ASYMPTOTIC REPRESENTATION OF HYPERGEOMETRIC BERNOULLI POLYNOMIALS OF ORDER 2 INSIDE DOMAINS RELATED TO

THE ROOTS OF $e^w - 1 - w = 0$

L. NIGUSSA, A. NASIR

Abstract. Among several approaches towards the classical Bernoulli polynomials $B_n(x)$, one is the definition by the generating function

$$\frac{we^{xw}}{e^w - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{w^n}{n!} \quad \text{for} \quad |w| < 2\pi.$$

As a generalization of $B_n(x)$, for any positive integer N, a new class of Bernoulli polynomials called Hypergeometric Bernoulli polynomials of order N, $B_n(N,x)$ was established. For the particular case N=2 these polynomials are given by

$$\frac{1}{2} \frac{w^2 e^{xw}}{e^w - 1 - w} = \sum_{n=0}^{\infty} B_n(2, x) \frac{w^n}{n!} \quad \text{for} \quad |w| < 2\pi.$$

Several asymptotic formulas for the Bernoulli and Euler polynomials inside different domains related to the roots of $\phi(w) = e^w - 1$ were found.

In this paper, we consider an integral representation for $B_n(2,x)$ and establish a zero attractor for the re-scaled polynomials $B_n(2,nx)$ for large values of n. We briefly discuss some analogous asymptotic formulas of $B_n(2,x)$ inside domains related to the roots of $\varphi(w) = e^w - 1 - w$.

Keywords: Bernoulli polynomials, hypergeometric Bernoulli polynomials, integral representation, asymptotic formula, zero attractor.

Mathematics Subject Classification: 11M20, 11M26

1. Introduction

1.1. Bernoulli Polynomials. The classical Bernoulli polynomials $B_n(x)$ were extensively considered by many authors and several generalizations were made, for which analogous properties were obtained. Alternative to the definition via the generating function

$$\frac{we^{xw}}{e^w - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{w^n}{n!} \quad \text{for} \quad |w| < 2\pi,$$
 (1.1)

these polynomials are equivalently defined by the recurrence formula

$$B_n(x) = \sum_{k=0}^{n} \binom{n}{k} b_k x^{n-k}, \tag{1.2}$$

L. Nigussa, A. Nasir, Asymptotic representation of hypergeometric Bernoulli polynomials of order 2 inside domains related to the roots of $e^w - 1 - w = 0$.

[©] NIGUSSA L., NASIR A. 2025.

Submitted June 10, 2024.

where the b_k are the Bernoulli numbers. Equivalently, Bernoulli polynomials are also defined by an Appell sequence with zero mean, as

$$B_0(x) = 1,$$
 $B'_n(x) = nB_{n-1}(x),$ $\int_0^1 B_n(x) dx = \begin{cases} 1 & \text{for } n = 0, \\ 0 & \text{for } n > 0. \end{cases}$ (1.3)

Each of the three definitions: the generating function (1.1), the recurrence formula (1.2) and the Appell sequence (1.3) define the same sequence $\{B_n(x)\}$ of Bernoulli polynomials. The sequence of Bernoulli polynomials possess many interesting properties. Some of the well–known properties of $B_n(x)$ are

• Symmetry property

$$B_n(1-x) = (-1)^n B_n(x), \quad n \geqslant 0.$$

• Difference equation

$$B_n(x+1) - B_n(x) = nx^{n-1}, \quad n \geqslant 1.$$

• Addition formula

$$B_n(x+y) = \sum_{k=0}^n \binom{n}{k} B_k(x) y^{n-k}.$$

• Raabe's multiplication formula

$$B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n \left(x + \frac{k}{m} \right),$$

where m and n are integers with $n \ge 0$ and $m \ge 1$.

1.2. Hypergeometric Bernoulli Polynomials. On the base of the definition of $B_n(x)$ by the generating function, several generalizations were made by different authors. Among these generalizations are the polynomials $\{A_n(x)\}$ introduced by Howard [7]

$$\frac{1}{2} \frac{w^2 e^{xw}}{e^w - 1 - w} = \sum_{n=0}^{\infty} A_n(x) \frac{w^n}{n!} \quad \text{for} \quad |w| < 2\pi.$$

Several authors considered similar generalizations of Bernoulli polynomials; we refer to [7], [3], [5] and [4] for some other related concepts to generalization of Bernoulli polynomials.

In this paper, we focus on the generalization made by Hassen and Nguyen [5] referred to as hypergeometric Bernoulli polynomials of order N.

Definition 1.1. For any integer $N \ge 1$, hypergeometric Bernoulli polynomials of order N, $B_n(N, x)$, are defined as

$$\frac{1}{N!} \frac{w^N e^{xw}}{e^w - T_{N-1}(w)} = \sum_{n=0}^{\infty} B_n(N, x) \frac{w^n}{n!} \quad for \quad |w| < 2\pi,$$
(1.4)

where

$$T_m(w) = 1 + w + \frac{w^2}{2!} + \ldots + \frac{w^m}{m!} = \sum_{k=0}^m \frac{w^k}{k!}.$$

The particular case of (1.4) with N = 1 reduces to the classical Bernoulli polynomials $B_n(x)$ given in (1.1) and for N = 2 it represents the hypergeometric Bernoulli polynomials of order 2 defined as

$$\frac{1}{2} \frac{w^2 e^{xw}}{e^w - 1 - w} = \sum_{n=0}^{\infty} B_n(2, x) \frac{w^n}{n!} \quad \text{for} \quad |w| < 2\pi.$$
 (1.5)

As in the classical case, there are several approaches for defining hypergeometric Bernoulli polynomials. Accordingly, the hypergeometric Bernoulli polynomials $B_n(N, x)$ are equivalently defined by a recurrence formula as

$$B_n(N,x) = \sum_{k=0}^{n} \binom{n}{k} B_k(N) x^{n-k}.$$
 (1.6)

The hypergeometric Bernoulli polynomials $B_n(N,x)$ are also defined in terms of an Appell sequence with zero moments as

$$B_0(N, x) = 1, B'_n(N, x) = nB_{n-1}(N, x),$$

$$\int_0^1 (1 - x)^{N-1} B_n(N, x) dx = \begin{cases} \frac{1}{N} & \text{for } n = 0\\ 0 & \text{for } n > 0. \end{cases}$$
(1.7)

In [5], Hassen and Nguyen proved the equivalence of these different definitions of hypergeometric Bernoulli polynomials.

Theorem 1.1 ([5]). For each integer $N \ge 1$, the definitions of the hypergeometric Bernoulli polynomials $B_n(N,x)$ via the generating function (1.4), the recurrence formula (1.6) and the Appell sequence (1.7) are equivalent.

In [1], Asfaw and Hassen established the following properties of $B_n(N, x)$ which are analogous to that of the classical Bernoulli polynomials $B_n(x)$.

