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Abstract. The Krause mean process serves as a comprehensive model for the dynamics of
opinion exchange within multi–agent system wherein opinions are represented as vectors. In
this paper, we propose a framework for opinion exchange dynamics by means of the Krause
mean process that is generated by a cubic doubly stochastic matrix with positive influences.
The primary objective is to establish a consensus within the multi–agent system.
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1. Introduction

The concept of achieving consensus within a structured, time–invariant, and synchronous
environment was initially introduced by DeGroot [4]. Subsequently, Chatterjee and Seneta
[3] extended DeGroot’s model to encompass structured, time–varying, and synchronous en-
vironments. These models depict the opinion–sharing dynamics of structured, time–varying,
and synchronous multi–agent systems through the concept of the backward product of square
stochastic matrices [1]. In contrast, the concept of a non–homogeneous Markov chain is repre-
sented by the forward product of square stochastic matrices. Consequently, achieving consensus
within a multi–agent system and ensuring the ergodicity of the Markov chain are inherently
interconnected problems.
More recently, nonlinear models have emerged to characterize opinion dynamics within social

communities [6]–[11]. A more comprehensive model for opinion–sharing dynamics is the Krause
mean process, wherein opinions are represented as vectors. For a comprehensive understanding
of the Krause mean process, readers may refer to the monograph [12]. In contrast, the qua-
dratic stochastic operator is the simplest nonlinear Markov operator [5], [21]. This assertion is
supported by its representation in transition dependent matrix form. In a series of papers [2],
[13]–[20], the correlation between the Krause mean processes and quadratic stochastic processes
was established.
In this paper, we introduce a framework for modeling opinion–sharing dynamics through the

usage of Krause mean processes generated by cubic doubly stochastic matrices with positive
influences. We then proceed to establish a consensus within the multi–agent system. The main
result of this paper, Theorem 4.1, extends and generalizes all results of the papers [2], [13]–[20].
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2. Krause mean processes

We first provide some necessary notions and notation, which will be used throughout this
paper. Let {e𝑘}𝑚𝑘=1 be the standard basis of space R𝑚. Suppose that R𝑚 is equipped with the
𝑙1−norm

‖x‖1 :=
𝑚∑︁
𝑘=1

|𝑥𝑘|

where x = (𝑥1, · · · , 𝑥𝑚)
𝑇 ∈ R𝑚. We say that x ⩾ 0 (respectively, x > 0) if 𝑥𝑘 ⩾ 0 (respectively,

𝑥𝑘 > 0) for all 𝑘 ∈ I𝑚 := {1, 2, 3, · · · ,𝑚}. Let
S𝑚−1 = {x ∈ R𝑚 : x ⩾ 0, ‖x‖1 = 1}

be the (𝑚 − 1)−dimensional standard simplex. An element of the simplex S𝑚−1 is called a
stochastic vector. Let c = ( 1

𝑚
, · · · , 1

𝑚
)𝑇 be the center of the simplex S𝑚−1 and

riS𝑚−1 = {x ∈ S𝑚−1 : x > 0} and 𝜕S𝑚−1 = S𝑚−1 ∖ riS𝑚−1

be, respectively, a relative interior and boundary of the simplex S𝑚−1.
We now examine a comprehensive model of opinion–sharing dynamics within a multi–agent

system as outlined in the paper by Hegselmann and Krause [6]. This model encompasses all
classical approaches to opinion–sharing dynamics [4], [3], [1]. In this model, we consider a group
of 𝑚 individuals denoted as I𝑚 := {1, · · · ,𝑚}, who collaborate as a team or committee. Each
individual within this group has the capacity to define their own subjective distribution for a
given task. It is assumed that when individual 𝑖 becomes aware of the distributions specified
by each of the other group members, they may opt to revise their own subjective distribution
to incorporate this additional information.
By x(𝑡) = (𝑥1(𝑡), · · · , 𝑥𝑚(𝑡))

𝑇 we denote the subjective distributions of the multi–agent
system at time 𝑡, where

∑︀𝑚
𝑖=1 𝑥𝑖(𝑡) = 1 and 𝑥𝑖(𝑡) ⩾ 0 for all individuals 𝑖 ∈ I𝑚. Additionally,

let 𝑝𝑖𝑗(𝑡,x(𝑡)) represent the weight that the individual 𝑖 assigns to 𝑥𝑗(𝑡) when making revisions
at time 𝑡+ 1. We assume that the sum of weights assigned by individual 𝑖 to all others equals
1, i.e.,

𝑚∑︁
𝑗=1

𝑝𝑖𝑗(𝑡,x(𝑡)) = 1 and 𝑝𝑖𝑗(𝑡,x(𝑡)) ⩾ 0, 𝑖, 𝑗 ∈ I𝑚.

After being informed of the subjective distributions of the other group members, the indi-
vidual 𝑖 revises his/her own subjective distribution from 𝑥𝑖(𝑡) to 𝑥𝑖(𝑡 + 1) using the following
rule

𝑥𝑖(𝑡+ 1) =
𝑚∑︁
𝑗=1

𝑝𝑖𝑗(𝑡,x(𝑡))𝑥𝑗(𝑡), 𝑖 ∈ I𝑚.

Let P (𝑡,x(𝑡)) represent an 𝑚 × 𝑚 row-stochastic matrix with its (𝑖𝑗) element denoted as
𝑝𝑖𝑗(𝑡,x(𝑡)). We define a general model for the structured time–varying synchronous system as

x(𝑡+ 1) = P (𝑡,x(𝑡))x(𝑡), 𝑡 ∈ N. (2.1)

By appropriately selecting matrices P (𝑡,x(𝑡)), we can derive all classical models [4], [1], [3],
[6], [7] from a general model (2.1) for structured time–varying synchronous multi–agent system.
We say that a consensus is achieved in the structured time–varying synchronous multi–agent

system (2.1) if x(𝑡) converges to c = (𝑐, · · · , 𝑐)𝑇 as 𝑡 → ∞. It is important to note that the
consensus c = c(x(0)) may rely on the initial opinion state x(0).
A broader and more comprehensive model for opinion–sharing dynamics is the Krause mean

process wherein opinions are expressed as vectors. For a detailed and in–depth explanation of
the mean processes, readers are encouraged to consult the excellent monograph by Krause [12].
Let S be a non–empty convex subset of R𝑑 and S𝑚 be the 𝑚-fold Cartesian product of S.
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Definition 2.1 ( Krause mean process [12]). A given sequence {x(𝑡)}∞𝑡=0 ⊂ S𝑚 where
x(𝑡) = (𝑥1(𝑡), · · · , 𝑥𝑚(𝑡))

𝑇 is called a Krause mean process on S𝑚 if one has that

𝑥𝑖(𝑡+ 1) ∈ conv{𝑥1(𝑡), · · · , 𝑥𝑚(𝑡)}, 𝑖 ∈ I𝑚, 𝑡 ∈ N,
where conv{·} is a convex hull of a set.

