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ASYMPTOTIC REPRESENTATION OF

HYPERGEOMETRIC BERNOULLI POLYNOMIALS OF

ORDER 2 INSIDE DOMAINS RELATED TO

THE ROOTS OF 𝑒𝑤 − 1− 𝑤 = 0

L. NIGUSSA, A. NASIR

Abstract. Among several approaches towards the classical Bernoulli polynomials 𝐵𝑛(𝑥),
one is the definition by the generating function

𝑤𝑒𝑥𝑤

𝑒𝑤 − 1
=

∞∑︁
𝑛=0

𝐵𝑛(𝑥)
𝑤𝑛

𝑛!
for |𝑤| < 2𝜋.

As a generalization of 𝐵𝑛(𝑥), for any positive integer𝑁 , a new class of Bernoulli polynomials
called Hypergeometric Bernoulli polynomials of order 𝑁 , 𝐵𝑛(𝑁, 𝑥) was established. For the
particular case 𝑁 = 2 these polynomials are given by

1

2

𝑤2𝑒𝑥𝑤

𝑒𝑤 − 1− 𝑤
=

∞∑︁
𝑛=0

𝐵𝑛(2, 𝑥)
𝑤𝑛

𝑛!
for |𝑤| < 2𝜋.

Several asymptotic formulas for the Bernoulli and Euler polynomials inside different domains
related to the roots of 𝜑(𝑤) = 𝑒𝑤 − 1 were found.

In this paper, we consider an integral representation for 𝐵𝑛(2, 𝑥) and establish a zero
attractor for the re-scaled polynomials 𝐵𝑛(2, 𝑛𝑥) for large values of 𝑛. We briefly discuss
some analogous asymptotic formulas of 𝐵𝑛(2, 𝑥) inside domains related to the roots of
𝜙(𝑤) = 𝑒𝑤 − 1− 𝑤.
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1. Introduction

1.1. Bernoulli Polynomials. The classical Bernoulli polynomials 𝐵𝑛(𝑥) were extensively
considered by many authors and several generalizations were made, for which analogous prop-
erties were obtained. Alternative to the definition via the generating function

𝑤𝑒𝑥𝑤

𝑒𝑤 − 1
=

∞∑︁
𝑛=0

𝐵𝑛(𝑥)
𝑤𝑛

𝑛!
for |𝑤| < 2𝜋, (1.1)

these polynomials are equivalently defined by the recurrence formula

𝐵𝑛(𝑥) =
𝑛∑︁

𝑘=0

(︂
𝑛
𝑘

)︂
𝑏𝑘𝑥

𝑛−𝑘, (1.2)
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where the 𝑏𝑘 are the Bernoulli numbers. Equivalently, Bernoulli polynomials are also defined
by an Appell sequence with zero mean, as

𝐵0(𝑥) = 1, 𝐵′
𝑛(𝑥) = 𝑛𝐵𝑛−1(𝑥),

1∫︁
0

𝐵𝑛(𝑥) 𝑑𝑥 =

{︂
1 for 𝑛 = 0,

0 for 𝑛 > 0.
(1.3)

Each of the three definitions: the generating function (1.1), the recurrence formula (1.2) and
the Appell sequence (1.3) define the same sequence {𝐵𝑛(𝑥)} of Bernoulli polynomials. The
sequence of Bernoulli polynomials possess many interesting properties. Some of the well–known
properties of 𝐵𝑛(𝑥) are

∙ Symmetry property

𝐵𝑛(1− 𝑥) = (−1)𝑛𝐵𝑛(𝑥), 𝑛 ⩾ 0.

∙ Difference equation

𝐵𝑛(𝑥+ 1)−𝐵𝑛(𝑥) = 𝑛𝑥𝑛−1, 𝑛 ⩾ 1.

∙ Addition formula

𝐵𝑛(𝑥+ 𝑦) =
𝑛∑︁

𝑘=0

(︂
𝑛
𝑘

)︂
𝐵𝑘(𝑥)𝑦

𝑛−𝑘.

∙ Raabe’s multiplication formula

𝐵𝑛(𝑚𝑥) = 𝑚𝑛−1

𝑚−1∑︁
𝑘=0

𝐵𝑛

(︂
𝑥+

𝑘

𝑚

)︂
,

where 𝑚 and 𝑛 are integers with 𝑛 ⩾ 0 and 𝑚 ⩾ 1.

1.2. Hypergeometric Bernoulli Polynomials. On the base of the definition of 𝐵𝑛(𝑥) by
the generating function, several generalizations were made by different authors. Among these
generalizations are the polynomials {𝐴𝑛(𝑥)} introduced by Howard [7]

1

2

𝑤2𝑒𝑥𝑤

𝑒𝑤 − 1− 𝑤
=

∞∑︁
𝑛=0

𝐴𝑛(𝑥)
𝑤𝑛

𝑛!
for |𝑤| < 2𝜋.

Several authors considered similar generalizations of Bernoulli polynomials; we refer to [7], [3],
[5] and [4] for some other related concepts to generalization of Bernoulli polynomials.
In this paper, we focus on the generalization made by Hassen and Nguyen [5] referred to as

hypergeometric Bernoulli polynomials of order 𝑁 .

Definition 1.1. For any integer 𝑁 ⩾ 1, hypergeometric Bernoulli polynomials of order 𝑁 ,
𝐵𝑛(𝑁, 𝑥), are defined as

1

𝑁 !

𝑤𝑁𝑒𝑥𝑤

𝑒𝑤 − 𝑇𝑁−1(𝑤)
=

∞∑︁
𝑛=0

𝐵𝑛(𝑁, 𝑥)
𝑤𝑛

𝑛!
for |𝑤| < 2𝜋, (1.4)

where

𝑇𝑚(𝑤) = 1 + 𝑤 +
𝑤2

2!
+ . . .+

𝑤𝑚

𝑚!
=

𝑚∑︁
𝑘=0

𝑤𝑘

𝑘!
.

The particular case of (1.4) with 𝑁 = 1 reduces to the classical Bernoulli polynomials 𝐵𝑛(𝑥)
given in (1.1) and for 𝑁 = 2 it represents the hypergeometric Bernoulli polynomials of order 2
defined as

1

2

𝑤2𝑒𝑥𝑤

𝑒𝑤 − 1− 𝑤
=

∞∑︁
𝑛=0

𝐵𝑛(2, 𝑥)
𝑤𝑛

𝑛!
for |𝑤| < 2𝜋. (1.5)
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As in the classical case, there are several approaches for defining hypergeometric Bernoulli
polynomials. Accordingly, the hypergeometric Bernoulli polynomials 𝐵𝑛(𝑁, 𝑥) are equivalently
defined by a recurrence formula as

𝐵𝑛(𝑁, 𝑥) =
𝑛∑︁

𝑘=0

(︂
𝑛
𝑘

)︂
𝐵𝑘(𝑁)𝑥𝑛−𝑘. (1.6)

The hypergeometric Bernoulli polynomials 𝐵𝑛(𝑁, 𝑥) are also defined in terms of an Appell
sequence with zero moments as

𝐵0(𝑁, 𝑥) = 1, 𝐵′
𝑛(𝑁, 𝑥) = 𝑛𝐵𝑛−1(𝑁, 𝑥),

1∫︁
0

(1− 𝑥)𝑁−1𝐵𝑛(𝑁, 𝑥) 𝑑𝑥 =

⎧⎨⎩
1

𝑁
for 𝑛 = 0

0 for 𝑛 > 0.

