic operator Q : S™~! — S™~! ag

X+ = 9 (xM) = P (x™) x™,  x© ¢ g

T
where x(") = (svgn), e ,x@) is the subjective distribution after n revisions.

We propose the multi-agent system interpretation of Protocol-CDSM. We assume that each
agent has the capacity to revise his/her own opinion on a particular issue by taking into account
the influences stemming from all possible pairs of two agents. This obviously creates non—
linearity in the proposed model. To maintain homogeneity within the model, we treat the
influence of a single agent as the same as the influence exerted by a group of two identical
agents. To be precise, we make the following assumptions:

e A group of m agents, denoted as I,, := {1,--- ,m}, collaborates as one unified team or
committee;

e Each individual agent possesses the capability to express his/her own opinion on a given
task /matter/issue. In this context, an opinion is a broad concept encompassing an agent’s
beliefs, behaviors, or attitudes;

e An opinion profile at time n is a stochastic vector x(™ = (:cgn), e ,x%L))T;

e Each agent, say k, experiences influence from a group composed of 2-agents, say {i,{j}},

in which an agent j serves as the spokesperson of this group;
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e The influence of a group of 2-agents, say {i,{j}} (respectively, {j,{i}}) with an agent j
(respectively, i) acting as the spokesperson, on an agent k is denoted as p;;x (respectively,
pjik)- In practice, it is important to note that p;;, may not necessarily be equal to pj; x,
i.e., pijx 7 Pjik, signifying potential differences in influence;

° The influence profile of the group {i,{j}} with the spokesperson j is represented as
stochastic vector Pije := (Dij1, Dij2, " s Pijm)

e The collective influences stemming from all possible groups of 2—agents on an agent k
forms a square stochastic matrix Peer = (piji)i—1;

e An agent regards a group of 2-agents as trusted/influential when its influence on an agent
is substantial;

e The level of trust py; (x(™) that an agent k places in another agent j with the given opinion
profile x(™ is calculated as the average influence over the opinion profile x™ exerted by
all possible groups of 2-agents having j as the spokesperson. In mathematical terms, this

m
trust level is calculated as pp;(x™) = > 2™ py; 4
e The trust matrix associated with the opinion profile x(™ is represented as a square doubly
. . m
stochastic matrix P(x™) = (py; (X(n)))k,jzl;
e The opinion profile at time n + 1 is then revised as follows

x") = 9(x™) = P (x™) x™).

This implies that, due to the density dependent matrix form (2.1), the opinion sharing
dynamics of the multi-agent system given by Protocol-CDSM generates a Krause mean process.
Consequently, we have the following result (see [19]).

Proposition 3.1. Let P = (Pee1| - |Peemn) be a cubic doubly stochastic matriz and Q :
Sm=1 — S™~! be the associated quadratic stochastic operator. Then the opinion sharing dynam-
ics of the multi—agent system given by Protocol-CDSM generates the Krause mean process.

Definition 3.2 (Consensus in Protocol-CDSM). We say that the multi-agent system given
by Protocol-CDSM eventually reaches a consensus if an opinion sharing dynamics converges
to the center ¢ = (-, )T of the simpler S™.

m’ ’m

4. MAIN RESULT

We first introduce a notion of cubic stochastic matrices with positive influences.

Definition 4.1 ( Cubic stochastic matrix with positive influence ). A cubic stochastic ma-
trivx P = (pijk)?:}’k:l 15 said to have positive influence if for any two agents 5,k € 1,
there always exist some groups of 2—agents {i1, {j}}, {ia, {5}}, -+ {ie, {J}} having j as the
spokesperson (here 1 < t = t(j,k) < m) and there also exists a positive stochastic vector

c(j, k)= (c1, -+ ,¢;) > 0 with

t
ch =1
s=1

such that the average influence

t
Z CsPigik > 0
s=1

of those groups on an agent k is positive.
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Let us now recall some classes of cubic stochastic matrices which were studied in the series
of papers [2], [13]-[20]. The following an m x m square stochastic matrix