In other words, a given sequence {x(𝑡)}∞𝑡=0 ⊂ S𝑚 is the Krause mean process if one has that

conv{𝑥1(𝑡+ 1), · · · , 𝑥𝑚(𝑡+ 1)} ⊂ conv{𝑥1(𝑡), · · · , 𝑥𝑚(𝑡)}, 𝑡 ∈ N

Definition 2.2 ( Krause mean operator [12]). A mapping 𝒯 : S𝑚 → S𝑚 is called a Krause
mean operator if its trajectory {x(𝑡)}∞𝑡=0, x(𝑡) = 𝒯 𝑡(x(0)) starting from any initial point x(0) ∈
S𝑚 generates a Krause mean process on S𝑚.

It is noteworthy to mention that the nonlinear model of opinion–sharing dynamics given by
(2.1) is the Krause mean process due to the fact that the action of a row–stochastic matrix

P (𝑡,x(𝑡)) = (𝑝𝑖𝑗 (𝑡,x(𝑡)))
𝑚
𝑖,𝑗=1 on a vector x(𝑡) = (𝑥1(𝑡), · · · , 𝑥𝑚(𝑡))

𝑇 can be interpreted as
formation of arithmetic means

𝑥𝑖(𝑡+ 1) :=
(︀
P (𝑡,x(𝑡))x(𝑡)

)︀
𝑖
=

𝑚∑︁
𝑗=1

𝑝𝑖𝑗 (𝑡,x(𝑡))𝑥𝑗(𝑡), 𝑖 ∈ I𝑚

with weights 𝑝𝑖𝑗 (𝑡,x(𝑡)) ⩾ 0 such that
𝑚∑︁
𝑗=1

𝑝𝑖𝑗(𝑡,x(𝑡)) = 1.

The various kinds of nonlinear models of mean processes were investigated in the papers [6],
[7], [8], [9], [10], [11].

3. Krause mean process via quadratic stochastic operator

Within this section, we aim to establish a correlation between the Krause mean processes
and quadratic stochastic operators.

Definition 3.1. A cubic matrix 𝒫 = (𝑝𝑖𝑗𝑘)
𝑚
𝑖,𝑗,𝑘=1 is said to be

∙ stochastic if it satisfies the conditions
𝑚∑︁
𝑘=1

𝑝𝑖𝑗𝑘 = 1, 𝑝𝑖𝑗𝑘 ⩾ 0, 𝑖, 𝑗, 𝑘 ∈ I𝑚;

∙ doubly stochastic if it satisfies the conditions
𝑚∑︁
𝑗=1

𝑝𝑖𝑗𝑘 =
𝑚∑︁
𝑘=1

𝑝𝑖𝑗𝑘 = 1, 𝑝𝑖𝑗𝑘 ⩾ 0, 𝑖, 𝑗, 𝑘 ∈ I𝑚;

∙ triply stochastic if it satisfies the conditions
𝑚∑︁
𝑖=1

𝑝𝑖𝑗𝑘 =
𝑚∑︁
𝑗=1

𝑝𝑖𝑗𝑘 =
𝑚∑︁
𝑘=1

𝑝𝑖𝑗𝑘 = 1, 𝑝𝑖𝑗𝑘 ⩾ 0, 𝑖, 𝑗, 𝑘 ∈ I𝑚.

Throughout this paper, we always assume that a cubic matrix 𝒫 = (𝑝𝑖𝑗𝑘)
𝑚
𝑖,𝑗,𝑘=1 is doubly

stochastic unless explicitly specified otherwise. Furthermore, it is important to emphasize that
we do not impose the condition 𝑝𝑖𝑗𝑘 = 𝑝𝑗𝑖𝑘 for all 𝑖, 𝑗, 𝑘 ∈ I𝑚. For a more comprehensive
understanding of these assumptions and a detailed comparison of the outcomes in both cubic
doubly and triply stochastic matrices cases, the readers may refer to the next sections.
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Let 𝒫 = (𝑝𝑖𝑗𝑘)
𝑚
𝑖,𝑗,𝑘=1 be a cubic doubly stochastic matrix, and let P∙∙𝑘 = (𝑝𝑖𝑗𝑘)

𝑚
𝑖,𝑗=1 denote

a square matrix for a fixed 𝑘 ∈ I𝑚. It is evident that P∙∙𝑘 = (𝑝𝑖𝑗𝑘)
𝑚
𝑖,𝑗=1 is also a square

stochastic matrix. In the following, we express 𝒫 = (P∙∙1| · · · |P∙∙𝑚) to represent the cubic
doubly stochastic matrix 𝒫 = (𝑝𝑖𝑗𝑘)

𝑚
𝑖,𝑗,𝑘=1. We now define a quadratic stochastic operator 𝒬 :

S𝑚−1 → S𝑚−1 that is associated with the cubic doubly stochastic matrix 𝒫 = (P∙∙1| · · · |P∙∙𝑚)
as follows

(𝒬(x))𝑘 =
𝑚∑︁

𝑖,𝑗=1

𝑥𝑖𝑥𝑗𝑝𝑖𝑗𝑘, 𝑘 ∈ I𝑚. (3.1)

We now define an 𝑚×𝑚 matrix P(x) =
(︀
𝑝𝑘𝑗(x)

)︀𝑚
𝑘,𝑗=1

𝑝𝑘𝑗(x) =
𝑚∑︁
𝑖=1

𝑥𝑖𝑝𝑖𝑗𝑘, 𝑘, 𝑗 ∈ I𝑚. (3.2)

We show that P(x) is a square doubly stochastic matrix for every x ∈ S𝑚−1. In fact, we have

𝑚∑︁
𝑘=1

𝑝𝑘𝑗(x) =
𝑚∑︁
𝑘=1

(︃
𝑚∑︁
𝑖=1

𝑥𝑖𝑝𝑖𝑗𝑘

)︃
=

𝑚∑︁
𝑖=1

(︃
𝑚∑︁
𝑘=1

𝑝𝑖𝑗𝑘

)︃
𝑥𝑖 =

𝑚∑︁
𝑖=1

𝑥𝑖 = 1,

𝑚∑︁
𝑗=1

𝑝𝑘𝑗(x) =
𝑚∑︁
𝑗=1

(︃
𝑚∑︁
𝑖=1

𝑥𝑖𝑝𝑖𝑗𝑘

)︃
=

𝑚∑︁
𝑖=1

(︃
𝑚∑︁
𝑗=1

𝑝𝑖𝑗𝑘

)︃
𝑥𝑖 =

𝑚∑︁
𝑖=1

𝑥𝑖 = 1.