• Addition formula

For hypergeometric Bernoulli polynomials of order N we have the addition formula

$$B_n(N, x + y) = \sum_{k=0}^{n} \binom{n}{k} B_k(N, x) y^{n-k}.$$

• Difference equation For each n = 2, 3, 4, ..., the polynomials $B_n(2, x)$ satisfy the equation

$$B_n(2, x+1) - B_n(2, x) = nB_{n-1}(2, x) + \binom{n}{2} x^{n-2}.$$

• Generalized difference equation For each positive integer m we have

$$B_n(2, x+m) = \sum_{k=0}^m {m \choose k} B_n^{(k)}(2, x) + \frac{n!}{2} \sum_{k=0}^{m-1} \sum_{j=0}^{m-1-k} {m-1-k \choose j} \frac{(x+k)^{n-2-j}}{(n-2-j)!},$$

where $B_n^{(k)}(2,x) = n(n-1)...(n-k+1)B_{n-k}(2,x)$ is the k^{th} derivative of $B_n(2,x)$.

Remark 1.1. The three alternative definitions; (1.4), (1.6) and (1.7) of $B_n(N, x)$ are analogous to the three definitions of $B_n(x)$ given in (1.1), (1.2) and (1.3), respectively. This interesting relation between $B_n(N, x)$ and $B_n(x)$ motivated us to study further analogous properties of these new class of polynomials, including the integral representations and asymptotic formulas of $B_n(2, x)$.

2. Preliminaries

2.1. Some properties of roots of $e^z - 1 - z = 0$. The function $\varphi(w) = e^z - 1 - z$ appears in the generating function of $B_n(2,a)$ in (1.5). The roots of this function are basic quantities

for the series representation of $B_n(2, x)$. In [6], Hassen and Nguyen discussed several concepts related to the roots of $\varphi(z)$.

If $z_k = x_k + iy_k$ is a root of $\varphi(z)$, then its complex conjugate $\bar{z}_k = x_k - iy_k$ is also a root, and we usually list all the roots in pairs as $\{z_k, \bar{z}_k\}$. In fact, all the roots $z_k = x_k + iy_k$ and $\bar{z}_k = x_k - iy_k$ of φ lie inside the right half-plane.

The following results are proved in [6] with slight modifications made in [1].

Lemma 2.1. Let $z_k = x_k + iy_k = r_k e^{\theta_k}$ be the roots of $\varphi(z)$ that lie in the upper half of the complex plane and such that $0 < r_1 < r_2 < r_3 < \cdots$.

(i) The inequality

$$2\pi k + \frac{\pi}{3} < y_k < 2\pi k + \frac{\pi}{2}, \qquad k = 1, 2, \dots$$

holds. Moreover, for each k there exists exactly one root z_k with the imaginary part obeying this inequality, and there are no other zeros elsewhere in the complex plane.

- (ii) The arguments θ_k of z_k obey the inequalities $\theta_1 < \theta_2 < \theta_3 < \dots < \frac{\pi}{2}$, and $\theta_k \to \frac{\pi}{2}$ as $k \to \infty$
- (iii) As k increases, all the quantities x_k , y_k and θ_k increase. In addition, we have $y_k < e^{x_k}$ and $y_k \to e^{x_k}$ as $k \to \infty$.
- **2.2. Dominant roots.** There are two roots of $\varphi(z)$ with minimal moduluses. These are $z_1 = x_1 + iy_1 = r_1e^{\theta_1}$ and $\bar{z}_1 = x_1 iy_1 = r_1e^{-\theta_1}$, and we call them dominant roots. The approximate values of x_1 , y_1 , r_1 and θ_1 (as calculated by Mathematica) are $x_1 \approx 2.0888$, $y_1 \approx 7.4615$, $r_1 \approx 7.7484$ and $\theta_1 \approx 1.2978$. That is,

$$z_1 \approx 2.0888 + i \, 7.4615, \qquad \bar{z}_1 \approx 2.0888 - i \, 7.4615.$$
 (2.1)

We also list approximate values for a few first roots $z_k = x_k + iy_k = r_k e^{\theta_k}$.

k	x_k	y_k	r_k	$ heta_k$
1	2.0888	7.4615	7.7484	1.2978
2	2.6641	13.879	14.132	1.3812
3	3.0263	20.224	20.449	1.4223
4	3.2917	26.543	26.747	1.4474
5	3.5013	32.851	33.037	1.4646
6	3.6745	39.151	39.323	1.4772
7	3.8222	45.447	45.608	1.4869

Table 1. Few approximate values of $z_k = x_k + iy_k = r_k e^{\theta_k}$

On Figure 1 below we plot a few first roots z_k .

2.3. Szegő curves related to the roots of $\varphi(z)$. Consider the polynomials $T_n(x)$, the Taylor polynomials of the function e^x ,

$$T_n(x) = \sum_{k=0}^n \frac{x^k}{k!}.$$

In terms of generating functions, the functions $T_n(x)$ are given by

$$\frac{e^{xw}}{1-w} = \sum_{n=0}^{\infty} T_n(x)w^n.$$

The zeros of $T_n(x)$ have an interesting asymptotic behavior: the zeros of $T_n(nx)$ approach the curve $|ze^{1-z}| = 1$ for large values of n, see Figure 2.

The curve $|ze^{1-z}| = 1$ was first introduced by Gabor Szegö in 1924.

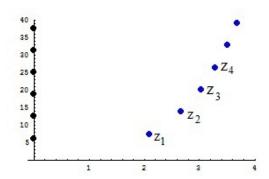


FIGURE 1. Plots of some roots of $\varphi(z)$

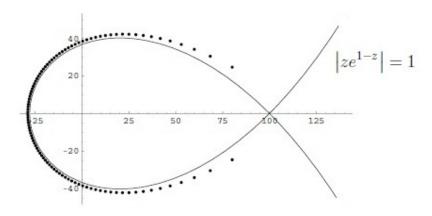


FIGURE 2. The complex zeros of $T_{100}(100x)$ along the curve $|ze^{1-z}|=1$

Definition 2.1 (Standard Szegö curve). Let $\phi(z)=ze^{1-z}$. The curve $\mathbb S$ in the complex plane defined by

$$\mathbb{S} = \left\{ z \in \mathbb{C} : \left| z e^{1-z} \right| = 1, \ |z| \leqslant 1 \right\}$$
 (2.2)

is called standard Szegö curve.

We observe that the function $\varphi(z)$ appears in (1.5) and recall its roots z_k for $k = 1, 2, 3, \cdots$ Then we consider the function $\varphi(z_k w) = w z_k e^{1-z_k w}$ and we define different Szegö curves related to the roots of $\varphi(z)$.