(1.7)

In [5], Hassen and Nguyen proved the equivalence of these different definitions of hypergeometric
Bernoulli polynomials.

Theorem 1.1 ([5]). For each integer 𝑁 ⩾ 1, the definitions of the hypergeometric Bernoulli
polynomials 𝐵𝑛(𝑁, 𝑥) via the generating function (1.4), the recurrence formula (1.6) and the
Appell sequence (1.7) are equivalent.

In [1], Asfaw and Hassen established the following properties of 𝐵𝑛(𝑁, 𝑥) which are analogous
to that of the classical Bernoulli polynomials 𝐵𝑛(𝑥).

∙ Addition formula
For hypergeometric Bernoulli polynomials of order 𝑁 we have the addition formula

𝐵𝑛(𝑁, 𝑥+ 𝑦) =
𝑛∑︁

𝑘=0

(︂
𝑛
𝑘

)︂
𝐵𝑘(𝑁, 𝑥)𝑦𝑛−𝑘.

∙ Difference equation
For each 𝑛 = 2, 3, 4, . . ., the polynomials 𝐵𝑛(2, 𝑥) satisfy the equation

𝐵𝑛(2, 𝑥+ 1)−𝐵𝑛(2, 𝑥) = 𝑛𝐵𝑛−1(2, 𝑥) +

(︂
𝑛
2

)︂
𝑥𝑛−2.

∙ Generalized difference equation
For each positive integer 𝑚 we have

𝐵𝑛(2, 𝑥+𝑚) =
𝑚∑︁
𝑘=0

(︂
𝑚
𝑘

)︂
𝐵(𝑘)

𝑛 (2, 𝑥) +
𝑛!

2

𝑚−1∑︁
𝑘=0

𝑚−1−𝑘∑︁
𝑗=0

(︂
𝑚− 1− 𝑘

𝑗

)︂
(𝑥+ 𝑘)𝑛−2−𝑗

(𝑛− 2− 𝑗)!
,

where 𝐵
(𝑘)
𝑛 (2, 𝑥) = 𝑛(𝑛− 1) . . . (𝑛− 𝑘 + 1)𝐵𝑛−𝑘(2, 𝑥) is the 𝑘𝑡ℎ derivative of 𝐵𝑛(2, 𝑥).

Remark 1.1. The three alternative definitions; (1.4), (1.6) and (1.7) of 𝐵𝑛(𝑁, 𝑥) are analo-
gous to the three definitions of 𝐵𝑛(𝑥) given in (1.1), (1.2) and (1.3), respectively. This interest-
ing relation between 𝐵𝑛(𝑁, 𝑥) and 𝐵𝑛(𝑥) motivated us to study further analogous properties of
these new class of polynomials, including the integral representations and asymptotic formulas
of 𝐵𝑛(2, 𝑥).

2. Preliminaries

2.1. Some properties of roots of 𝑒𝑧 − 1− 𝑧 = 0. The function 𝜙(𝑤) = 𝑒𝑧 − 1− 𝑧 appears
in the generating function of 𝐵𝑛(2, 𝑎) in (1.5). The roots of this function are basic quantities
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for the series representation of 𝐵𝑛(2, 𝑥). In [6], Hassen and Nguyen discussed several concepts
related to the roots of 𝜙(𝑧).
If 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 is a root of 𝜙(𝑧), then its complex conjugate 𝑧𝑘 = 𝑥𝑘 − 𝑖𝑦𝑘 is also a root,

and we usually list all the roots in pairs as {𝑧𝑘, 𝑧𝑘}. In fact, all the roots 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 and
𝑧𝑘 = 𝑥𝑘 − 𝑖𝑦𝑘 of 𝜙 lie inside the right half–plane.
The following results are proved in [6] with slight modifications made in [1].

Lemma 2.1. Let 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 = 𝑟𝑘𝑒
𝜃𝑘 be the roots of 𝜙(𝑧) that lie in the upper half of the

complex plane and such that 0 < 𝑟1 < 𝑟2 < 𝑟3 < · · · .
(i) The inequality

2𝜋𝑘 +
𝜋

3
< 𝑦𝑘 < 2𝜋𝑘 +

𝜋

2
, 𝑘 = 1, 2, . . .

holds. Moreover, for each 𝑘 there exists exactly one root 𝑧𝑘 with the imaginary part obeying
this inequality, and there are no other zeros elsewhere in the complex plane.

(ii) The arguments 𝜃𝑘 of 𝑧𝑘 obey the inequalities 𝜃1 < 𝜃2 < 𝜃3 < · · · < 𝜋
2
, and 𝜃𝑘 → 𝜋

2
as

𝑘 → ∞.
(iii) As 𝑘 increases, all the quantities 𝑥𝑘, 𝑦𝑘 and 𝜃𝑘 increase. In addition, we have 𝑦𝑘 < 𝑒𝑥𝑘

and 𝑦𝑘 → 𝑒𝑥𝑘 as 𝑘 → ∞.

2.2. Dominant roots. There are two roots of 𝜙(𝑧) with minimal moduluses. These are
𝑧1 = 𝑥1 + 𝑖𝑦1 = 𝑟1𝑒

𝜃1 and 𝑧1 = 𝑥1 − 𝑖𝑦1 = 𝑟1𝑒
−𝜃1 , and we call them dominant roots. The

approximate values of 𝑥1, 𝑦1, 𝑟1 and 𝜃1 (as calculated by Mathematica) are 𝑥1 ≈ 2.0888,
𝑦1 ≈ 7.4615, 𝑟1 ≈ 7.7484 and 𝜃1 ≈ 1.2978. That is,

𝑧1 ≈ 2.0888 + 𝑖 7.4615, 𝑧1 ≈ 2.0888− 𝑖 7.4615. (2.1)

We also list approximate values for a few first roots 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 = 𝑟𝑘𝑒
𝜃𝑘 .

k 𝑥𝑘 𝑦𝑘 𝑟𝑘 𝜃𝑘
1 2.0888 7.4615 7.7484 1.2978
2 2.6641 13.879 14.132 1.3812
3 3.0263 20.224 20.449 1.4223
4 3.2917 26.543 26.747 1.4474
5 3.5013 32.851 33.037 1.4646
6 3.6745 39.151 39.323 1.4772
7 3.8222 45.447 45.608 1.4869

Table 1. Few approximate values of 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 = 𝑟𝑘𝑒
𝜃𝑘

On Figure 1 below we plot a few first roots 𝑧𝑘.

2.3. Szegö curves related to the roots of 𝜙(𝑧). Consider the polynomials 𝑇𝑛(𝑥), the
Taylor polynomials of the function 𝑒𝑥,

𝑇𝑛(𝑥) =
𝑛∑︁

𝑘=0

𝑥𝑘

𝑘!
.