Hence, it follows from (3.1) and (3.2) that

𝒬(x) = P(x)x (3.3)

and it is called a density dependent matrix form of the quadratic stochastic operator 𝒬 :
S𝑚−1 → S𝑚−1 that is associated with the cubic doubly stochastic matrix 𝒫 = (P∙∙1| · · · |P∙∙𝑚).
We are now ready to present a protocol generated by cubic doubly stochastic matrices (for

short, we use CDSM).
Protocol–CDSM: Let 𝒫 = (P∙∙1| · · · |P∙∙𝑚) be a cubic doubly stochastic matrix and 𝒬 :

S𝑚−1 → S𝑚−1 be a quadratic stochastic operator associated with a cubic doubly stochastic
matrix 𝒫 = (P∙∙1| · · · |P∙∙𝑚). Suppose that an opinion sharing dynamics of the multi–agent
system is generated by a quadratic stochastic operator 𝒬 : S𝑚−1 → S𝑚−1 as

x(𝑛+1) := 𝒬
(︀
x(𝑛)

)︀
= P

(︀
x(𝑛)

)︀
x(𝑛), x(0) ∈ S𝑚−1

where x(𝑛) =
(︁
𝑥
(𝑛)
1 , · · · , 𝑥(𝑛)

𝑚

)︁𝑇
is the subjective distribution after 𝑛 revisions.

We propose the multi–agent system interpretation of Protocol–CDSM. We assume that each
agent has the capacity to revise his/her own opinion on a particular issue by taking into account
the influences stemming from all possible pairs of two agents. This obviously creates non–
linearity in the proposed model. To maintain homogeneity within the model, we treat the
influence of a single agent as the same as the influence exerted by a group of two identical
agents. To be precise, we make the following assumptions:

∙ A group of 𝑚 agents, denoted as I𝑚 := {1, · · · ,𝑚}, collaborates as one unified team or
committee;

∙ Each individual agent possesses the capability to express his/her own opinion on a given
task/matter/issue. In this context, an opinion is a broad concept encompassing an agent’s
beliefs, behaviors, or attitudes;

∙ An opinion profile at time 𝑛 is a stochastic vector x(𝑛) = (𝑥
(𝑛)
1 , · · · , 𝑥(𝑛)

𝑚 )𝑇 ;
∙ Each agent, say 𝑘, experiences influence from a group composed of 2–agents, say {𝑖, {𝑗}},
in which an agent 𝑗 serves as the spokesperson of this group;
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∙ The influence of a group of 2–agents, say {𝑖, {𝑗}} (respectively, {𝑗, {𝑖}}) with an agent 𝑗
(respectively, 𝑖) acting as the spokesperson, on an agent 𝑘 is denoted as 𝑝𝑖𝑗,𝑘 (respectively,
𝑝𝑗𝑖,𝑘). In practice, it is important to note that 𝑝𝑖𝑗,𝑘 may not necessarily be equal to 𝑝𝑗𝑖,𝑘,
i.e., 𝑝𝑖𝑗,𝑘 ̸= 𝑝𝑗𝑖,𝑘, signifying potential differences in influence;

∙ The influence profile of the group {𝑖, {𝑗}} with the spokesperson 𝑗 is represented as a
stochastic vector p𝑖𝑗∙ := (𝑝𝑖𝑗,1, 𝑝𝑖𝑗,2, · · · , 𝑝𝑖𝑗,𝑚)𝑇 ;

∙ The collective influences stemming from all possible groups of 2–agents on an agent 𝑘
forms a square stochastic matrix P∙∙𝑘 = (𝑝𝑖𝑗,𝑘)

𝑚
𝑖,𝑗=1;

∙ An agent regards a group of 2–agents as trusted/influential when its influence on an agent
is substantial;

∙ The level of trust 𝑝𝑘𝑗(x
(𝑛)) that an agent 𝑘 places in another agent 𝑗 with the given opinion

profile x(𝑛) is calculated as the average influence over the opinion profile x(𝑛) exerted by
all possible groups of 2–agents having 𝑗 as the spokesperson. In mathematical terms, this

trust level is calculated as 𝑝𝑘𝑗(x
(𝑛)) :=

𝑚∑︀
𝑖=1

𝑥
(𝑛)
𝑖 𝑝𝑖𝑗,𝑘;

∙ The trust matrix associated with the opinion profile x(𝑛) is represented as a square doubly
stochastic matrix P(x(𝑛)) =

(︀
𝑝𝑘𝑗(x

(𝑛))
)︀𝑚
𝑘,𝑗=1

;

∙ The opinion profile at time 𝑛+ 1 is then revised as follows

x(𝑛+1) := 𝒬(x(𝑛)) = P
(︀
x(𝑛)

)︀
x(𝑛).

This implies that, due to the density dependent matrix form (2.1), the opinion sharing
dynamics of the multi–agent system given by Protocol–CDSM generates a Krause mean process.
Consequently, we have the following result (see [19]).

Proposition 3.1. Let 𝒫 = (P∙∙1| · · · |P∙∙𝑚) be a cubic doubly stochastic matrix and 𝒬 :
S𝑚−1 → S𝑚−1 be the associated quadratic stochastic operator. Then the opinion sharing dynam-
ics of the multi–agent system given by Protocol–CDSM generates the Krause mean process.

Definition 3.2 (Consensus in Protocol–CDSM). We say that the multi–agent system given
by Protocol–CDSM eventually reaches a consensus if an opinion sharing dynamics converges
to the center c = ( 1

𝑚
, · · · , 1

𝑚
)𝑇 of the simplex S𝑚−1.

4. Main result

We first introduce a notion of cubic stochastic matrices with positive influences.

Definition 4.1 ( Cubic stochastic matrix with positive influence ). A cubic stochastic ma-
trix 𝒫 = (𝑝𝑖𝑗𝑘)

𝑚
𝑖,𝑗,𝑘=1 is said to have positive influence if for any two agents 𝑗, 𝑘 ∈ I𝑚

there always exist some groups of 2–agents {𝑖1, {𝑗}}, {𝑖2, {𝑗}}, · · · {𝑖𝑡, {𝑗}} having 𝑗 as the
spokesperson (here 1 ⩽ 𝑡 = 𝑡(𝑗, 𝑘) ⩽ 𝑚) and there also exists a positive stochastic vector
c(𝑗, 𝑘) = (𝑐1, · · · , 𝑐𝑡) > 0 with

𝑡∑︁
𝑠=1

𝑐𝑠 = 1

such that the average influence
𝑡∑︁

𝑠=1

𝑐𝑠𝑝𝑖𝑠𝑗𝑘 > 0

of those groups on an agent 𝑘 is positive.
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Let us now recall some classes of cubic stochastic matrices which were studied in the series
of papers [2], [13]–[20]. The following an 𝑚×𝑚 square stochastic matrix

diag(𝒫) :=

⎛⎜⎜⎝
𝑝111 𝑝112 · · · 𝑝11𝑚
𝑝221 𝑝222 · · · 𝑝22𝑚
...