Definition 2.2 (Szegö curves). Let $z_k = x_k + iy_k$, $k = 1, 2, 3, \cdots$ be the roots of $\varphi(z)w$ with $|z_k| = r_k$. The curves $\frac{1}{z_k}\mathbb{S}$, called Szegö curves related to the roots of $\varphi(z)$, are defined as

$$\frac{1}{z_k} \mathbb{S} = \left\{ z \in \mathbb{C} : \left| z z_k e^{1 - z_k z} \right| = 1, \ |z| \leqslant \frac{1}{r_k} \right\}. \tag{2.3}$$

The two special Szegö curves related to the dominant roots z_1 and \bar{z}_1 are called dominant Szegö curves. We denote the dominant Szegö curves by $\mathbb{S}_1 = \frac{1}{z_1} \mathbb{S}$ and $\hat{\mathbb{S}}_1 = \frac{1}{\bar{z}_1} \mathbb{S}$, respectively,

$$\mathbb{S}_1 = \left\{ z \in \mathbb{C} : \left| z z_1 e^{1 - z_1 z} \right| = 1, \ |z| \leqslant \frac{1}{r_1} \right\}, \tag{2.4}$$

$$\hat{\mathbb{S}}_1 = \left\{ z \in \mathbb{C} : \left| z \bar{z}_1 e^{1 - \bar{z}_1 z} \right| = 1 \ |z| \leqslant \frac{1}{r_1} \right\}. \tag{2.5}$$

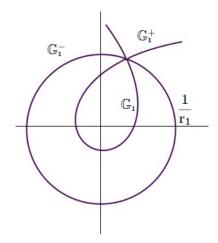


FIGURE 3. Three different open domains in the complex plane.

Let the domains $\mathbb{G}_1 = \mathbb{G}_{z_1}$ and $\hat{\mathbb{G}}_1 = \mathbb{G}_{\bar{z}_1}$ be the interiors of \mathbb{S}_1 and $\hat{\mathbb{S}}_1$, respectively, and let $\mathbb{G} = \mathbb{G}_1 \cup \hat{\mathbb{G}}_1$. In other words, \mathbb{S}_1 and $\hat{\mathbb{S}}_1$ are the boundaries of \mathbb{G}_1 and $\hat{\mathbb{G}}_1$. That is, $\mathbb{S}_1 = \partial \mathbb{G}_1$ and $\hat{\mathbb{S}}_1 = \partial \hat{\mathbb{G}}_1$.

Remark 2.1. We observe that each Szegö curve given in (2.3) is obtained from the standard Szegö curve (2.2) by a a dilatation by $\frac{1}{r_k}$ and a rotation by $\pm \theta_k$. Indeed, the function $\phi(z)$ is conformal in the unit disk B(0,1), hence both $\phi(z_1z)$ and $\phi(\bar{z}_1z)$ are also conformal in the disk $B(0,\frac{1}{r_1})$.

For particular values of z_1 and \bar{z}_1 given in (2.1), the curves \mathbb{S}_1 and $\hat{\mathbb{S}}_1$ and their interiors \mathbb{G}_1 and $\hat{\mathbb{G}}_1$ are roughly sketched as shown on Figure 4.

If we omit the restriction $|z| \leq \frac{1}{r_1}$ in (2.4) and (2.5), the equations $|\phi(z_1z)| = 1$ and $|\phi(\bar{z}_1z)| = 1$ define unbounded curves in the complex plane. We denote these unbounded Szegö curves related to z_1 and \bar{z}_1 by Γ_1 and $\hat{\Gamma}_1$, respectively,

$$\Gamma_{1} = \{z \in \mathbb{C} : |\phi(z_{1}z)| = 1\}, \qquad \hat{\Gamma}_{1} = \{z \in \mathbb{C} : |\phi(\bar{z}_{1}z)| = 1\}.$$

Then $\mathbb{S}_1 \subseteq \Gamma_1$ and $\hat{\mathbb{S}}_1 \subseteq \hat{\Gamma}_1$. Indeed, \mathbb{S}_1 and $\hat{\mathbb{S}}_1$ are the portions of Γ_1 and $\hat{\Gamma}_1$ that lie in the closed disk $\bar{B}\left(0, \frac{1}{r_1}\right)$, respectively. As an alternative to (2.4) and (2.5), the dominant Szegö curves \mathbb{S}_1 and $\hat{\mathbb{S}}_1$ can equivalently be described as

$$|\phi(z_1 z)| = 1, \operatorname{Re}(z_1 z) \le 1, \qquad |\phi(\bar{z}_1 z)| = 1, \operatorname{Re}(\bar{z}_1 z) \le 1.$$
 (2.6)

Here \mathbb{S}_1 is the portion of Γ_1 that lies in the closed half-plane $\operatorname{Re}(z_1 z) \leq 1$. In other words, both (2.4) and (2.6) define the same curve, the Szegö curve \mathbb{S}_1 .

The curve Γ_1 divides the complex plane into three different domains. We denote these domains by \mathbb{G}_1 , \mathbb{G}_1^+ and \mathbb{G}_1^- , where

1. \mathbb{G}_1 is the interior of the Szegö curve \mathbb{S}_1 , given by

$$\mathbb{G}_{1} = \left\{ z \in \mathbb{C} : |\phi(z_{1}z)| < 1, \ |z| \leqslant \frac{1}{r_{1}} \right\}. \tag{2.7}$$

2. \mathbb{G}_1^+ is the unbounded domain given by

$$\mathbb{G}_{1}^{+} = \left\{ z \in \mathbb{C} : |\phi(z_{1}z)| < 1, |z| > \frac{1}{r_{1}} \right\}.$$
 (2.8)

3. \mathbb{G}_1^- is the unbounded domain given by

$$\mathbb{G}_{1}^{-} = \{ z \in \mathbb{C} : |\phi(z_{1}z)| > 1 \}.$$
(2.9)

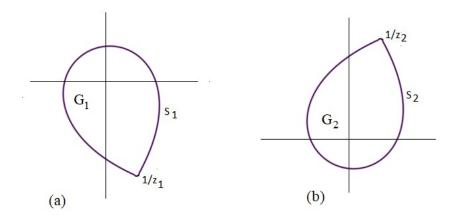


FIGURE 4. The Szegő curves $|z_1 z e^{1-z_1 z}| = 1$ and $|\bar{z}_1 z e^{1-\bar{z}_1 z}| = 1$ for $|z| \leqslant \frac{1}{r_1}$.

For the dominant root \bar{z}_1 , we simply replace z_1 by \bar{z}_1 in (2.7), (2.8) and (2.9) to define the corresponding domains $\hat{\mathbb{G}}_1$, $\hat{\mathbb{G}}_1^+$ and $\hat{\mathbb{G}}_1^-$, respectively. The introduced domains are shown on Figure 3.

Lemma 2.2. The Szegö curves \mathbb{S}_1 and $\hat{\mathbb{S}}_1$ intersect each other at exactly two points, which are located on the real axis.