In terms of generating functions, the functions 𝑇𝑛(𝑥) are given by

𝑒𝑥𝑤

1− 𝑤
=

∞∑︁
𝑛=0

𝑇𝑛(𝑥)𝑤
𝑛.

The zeros of 𝑇𝑛(𝑥) have an interesting asymptotic behavior: the zeros of 𝑇𝑛(𝑛𝑥) approach the
curve |𝑧𝑒1−𝑧| = 1 for large values of 𝑛, see Figure 2.
The curve |𝑧𝑒1−𝑧| = 1 was first introduced by Gabor Szegö in 1924.
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Figure 1. Plots of some roots of 𝜙(𝑧)

Figure 2. The complex zeros of 𝑇100(100𝑥) along the curve |𝑧𝑒1−𝑧| = 1

Definition 2.1 (Standard Szegö curve). Let 𝜑(𝑧) = 𝑧𝑒1−𝑧. The curve S in the complex
plane defined by

S =
{︀
𝑧 ∈ C :

⃒⃒
𝑧𝑒1−𝑧

⃒⃒
= 1, |𝑧| ⩽ 1

}︀
(2.2)

is called standard Szegö curve.

We observe that the function 𝜙(𝑧) appears in (1.5) and recall its roots 𝑧𝑘 for 𝑘 = 1, 2, 3, · · ·
Then we consider the function 𝜑(𝑧𝑘𝑤) = 𝑤𝑧𝑘𝑒

1−𝑧𝑘𝑤 and we define different Szegö curves related
to the roots of 𝜙(𝑧).

Definition 2.2 (Szegö curves). Let 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘, 𝑘 = 1, 2, 3, · · · be the roots of 𝜙(𝑧)𝑤 with
|𝑧𝑘| = 𝑟𝑘. The curves 1

𝑧𝑘
S, called Szegö curves related to the roots of 𝜙(𝑧), are defined as

1

𝑧𝑘
S =

{︂
𝑧 ∈ C :

⃒⃒
𝑧𝑧𝑘𝑒

1−𝑧𝑘𝑧
⃒⃒
= 1, |𝑧| ⩽ 1

𝑟𝑘

}︂
. (2.3)

The two special Szegö curves related to the dominant roots 𝑧1 and 𝑧1 are called dominant Szegö
curves. We denote the dominant Szegö curves by S1 =

1
𝑧1
S and Ŝ1 =

1
𝑧1
S, respectively,

S1 =

{︂
𝑧 ∈ C :

⃒⃒
𝑧𝑧1𝑒

1−𝑧1𝑧
⃒⃒
= 1, |𝑧| ⩽ 1

𝑟1

}︂
, (2.4)

Ŝ1 =

{︂
𝑧 ∈ C :

⃒⃒
𝑧𝑧1𝑒

1−𝑧1𝑧
⃒⃒
= 1 |𝑧| ⩽ 1

𝑟1

}︂
. (2.5)



128 L. NIGUSSA, A. NASIR

Figure 3. Three different open domains in the complex plane.

Let the domains G1 = G𝑧1 and Ĝ1 = G𝑧1 be the interiors of S1 and Ŝ1, respectively, and let

G = G1 ∪ Ĝ1. In other words, S1 and Ŝ1 are the boundaries of G1 and Ĝ1. That is, S1 = 𝜕G1

and Ŝ1 = 𝜕Ĝ1.

Remark 2.1. We observe that each Szegö curve given in (2.3) is obtained from the standard
Szegö curve (2.2) by a a dilatation by 1

𝑟𝑘
and a rotation by ±𝜃𝑘. Indeed, the function 𝜑(𝑧) is

conformal in the unit disk 𝐵(0, 1), hence both 𝜑 (𝑧1𝑧) and 𝜑 (𝑧1𝑧) are also conformal in the disk
𝐵(0, 1

𝑟1
).

For particular values of 𝑧1 and 𝑧1 given in (2.1), the curves S1 and Ŝ1 and their interiors G1

and Ĝ1 are roughly sketched as shown on Figure 4.
If we omit the restriction |𝑧| ⩽ 1

𝑟1
in (2.4) and (2.5), the equations |𝜑 (𝑧1𝑧)| = 1 and |𝜑 (𝑧1𝑧)| =

1 define unbounded curves in the complex plane. We denote these unbounded Szegö curves
related to 𝑧1 and 𝑧1 by Γ1 and Γ̂1, respectively,

Γ1 = {𝑧 ∈ C : |𝜑 (𝑧1𝑧)| = 1} , Γ̂1 = {𝑧 ∈ C : |𝜑 (𝑧1𝑧)| = 1} .

Then S1 ⊆ Γ1 and Ŝ1 ⊆ Γ̂1. Indeed, S1 and Ŝ1 are the portions of Γ1 and Γ̂1 that lie in the

closed disk 𝐵̄
(︁
0, 1

𝑟1

)︁
, respectively. As an alternative to (2.4) and (2.5), the dominant Szegö

curves S1 and Ŝ1 can equivalently be described as

|𝜑 (𝑧1𝑧)| = 1, Re (𝑧1𝑧) ⩽ 1, |𝜑 (𝑧1𝑧)| = 1,Re (𝑧1𝑧) ⩽ 1. (2.6)

Here S1 is the portion of Γ1 that lies in the closed half-plane Re (𝑧1𝑧) ⩽ 1. In other words, both
(2.4) and (2.6) define the same curve, the Szegö curve S1.
The curve Γ1 divides the complex plane into three different domains. We denote these

domains by G1, G+
1 and G−

1 , where

1. G1 is the interior of the Szegö curve S1, given by

G1 =

{︂
𝑧 ∈ C : |𝜑 (𝑧1𝑧)| < 1, |𝑧| ⩽ 1

𝑟1

}︂
. (2.7)

2. G+
1 is the unbounded domain given by

G+
1 =

{︂
𝑧 ∈ C : |𝜑 (𝑧1𝑧)| < 1, |𝑧| > 1

𝑟1

}︂
. (2.8)

3. G−
1 is the unbounded domain given by

G−
1 = {𝑧 ∈ C : |𝜑 (𝑧1𝑧)| > 1} . (2.9)
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Figure 4. The Szegö curves |𝑧1𝑧𝑒1−𝑧1𝑧| = 1 and |𝑧1𝑧𝑒1−𝑧1𝑧| = 1 for |𝑧| ⩽ 1
𝑟1
.

For the dominant root 𝑧1, we simply replace 𝑧1 by 𝑧1 in (2.7), (2.8) and (2.9) to define the

corresponding domains Ĝ1, Ĝ+
1 and Ĝ−

1 , respectively. The introduced domains are shown on
Figure 3.

Lemma 2.2. The Szegö curves S1 and Ŝ1 intersect each other at exactly two points, which
are located on the real axis.