...
. . .

...
𝑝𝑚𝑚1 𝑝𝑚𝑚2 · · · 𝑝𝑚𝑚𝑚

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
(︀
p11∙

)︀𝑇(︀
p22∙

)︀𝑇
...(︀

p𝑚𝑚∙
)︀𝑇
⎞⎟⎟⎟⎠ .

is called a diagonal matrix of cubic stochastic matrix 𝒫 = (P∙∙1| · · · |P∙∙𝑚).

Definition 4.2. A cubic stochastic matrix 𝒫 = (p𝑖𝑗∙)
𝑚
𝑖,𝑗=1, where p𝑖𝑗∙ := (𝑝𝑖𝑗1, · · · 𝑝𝑖𝑗𝑚) for

all 𝑖, 𝑗 ∈ I𝑚, is said

∙ to be positive if one has p𝑖𝑗∙ > 0 for all 𝑖, 𝑗 ∈ I𝑚;
∙ to be diagonally positive if one has p𝑖𝑖∙ > 0 for all 𝑖 ∈ I𝑚;
∙ to be off-diagonally positive if one has p𝑖𝑗∙ > 0 for all 𝑖, 𝑗 ∈ I𝑚 with 𝑖 ̸= 𝑗;
∙ to have weak influence if for any two agents 𝑗, 𝑘 ∈ I𝑚 there always exists a group of 2–
agents {𝑖0, {𝑗}} having 𝑗 as the spokesperson such that the influence 𝑝𝑖0𝑗𝑘 of that group
{𝑖0, {𝑗}} on an agent 𝑘 is positive, i.e., for any 𝑗, 𝑘 ∈ I𝑚 there always exists 𝑖0 ∈ I𝑚 such
that 𝑝𝑖0𝑗𝑘 > 0.

∙ to have strong influence if for any two agents 𝑗, 𝑘 ∈ I𝑚 the total influence of all groups
of 2–agents {1, {𝑗}}, {2, {𝑗}}, · · · {𝑚, {𝑗}} having 𝑗 as the spokesperson on an agent 𝑘 is

positive, i.e.,
𝑚∑︀
𝑖=1

𝑝𝑖𝑗𝑘 > 0 for any 𝑗, 𝑘 ∈ I𝑚.

It is easy to verify that all classes of cubic stochastic matrices provided in Definition 4.2 have
positive influences. In this sense, the main result of this paper extends, generalizes, and unifies
all related results of the papers [2], [13]–[20].
We are now ready to state the main result of this paper. Let

e1 = (1, 0, 0, . . . , 0)𝑇 , e2 = (0, 1, 0, . . . , 0)𝑇 , . . . e𝑚 = (0, 0, 0, . . . , 1)𝑇

be the vertices of simplex S𝑚−1 and e
(𝑛)
𝑘 := 𝒬

(︁
e
(𝑛−1)
𝑘

)︁
, where e

(0)
𝑘 := e𝑘 for all 𝑘 ∈ I𝑚 and

𝑛 ∈ N.

Theorem 4.1 ( Consensus in cubic doubly stochastic matrix with influence ). Let
𝒫 = (P∙∙1| · · · |P∙∙𝑚) be a cubic doubly stochastic matrix and let 𝒬 : S𝑚−1 → S𝑚−1 be the asso-
ciated quadratic stochastic operator. If a cubic stochastic matrix 𝒫 = (𝑝𝑖𝑗𝑘)

𝑚
𝑖,𝑗,𝑘=1 has positive

influence and moreover, if for each 𝑘 ∈ I𝑚 one has e
(𝑛𝑘)
𝑘 ∈ riS𝑚−1 for some 𝑛𝑘 ∈ N, then

the opinion sharing dynamics of the multi–agent system given by Protocol–CDSM eventually
reaches a consensus for any initial opinion x(0) ∈ S𝑚−1.

Proof. Let
{︀
x(𝑛)

}︀∞
𝑛=0

, x(𝑛+1) = 𝒬(x(𝑛)), be a trajectory of the quadratic stochastic operator

𝒬 : S𝑚−1 → S𝑚−1 starting from an initial point x(0) ∈ S𝑚−1. Particularly, let
{︁
e
(𝑛)
𝑘

}︁∞

𝑛=0
be a

trajectory of the quadratic stochastic operator 𝒬 : S𝑚−1 → S𝑚−1 starting from a vertex e𝑘 of
the simplex S𝑚−1 for all 𝑘 ∈ I𝑚. According to the definition, the multi–agent system eventually
reaches a consensus if {x(𝑛)}∞𝑛=0 converges to the center c = ( 1

𝑚
, · · · , 1

𝑚
)𝑇 of the simplex S𝑚−1

for any initial point x(0) ∈ S𝑚−1.

Step 1. We first show that 𝒬(riS𝑚−1) ⊂ riS𝑚−1. Indeed, let x ∈ riS𝑚−1. This means that
𝑥𝑖 > 0 for all 𝑖 ∈ I𝑚. Since P(x) =

(︀
𝑝𝑘𝑗(x)

)︀𝑚
𝑘,𝑗=1

is a square doubly stochastic matrix and
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𝒬(x) = P(x)x, we derive that

0 < min
𝑗∈I𝑚

𝑥𝑗 ⩽
𝑚∑︁
𝑗=1

𝑝𝑘𝑗(x)𝑥𝑗 = (𝒬(x))𝑘 𝑘 ∈ I𝑚.

This means that 𝒬(x) ∈ riS𝑚−1.

Step 2. We now show that there exists 𝑛0 ∈ N such that for any initial point x(0) ∈ S𝑚−1

one has x(𝑛0) ∈ riS𝑚−1. It is worth mentioning that 𝑛0 is independent on an initial point

x(0) ∈ S𝑚−1. Since for each 𝑘 ∈ I𝑚 one has e
(𝑛𝑘)
𝑘 ∈ riS𝑚−1 for some 𝑛𝑘 ∈ N, it follows from the

previous step that for each 𝑘 ∈ I𝑚 one has e
(𝑛)
𝑘 ∈ riS𝑚−1 for any 𝑛 > 𝑛𝑘.