Proof. These two curves intersect at point $z \in \mathbb{C}$ if and only if $|\phi(z_1z)| = |\phi(\bar{z}_1z)|$. That is, z = x + iy is an intersection point only if it satisfies

$$|e^{1-(x_1+iy_1)(x+iy)}| = |e^{1-(x_1-iy_1)(x+iy)}|.$$

This yields $e^{y_1y} = e^{-y_1y}$, which implies Im(z) = y = 0, hence z lies on the real axis.

Let P and Q be the two points of intersection of \mathbb{S}_1 and $\hat{\mathbb{S}}_1$. Then the line connecting P and Q, $L_{P,Q}$, is the real axis. Hence, $L_{P,Q}$ divides the complex plane in to the upper half-plane \mathcal{H}^+ and lower half-plane \mathcal{H}^- . We can express these half-planes as

$$\mathcal{H}^{+} = \left\{ z \in \mathbb{C} : \left| \phi \left(z_{1} z \right) \right| > \left| \phi \left(\bar{z}_{1} z \right) \right| \right\}, \qquad \mathcal{H}^{-} = \left\{ z : \in \mathbb{C} \left| \phi \left(z_{1} z \right) \right| < \left| \phi \left(\bar{z}_{1} z \right) \right| \right\}.$$

Definition 2.3. Let z_1 and \bar{z}_1 be the two dominant zeros of $\varphi(z)$. If \mathbb{S}_1 and $\hat{\mathbb{S}}_1$ are their corresponding Szegö curves, then we define the domains $\mathbb{D}_1 = \mathbb{D}_{z_1}$ and $\hat{\mathbb{D}}_1 = \mathbb{D}_{\bar{z}_1}$ as

$$\mathbb{D}_1 = \mathbb{G}_1 \cap \mathcal{H}^-, \qquad \hat{\mathbb{D}}_1 = \hat{\mathbb{G}}_1 \cap \mathcal{H}^+,$$

where \mathbb{G}_1 and $\hat{\mathbb{G}}_1$ are the interiors of \mathbb{S}_1 and $\hat{\mathbb{S}}_1$, respectively. We define the domains \mathbb{D} as the union of \mathbb{D}_1 and $\hat{\mathbb{D}}_1$. That is,

$$\mathbb{D} = \mathbb{D}_1 \cup \hat{\mathbb{D}}_1.$$

The Szegö curves \mathbb{S}_1 and $\hat{\mathbb{S}}_1$ intersect each other at two points, say P and Q, which are on the real axis. The domains \mathbb{D}_1 and $\hat{\mathbb{D}}_1$ are shown in Figure 5 below.

Both \mathbb{D}_1 and $\hat{\mathbb{D}}_1$ are disjoint open sets. That is, $\mathbb{D}_1 \cap \hat{\mathbb{D}}_1 = \emptyset$, but they have line segment PQ as their common boundary. Indeed, the boundary $\partial \mathbb{D} = \partial \mathbb{D}_1 \cup \partial \hat{\mathbb{D}}_1$ includes the outer boundary points and all points of the line segment PQ. Moreover, the domains \mathbb{D}_1 and $\hat{\mathbb{D}}_1$ can be expressed as

$$\mathbb{D}_1 = \left\{ z \in \mathbb{G}_1 : |\phi(z_1 z)| < |\phi(\bar{z}_1 z)| \right\}, \qquad \hat{\mathbb{D}}_1 = \left\{ z \in \hat{\mathbb{G}}_1 : |\phi(\bar{z}_1 z)| < |\phi(z_1 z)| \right\}.$$

Note that $\mathbb{D} = \mathbb{D}_1 \cup \hat{\mathbb{D}}_1 \subseteq \mathbb{G} = \mathbb{G}_1 \cup \hat{\mathbb{G}}_1$. The domains \mathbb{D} and \mathbb{G} are different but they have identical closures. That is, $\overline{\mathbb{D}} = \overline{\mathbb{G}}$.

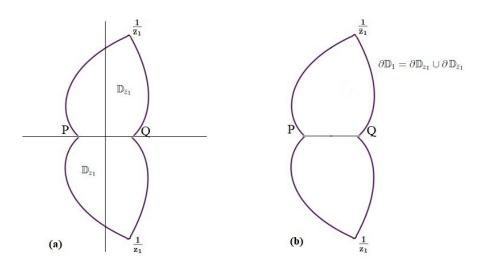


FIGURE 5. Szegő domains \mathbb{D}_{z_1} and $\mathbb{D}_{\bar{z}_1}$ and their boundaries

We now present the fact that z_1 and \bar{z}_1 dominate all the other roots of $\varphi(w) = e^w - 1 - w$. In fact, this is one of our results which we think is new in our study.

Theorem 2.1. If $z_k = x_k + iy_k = r_k e^{i\theta_k}$ is an arbitrary zero of $\varphi(z)$ with $y_k > 0$ and $|z_k| = r_k \ge r_2$, then $\frac{1}{z_k}$ lies inside the domain \mathbb{D}_1 . More generally, for each root z_k of $\varphi(z)$ with $|z_k| > r_1$ we have $\frac{1}{z_k} \in \mathbb{D} = \mathbb{D}_1 \cup \hat{\mathbb{D}}_1$.

Proof. Let $z_k = x_k + iy_k = r_k e^{i\theta_k}$ be as given in the hypothesis. Then the relation

$$\left|\frac{1}{z_k}\right| = \frac{1}{r_k} < \frac{1}{r_1}$$

shows that $\frac{1}{z_k} \in B(0, \frac{1}{r_1})$ for all $k \ge 2$. This yields $\frac{1}{z_k} \notin \bar{\mathbb{G}}_1^+$. For the function $\phi(z_1 z) = z z_1 e^{1-z_1 z}$ we evaluate $|\phi(z_1 z)|$ at $z = \frac{1}{z_k}$, observe that $r_1 < r_2 < r_k$ for all k > 2, and we get

$$\left| \phi \left(z_1 \frac{1}{z_k} \right) \right| = \frac{r_1}{r_k} e^{1 - \frac{(x_1 x_k + y_1 y_k)}{r_k^2}} \leqslant \frac{r_1}{r_2} e^{1 - \frac{(x_1 x_2 + y_1 y_2)}{r_k^2}} \quad \text{for all } k \geqslant 2.$$

But we can use the values of x_1, y_1, r_1, x_2, y_2 and r_2 and we easily see that

$$\frac{r_1}{r_2}e^{1-\frac{(x_1x_2+y_1y_2)}{r_k^2}} < 1.$$

Thus, $\left|\phi\left(z_1\frac{1}{z_k}\right)\right| < 1$ and $\left|\frac{1}{z_k}\right| < \frac{1}{r_1}$ so that $\frac{1}{z_k} \in \mathbb{G}_1$. Moreover, since $y_k > 0$, we have $\frac{1}{z_k} \in \mathcal{H}^-$. Hence, $\frac{1}{z_k} \in \mathbb{D}_1$. Similarly, if we assume $y_k < 0$, then we evaluate $|\phi\left(\bar{z}_1z\right)|$ at $z = \frac{1}{z_k}$ and get $\frac{1}{z_k} \in \mathbb{D}_2$. Therefore, $\frac{1}{z_k} \in \mathbb{D} = \mathbb{D}_1 \cup \hat{\mathbb{D}}_1$ for each $k \geqslant 2$.