Proof. These two curves intersect at point 𝑧 ∈ C if and only if |𝜑(𝑧1𝑧)| = |𝜑(𝑧1𝑧)|. That is,
𝑧 = 𝑥+ 𝑖𝑦 is an intersection point only if it satisfies⃒⃒

𝑒1−(𝑥1+𝑖𝑦1)(𝑥+𝑖𝑦)
⃒⃒
=
⃒⃒
𝑒1−(𝑥1−𝑖𝑦1)(𝑥+𝑖𝑦)

⃒⃒
.

This yields 𝑒𝑦1𝑦 = 𝑒−𝑦1𝑦, which implies Im(𝑧) = 𝑦 = 0, hence 𝑧 lies on the real axis.

Let 𝑃 and 𝑄 be the two points of intersection of S1 and Ŝ1. Then the line connecting 𝑃 and
𝑄, 𝐿𝑃,𝑄, is the real axis. Hence, 𝐿𝑃,𝑄 divides the complex plane in to the upper half-plane ℋ+

and lower half–plane ℋ−. We can express these half–planes as

ℋ+ = {𝑧 ∈ C : |𝜑 (𝑧1𝑧)| > |𝜑 (𝑧1𝑧)|} , ℋ− = {𝑧 :∈ C |𝜑 (𝑧1𝑧)| < |𝜑 (𝑧1𝑧)|} .

Definition 2.3. Let 𝑧1 and 𝑧1 be the two dominant zeros of 𝜙(𝑧). If S1 and Ŝ1 are their

corresponding Szegö curves, then we define the domains D1 = D𝑧1 and D̂1 = D𝑧1 as

D1 = G1 ∩ℋ−, D̂1 = Ĝ1 ∩ℋ+,

where G1 and Ĝ1 are the interiors of S1 and Ŝ1, respectively. We define the domains D as the
union of D1 and D̂1. That is,

D = D1 ∪ D̂1.

The Szegö curves S1 and Ŝ1 intersect each other at two points, say 𝑃 and 𝑄, which are on
the real axis. The domains D1 and D̂1 are shown in Figure 5 below.
Both D1 and D̂1 are disjoint open sets. That is, D1 ∩ D̂1 = ∅, but they have line segment

𝑃𝑄 as their common boundary. Indeed, the boundary 𝜕D = 𝜕D1 ∪ 𝜕D̂1 includes the outer
boundary points and all points of the line segment 𝑃𝑄. Moreover, the domains D1 and D̂1 can
be expressed as

D1 = {𝑧 ∈ G1 : |𝜑(𝑧1𝑧)| < |𝜑(𝑧1𝑧)|} , D̂1 =
{︁
𝑧 ∈ Ĝ1 : |𝜑(𝑧1𝑧)| < |𝜑(𝑧1𝑧)|

}︁
.

Note that D = D1 ∪ D̂1 ⊆ G = G1 ∪ Ĝ1. The domains D and G are different but they have
identical closures. That is, D = G.
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Figure 5. Szegö domains D𝑧1 and D𝑧1 and their boundaries

We now present the fact that 𝑧1 and 𝑧1 dominate all the other roots of 𝜙(𝑤) = 𝑒𝑤 − 1− 𝑤. In
fact, this is one of our results which we think is new in our study.

Theorem 2.1. If 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 = 𝑟𝑘𝑒
𝑖𝜃𝑘 is an arbitrary zero of 𝜙(𝑧) with 𝑦𝑘 > 0 and

|𝑧𝑘| = 𝑟𝑘 ⩾ 𝑟2, then
1
𝑧𝑘

lies inside the domain D1. More generally, for each root 𝑧𝑘 of 𝜙(𝑧) with

|𝑧𝑘| > 𝑟1 we have 1
𝑧𝑘

∈ D = D1 ∪ D̂1.

Proof. Let 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 = 𝑟𝑘𝑒
𝑖𝜃𝑘 be as given in the hypothesis. Then the relation⃒⃒⃒⃒

1

𝑧𝑘

⃒⃒⃒⃒
=

1

𝑟𝑘
<

1

𝑟1

shows that 1
𝑧𝑘

∈ 𝐵(0, 1
𝑟1
) for all 𝑘 ⩾ 2. This yields 1

𝑧𝑘
̸∈ Ḡ+

1 . For the function 𝜑 (𝑧1𝑧) = 𝑧𝑧1𝑒
1−𝑧1𝑧

we evaluate |𝜑 (𝑧1𝑧)| at 𝑧 = 1
𝑧𝑘
, observe that 𝑟1 < 𝑟2 < 𝑟𝑘 for all 𝑘 > 2, and we get⃒⃒⃒⃒

𝜑

(︂
𝑧1

1

𝑧𝑘

)︂⃒⃒⃒⃒
=

𝑟1
𝑟𝑘
𝑒
1− (𝑥1𝑥𝑘+𝑦1𝑦𝑘)

𝑟2
𝑘 ⩽

𝑟1
𝑟2
𝑒
1− (𝑥1𝑥2+𝑦1𝑦2)

𝑟2
𝑘 for all 𝑘 ⩾ 2.

But we can use the values of 𝑥1, 𝑦1, 𝑟1, 𝑥2, 𝑦2 and 𝑟2 and we easily see that

𝑟1
𝑟2
𝑒
1− (𝑥1𝑥2+𝑦1𝑦2)

𝑟2
𝑘 < 1.

Thus,
⃒⃒⃒
𝜑
(︁
𝑧1

1
𝑧𝑘

)︁⃒⃒⃒
< 1 and

⃒⃒⃒
1
𝑧𝑘

⃒⃒⃒
< 1

𝑟1
so that 1

𝑧𝑘
∈ G1. Moreover, since 𝑦𝑘 > 0, we have 1

𝑧𝑘
∈ ℋ−.

Hence, 1
𝑧𝑘

∈ D1. Similarly, if we assume 𝑦𝑘 < 0, then we evaluate |𝜑 (𝑧1𝑧)| at 𝑧 = 1
𝑧𝑘

and get
1
𝑧𝑘

∈ D2. Therefore,
1
𝑧𝑘

∈ D = D1 ∪ D̂1 for each 𝑘 ⩾ 2.

3. Main results

3.1. Integral representation for 𝐵𝑛(2, 𝑥). We denote

𝑔2(𝑤) := 2
𝑒𝑤 − 1− 𝑤

𝑤2
,

and we rewrite the definition (1.5) of hypergeometric Bernoulli polynomials of order 2 as

𝑒𝑧𝑤

𝑔2(𝑤)
=

∞∑︁
𝑘=0

𝐵𝑘(2, 𝑧)
𝑤𝑘

𝑘!
.
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Let 𝛾 be the key–hole contour given on Figure 6 below with 𝛿 = 1. Clearly, the curve 𝛾
passes through the point (1, 0) and 𝛿 = 1 < 𝑟1 so that a neighborhood of 𝛾 contains no zeroes
of the function 𝜙(𝑧).

Figure 6. The key–hole contour about the origin with 𝛿 = 1

Lemma 3.1 (Integral representation). The hypergeometric Bernoulli polynomials 𝐵𝑛(2, 𝑧)
satisfy the integral representation

𝐵𝑛(2, 𝑧) =
𝑛!

4𝜋𝑖

∫︁
𝛾

𝑒𝑧𝑤

𝑤𝑛

𝑤

𝑒𝑤 − 1− 𝑤
𝑑𝑤.