Let 𝑛0 := max
𝑘∈I𝑚

𝑛𝑘. Then e
(𝑛0)
𝑘 ∈ riS𝑚−1 for all 𝑘 ∈ I𝑚. We now show that x(𝑛0) = 𝒬𝑛0(x(0)) ∈

riS𝑚−1 for any initial point x(0) ∈ S𝑚−1. Since

P(𝜆x+ (1− 𝜆)y) = 𝜆P(x) + (1− 𝜆)P(y)

for any x,y ∈ S𝑚−1 and 0 < 𝜆 < 1, we have

x(1) =𝒬(x(0)) = P(x(0))x(0) = 𝑥
(0)
1 P(x(0))e1 + · · ·+ 𝑥(0)

𝑚 P(x(0))e𝑚

=
𝑚∑︁
𝑖=1

(︁
𝑥
(0)
𝑖

)︁2
P(e𝑖)e𝑖 + 2

∑︁
𝑖<𝑗

𝑥
(0)
𝑖 𝑥

(0)
𝑗 P(e𝑗)e𝑖

Let e
(11)
𝑖𝑗 := P(e𝑗)e𝑖 for any 𝑖 ̸= 𝑗. We then obtain

x(1) =
𝑚∑︁
𝑖=1

(︁
𝑥
(0)
𝑖

)︁2
e
(1)
𝑖 + 2

∑︁
𝑖<𝑗

𝑥
(0)
𝑖 𝑥

(0)
𝑗 e

(11)
𝑖𝑗 .

Similarly, we get

x(2) = P(x(1))x(1) =
𝑚∑︁
𝑖=1

(︁
𝑥
(0)
𝑖

)︁2
P(x(1))e

(1)
𝑖 + 2

∑︁
𝑖<𝑗

𝑥
(0)
𝑖 𝑥

(0)
𝑗 P(x(1))e

(11)
𝑖𝑗 .

Consequently, we obtain

x(2) =
𝑚∑︁
𝑖=1

𝑚∑︁
𝑘=1

(︁
𝑥
(0)
𝑖

)︁2 (︁
𝑥
(0)
𝑘

)︁2
P(e(1)𝑘 )e

(1)
𝑖 + 2

𝑚∑︁
𝑖=1

∑︁
𝑘<𝑙

(︁
𝑥
(0)
𝑖

)︁2
𝑥
(0)
𝑘 𝑥

(0)
𝑙 P(e(11)𝑘𝑙 )e

(1)
𝑖

+ 2
∑︁
𝑖<𝑗

𝑚∑︁
𝑘=1

𝑥
(0)
𝑖 𝑥

(0)
𝑗

(︁
𝑥
(0)
𝑘

)︁2
P(e(1)𝑘 )e

(11)
𝑖𝑗 + 4

∑︁
𝑖<𝑗

∑︁
𝑘<𝑙

𝑥
(0)
𝑖 𝑥

(0)
𝑗 𝑥

(0)
𝑘 𝑥

(0)
𝑙 P(e(11)𝑘𝑙 )e

(11)
𝑖𝑗 .

It is clear that
𝑚∑︁
𝑖=1

𝑚∑︁
𝑘=1

(︁
𝑥
(0)
𝑖

)︁2 (︁
𝑥
(0)
𝑘

)︁2
P(e(1)𝑘 )e

(1)
𝑖

=
𝑚∑︁
𝑖=1

(︁
𝑥
(0)
𝑖

)︁4
P(e(1)𝑖 )e

(1)
𝑖 +

∑︁
𝑖 ̸=𝑘

(︁
𝑥
(0)
𝑖

)︁2 (︁
𝑥
(0)
𝑘

)︁2
P(e(1)𝑘 )e

(1)
𝑖

=
𝑚∑︁
𝑖=1

(︁
𝑥
(0)
𝑖

)︁4
e
(2)
𝑖 +

∑︁
𝑖 ̸=𝑘

(︁
𝑥
(0)
𝑖

)︁2 (︁
𝑥
(0)
𝑘

)︁2
P(e(1)𝑘 )e

(1)
𝑖 .

Therefore,

x(2) =
(︁
𝑥
(0)
1

)︁4
e
(2)
1 +

(︁
𝑥
(0)
2

)︁4
e
(2)
2 + · · ·+

(︀
𝑥(0)
𝑚

)︀4
e(2)𝑚 + · · ·
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Analogously, one can show that

x(𝑛) =
(︁
𝑥
(0)
1

)︁2𝑛
e
(𝑛)
1 +

(︁
𝑥
(0)
2

)︁2𝑛
e
(𝑛)
2 + · · ·+

(︀
𝑥(0)
𝑚

)︀2𝑛
e(𝑛)𝑚 + · · ·

for any 𝑛 ∈ N. Since e
(𝑛0)
𝑘 ∈ riS𝑚−1, i.e., e

(𝑛0)
𝑘 > 0 for all 𝑘 ∈ I𝑚, we obtain

x(𝑛0) ⩾
(︁
𝑥
(0)
1

)︁2𝑛0

e
(𝑛0)
1 +

(︁
𝑥
(0)
2

)︁2𝑛0

e
(𝑛0)
2 + · · ·+

(︀
𝑥(0)
𝑚

)︀2𝑛0

e(𝑛0)
𝑚 > 0

for any x(0) ∈ S𝑚−1. This shows that x(𝑛0) ∈ riS𝑚−1.

Step 3. Now we are going to show that for any x(0) ∈ S𝑚−1 an omega limit set 𝜔
(︀{︀

x(𝑛)
}︀)︀

of

the sequence {x(𝑛)}∞𝑛=0 is a subset of the interior riS𝑚−1 of the simplex S𝑚−1 i.e., 𝜔
(︀{︀

x(𝑛)
}︀)︀

⋐
riS𝑚−1. Indeed, it follows from the previous step that 𝒬𝑛0(S𝑚−1) ⋐ riS𝑚−1. Since 𝒬𝑛0(S𝑚−1)
is a compact set, there exists 𝛼 > 0 such that

𝒬𝑛0(x) ⩾ 𝛼e := (𝛼, 𝛼, · · · , 𝛼)𝑇 , x ∈ S𝑚−1.

On the other hand, the interior riS𝑚−1 of the simplex S𝑚−1 is an invariant set (see Step 1)
and 𝒬𝑛(S𝑚−1) ⊂ 𝒬𝑛0(S𝑚−1) for any 𝑛 > 𝑛0, we have {x(𝑛)}∞𝑛=𝑛0

⊂ S𝛼, i.e., x
(𝑛) ⩾ 𝛼e for any

𝑛 > 𝑛0 where
S𝛼 := {x ∈ S𝑚−1 : x ⩾ 𝛼e}.

Consequently, an omega limit set 𝜔
(︀{︀

x(𝑛)
}︀)︀

of the sequence {x(𝑛)}∞𝑛=0 is a subset of the set S𝛼,

i.e., 𝜔
(︀{︀

x(𝑛)
}︀)︀

⊂ S𝛼 ⊂ riS𝑚−1 any x(0) ∈ S𝑚−1.