P11 P12 DPiim (p11°)i
sy = | PP | | ()
m.ml pn;m2 T pm.mm (Pmm-)T
is called a diagonal matrix of cubic stochastic matrix P = (Pee1| - - |Peerm)-

Definition 4.2. A cubic stochastic matriz P = (Dije)i=1, where Pijo := (Piji, - Pijm) for
all 1,7 € 1,,,, 1s said

to be positive if one has pije > 0 for all i,j € 1,,,;

to be diagonally positive if one has pie > 0 for all 1 € 1,,;

to be off-diagonally positive if one has pije > 0 for all i,j € L,, with i # j;

to have weak influence if for any two agents j, k € 1, there always exists a group of 2-
agents {io,{j}} having j as the spokesperson such that the influence p; ;i of that group
{io, {j}} on an agent k is positive, i.e., for any j, k € L, there always exists ig € 1,, such
that piyjr > 0.

e to have strong influence if for any two agents j, k € 1, the total influence of all groups
of 2—agents {1,{j}}, {2,{s}}, --- {m, {j}} having j as the spokesperson on an agent k is

positive, i.e., Y pijr > 0 for any j, k € L.
i=1
It is easy to verify that all classes of cubic stochastic matrices provided in Definition 4.2 have
positive influences. In this sense, the main result of this paper extends, generalizes, and unifies
all related results of the papers [2], [13]-]20].
We are now ready to state the main result of this paper. Let

e, = (1,0,0,...,0)7, e; = (0,1,0,...,0)7, en=(0,0,0,...,1)T
be the vertices of simplex S™! and e!” := Q (e,&”fl)> , where e!” := e, for all k € I, and
n € IN.

Theorem 4.1 ( Consensus in cubic doubly stochastic matrix with influence ). Let
P = (Peet|* * |Poern) be a cubic doubly stochastic matriz and let Q : S™ ! — S™ ! be the asso-
ciated quadratic stochastic operator. If a cubic stochastic matrix P = (Pijk)%,kzl has positive

influence and moreover, if for each k € 1, one has eknk) € 1riS™ ! for some n, € N, then
the opinion sharing dynamics of the multi-agent system given by Protocol-CDSM eventually
reaches a consensus for any initial opinion x(© € S™1.

o0

Proof. Let {x(”) }n:O ,

o
Q : S™! — §™! starting from an initial point x(© € S™~'. Particularly, let {e,(gn)} be a
n=0
trajectory of the quadratic stochastic operator Q : S™~ ! — S™~! starting from a vertex e;, of

the simplex S™! for all & € I,,,. According to the definition, the multi-agent system eventually

reaches a consensus if {x(}22 converges to the center ¢ = (L, L)T of the simplex S™*

x("*t) = Q(x(™), be a trajectory of the quadratic stochastic operator

for any initial point x(© € ™1,

Step 1. We first show that Q(riS™™1) C riS™!. Indeed, let x € riS™!. This means that
z; > 0 for all i € I,. Since P(x) = (pi; (X)):lj:1 is a square doubly stochastic matrix and
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Q(x) = P(x)x, we derive that

J€EIm

0 < minz; < Zpkj(x)xj = (9(x)), kel,.
j=1

This means that Q(x) € riS™ 1,

Step 2. We now show that there exists ng € IN such that for any initial point x(® e S™~!
one has x(") ¢ 1riS™ ! It is worth mentioning that n, is independent on an initial point

x(© e S™~1_ Since for each k € I,,, one has e,g"k) € riS™! for some n;, € N, it follows from the

previous step that for each k € I,,, one has e,g”) € riS™! for any n > ny.

Let ng := = MaxX Ny, Then e§€”°) € riS™~! for all k € I,,,. We now show that x(0) = Qno(x()) ¢

m

ri S™~1 for any initial point x(¥ € S™~1. Since
PAx + (1 = N)y) = A\P(x) + (1 — M)P(y)
for any x,y € S™ ! and 0 < A < 1, we have
xM =0(x©) = P(x()x(© = 2OP(xe, + -+ 2 OP(x)e,,
= Z < (0)> e;)e; + 2 Z xgo)xgo)IP(ej)ei
i<j
Let e(n) :=P(e;)e; for any i # j. We then obtain

x = i (xgo)) ) 4 2235 x e(11 .