The re-scaled polynomials 𝐵𝑛(2, 𝑛𝑧) satisfy the representations

𝐵𝑛(2, 𝑛𝑧) =
𝑛!

4𝜋𝑖

∫︁
𝛾

(︂
𝑒𝑧𝑤

𝑤

)︂𝑛
𝑤

𝑒𝑤 − 1− 𝑤
𝑑𝑤. (3.1)

Proof. We divide Equation (1.5) by 2𝜋𝑖𝑤𝑛+1 and integrate the result over the curve 𝛾

1

2𝜋𝑖

∫︁
𝛾

𝑤2𝑒𝑧𝑤

2 (𝑒𝑤 − 1− 𝑤)𝑤𝑛+1
𝑑𝑤 =

1

2𝜋𝑖

∫︁
𝛾

∞∑︁
𝑘=0

𝐵𝑘(2, 𝑧)𝑤
𝑘

𝑘!𝑤𝑛+1
𝑑𝑤

=
∞∑︁
𝑘=0

𝐵𝑘(2, 𝑧)

𝑘!

⎛⎝ 1

2𝜋𝑖

∫︁
𝛾

1

𝑤𝑛+1−𝑘
𝑑𝑤

⎞⎠ =
𝐵𝑛(2, 𝑧)

𝑛!
;

here we have employed that ∫︁
𝛾

1

𝑤𝑛+1−𝑘
𝑑𝑤 = 2𝜋𝑖

for 𝑘 = 𝑛, and by the Cauchy integral theorem the integral vanishes for all 𝑘 ̸= 𝑛. Thus,

𝐵𝑛(2, 𝑧) =
𝑛!

4𝜋𝑖

∫︁
𝛾

𝑒𝑧𝑤

𝑤𝑛

𝑤

𝑒𝑤 − 1− 𝑤
𝑑𝑤.

Since both sides of this latter equation are entire functions of 𝑧, we can replace 𝑧 by 𝑛𝑧 and
this gives the desired result.

Remark 3.1. In Equation (3.1), the substitution of 𝑤 by 𝑤/𝑧 changes the curve of integra-
tion 𝛾 to 𝛾2, where 𝛾2 represents the curve 𝛾, in which the radius of 𝐶2 is changed to 𝛿 = |𝑧|. If
𝜙(𝑧) has zeros at 𝑤 = 𝑧𝑘, then the zeros of 𝜙(𝑤/𝑧) are 𝑤 = 𝑧𝑘𝑧. Since

1
𝑟1

⩾ 1
𝑟𝑘
, for each 𝑧 ∈ C

such that 1
𝑟1

< |𝑧| < ∞, we have |𝑧𝑘𝑧| > 𝑟𝑘
𝑟1

⩾ 1. This shows that 𝑤
𝜙(𝑤/𝑧)

is analytic in a disk

of radius greater than 1 and we can deform the curve 𝛾2 to 𝛾 without changing the value of the
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integral. Moreover, the integrals over the curves 𝐶1 and 𝐶3 cancel each other so that the curve
of integration reduces to 𝐶2. Therefore, replacement 𝑤 by 𝑤

𝑧
in Equation (3.1) yields

𝐵𝑛(2, 𝑛𝑧) =
𝑛!𝑧𝑛−2

4𝜋𝑖

∫︁
|𝑤|=1

(︂
𝑒𝑤

𝑤

)︂𝑛
𝑤

𝜙
(︀
𝑤
𝑧

)︀ 𝑑𝑤. (3.2)

3.2. Asymptotic representation of 𝐵𝑛(2, 𝑧) outside the disk 𝐵
(︁
0, 1

𝑟1

)︁
. Let

𝑇𝑛(𝑧) =
𝑛∑︁

𝑘=0

𝑧𝑘

𝑘!

be the Taylor polynomials of 𝑒𝑧. In [2], the polynomials 𝑇𝑛(𝑧) are expressed by their integral
representation as

𝑇𝑛−1(𝑛𝑧) =
1

2𝜋𝑖

∫︁
|𝑤|=𝛿

(︂
𝑒𝑧𝑤

𝑤

)︂𝑛
1

1− 𝑤
𝑑𝑤 (0 < 𝛿 < 1).

In [2], Boyer and Goh used this integral form for the asymptotic representation of 𝑇𝑛(𝑧), the
generalized Szegö asymptotics.

Theorem 3.1 (Generalized Szegö asymptotics). Let 1
3
< 𝛼 < 1

2
. For the sequence of poly-

nomials {𝑇𝑛(𝑧)}, we have

𝑇𝑛−1(𝑛𝑧) = − (𝑧𝑒)𝑛√
2𝜋𝑛(1− 𝑧)

(︀
1 +𝒪

(︀
𝑛1−3𝛼

)︀)︀
, |𝑧| > 1, (3.3)

𝑇𝑛−1(𝑛𝑧) = 𝑒𝑛𝑧 − (𝑧𝑒)𝑛√
2𝜋𝑛(1− 𝑧)

(︀
1 +𝒪

(︀
𝑛1−3𝛼

)︀)︀
, Re(𝑧) < 1. (3.4)

We follow similar procedures and use the integral form (3.1) in order to find the asymptotic
representation for 𝐵𝑛(2, 𝑛𝑧). Of course, the expressions (3.3) and (3.4) are very important for
our asymptotic representations of 𝐵𝑛(2, 𝑧) inside different domains of the complex plane.
Let 𝑧𝑘 be the roots of 𝜙(𝑧), which lie in the upper half–plane with 𝑟1 < 𝑟2 < 𝑟3 < · · · , where

𝑟𝑘 = |𝑧𝑘|. Then 𝑧𝑘 are also roots of 𝜙(𝑧) with modulus |𝑧𝑘| = |𝑧𝑘| = 𝑟𝑘. We consider several
domains of the complex plane in which we establish asymptotic representation for 𝐵𝑛(2, 𝑧).

One of such domains is the exterior of the disk 𝐵
(︁
0 , 1

𝑟𝑘

)︁
, which we define by A𝑘,

A𝑘 =

{︂
𝑧 ∈ C :

1

𝑟𝑘
< |𝑧| < ∞

}︂
.

We focus on the case when 𝑘 = 1, A1 =
{︁
𝑧 ∈ C : 1

𝑟1
< |𝑧| < ∞

}︁
, the unbounded domain which

is the exterior of the disk 𝐵
(︁
0, 1

𝑟1

)︁
. Also from the interior of this disk, we consider 𝐵

(︁
0, 1

𝑟1

)︁
∖D

and the domain D itself, and we give asymptotic representations of 𝐵𝑛(2, 𝑛𝑧) in each of these
three domains.
We let

𝐹𝑛(𝑧) = 2
√
2𝜋𝑛

𝐵𝑛(2, 𝑛𝑧)

𝑛!(𝑧𝑒)𝑛
, Z(𝜙) =

{︀
𝑧 ∈ C : 𝜙(𝑧) = 0

}︀
.