3. Main results

3.1. Integral representation for $B_n(2,x)$. We denote

$$g_2(w) := 2\frac{e^w - 1 - w}{w^2},$$

and we rewrite the definition (1.5) of hypergeometric Bernoulli polynomials of order 2 as

$$\frac{e^{zw}}{g_2(w)} = \sum_{k=0}^{\infty} B_k(2, z) \frac{w^k}{k!}.$$

Let γ be the key-hole contour given on Figure 6 below with $\delta = 1$. Clearly, the curve γ passes through the point (1, 0) and $\delta = 1 < r_1$ so that a neighborhood of γ contains no zeroes of the function $\varphi(z)$.

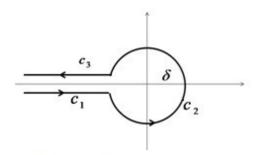


FIGURE 6. The key-hole contour about the origin with $\delta = 1$

Lemma 3.1 (Integral representation). The hypergeometric Bernoulli polynomials $B_n(2, z)$ satisfy the integral representation

$$B_n(2,z) = \frac{n!}{4\pi i} \int_{\gamma} \frac{e^{zw}}{w^n} \frac{w}{e^w - 1 - w} dw.$$

The re-scaled polynomials $B_n(2, nz)$ satisfy the representations

$$B_n(2, nz) = \frac{n!}{4\pi i} \int_{\gamma} \left(\frac{e^{zw}}{w}\right)^n \frac{w}{e^w - 1 - w} dw.$$

$$(3.1)$$

Proof. We divide Equation (1.5) by $2\pi i w^{n+1}$ and integrate the result over the curve γ

$$\frac{1}{2\pi i} \int_{\gamma} \frac{w^2 e^{zw}}{2(e^w - 1 - w) w^{n+1}} dw = \frac{1}{2\pi i} \int_{\gamma} \sum_{k=0}^{\infty} \frac{B_k(2, z) w^k}{k! w^{n+1}} dw$$

$$= \sum_{k=0}^{\infty} \frac{B_k(2, z)}{k!} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{1}{w^{n+1-k}} dw \right) = \frac{B_n(2, z)}{n!};$$

here we have employed that

$$\int\limits_{\infty} \frac{1}{w^{n+1-k}} \, dw = 2\pi i$$

for k=n, and by the Cauchy integral theorem the integral vanishes for all $k\neq n$. Thus,

$$B_n(2,z) = \frac{n!}{4\pi i} \int_{\gamma} \frac{e^{zw}}{w^n} \frac{w}{e^w - 1 - w} dw.$$

Since both sides of this latter equation are entire functions of z, we can replace z by nz and this gives the desired result.

Remark 3.1. In Equation (3.1), the substitution of w by w/z changes the curve of integration γ to γ_2 , where γ_2 represents the curve γ , in which the radius of C_2 is changed to $\delta = |z|$. If $\varphi(z)$ has zeros at $w = z_k$, then the zeros of $\varphi(w/z)$ are $w = z_k z$. Since $\frac{1}{r_1} \geqslant \frac{1}{r_k}$, for each $z \in \mathbb{C}$ such that $\frac{1}{r_1} < |z| < \infty$, we have $|z_k z| > \frac{r_k}{r_1} \geqslant 1$. This shows that $\frac{w}{\varphi(w/z)}$ is analytic in a disk of radius greater than 1 and we can deform the curve γ_2 to γ without changing the value of the

integral. Moreover, the integrals over the curves C_1 and C_3 cancel each other so that the curve of integration reduces to C_2 . Therefore, replacement w by $\frac{w}{z}$ in Equation (3.1) yields

$$B_n(2, nz) = \frac{n! z^{n-2}}{4\pi i} \int_{|w|=1} \left(\frac{e^w}{w}\right)^n \frac{w}{\varphi\left(\frac{w}{z}\right)} dw.$$
 (3.2)

3.2. Asymptotic representation of $B_n(2,z)$ outside the disk $B\left(0,\frac{1}{r_1}\right)$. Let

$$T_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$$

be the Taylor polynomials of e^z . In [2], the polynomials $T_n(z)$ are expressed by their integral representation as

$$T_{n-1}(nz) = \frac{1}{2\pi i} \int_{|w|=\delta} \left(\frac{e^{zw}}{w}\right)^n \frac{1}{1-w} dw$$
 (0 < \delta < 1).

In [2], Boyer and Goh used this integral form for the asymptotic representation of $T_n(z)$, the generalized Szegö asymptotics.

Theorem 3.1 (Generalized Szegö asymptotics). Let $\frac{1}{3} < \alpha < \frac{1}{2}$. For the sequence of polynomials $\{T_n(z)\}$, we have

$$T_{n-1}(nz) = -\frac{(ze)^n}{\sqrt{2\pi n}(1-z)} \left(1 + \mathcal{O}\left(n^{1-3\alpha}\right)\right), \qquad |z| > 1,$$
 (3.3)

$$T_{n-1}(nz) = e^{nz} - \frac{(ze)^n}{\sqrt{2\pi n}(1-z)} \left(1 + \mathcal{O}\left(n^{1-3\alpha}\right)\right), \quad \text{Re}(z) < 1.$$
 (3.4)

We follow similar procedures and use the integral form (3.1) in order to find the asymptotic representation for $B_n(2, nz)$. Of course, the expressions (3.3) and (3.4) are very important for our asymptotic representations of $B_n(2, z)$ inside different domains of the complex plane.

Let z_k be the roots of $\varphi(z)$, which lie in the upper half-plane with $r_1 < r_2 < r_3 < \cdots$, where $r_k = |z_k|$. Then \bar{z}_k are also roots of $\varphi(z)$ with modulus $|\bar{z}_k| = |z_k| = r_k$. We consider several domains of the complex plane in which we establish asymptotic representation for $B_n(2, z)$. One of such domains is the exterior of the disk $B\left(0, \frac{1}{r_k}\right)$, which we define by \mathbb{A}_k ,

$$\mathbb{A}_k = \left\{ z \in \mathbb{C} : \frac{1}{r_k} < |z| < \infty \right\}.$$

We focus on the case when k=1, $\mathbb{A}_1=\left\{z\in\mathbb{C}:\frac{1}{r_1}<|z|<\infty\right\}$, the unbounded domain which is the exterior of the disk $B\left(0,\frac{1}{r_1}\right)$. Also from the interior of this disk, we consider $\overline{B}\left(0,\frac{1}{r_1}\right)\setminus\overline{\mathbb{D}}$ and the domain $\mathbb D$ itself, and we give asymptotic representations of $B_n(2,nz)$ in each of these three domains.