=1 1<j

Similarly, we get

m 2
@ = PxM)xV) — Z <$50)> P(xV)e 4 2 Z xl(o>x§0)p(x(1>)e§j1.1).

i=1 i<j

Consequently, we obtain

3 (o) (o) Bl 4 235 (o) e

=1 i—1 k<l
- 0) (0 0)) 2 1y (11 0) _(0) _(0) (0 1)\ (11
2373 %2 (o0) Plel)el +4 30 3 o 0aal 0B el el
i<j k=1 1<j k<l

It is clear that

S50 (s

i=1 k=1
:Z<x§0)> P(el")e! +Z< ) ( (0)) P(e}" el
=1 i#k
-y (xm))“e(z) 3 <m<o>>2 ($<0>)2P<e<n>e<1>
- i i k k
=1 i#k

Therefore,



KRAUSE MEAN PROCESSES GENERATED BY CUBIC STOCHASTIC MATRICES 145

Analogously, one can show that
27L n 27L n 2 n
x" = (z&‘”) eg ) 4 (x§0)> eé AR TR (:Ufg)) efn) + e

(no) (no

for any n € IN. Since ;" € riS™, i.e., € )~ 0 for all k € I,,,, we obtain

2™0 2"0 n
x(10) > <$§0>> ) 4 (xgo>> el .. 4 (xg)? 0 e(m) >

for any x(© € S™~1. This shows that x("0) ¢ riS™

Step 3. Now we are going to show that for any x(¥) € S an omega limit set w ({X n }) of
the sequence {x(™}>  is a subset of the interior ri S™~! of the simplex ™! i.e., w ({x" }) S
riS™~1. Indeed, it follows from the previous step that Q0 (S™ 1) € riS™ 1. Slnce Qro(Sm1)
is a compact set, there exists a > 0 such that

Qn0< ) ae = (CK,O(,' o 7a)T7 X € Smil-

On the other hand, the interior riS™! of the simplex S™! is an invariant set (see Step 1)
and Q"(S™"!) C Qmo(S™) for any n > ng, we have {x"}32 CS,, ie., x" > ae for any
n > ng where

Se :={x € Sm x> ae}.
Consequently, an omega limit set w ({X(")}) of the sequence {X(”)};’f:o is a subset of the set S,,
e, w({x™}) CS, CriS™ ! any x» e S™L.

Step 4. As we showed in the previous step that Q"(S™™1) C S, for any n > ny, it is therefore
enough to study the dynamics of the quadratic stochastic operator over the set S, which is an
invariant set. Let x(©) € S,. Then x™ € S,, i.e., x™ > ae for any n € IN. It follows from the
matrix form (3.3) of the quadratic stochastic operator that

X+ = Q(xM) = P (x) x = P (x) .- P (xV) P (x0) x©

where P (x) is the square doubly stochastic matrix defined by (3.2). Let us set for any two
integer numbers n > r

P = p (xM) P (x( D) P (xCTD) P (x0) |
We then obtain for any n > r > 0 that

X(n+1) _ P[x("),x(o)]x(o) _ P[x("),x(r)]x(r).

Since P = (Pee1| - - - |Peer) has positive influence, then for any j, k € 1,, there always exists
t(4,k)
1 < t(j,k) < msuch that > ¢spijx > 0 where the vector ¢(j,k) = (c1,--- ,¢) > 0 depends
s=1
t(4,k)
on j, k such that > ¢, = 1. It is evident that
s=1

t(5.k) t(4.k)
0 < Z CsPijk S (Klsg?fk Cs) Z Pigjik

s=1

We now define

t(5.k)
]{?) = Z Digik >0
s=1

for any j,k € 1,,. Let
§ := min 6(j,k) > 0.