Theorem 3.2. For each 𝑧 ∈ A1 =
{︁
𝑧 ∈ C : 1

𝑟1
< |𝑧| < ∞

}︁
we have

𝐵𝑛(2, 𝑛𝑧) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛𝑧2𝜙

(︀
1
𝑧

)︀ (︂1 +𝒪
(︂
1

𝑛

)︂)︂
. (3.5)
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Moreover, the asymptotic formula (3.5) holds uniformly for all 𝑧 in any compact subset 𝐾 of
A1.

Proof. We rewrite the representation (3.2) as

𝐵𝑛(2, 𝑛𝑧) =
𝑛!𝑧𝑛−2

2𝜋𝑖
ℐ(𝑛),

where

ℐ(𝑛) = 1

2

∫︁
|𝑤|=1

(︂
𝑒𝑤

𝑤

)︂𝑛
𝑤

𝜙
(︀
𝑤
𝑧

)︀ 𝑑𝑤.
We use the saddle–point method (or Laplace method) to derive the asymptotic representation

for ℐ(𝑛). We let 𝑓(𝑤) = 𝑤 − log(𝑤) and ℎ(𝑤) = 𝑤/2

𝜙(𝑤
𝑧 )
, then ℐ(𝑛) becomes

ℐ(𝑛) =
∫︁
𝛾

𝑒𝑛𝑓(𝑤)ℎ(𝑤) 𝑑𝑤.

Both functions 𝑓(𝑤) and ℎ(𝑤) are analytic in a neighborhood of 𝛾, say 𝒩 (𝛾), hence, both have
power series in a neighborhood 𝒩 (1) ⊆ 𝒩 (𝛾) of the point 𝑤0 = 1. For the points 𝑤 = 1 + 𝑟𝑒𝑖𝜃

in 𝒩 (1), we may express the series of 𝑓 in terms of the real and imaginary parts as

𝑓(𝑤) = 1 +
𝑟2

2
cos(2𝜃) +

𝑟3

6
cos(3𝜃) + . . .+ 𝑖

(︂
𝑟2

2
sin(2𝜃) +

𝑟3

6
sin(3𝜃) + . . .

)︂
.

As
⃒⃒
𝑒𝑓
⃒⃒
= 𝑒Re(𝑓), we see that the main contribution of 𝑓(𝑤) to the integral ℐ(𝑛) comes from its

real part Re(𝑓). Also we deform 𝛾 so that sin(2𝜃) = 0 and cos(2𝜃) = 1 for points 𝑤 on 𝛾.
At 𝑤 = 1 we have 𝑟 = 0 and the integration over the portion of 𝛾 inside 𝒩 (1) becomes an

integral with respect to the variable 𝑟. We treat the integral over the portion of 𝛾 that lie below
the abscissa axis as the integral over 𝑟 from negative values to 𝑟 = 0 and the integral over the
portion above the abscissa axis as from 𝑟 = 0 to positive values of 𝑟. This gives

ℐ(𝑛) = ℎ(1)𝑒𝑛
𝑎∫︁

−𝑎

𝑒
𝑛𝑟2

2
+𝑛𝑟3

6
+···
(︂
1 +

ℎ′(1)

ℎ(1)
𝑟 +

ℎ′′(1)

2ℎ(1)
𝑟2 + · · ·

)︂
𝑑𝑟,

for a positive real number 𝑎. If we make a substitution 𝑟 = 𝑡√
𝑛
, then we get

ℐ(𝑛) = ℎ(1)𝑒𝑛√
𝑛

𝑎
√
𝑛∫︁

−𝑎
√
𝑛

𝑒
𝑡2

2 𝑒
𝑡3

6
√
𝑛
+···
(︂
1 +

ℎ′(1)

ℎ(1)

𝑡√
𝑛
+

ℎ′′(1)

2ℎ(1)

𝑡2

𝑛
+ · · ·

)︂
𝑑𝑡.

Now we use the fact that

𝑒
𝑡3

6
√
𝑛
+... ⩽ 1 + 2

(︂
𝑡3

6
√
𝑛

)︂
+ . . .

and express the product of the two series as an asymptotic term. Then for sufficiently large
values of 𝑛, the above integral becomes

ℐ(𝑛) = ℎ(1)𝑒𝑛√
𝑛

∞∫︁
−∞

𝑒
𝑡2

2 𝑑𝑡

(︂
1 +𝒪

(︂
1

𝑛

)︂)︂
.

Then we evaluate the integral and get

ℐ(𝑛) = ℎ(1)𝑒𝑛√
𝑛

√
−2𝜋

(︂
1 +𝒪

(︂
1

𝑛

)︂)︂
.
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Finally, noting that ℎ(1) = 1/2

𝑒1/𝑧−1− 1
𝑧

= 1/2

𝜙( 1
𝑧 )

in ℐ(𝑛), we obtain

𝐵𝑛(2, 𝑛𝑧) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛

1

𝑧2𝜙
(︀
1
𝑧

)︀ (︂1 +𝒪
(︂
1

𝑛

)︂)︂
for all 𝑧 ∈ A1.

3.3. Asymptotic representation for 𝐵𝑛(2, 𝑧) inside the disk 𝐵
(︁
0, 1

𝑟1

)︁
. First we define

some domains𝑅𝑘 inside𝐵
(︁
0 , 1

𝑟1

)︁
. Let 𝜇 > 0 be such that 𝑟1 < 𝑟2 < 𝑟3 < · · · < 𝑟𝑚 < 𝜇 < 𝑟𝑚+1.

Fix some 𝑘 such that |𝑧𝑘| = |𝑧𝑘| = 𝑟𝑘 < 𝜇 and let 𝒟𝑧𝑘 = 𝐵
(︁

1
𝑧𝑘
, 𝛿𝑘

)︁
where 𝛿𝑘 > 0 is small

enough so that 𝐵
(︀
1
𝑤
, 𝛿𝑤

)︀
are disjoint for distinct 𝑤 in Z(𝜙). Let 𝒯𝑧𝑘 be the tangent to 𝐵

(︁
0, 1

𝑟𝑘

)︁
at 1

𝑧𝑘
and let ℋ𝑧𝑘 be the half-plane determined by 𝒯𝑧𝑘 and containing the origin. If 𝜖𝑘 > 0 is

such that 𝜖𝑘 <
√︁

1
𝑟2𝑘

+ 𝛿2𝑘 − 1
𝑟𝑘
, then the disk 𝐵

(︁
0, 1

𝑟𝑘
+ 𝜖𝑘

)︁
intersects 𝒯𝑧𝑘 only inside the disk

𝒟𝑧𝑘 .