We let

$$F_n(z) = 2\sqrt{2\pi n} \frac{B_n(2, nz)}{n!(ze)^n}, \quad \mathbf{Z}(\varphi) = \{z \in \mathbb{C} : \varphi(z) = 0\}.$$

Theorem 3.2. For each $z \in \mathbb{A}_1 = \left\{z \in \mathbb{C} : \frac{1}{r_1} < |z| < \infty \right\}$ we have

$$B_n(2, nz) = \frac{n!(ze)^n}{2\sqrt{2\pi n}z^2\varphi\left(\frac{1}{z}\right)} \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right). \tag{3.5}$$

Moreover, the asymptotic formula (3.5) holds uniformly for all z in any compact subset K of \mathbb{A}_1 .

Proof. We rewrite the representation (3.2) as

$$B_n(2, nz) = \frac{n!z^{n-2}}{2\pi i} \mathcal{I}(n),$$

where

$$\mathcal{I}(n) = \frac{1}{2} \int_{|w|=1}^{\infty} \left(\frac{e^w}{w}\right)^n \frac{w}{\varphi\left(\frac{w}{z}\right)} dw.$$

We use the saddle-point method (or Laplace method) to derive the asymptotic representation for $\mathcal{I}(n)$. We let $f(w) = w - \log(w)$ and $h(w) = \frac{w/2}{\varphi(\frac{w}{z})}$, then $\mathcal{I}(n)$ becomes

$$\mathcal{I}(n) = \int_{\gamma} e^{nf(w)} h(w) \, dw.$$

Both functions f(w) and h(w) are analytic in a neighborhood of γ , say $\mathcal{N}(\gamma)$, hence, both have power series in a neighborhood $\mathcal{N}(1) \subseteq \mathcal{N}(\gamma)$ of the point $w_0 = 1$. For the points $w = 1 + re^{i\theta}$ in $\mathcal{N}(1)$, we may express the series of f in terms of the real and imaginary parts as

$$f(w) = 1 + \frac{r^2}{2}\cos(2\theta) + \frac{r^3}{6}\cos(3\theta) + \dots + i\left(\frac{r^2}{2}\sin(2\theta) + \frac{r^3}{6}\sin(3\theta) + \dots\right).$$

As $|e^f| = e^{\text{Re}(f)}$, we see that the main contribution of f(w) to the integral $\mathcal{I}(n)$ comes from its real part Re(f). Also we deform γ so that $\sin(2\theta) = 0$ and $\cos(2\theta) = 1$ for points w on γ .

At w=1 we have r=0 and the integration over the portion of γ inside $\mathcal{N}(1)$ becomes an integral with respect to the variable r. We treat the integral over the portion of γ that lie below the abscissa axis as the integral over r from negative values to r=0 and the integral over the portion above the abscissa axis as from r=0 to positive values of r. This gives

$$\mathcal{I}(n) = h(1)e^n \int_{-a}^{a} e^{\frac{nr^2}{2} + \frac{nr^3}{6} + \cdots} \left(1 + \frac{h'(1)}{h(1)} r + \frac{h''(1)}{2h(1)} r^2 + \cdots \right) dr,$$

for a positive real number a. If we make a substitution $r = \frac{t}{\sqrt{n}}$, then we get

$$\mathcal{I}(n) = \frac{h(1)e^n}{\sqrt{n}} \int_{-a\sqrt{n}}^{a\sqrt{n}} e^{\frac{t^2}{2}} e^{\frac{t^3}{6\sqrt{n}} + \dots} \left(1 + \frac{h'(1)}{h(1)} \frac{t}{\sqrt{n}} + \frac{h''(1)}{2h(1)} \frac{t^2}{n} + \dots \right) dt.$$

Now we use the fact that

$$e^{\frac{t^3}{6\sqrt{n}}+\dots}\leqslant 1+2\left(\frac{t^3}{6\sqrt{n}}\right)+\dots$$

and express the product of the two series as an asymptotic term. Then for sufficiently large values of n, the above integral becomes

$$\mathcal{I}(n) = \frac{h(1)e^n}{\sqrt{n}} \int_{-\infty}^{\infty} e^{\frac{t^2}{2}} dt \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right).$$

Then we evaluate the integral and get

$$\mathcal{I}(n) = \frac{h(1)e^n}{\sqrt{n}}\sqrt{-2\pi}\left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right).$$

Finally, noting that $h(1) = \frac{1/2}{e^{1/z} - 1 - \frac{1}{z}} = \frac{1/2}{\varphi(\frac{1}{z})}$ in $\mathcal{I}(n)$, we obtain

$$B_n(2, nz) = \frac{n!(ze)^n}{2\sqrt{2\pi n}} \frac{1}{z^2 \varphi\left(\frac{1}{z}\right)} \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right) \quad \text{for all} \quad z \in \mathbb{A}_1.$$

3.3. Asymptotic representation for $B_n(2,z)$ inside the disk $B\left(0,\frac{1}{r_1}\right)$. First we define some domains R_k inside $B\left(0,\frac{1}{r_1}\right)$. Let $\mu>0$ be such that $r_1< r_2< r_3< \cdots < r_m< \mu< r_{m+1}$. Fix some k such that $|z_k|=|\bar{z}_k|=r_k<\mu$ and let $\mathcal{D}_{z_k}=B\left(\frac{1}{z_k},\delta_k\right)$ where $\delta_k>0$ is small enough so that $B\left(\frac{1}{w},\delta_w\right)$ are disjoint for distinct w in $\mathbf{Z}(\varphi)$. Let \mathcal{T}_{z_k} be the tangent to $B\left(0,\frac{1}{r_k}\right)$ at $\frac{1}{z_k}$ and let \mathcal{H}_{z_k} be the half-plane determined by \mathcal{T}_{z_k} and containing the origin. If $\epsilon_k>0$ is such that $\epsilon_k<\sqrt{\frac{1}{r_k^2}+\delta_k^2}-\frac{1}{r_k}$, then the disk $B\left(0,\frac{1}{r_k}+\epsilon_k\right)$ intersects \mathcal{T}_{z_k} only inside the disk \mathcal{D}_{z_k} .