Step 4. As we showed in the previous step that 𝒬𝑛(S𝑚−1) ⊂ S𝛼 for any 𝑛 > 𝑛0, it is therefore
enough to study the dynamics of the quadratic stochastic operator over the set S𝛼 which is an
invariant set. Let x(0) ∈ S𝛼. Then x(𝑛) ∈ S𝛼, i.e., x

(𝑛) ⩾ 𝛼e for any 𝑛 ∈ N. It follows from the
matrix form (3.3) of the quadratic stochastic operator that

x(𝑛+1) = 𝒬(x(𝑛)) = P
(︀
x(𝑛)

)︀
x(𝑛) = P

(︀
x(𝑛)

)︀
· · ·P

(︀
x(1)
)︀
P
(︀
x(0)
)︀
x(0)

where P (x) is the square doubly stochastic matrix defined by (3.2). Let us set for any two
integer numbers 𝑛 > 𝑟

P[x
(𝑛),x(𝑟)] := P

(︀
x(𝑛)

)︀
P
(︀
x(𝑛−1)

)︀
· · ·P

(︀
x(𝑟+1)

)︀
P
(︀
x(𝑟)
)︀
.

We then obtain for any 𝑛 ⩾ 𝑟 ⩾ 0 that

x(𝑛+1) = P[x
(𝑛),x(0)]x(0) = P[x

(𝑛),x(𝑟)]x(𝑟).

Since 𝒫 = (P∙∙1| · · · |P∙∙𝑚) has positive influence, then for any 𝑗, 𝑘 ∈ I𝑚 there always exists

1 ⩽ 𝑡(𝑗, 𝑘) ⩽ 𝑚 such that
𝑡(𝑗,𝑘)∑︀
𝑠=1

𝑐𝑠𝑝𝑖𝑠𝑗𝑘 > 0 where the vector c(𝑗, 𝑘) = (𝑐1, · · · , 𝑐𝑡) > 0 depends

on 𝑗, 𝑘 such that
𝑡(𝑗,𝑘)∑︀
𝑠=1

𝑐𝑠 = 1. It is evident that

0 <

𝑡(𝑗,𝑘)∑︁
𝑠=1

𝑐𝑠𝑝𝑖𝑠𝑗𝑘 ⩽

(︂
max

1⩽𝑠⩽𝑡(𝑗,𝑘)
𝑐𝑠

)︂ 𝑡(𝑗,𝑘)∑︁
𝑠=1

𝑝𝑖𝑠𝑗𝑘

We now define

𝛿(𝑗, 𝑘) :=

𝑡(𝑗,𝑘)∑︁
𝑠=1

𝑝𝑖𝑠𝑗𝑘 > 0

for any 𝑗, 𝑘 ∈ I𝑚. Let
𝛿 := min

𝑗,𝑘∈I𝑚
𝛿(𝑗, 𝑘) > 0.
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Since x(𝑛) ⩾ 𝛼e for any 𝑛 ∈ N, it follows from (3.2) for a stochastic matrix P(x(𝑛)) =(︀
𝑝𝑘𝑗(x

(𝑛))
)︀𝑚
𝑘,𝑗=1

that

𝑝𝑘𝑗(x
(𝑛)) =

𝑚∑︁
𝑖=1

𝑝𝑖𝑗𝑘𝑥
(𝑛)
𝑖 ⩾

𝑡(𝑗,𝑘)∑︁
𝑠=1

𝑝𝑖𝑠𝑗𝑘𝑥
(𝑛)
𝑖𝑠

⩾ 𝛼

𝑡(𝑗,𝑘)∑︁
𝑠=1

𝑝𝑖𝑠𝑗𝑘 = 𝛼𝛿(𝑗, 𝑘) ⩾ 𝛼𝛿 > 0 (4.1)

for any 𝑗, 𝑘 ∈ I𝑚 and 𝑛 ∈ N. Consequently, P(x(𝑛)) =
(︀
𝑝𝑘𝑗(x

(𝑛))
)︀𝑚
𝑘,𝑗=1

is a uniformly positive

square stochastic matrix for any 𝑛 ∈ N.

Step 5. Let

𝛿(P) =
1

2
max
𝑖1,𝑖2

𝑚∑︁
𝑗=1

|𝑝𝑖1𝑗 − 𝑝𝑖2𝑗|

be the Dobrushin ergodicity coefficient (see [22]) of a square stochastic matrix P = (𝑝𝑖𝑗)
𝑚
𝑖,𝑗=1.

We first recall some properties of Dobrushin ergodicity coefficient for the reader’s convenience.
The following statements are true for any square stochastic matrices P and Q (see [22]):

(𝑖) 0 ⩽ 𝛿(P) ⩽ 1;
(𝑖𝑖) 𝛿(P) = 0 if and only if rank(P) = 1, i.e., P is a stable stochastic matrix;
(𝑖𝑖𝑖) 𝛿(P) < 1 if and only if P is scrambling. If P > 0, then 𝛿(P) < 1;
(𝑖𝑣) |𝛿(P)− 𝛿(Q)| ⩽ ‖P−Q‖∞;
(𝑣) 𝛿(PQ) ⩽ 𝛿(P)𝛿(Q).

Since P(x(𝑛)) =
(︀
𝑝𝑘𝑗(x

(𝑛))
)︀𝑚
𝑘,𝑗=1

is positive, it follows from the property (𝑖𝑖𝑖) of Dobrushin’s

ergodicity coefficient given above that

𝛿
(︀
P(x(𝑛))

)︀
< 1, ∀ 𝑛 ∈ N.

Moreover, due to inequality (4.1), the entries of the matrix P(x(𝑛)) =
(︀
𝑝𝑘𝑗(x

(𝑛))
)︀𝑚
𝑘,𝑗=1

are

uniformly bounded away from zero for any 𝑛 ∈ N. It is worthy noting that, by using the same
idea, we can also show that not only P(x(𝑛)) =

(︀
𝑝𝑘𝑗(x

(𝑛))
)︀𝑚
𝑘,𝑗=1

but also P(x) =
(︀
𝑝𝑘𝑗(x)

)︀𝑚
𝑘,𝑗=1

for all x ⩾ 𝛼e is positive and its entries are uniformly bounded away from zero for all x ⩾ 𝛼e.
Indeed, since 𝒫 = (P∙∙1| · · · |P∙∙𝑚) has positive influence and x ⩾ 𝛼e, it follows from (3.2) for
a doubly stochastic matrix P(x) =

(︀
𝑝𝑘𝑗(x)

)︀𝑚
𝑘,𝑗=1

that

𝑝𝑘𝑗(x) =
𝑚∑︁
𝑖=1

𝑝𝑖𝑗𝑘𝑥𝑖 ⩾
𝑡(𝑗,𝑘)∑︁
𝑠=1

𝑝𝑖𝑠𝑗𝑘𝑥𝑖𝑠 ⩾ 𝛼

𝑡(𝑗,𝑘)∑︁
𝑠=1

𝑝𝑖𝑠𝑗𝑘 = 𝛼𝛿(𝑗, 𝑘) ⩾ 𝛼𝛿 > 0.