_] kelm
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Since x™ > ae for any n € N, it follows from (3.2) for a stochastic matrix P(x™) =
(pkj (X(n)))ijl that

m t(5,k) t(4,k)
pkj(x(n)) = Zpijkxﬁn) > Z pzsjkng Z o Z Pigjk = ad(j, k) =2 ad >0 (4.1)
i=1 s=1

for any j, k € I, and n € IN. Consequently, P(x(™) = (pkj (x(”)))kal is a uniformly positive
square stochastic matrix for any n € IN.

Step 5. Let

5(P =5 maX Z |p11J pzz]‘

11,12 N

be the Dobrushin ergodicity coefficient (see [22]) of a square stochastic matrix P = (pi;)i%_;.
We first recall some properties of Dobrushin ergodicity coefficient for the reader’s convenience.
The following statements are true for any square stochastic matrices P and Q (see [22]):

(1) 0<6(P) < 1

(77) 6(P) = 0 if and only if rank(P) = 1, i.e., P is a stable stochastic matrix;
(7ii) §(P) < 1 if and only if P is scrambling. If P > 0, then §(P) < 1

(i) [6(P) = 0(Q)| < [P — Ql|oo;

() 5(PQ) < 5(B)3(Q).

Since P(x™) = (py; (x(”)));nj:1 is positive, it follows from the property (iii) of Dobrushin’s
ergodicity coefficient given above that

5 (P(x")) <1, VneN.

Moreover, due to inequality (4.1), the entries of the matrix P(x(™) = (pk](x(”)))k] | are
uniformly bounded away from zero for any n € IN. It is worthy noting that, by using the same
idea, we can also show that not only P(x™) = (py; (X(”))):j:1 but also P(x) = (pkj(x)):jzl
for all x > «e is positive and its entries are uniformly bounded away from zero for all x > «e.
Indeed, since P = (Pqe1| - - - |Poern) has positive influence and x > «e, it follows from (3.2) for
a doubly stochastic matrix P(x) = (pkj(x));:j:l that

t(4,k) t(J,
pk] szgkxz Z Dig ki 2 « Z Digjk = O[5(j7 k) 2 ad > 0.
s=1 s=1

Since, due to the property (iv) given above, Dobrushin’s ergodicity coefficient 0(+) is continuous
and the set S, := {x € S™! : x > ae} is compact, we obtain that

= max (3 (P(x))) = 0 (P(x")) < 1

for some x* € S, := {x € "' : x > ae}. Consequently, since x™ € S,, i.e., x™ > ae for
any n € IN, we then obtain that

J (]P’(X("))) < max (0(P(x)) =0 (P(x*)) =:A<1, Vnel.

o1

It follows from the property (v) of Dobrushin’s ergodicity coefficient given above that

o<5( “”X“”> f[a <AL

Hence, we have

lim § (]P[X(")”‘(O)]) —0.

n—oo
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Therefore, due to [22, Ch. 4, Sect. 4.3, Lm. 4.1], the backwards products (which are the
transpose of forwards products) of doubly stochastic matrices {P, } -, are weakly ergodic
(see |22, Ch. 4, Sect. 4.3, Def. 4.5]). Moreover, weak and strong ergodicity (see [22, Ch. 4,
Sect. 4.3, Def. 4.6]) are equivalent for the backwards products of doubly stochastic matrices
(see |22, Ch. 4, Sect. 4.6, Thm. 4.17]). Due to the definition of strong ergodicity (see |22,

o0

Ch. 4, Sect. 4.3, Def. 4.6]), this means that the backwards products {]P’[X(n)’x(o)]} of doubly

n=0
stochastic matrices {P, } -, must converge to the rank-1 doubly stochastic matrix. Since the

only rank-one doubly stochastic matrix is mc’c, we obtain that

. (n) x(0)
Jim PET] = mee,

lim x"*Y = lim P[X<n>’x(o)]x(0) =c, x0 e Sa,
n—o0o n—oo

where ¢ = (%, e %)T This completes the proof. ]