Definition 3.1. Let $\mu > 0$ be fixed and let z_k and \bar{z}_k be roots of $\varphi(z)$ of modulus r_k , $r_k < \mu$. We define the domains

$$\mathcal{D}_{k} = B\left(\frac{1}{z_{k}}, \delta_{k}\right) \cup B\left(\frac{1}{\bar{z}_{k}}, \delta_{k}\right), \qquad \mathcal{H}_{k} = \mathcal{H}_{z_{k}} \cap \mathcal{H}_{\bar{z}_{k}},$$

$$R_{k} = [\mathcal{H}_{k} \setminus \mathcal{D}_{k}] \cap \left[B\left(0, \frac{1}{r_{k}} + \epsilon_{k}\right) \setminus \left(B\left(0, \frac{1}{r_{k+1}} + \epsilon_{k+1}\right) \bigcup \mathcal{D}_{k+1}\right)\right],$$

$$R_{\mu} = \mathcal{H}_{1} \setminus \left[B\left(0, \frac{1}{\mu}\right) \bigcup \left(\bigcup_{k=1}^{m} \mathcal{D}_{k}\right)\right].$$

Consider the function $h(w) = \frac{w}{e^w - 1 - w}$ and define H(w) by

$$H(w) = h(w) - \sum_{j=1}^{m} \left[\frac{1}{w - z_j} + \frac{1}{w - \bar{z}_j} \right].$$

In (3.1) we use

$$h(w) = H(w) + \sum_{j=1}^{m} \left[\frac{1}{w - z_j} + \frac{1}{w - \bar{z}_j} \right],$$

and we get

$$B_n(2, nz) = I(z, n) + \sum_{j=1}^m J_j(z, n), \tag{3.6}$$

where

$$I(z,n) = \frac{n!}{4\pi i} \int_{|w|=1} \left(\frac{e^{zw}}{w}\right)^n H(w) dw,$$

$$J_j(z,n) = \frac{n!}{4\pi i} \int_{|w|=1} \left(\frac{e^{zw}}{w}\right)^n \left[\frac{1}{w-z_j} + \frac{1}{w-\bar{z}_j}\right] dw.$$

Lemma 3.2. Let $\mu > 0$ be such that $r_1 < r_2 < r_3 < \cdots < r_m < \mu < r_{m+1}$ for some $m \in \mathbb{N}$. The function H(w) is analytic in the disk $|w| < \mu$, and the integral I(z,n) in (3.6) satisfies

$$I(z,n) = \frac{n!(ze)^n}{2\sqrt{2\pi n}} \frac{1}{z} H\left(\frac{1}{z}\right) \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right)$$

uniformly on compact subsets of $\mathbb{A}_{\mu} = \{z \in \mathbb{C} : \frac{1}{\mu} < |z| < \infty\}.$

Proof. Clearly, the non-trivial zeros z_j of $\varphi(z)$ (poles of h(w)) are simple poles of h(w) with the residue Res $(h(w); z_j) = 1$. Hence, the function H(w) is analytic in the disk $|w| < \mu$. Let $z \in K \subseteq \mathbb{A}_{\mu}$. By replacing w by w/z, we can express I(z, n) as

$$I(z,n) = \frac{n!z^{n-1}}{2\pi i} \int_{|w|=|z|} \left(\frac{e^w}{w}\right)^n H\left(\frac{w}{z}\right) dw.$$

Here again we can deform the curve of integration to |w| = 1 without changing its value. Then in the same way as we did in the proof of Theorem 3.2, we apply the saddle–point method and obtain the required result.

Lemma 3.3. Let $\frac{1}{3} < \alpha < \frac{1}{2}$, $z_j \in \mathbf{Z}(\varphi)$ and $\mathcal{H}_j = \{z : \operatorname{Re}(z_j z) < 1\}$. If $z \in K \subseteq \mathcal{H}_j$, then

$$\frac{1}{2\pi i} \int_{|w|=1} \left(\frac{e^{zw}}{w} \right)^n \frac{1}{w - z_j} dw = -z_j^{-n} e^{nz_j z} + \frac{(ze)^n}{\sqrt{2\pi n} (1 - z_j z)} \left(1 + \mathcal{O}\left(n^{1-3\alpha}\right) \right).$$

Proof. We replace w by $z_i w$, and we get

$$\frac{1}{2\pi i} \int_{|w|=1} \left(\frac{e^{zw}}{w}\right)^n \frac{1}{w-z_j} dw = -z_j^{-n} \frac{1}{2\pi i} \int_{|w|=\frac{1}{|z_j|}} \left(\frac{e^{zz_jw}}{w}\right)^n \frac{1}{1-w} dw
= -z_j^{-n} T_{n-1}(nz_j z).$$

Since $z \in \mathcal{H}_j$, we have $\operatorname{Re}(z_j z) < 1$ so that we can use (3.4) to express $T_{n-1}(nz_j z)$ asymptotically and get the desired result.

Corollary 3.1. For $z_j \in \mathbf{Z}(\varphi)$ such that $|z_j| \leqslant r_k$, the functions $J_j(z, n)$ defined in (3.6) can be expressed asymptotically as

$$J_{j}(z, n) = \frac{n!(ze)^{n}}{2\sqrt{2\pi n}} \left[\frac{-\sqrt{2\pi n}}{\phi(zz_{j})^{n}} + \frac{-\sqrt{2\pi n}}{\phi(z\bar{z}_{j})^{n}} + \left(\frac{1}{1 - z_{j}z} + \frac{1}{1 - \bar{z}_{j}z}\right) \left(1 + \mathcal{O}\left(n^{1-3\alpha}\right)\right) \right]$$
(3.7)

uniformly on compact subsets of R_k .

Proof. By definition, $z \in R_k$ and $|z_j| \le r_k$ implies $\text{Re}(z_j z) < 1$. Thus, $R_k \subseteq \mathcal{H}_j$ so that we use Lemma 3.3 and get

$$\frac{1}{2\pi i} \int_{|w|=1} \left(\frac{e^{zw}}{w} \right)^n \frac{1}{w - z_j} dw = -z_j^{-n} e^{nz_j z} + \frac{(ze)^n}{\sqrt{2\pi n} (1 - z_j z)} \left(1 + \mathcal{O}\left(n^{1 - 3\alpha}\right) \right).$$

We get the same equation with z_j replaced by \bar{z}_j . Finally, $J_j(z,n)$ will be the sum of the two equations multiplied by $\frac{n!}{2}$.

Lemma 3.4. Let $z_j \in \mathbf{Z}(\varphi)$ and let $z \in K$, where $K \subseteq \{z : \frac{1}{|z_j|} < |z| < \infty$. Then

$$\frac{1}{2\pi i} \int_{|w|=1} \left(\frac{e^{zw}}{w} \right)^n \frac{1}{w - z_j} dw = \frac{(ze)^n}{\sqrt{2\pi n} (1 - z_j z)} \left(1 + \mathcal{O}\left(n^{1-3\alpha}\right) \right).$$

Proof. As we have the condition $|z_j z| > 1$ from the assumptions, we use (3.3) and the procedure is similar to the proof of Lemma 3.3.