Since, due to the property (𝑖𝑣) given above, Dobrushin’s ergodicity coefficient 𝛿(·) is continuous
and the set S𝛼 := {x ∈ S𝑚−1 : x ⩾ 𝛼e} is compact, we obtain that

𝜆 := max
x∈S𝛼

(𝛿 (P(x))) = 𝛿 (P(x*)) < 1

for some x* ∈ S𝛼 := {x ∈ S𝑚−1 : x ⩾ 𝛼e}. Consequently, since x(𝑛) ∈ S𝛼, i.e., x
(𝑛) ⩾ 𝛼e for

any 𝑛 ∈ N, we then obtain that

𝛿
(︀
P(x(𝑛))

)︀
⩽ max

x∈S𝛼
(𝛿 (P(x))) = 𝛿 (P(x*)) =: 𝜆 < 1, ∀ 𝑛 ∈ N.

It follows from the property (𝑣) of Dobrushin’s ergodicity coefficient given above that

0 ⩽ 𝛿
(︁
P[x

(𝑛),x(0)]
)︁
⩽

𝑛∏︁
𝑘=0

𝛿
(︀
P(x(𝑘))

)︀
⩽ 𝜆𝑛+1.

Hence, we have

lim
𝑛→∞

𝛿
(︁
P[x

(𝑛),x(0)]
)︁
= 0.
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Therefore, due to [22, Ch. 4, Sect. 4.3, Lm. 4.1], the backwards products (which are the
transpose of forwards products) of doubly stochastic matrices {Px(𝑛)}∞𝑛=0 are weakly ergodic
(see [22, Ch. 4, Sect. 4.3, Def. 4.5]). Moreover, weak and strong ergodicity (see [22, Ch. 4,
Sect. 4.3, Def. 4.6]) are equivalent for the backwards products of doubly stochastic matrices
(see [22, Ch. 4, Sect. 4.6, Thm. 4.17]). Due to the definition of strong ergodicity (see [22,

Ch. 4, Sect. 4.3, Def. 4.6]), this means that the backwards products
{︁
P[x

(𝑛),x(0)]
}︁∞

𝑛=0
of doubly

stochastic matrices {Px(𝑛)}∞𝑛=0 must converge to the rank-1 doubly stochastic matrix. Since the
only rank–one doubly stochastic matrix is 𝑚c𝑇c, we obtain that

lim
𝑛→∞

P[x
(𝑛),x(0)] = 𝑚c𝑇c,

lim
𝑛→∞

x(𝑛+1) = lim
𝑛→∞

P[x
(𝑛),x(0)]x(0) = c, x(0) ∈ S𝛼,

where c = ( 1
𝑚
, · · · , 1

𝑚
)𝑇 . This completes the proof.

Remark 4.1 ( The Geometric Rate of Convergence ). Due to the classical Markov-Dobrushin
inequality ‖Px − Py‖1 ⩽ 𝛿(P)‖x − y‖1 for a doubly stochastic matrix P (see [22]), it follows
from Step 5 of the proof of Theorem 4.1 that

‖x(𝑛+1) − c‖1 =
⃦⃦⃦
P[x

(𝑛),x(0)]x(0) − c
⃦⃦⃦
1

=
⃦⃦⃦
P[x

(𝑛),x(0)]x(0) − P[x
(𝑛),x(0)]c

⃦⃦⃦
1

⩽𝛿
(︁
P[x

(𝑛),x(0)]
)︁
‖x(0) − c‖1 ⩽ 𝜆𝑛+1‖x(0) − c‖1.

We have a geometric rate of convergence in the multi–agent system given by Protocol–CDSM.

5. Discussions

We now discuss the main result of this paper and compare it with the previous results [2],
[13]–[20] on the consensus problem. The following result was proved in the papers [13]–[18].

Theorem 5.1 (Consensus in positive cubic triply stochastic matrix). Let

𝒫 = (P∙∙1| · · · |P∙∙𝑚)

be a cubic triply stochastic matrix and let 𝒬 : S𝑚−1 → S𝑚−1 be the associated quadratic sto-
chastic operator. If 𝒫 > 0 then the opinion sharing dynamics of the multi–agent system given
by Protocol–CDSM eventually reaches a consensus.

The subsequent step involved relaxing the triple stochasticity condition imposed on positive
cubic stochastic matrices. In the paper [2], consensus was achieved within the multi–agent
system governed by positive cubic doubly stochastic matrices. Following this result, the sub-
sequent research focus shifted towards relaxing the positivity condition of doubly stochastic
matrices. This objective was successfully achieved for diagonally primitive cubic doubly sto-
chastic matrices in the paper [19]. We recall that a cubic stochastic matrix 𝒫 = (𝑝𝑖𝑗𝑘)

𝑚
𝑖,𝑗,𝑘=1 is

called diagonally primitive if its diagonal diag(𝒫) := (𝑝𝑗𝑗𝑘)
𝑚
𝑗,𝑘=1 is a primitive square stochastic

matrix [19], i.e., there exists 𝑠 ∈ N such that the 𝑠th power of the square stochastic matrix
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diag(𝒫) is positive, i.e.,
[︀
diag(𝒫)

]︀𝑠
> 0, where

diag(𝒫) :=

⎛⎜⎜⎝
𝑝111 𝑝112 · · · 𝑝11𝑚
𝑝221 𝑝222 · · · 𝑝22𝑚
...

...
. . .

...
𝑝𝑚𝑚1 𝑝𝑚𝑚2 · · · 𝑝𝑚𝑚𝑚

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
(︀
p11∙

)︀𝑇(︀
p22∙

)︀𝑇
...(︀

p𝑚𝑚∙
)︀𝑇
⎞⎟⎟⎟⎠ .

It is worth noting that for diagonally primitive cubic doubly stochastic matrices (as demon-
strated in Example 5.1), off-diagonal entries may indeed be zero. As long as (some power of)
the diagonal matrix diag(𝒫) of cubic doubly stochastic matrix is positive, the consensus can
still be achieved within the system.
In the next stage of research focused on off-diagonally positive cubic doubly stochastic matri-

ces. Namely, in the paper [20], the consensus was successfully established within the multi–agent
system, even when the diagonal matrix of the cubic doubly stochastic matrix could potentially
have zero entries, as long as the off-diagonal entries are positive (see Example 5.2). Recent re-
search, as presented in [19], [20], has opened up the opportunity to explore consensus problems
even in scenarios where cubic doubly stochastic matrices contain zero entries in their diagonals
or off-diagonal positions.
The primary objective of this paper is to investigate the consensus problem under the condi-

tion that cubic doubly stochastic matrices may contain zero entries in both their diagonals and
off-diagonal positions simultaneously. To a certain degree, as demonstrated in Example 5.3, the
research outcomes presented in this paper extend, unify, and consolidate the research findings
from the previously mentioned papers [19], [20]. This represents the novel contribution of the
paper. Let us now provide some concrete examples.