Remark 4.1 ( The Geometric Rate of Convergence ). Due to the classical Markov-Dobrushin
inequality |Px — Pyl|l; < §(P)||x — y||1 for a doubly stochastic matriz P (see |22]), it follows
from Step 5 of the proof of Theorem 4.1 that

I — el = [P0 -

1
_ HP[XW’X@]X(O) _ IP[X(7L>’X<O)]C

1
<5 (P[X(n>7x(())]) HX(O) o C||1 < )\7L+1||X(0) . CHI'

We have a geometric rate of convergence in the multi-agent system given by Protocol-CDSM.

5. DISCUSSIONS

We now discuss the main result of this paper and compare it with the previous results [2],
|13]-]20] on the consensus problem. The following result was proved in the papers [13|-]18].

Theorem 5.1 (Consensus in positive cubic triply stochastic matrix). Let
P = (P001| t |Poom)

be a cubic triply stochastic matriz and let Q : S™1 — S™1 be the associated quadratic sto-
chastic operator. If P > 0 then the opinion sharing dynamics of the multi—agent system given
by Protocol-CDSM eventually reaches a consensus.

The subsequent step involved relaxing the triple stochasticity condition imposed on positive
cubic stochastic matrices. In the paper [2|, consensus was achieved within the multi-agent
system governed by positive cubic doubly stochastic matrices. Following this result, the sub-
sequent research focus shifted towards relaxing the positivity condition of doubly stochastic
matrices. This objective was successfully achieved for diagonally primitive cubic doubly sto-
chastic matrices in the paper [19]. We recall that a cubic stochastic matrix P = (pijx){ = 18
called diagonally primitive if its diagonal diag(P) := (pjjk)}flk:l is a primitive square stochastic
matrix [19], i.e., there exists s € IN such that the s™ power of the square stochastic matrix
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diag(P) is positive, i.e., [diag(P)]" > 0, where

T
P11 P2t DPiim (p11°)T

diag(P) := p2:21 p2:22 ‘. pz?m = (pzé.)
mml Pmm2 °°° Pmmm (pmmo)T

It is worth noting that for diagonally primitive cubic doubly stochastic matrices (as demon-
strated in Example 5.1), off-diagonal entries may indeed be zero. As long as (some power of)
the diagonal matrix diag(P) of cubic doubly stochastic matrix is positive, the consensus can
still be achieved within the system.

In the next stage of research focused on off-diagonally positive cubic doubly stochastic matri-
ces. Namely, in the paper [20], the consensus was successfully established within the multi-agent
system, even when the diagonal matrix of the cubic doubly stochastic matrix could potentially
have zero entries, as long as the off-diagonal entries are positive (see Example 5.2). Recent re-
search, as presented in [19], |20], has opened up the opportunity to explore consensus problems
even in scenarios where cubic doubly stochastic matrices contain zero entries in their diagonals
or off-diagonal positions.

The primary objective of this paper is to investigate the consensus problem under the condi-
tion that cubic doubly stochastic matrices may contain zero entries in both their diagonals and
off-diagonal positions simultaneously. To a certain degree, as demonstrated in Example 5.3, the
research outcomes presented in this paper extend, unify, and consolidate the research findings
from the previously mentioned papers [19], [20]. This represents the novel contribution of the
paper. Let us now provide some concrete examples.