Corollary 3.2. For $z_j \in \mathbf{Z}(\varphi)$ with $r_k < |z_j| < \mu$, we have

$$J_{j}(z,n) = \frac{n!(ze)^{n}}{2\sqrt{2\pi n}} \left[\frac{1}{1 - z_{j}z} + \frac{1}{1 - \bar{z}_{j}z} \right] \left(1 + \mathcal{O}\left(n^{1-3\alpha}\right) \right)$$
(3.8)

uniformly on compact subsets of R_k .

Proof. $z \in R_k$ and $r_{k+1} \leq |z_j|$ implies $|z_j z| > 1$ so that it follows from the Lemma 3.4.

Let $\mu > 0$ be fixed and let z_1, z_2, \dots, z_m be roots of $\varphi(z)$ with modulus $|z_j| = r_j$ such that $r_1 \leqslant r_2 \leqslant \dots \leqslant r_m < \mu < r_{m+1}$. We choose k with $r_k < \mu$ and we give an asymptotic representation of $B_n(2, nz)$ for all z in the domain R_k .

Theorem 3.3. Let $\frac{1}{3} < \alpha < \frac{1}{2}$, $\mu > 0$ and k such that $|z_k| < \mu$ be fixed. Then

$$B_{n}(2, nz) = \frac{n!(ze)^{n}}{2\sqrt{2\pi n}} \left[\frac{1}{z^{2}\varphi\left(\frac{1}{z}\right)} - \sqrt{2\pi n} \sum_{j=1}^{k} \left(\frac{1}{\phi\left(zz_{j}\right)^{n}} + \frac{1}{\phi\left(z\bar{z}_{j}\right)^{n}} \right) + \mathcal{O}\left(n^{1-3\alpha}\right) \right]$$

for all $z \in R_k$.

Proof. We may express equation (3.6) as $B_n(2, nz) = I(z, n) + J(z, n)$, where

$$J(z,n) = \sum_{j=1}^{m} J_j(z,n).$$

For any $z \in R_k$, we have $\text{Re}(z_j z) < 1$ if $1 \le j \le k$ and $|z_j z| > 1$ if $k < j \le m$. Hence, for any $z \in R_k$, we can use either Corollary 3.1 or Corollary 3.2 for asymptotic representation of $J_j(z,n)$. That is, we get

$$J(z,n) = \sum_{j=1}^{m} J_j(z,n) = \sum_{j=1}^{k} J_j(z,n) + \sum_{j=k+1}^{m} J_j(z,n),$$

where $J_j(z,n)$ is given by (3.7) if $1 \le j \le k$, and $J_j(z,n)$ is given by (3.8) if $k+1 \le j \le m$. Thus,

$$J(z,n) = \frac{n!(ze)^n}{2\sqrt{2\pi n}} \left[-\sqrt{2\pi n} \sum_{j=1}^k \left(\frac{1}{\phi (zz_j)^n} + \frac{1}{\phi (z\bar{z}_j)^n} \right) + \sum_{j=1}^m \left(\frac{1}{1 - z_j z} + \frac{1}{1 - \bar{z}_j z} \right) \left(1 + \mathcal{O}\left(n^{1 - 3\alpha}\right) \right) \right].$$

Also since $R_k \subseteq \{w : |w| < \mu\}$, Lemma 3.2 holds for $z \in R_k$. Moreover, by noting that

$$\frac{1}{z}H\left(\frac{1}{z}\right) = \frac{1}{z^2\varphi\left(\frac{1}{z}\right)} - \sum_{j=1}^m \left(\frac{1}{1-z_jz} + \frac{1}{1-\bar{z}_jz}\right),$$

we get

$$I(z,n) = \frac{n!(ze)^n}{2\sqrt{2\pi n}} \left[\frac{1}{z^2 \varphi\left(\frac{1}{z}\right)} - \sum_{j=1}^m \left(\frac{1}{1 - z_j z} + \frac{1}{1 - \bar{z}_j z} \right) \right] \left(1 + \mathcal{O}\left(\frac{1}{n}\right) \right).$$

Finally, since $\frac{1}{n} < n^{1-3\alpha}$, the term $\mathcal{O}\left(\frac{1}{n}\right)$ will be absorbed in $\mathcal{O}\left(n^{1-3\alpha}\right)$ and combining the above two equations, we get

$$B_n(2, nz) = \frac{n!(ze)^n}{2\sqrt{2\pi n}} \left[\frac{1}{z^2 \varphi\left(\frac{1}{z}\right)} - \sqrt{2\pi n} \sum_{j=1}^k \left(\frac{1}{\phi\left(zz_j\right)^n} + \frac{1}{\phi\left(z\bar{z}_j\right)^n} \right) + \mathcal{O}\left(n^{1-3\alpha}\right) \right].$$

4. Open Problem

The open problem related to our work is to determine the asymptotic real and complex zeros of hypergeometric Bernouli polynomials of order N=3 and establish similar asymptotic formulas for $B_n(3,x)$. Generalizing this concept for hypergeometric Bernouli polynomials of arbitrary order, $B_n(N,x)$ is also one more open problem.

Acknowledgments

We would like to thank the editors and all anonymous reviewers for their comments, which helped us to improve the quality of this paper.

REFERENCES

- 1. N. Asfaw and A. Hassen. Asymptotic behavior and zeros of hypergeometric Bernoulli polynomials of order 2 // JP J. Algebra Number Theory Appl. 49:1, 51–75 (2021). https://doi.org/10.17654/NT049010051
- 2. R.P. Boyer, W.M.Y. Goh. *On the zero attractor of the Euler polynomials* // Adv. Appl. Math. **38**:1, 97–132 (2007). https://doi.org/10.1016/j.aam.2005.05.008
- 3. K. Dilcher. Bernoulli numbers and confluent hypergeometric functions // in "Number theory for the millennium I.", A K Peters, Natick, MA, 343–363 (2002).
- 4. K. Dilcher, L. Malloch. Arithmetic properties of Bernoulli Padé numbers and polynomials // J. Number Theory 92:2, 330–347 (2002). https://doi.org/10.1006/jnth.2001.2696
- 5. A.Hassen, H.D. Nguyen. Hypergeometric Bernoulli polynomials and Appell sequences // Int. J. Number Theory 4:5, 767–774 (2008). https://doi.org/10.1142/S1793042108001754
- 6. A.Hassen, H.D. Nguyen. *Hypergeometric zeta functions* // Int. J. Number Theory **6**:1, 99–126 (2010). https://doi.org/10.1142/S179304211000282X
- 7. F.T. Howard. A sequences of numbers related to the exponential function // Duke Math. J. **34**:3, 599–615 (1967). https://doi.org/10.1215/S0012-7094-67-03465-5

Nigussa Lemessa, Jimma University, Department of Mathematics, P.O.Box: 378,

Jimma, Ethiopia

E-mail: lemessanigussa@gmail.com

Nasir Asfaw, Ambo University, Department of Mathematics, Ambo, Ethiopia

E-mail: nasirasfawk@gmail.com