Definition 3.1. Let 𝜇 > 0 be fixed and let 𝑧𝑘 and 𝑧𝑘 be roots of 𝜙(𝑧) of modulus 𝑟𝑘, 𝑟𝑘 < 𝜇.
We define the domains

𝒟𝑘 = 𝐵

(︂
1

𝑧𝑘
, 𝛿𝑘

)︂
∪𝐵

(︂
1

𝑧𝑘
, 𝛿𝑘

)︂
, ℋ𝑘 = ℋ𝑧𝑘 ∩ℋ𝑧𝑘 ,

𝑅𝑘 = [ℋ𝑘 ∖ 𝒟𝑘] ∩
[︂
𝐵

(︂
0,

1

𝑟𝑘
+ 𝜖𝑘

)︂
∖
(︂
𝐵

(︂
0,

1

𝑟𝑘+1

+ 𝜖𝑘+1

)︂⋃︁
𝒟𝑘+1

)︂]︂
,

𝑅𝜇 = ℋ1 ∖

[︃
𝐵

(︂
0,

1

𝜇

)︂⋃︁(︃
𝑚⋃︁
𝑘=1

𝒟𝑘

)︃]︃
.

Consider the function ℎ(𝑤) = 𝑤
𝑒𝑤−1−𝑤

and define 𝐻(𝑤) by

𝐻(𝑤) = ℎ(𝑤)−
𝑚∑︁
𝑗=1

[︂
1

𝑤 − 𝑧𝑗
+

1

𝑤 − 𝑧𝑗

]︂
.

In (3.1) we use

ℎ(𝑤) = 𝐻(𝑤) +
𝑚∑︁
𝑗=1

[︂
1

𝑤 − 𝑧𝑗
+

1

𝑤 − 𝑧𝑗

]︂
,

and we get

𝐵𝑛(2, 𝑛𝑧) = 𝐼(𝑧, 𝑛) +
𝑚∑︁
𝑗=1

𝐽𝑗(𝑧, 𝑛), (3.6)

where

𝐼(𝑧, 𝑛) =
𝑛!

4𝜋𝑖

∫︁
|𝑤|=1

(︂
𝑒𝑧𝑤

𝑤

)︂𝑛

𝐻(𝑤) 𝑑𝑤,

𝐽𝑗(𝑧, 𝑛) =
𝑛!

4𝜋𝑖

∫︁
|𝑤|=1

(︂
𝑒𝑧𝑤

𝑤

)︂𝑛 [︂
1

𝑤 − 𝑧𝑗
+

1

𝑤 − 𝑧𝑗

]︂
𝑑𝑤.

Lemma 3.2. Let 𝜇 > 0 be such that 𝑟1 < 𝑟2 < 𝑟3 < · · · < 𝑟𝑚 < 𝜇 < 𝑟𝑚+1 for some 𝑚 ∈ N.
The function 𝐻(𝑤) is analytic in the disk |𝑤| < 𝜇, and the integral 𝐼(𝑧, 𝑛) in (3.6) satisfies

𝐼(𝑧, 𝑛) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛

1

𝑧
𝐻

(︂
1

𝑧

)︂(︂
1 +𝒪

(︂
1

𝑛

)︂)︂
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uniformly on compact subsets of A𝜇 = {𝑧 ∈ C : 1
𝜇
< |𝑧| < ∞}.

Proof. Clearly, the non-trivial zeros 𝑧𝑗 of 𝜙(𝑧) (poles of ℎ(𝑤)) are simple poles of ℎ(𝑤) with
the residue Res (ℎ(𝑤) ; 𝑧𝑗) = 1. Hence, the function 𝐻(𝑤) is analytic in the disk |𝑤| < 𝜇.
Let 𝑧 ∈ 𝐾 ⊆ A𝜇. By replacing 𝑤 by 𝑤/𝑧, we can express 𝐼(𝑧, 𝑛) as

𝐼(𝑧, 𝑛) =
𝑛!𝑧𝑛−1

2𝜋𝑖

∫︁
|𝑤|=|𝑧|

(︂
𝑒𝑤

𝑤

)︂𝑛

𝐻
(︁𝑤
𝑧

)︁
𝑑𝑤.

Here again we can deform the curve of integration to |𝑤| = 1 without changing its value. Then
in the same way as we did in the proof of Theorem 3.2, we apply the saddle–point method and
obtain the required result.

Lemma 3.3. Let 1
3
< 𝛼 < 1

2
, 𝑧𝑗 ∈ Z(𝜙) and ℋ𝑗 = {𝑧 : Re(𝑧𝑗𝑧) < 1}. If 𝑧 ∈ 𝐾 ⊆ ℋ𝑗, then

1

2𝜋𝑖

∫︁
|𝑤|=1

(︂
𝑒𝑧𝑤

𝑤

)︂𝑛
1

𝑤 − 𝑧𝑗
𝑑𝑤 = −𝑧−𝑛

𝑗 𝑒𝑛𝑧𝑗𝑧 +
(𝑧𝑒)𝑛√

2𝜋𝑛(1− 𝑧𝑗𝑧)

(︀
1 +𝒪

(︀
𝑛1−3𝛼

)︀)︀
.

Proof. We replace 𝑤 by 𝑧𝑗𝑤, and we get

1

2𝜋𝑖

∫︁
|𝑤|=1

(︂
𝑒𝑧𝑤

𝑤

)︂𝑛
1

𝑤 − 𝑧𝑗
𝑑𝑤 =− 𝑧−𝑛

𝑗

1

2𝜋𝑖

∫︁
|𝑤|= 1

|𝑧𝑗|

(︂
𝑒𝑧𝑧𝑗𝑤

𝑤

)︂𝑛
1

1− 𝑤
𝑑𝑤

=− 𝑧−𝑛
𝑗 𝑇𝑛−1(𝑛𝑧𝑗𝑧).

Since 𝑧 ∈ ℋ𝑗, we have Re(𝑧𝑗𝑧) < 1 so that we can use (3.4) to express 𝑇𝑛−1(𝑛𝑧𝑗𝑧) asymptotically
and get the desired result.

Corollary 3.1. For 𝑧𝑗 ∈ Z(𝜙) such that |𝑧𝑗| ⩽ 𝑟𝑘, the functions 𝐽𝑗(𝑧, 𝑛) defined in (3.6)
can be expressed asymptotically as

𝐽𝑗(𝑧, 𝑛) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛

[︃
−
√
2𝜋𝑛

𝜑 (𝑧𝑧𝑗)
𝑛 +

−
√
2𝜋𝑛

𝜑 (𝑧𝑧𝑗)
𝑛 +

(︂
1

1− 𝑧𝑗𝑧
+

1

1− 𝑧𝑗𝑧

)︂(︀
1 +𝒪

(︀
𝑛1−3𝛼

)︀)︀]︃
(3.7)

uniformly on compact subsets of 𝑅𝑘.

Proof. By definition, 𝑧 ∈ 𝑅𝑘 and |𝑧𝑗| ⩽ 𝑟𝑘 implies Re (𝑧𝑗𝑧) < 1. Thus, 𝑅𝑘 ⊆ ℋ𝑗 so that we use
Lemma 3.3 and get

1

2𝜋𝑖

∫︁
|𝑤|=1

(︂
𝑒𝑧𝑤

𝑤

)︂𝑛
1

𝑤 − 𝑧𝑗
𝑑𝑤 = −𝑧−𝑛

𝑗 𝑒𝑛𝑧𝑗𝑧 +
(𝑧𝑒)𝑛√

2𝜋𝑛(1− 𝑧𝑗𝑧)

(︀
1 +𝒪

(︀
𝑛1−3𝛼

)︀)︀
.