Example 5.1. We consider the cubic doubly stochastic matric P = (P1ee|P2es|P3es), where
Plee, Poee, and Psee are square doubly stochastic matrices

P111 P112 P13 D211 D212 D213 P311 P312 P313
Piee = | P121 D122 pi123 |, Poee = | D221 P222 P223 |, Psee = | P321 D322 D323
P131 P132 D133 D231 D232 D233 P331 P332 D333

The following quadratic stochastic operator Q : S* — S? presents Protocol-CDSM
Q(X> =TI (IP),{..X) + ) (Pgoox) + T3 (]P)gl.X) = ]P) (X) X
where
P (x) = o,P,, + 2P, + 23PL,,

15 a square doubly stochastic matriz.
It was shown in the papers [13|-[18] that if the square doubly stochastic matrices Piqe > 0,
Poee > 0, and P34e > 0 are positive and

(5.1)

—_ = =

11
Ploo + IEDZ.. + PS.. == 1 1
11

then the consensus is established in the system described by Protocol-CDSM. Later, this result
was generalized in the paper [2|. Namely, the consensus was established for the positive square
doubly stochastic matrices Piee > 0, Poge > 0, Psee > 0 without the constraint (5.1). However,
these results were further improved in the paper [19]. Namely, without positivity of the square
doubly stochastic matrices Pee, Poee, P3ee and without the constraint (5.1), the consensus is still
established in the system described by Protocol-CDSM if the cubic doubly stochastic matriz P



KRAUSE MEAN PROCESSES GENERATED BY CUBIC STOCHASTIC MATRICES 149

is (only) diagonally primitive, i.e., for some s € N we have

P11 P112 P13
[diag(P)]® = | po21 P22 Dass > 0.
D331 P332 P333

Example 5.2. We consider the following square doubly stochastic matrices

]P)loo = s ]P)Qoo = P?).. =

NII= O
el I
DO [ s [ =
DO [ hs [ | =

O

NI—= Ol

N L N e
NN
B [ | s =

We then obtain the following quadratic stochastic operator Q : S* — S?
e; + ey e; + ey + 2e;

Qx) = (af + @3 + x3) 5

+ (.Tll’g + 1713 + ZL’QJIg)

where
e, = (1,0,0)7, e, = (0,1,0)7, es = (0,0,1)7
are vertices of the simplez S®. On the one hand, since for any s € IN we have

Lo
[diag(P)]” = diag(P) = 2 3 0,
3 2 0

the cubic doubly stochastic matrizc P = (P1es|P2ee|P3es) is not diagonally primitive. On the
other hand, since pijo = (}l,i,%) > 0 for all i,j € I3 with i # j, i.e., P = (P1ee|P2ee|P30ee)
is off-diagonally positive, it was shown in the paper [20| that the opinion sharing dynamics of
the multi-agent system given by Protocol-CDSM still eventually reaches a consensus for any

initial opinion x € S2.

It is worth mentioning that there is still a room to further improvement of these results. In-
deed, Theorem 4.1 is a further extension and generalization of the results published in the papers
[2], [13]-|20]. Namely, without positivity of the square doubly stochastic matrices Pyee, Pose; P3ee
and without the constraint (5.1), the consensus is still established in the system described by
Protocol-CDSM if the influence of cubic matrix P = (IP1ee|Poes|P3ee) is positive. To illustrate
it, let us consider the next example.

Example 5.3. We consider the following square doubly stochastic matrices

11 1 1 11
pe (18 1), Bz (1 08) mac(1d1
(1] 2 1 % ) (1] 2 % 1 ) (1] % 1 2
03 2 035 3 3 2 U
We then obtain the following quadratic stochastic operator Q : S? — S? :
e +e el+eg—|—2e3

Q(x) = (2 + a3 + 23) 2+ ryxy(er 4 e3) 4 x123(ey + €3) + 215

2 2

where
e;=(1,0,0)", e =1(0,1,00",  e3=(0,0,1)"
are vertices of the simplex S®. On the one hand, since for any s € N

L
[diag(P)]* = diag(P) = 2 3 0],
2 3 0

the cubic doubly stochastic matrizc P = (Pres|Poee|Pses) is not diagonally primitive. On the
other hand, P = (P1ee|P2ee|P3es) is not off-diagonally positive. However, the influence of cubic
matriz P = (P1ee|Poes|P3ee ) is positive. Therefore, it follows from Theorem 4.1 that the opinion
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sharing dynamics of the multi-agent system given by Protocol-CDSM still eventually reaches
a consensus for any initial opinion.
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