Example 5.1. We consider the cubic doubly stochastic matrix 𝒫 = (P1∙∙|P2∙∙|P3∙∙), where
P1∙∙, P2∙∙, and P3∙∙ are square doubly stochastic matrices

P1∙∙ =

⎛⎝𝑝111 𝑝112 𝑝113
𝑝121 𝑝122 𝑝123
𝑝131 𝑝132 𝑝133

⎞⎠ , P2∙∙ =

⎛⎝𝑝211 𝑝212 𝑝213
𝑝221 𝑝222 𝑝223
𝑝231 𝑝232 𝑝233

⎞⎠ , P3∙∙ =

⎛⎝𝑝311 𝑝312 𝑝313
𝑝321 𝑝322 𝑝323
𝑝331 𝑝332 𝑝333

⎞⎠ .

The following quadratic stochastic operator 𝒬 : S2 → S2 presents Protocol–CDSM

𝒬(x) = 𝑥1

(︀
P𝑇
1∙∙x

)︀
+ 𝑥2

(︀
P𝑇
2∙∙x

)︀
+ 𝑥3

(︀
P𝑇
3∙∙x

)︀
= P (x)x

where

P (x) = 𝑥1P𝑇
1∙∙ + 𝑥2P𝑇

2∙∙ + 𝑥3P𝑇
3∙∙

is a square doubly stochastic matrix.
It was shown in the papers [13]–[18] that if the square doubly stochastic matrices P1∙∙ > 0,

P2∙∙ > 0, and P3∙∙ > 0 are positive and

P1∙∙ + P2∙∙ + P3∙∙ =

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ (5.1)

then the consensus is established in the system described by Protocol–CDSM. Later, this result
was generalized in the paper [2]. Namely, the consensus was established for the positive square
doubly stochastic matrices P1∙∙ > 0, P2∙∙ > 0, P3∙∙ > 0 without the constraint (5.1). However,
these results were further improved in the paper [19]. Namely, without positivity of the square
doubly stochastic matrices P1∙∙,P2∙∙,P3∙∙ and without the constraint (5.1), the consensus is still
established in the system described by Protocol–CDSM if the cubic doubly stochastic matrix 𝒫
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is (only) diagonally primitive, i.e., for some 𝑠 ∈ N we have

[diag(𝒫)]𝑠 =

⎛⎝ 𝑝111 𝑝112 𝑝113
𝑝221 𝑝222 𝑝223
𝑝331 𝑝332 𝑝333

⎞⎠𝑠

> 0.

Example 5.2. We consider the following square doubly stochastic matrices

P1∙∙ =

⎛⎝1
2

1
2

0
1
4

1
4

1
2

1
4

1
4

1
2

⎞⎠ , P2∙∙ =

⎛⎝1
4

1
4

1
2

1
2

1
2

0
1
4

1
4

1
2

⎞⎠ , P3∙∙ =

⎛⎝1
4

1
4

1
2

1
4

1
4

1
2

1
2

1
2

0

⎞⎠
We then obtain the following quadratic stochastic operator 𝒬 : S2 → S2

𝒬(x) = (𝑥2
1 + 𝑥2

2 + 𝑥2
3)
e1 + e2

2
+ (𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3)

e1 + e2 + 2e3
2

where
e1 = (1, 0, 0)𝑇 , e2 = (0, 1, 0)𝑇 , e3 = (0, 0, 1)𝑇

are vertices of the simplex S2. On the one hand, since for any 𝑠 ∈ N we have

[diag(𝒫)]𝑠 = diag(𝒫) =

⎛⎝1
2

1
2

0
1
2

1
2

0
1
2

1
2

0

⎞⎠ ,

the cubic doubly stochastic matrix 𝒫 = (P1∙∙|P2∙∙|P3∙∙) is not diagonally primitive. On the
other hand, since p𝑖𝑗∙ = (1

4
, 1
4
, 1
2
) > 0 for all 𝑖, 𝑗 ∈ I3 with 𝑖 ̸= 𝑗, i.e., 𝒫 = (P1∙∙|P2∙∙|P3∙∙)

is off-diagonally positive, it was shown in the paper [20] that the opinion sharing dynamics of
the multi–agent system given by Protocol–CDSM still eventually reaches a consensus for any
initial opinion x ∈ S2.

It is worth mentioning that there is still a room to further improvement of these results. In-
deed, Theorem 4.1 is a further extension and generalization of the results published in the papers
[2], [13]–[20]. Namely, without positivity of the square doubly stochastic matrices P1∙∙,P2∙∙,P3∙∙
and without the constraint (5.1), the consensus is still established in the system described by
Protocol–CDSM if the influence of cubic matrix 𝒫 = (P1∙∙|P2∙∙|P3∙∙) is positive. To illustrate
it, let us consider the next example.

Example 5.3. We consider the following square doubly stochastic matrices

P1∙∙ =

⎛⎝1
2

1
2

0
1
2

0 1
2

0 1
2

1
2

⎞⎠ , P2∙∙ =

⎛⎝1
2

0 1
2

1
2

1
2

0
0 1

2
1
2

⎞⎠ , P3∙∙ =

⎛⎝0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

⎞⎠ .

We then obtain the following quadratic stochastic operator 𝒬 : S2 → S2 :

𝒬(x) = (𝑥2
1 + 𝑥2

2 + 𝑥2
3)
e1 + e2

2
+ 𝑥1𝑥2(e1 + e3) + 𝑥1𝑥3(e2 + e3) + 𝑥2𝑥3

e1 + e2 + 2e3
2

where
e1 = (1, 0, 0)𝑇 , e2 = (0, 1, 0)𝑇 , e3 = (0, 0, 1)𝑇

are vertices of the simplex S2. On the one hand, since for any 𝑠 ∈ N

[diag(𝒫)]𝑠 = diag(𝒫) =

⎛⎝1
2

1
2

0
1
2

1
2

0
1
2

1
2

0

⎞⎠ ,

the cubic doubly stochastic matrix 𝒫 = (P1∙∙|P2∙∙|P3∙∙) is not diagonally primitive. On the
other hand, 𝒫 = (P1∙∙|P2∙∙|P3∙∙) is not off-diagonally positive. However, the influence of cubic
matrix 𝒫 = (P1∙∙|P2∙∙|P3∙∙) is positive. Therefore, it follows from Theorem 4.1 that the opinion
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sharing dynamics of the multi–agent system given by Protocol–CDSM still eventually reaches
a consensus for any initial opinion.
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