We get the same equation with 𝑧𝑗 replaced by 𝑧𝑗. Finally, 𝐽𝑗(𝑧, 𝑛) will be the sum of the two
equations multiplied by 𝑛!

2
.

Lemma 3.4. Let 𝑧𝑗 ∈ Z(𝜙) and let 𝑧 ∈ 𝐾, where 𝐾 ⊆ {𝑧 : 1
|𝑧𝑗 | < |𝑧| < ∞. Then

1

2𝜋𝑖

∫︁
|𝑤|=1

(︂
𝑒𝑧𝑤

𝑤

)︂𝑛
1

𝑤 − 𝑧𝑗
𝑑𝑤 =

(𝑧𝑒)𝑛√
2𝜋𝑛(1− 𝑧𝑗𝑧)

(︀
1 +𝒪

(︀
𝑛1−3𝛼

)︀)︀
.

Proof. As we have the condition |𝑧𝑗𝑧| > 1 from the assumptions, we use (3.3) and the procedure
is similar to the proof of Lemma 3.3.
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Corollary 3.2. For 𝑧𝑗 ∈ Z(𝜙) with 𝑟𝑘 < |𝑧𝑗| < 𝜇, we have

𝐽𝑗(𝑧, 𝑛) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛

[︂
1

1− 𝑧𝑗𝑧
+

1

1− 𝑧𝑗𝑧

]︂ (︀
1 +𝒪

(︀
𝑛1−3𝛼

)︀)︀
(3.8)

uniformly on compact subsets of 𝑅𝑘.

Proof. 𝑧 ∈ 𝑅𝑘 and 𝑟𝑘+1 ⩽ |𝑧𝑗| implies |𝑧𝑗𝑧| > 1 so that it follows from the Lemma 3.4.

Let 𝜇 > 0 be fixed and let 𝑧1, 𝑧2, · · · , 𝑧𝑚 be roots of 𝜙(𝑧) with modulus |𝑧𝑗| = 𝑟𝑗 such that
𝑟1 ⩽ 𝑟2 ⩽ · · · ⩽ 𝑟𝑚 < 𝜇 < 𝑟𝑚+1. We choose 𝑘 with 𝑟𝑘 < 𝜇 and we give an asymptotic
representation of 𝐵𝑛(2, 𝑛𝑧) for all 𝑧 in the domain 𝑅𝑘.

Theorem 3.3. Let 1
3
< 𝛼 < 1

2
, 𝜇 > 0 and 𝑘 such that |𝑧𝑘| < 𝜇 be fixed. Then

𝐵𝑛(2, 𝑛𝑧) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛

[︃
1

𝑧2𝜙
(︀
1
𝑧

)︀ −√
2𝜋𝑛

𝑘∑︁
𝑗=1

(︂
1

𝜑 (𝑧𝑧𝑗)
𝑛 +

1

𝜑 (𝑧𝑧𝑗)
𝑛

)︂
+𝒪

(︀
𝑛1−3𝛼

)︀]︃
for all 𝑧 ∈ 𝑅𝑘.

Proof. We may express equation (3.6) as 𝐵𝑛(2, 𝑛𝑧) = 𝐼(𝑧, 𝑛) + 𝐽(𝑧, 𝑛), where

𝐽(𝑧, 𝑛) =
𝑚∑︁
𝑗=1

𝐽𝑗(𝑧, 𝑛).

For any 𝑧 ∈ 𝑅𝑘, we have Re(𝑧𝑗𝑧) < 1 if 1 ⩽ 𝑗 ⩽ 𝑘 and |𝑧𝑗𝑧| > 1 if 𝑘 < 𝑗 ⩽ 𝑚. Hence, for
any 𝑧 ∈ 𝑅𝑘, we can use either Corollary 3.1 or Corollary 3.2 for asymptotic representation of
𝐽𝑗(𝑧, 𝑛). That is, we get

𝐽(𝑧, 𝑛) =
𝑚∑︁
𝑗=1

𝐽𝑗(𝑧, 𝑛) =
𝑘∑︁

𝑗=1

𝐽𝑗(𝑧, 𝑛) +
𝑚∑︁

𝑗=𝑘+1

𝐽𝑗(𝑧, 𝑛),

where 𝐽𝑗(𝑧, 𝑛) is given by (3.7) if 1 ⩽ 𝑗 ⩽ 𝑘, and 𝐽𝑗(𝑧, 𝑛) is given by (3.8) if 𝑘 + 1 ⩽ 𝑗 ⩽ 𝑚.
Thus,

𝐽(𝑧, 𝑛) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛

[︃
−
√
2𝜋𝑛

𝑘∑︁
𝑗=1

(︂
1

𝜑 (𝑧𝑧𝑗)
𝑛 +

1

𝜑 (𝑧𝑧𝑗)
𝑛

)︂

+
𝑚∑︁
𝑗=1

(︂
1

1− 𝑧𝑗𝑧
+

1

1− 𝑧𝑗𝑧

)︂(︀
1 +𝒪

(︀
𝑛1−3𝛼

)︀)︀]︃
.

Also since 𝑅𝑘 ⊆ {𝑤 : |𝑤| < 𝜇}, Lemma 3.2 holds for 𝑧 ∈ 𝑅𝑘. Moreover, by noting that

1

𝑧
𝐻

(︂
1

𝑧

)︂
=

1

𝑧2𝜙
(︀
1
𝑧

)︀ − 𝑚∑︁
𝑗=1

(︂
1

1− 𝑧𝑗𝑧
+

1

1− 𝑧𝑗𝑧

)︂
,

we get

𝐼(𝑧, 𝑛) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛

[︃
1

𝑧2𝜙
(︀
1
𝑧

)︀ − 𝑚∑︁
𝑗=1

(︂
1

1− 𝑧𝑗𝑧
+

1

1− 𝑧𝑗𝑧

)︂]︃(︂
1 +𝒪

(︂
1

𝑛

)︂)︂
.

Finally, since 1
𝑛
< 𝑛1−3𝛼, the term 𝒪

(︀
1
𝑛

)︀
will be absorbed in 𝒪 (𝑛1−3𝛼) and combining the

above two equations, we get

𝐵𝑛(2, 𝑛𝑧) =
𝑛!(𝑧𝑒)𝑛

2
√
2𝜋𝑛

[︃
1

𝑧2𝜙
(︀
1
𝑧

)︀ −√
2𝜋𝑛

𝑘∑︁
𝑗=1

(︂
1

𝜑 (𝑧𝑧𝑗)
𝑛 +

1

𝜑 (𝑧𝑧𝑗)
𝑛

)︂
+𝒪

(︀
𝑛1−3𝛼

)︀]︃
.
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4. Open Problem

The open problem related to our work is to determine the asymptotic real and complex
zeros of hypergeometric Bernouli polynomials of order 𝑁 = 3 and establish similar asymptotic
formulas for 𝐵𝑛(3, 𝑥). Generalizing this concept for hypergeometric Bernouli polynomials of
arbitrary order, 𝐵𝑛(𝑁, 𝑥) is also one more open problem.
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