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NONLINEAR INTEGRABLE LATTICES
WITH THREE INDEPENDENT VARIABLES

I.T. HABIBULLIN, A.R. KHAKIMOVA

Abstract. We suggest an algorithm for deriving nonlinear integrable equations of the form

J+1 7 j+1 .. j o, Jt1
un,x - F(un,zﬂun 7un+17un7un—1)

with three independent variables; the algorithm uses the known list of Toda type integrable

equations. The algorithm is based on the Darboux integrable finite field reductions,
construction of a complete set of characteristic integrals and dicretization via integrals.
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1. INTRODUCTION

Nowadays, the problem of classification of integrable nonlinear partial differential equations
and their discrete analogues in 1+1 dimensions is well-studied. Within the framework of the
symmetry approach, there was obtained a complete description of integrable representatives of
a number of classes of equations that are interesting from the point of view of application, see
[17], [34], [26], [2]- The problem of exhaustive classification of integrable equations containing a
large number of independent variables remains less studied due to its extreme complexity. The
symmetry approach, which has proven to be the most effective tool for classifying equations of
dimension 141, is not quite suitable for integrable classification of multidimensional equations.
As it is noted in [27], in this problem the symmetry approach loses its efficiency due to problems
with nonlocalities involved in higher symmetries.

Various alternative approaches to the problem of searching and classifying integrable
multidimensional equations are known in the literature. A description of these approaches,
as well as the current state of arts in this area, can be found in the papers [7], [2], [1], 28], |3],
[35] and references therein.

The following important conclusion follows from the results of the papers [12], [29], [13],
[21], [15], [14], [19] devoted to the study of integrable nonlinear differential-difference equations
with three independent variables, where at least one of the variables is discrete (such equations
are usually called lattices). Any integrable equation in this class admits a special boundary
condition in one of the discrete directions, which, when imposed at two arbitrary non—coinciding
points, reduces the three—dimensional lattice to a two—dimensional system of hyperbolic
equations admitting complete sets of integrals in each of the characteristic directions. Recall
that systems admitting complete sets of characteristic integrals are referred to as integrable in
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the sense of Darboux. In fact, the existence of a hierarchy of Darboux integrable reductions is
a criterion for the integrability of a nonlinear three—dimensional lattice.
This assumption was convincingly confirmed for all three types of lattices: for the class of

equations of two-dimensional Toda chain type in [12], [29], [13], for semi-discrete lattices with
one continuous and two discrete variables in [21], [15] and, finally, for fully discrete Hirota type
equations in [14], [19].

The first examples of a hierarchy of integrable reductions of nonlinear lattices were considered
in the nineteenth century by G. Darboux. For example, he investigated finite reductions of the
equation

(log un )y = 2un — Up+1 — Up—1
obtained by imposing the cutoff conditions uy,1 = 0, uyp = 0, for which he found general
solution in an explicit form.

An interest in this topic was revived at the end of the 20th century in the studies of
A.V. Mikhailov, A.B. Shabat, A.N. Leznov, M.A. Olshanetsky and others in connection with
the discovery of the inverse scattering transform method. Particular attention was paid to
nonlinear chains corresponding to Cartan matrices of simple Lie algebras, see, for example,
[30], [25], [23]. The concept of characteristic algebra, introduced in [30] by A.B. Shabat and R.I.
Yamilov, has become an effective tool for studying Darboux integrable systems. It was proved
in the mognography [36] that the criterion for the existence of a complete set of integrals of
an arbitrary hyperbolic system is a finite dimensional of its characteristic algebras. Integrable
semi-discrete models related to the Cartan matrices were studied also in [10], [31].

Below we investigate the relationship between the following two classes of nonlinear integrable
lattices with three independent variables

Unzy = f(Unz, Unys Unt1, Un, Up—1) (1.1)
and

ui:;l = F(“i,wuﬁflvufz—i-l’uZLvuiLtll)' (1'2)
In [29], [13], [20] the problem of complete description of integrable cases of equation (1.1) with

a linear dependence on the derivatives u, ,, u,, was solved. More precisely, it was assumed
that (1.1) has the form

Un,zy = Anun,mun,y + Bnun,ac + Cnun,y + En> (13)

where the coefficients A,, B,, C,, E, depend on the dynamical variables w, 1, u,, u,_1. To
the best of our knowledge, in the literature there are no examples of integrable equations of the
form (1.1), which are nonlinear in the derivatives. Up to point changes of variables, the list of
integrable lattices of the class (1.3) has the form

(B1) gy = ctoir=2ntins,
(E2)  wy gy = €'t —2e" et
(ES) Uy, Ty - €Un+1—un — €Un_un71,
(E4) Up,zy = (Un-lrl — 2uy, + Un—l) Un,z,
(E5)  Uppy = ("1 — eUn =)y,
1 1
(E6)  tUnazy = Qi gy, O = —

Up — Un—1 Un41 — un7
(E7)  Unay = @n(tng + 12 — 1) (tny + 12 — 1) = 2up (g + Upy +ul — 1).

To classify the lattices of form (1.3), the aforementioned method of Darboux integrable
reductions was used. In the special case A, = B, = C,, = 0 all integrable lattices of the form
(1.3) were previously listed in the paper [30]. The problem of classifying chains of the form
(1.2) by the same method of Darboux integrable reductions using characteristic Lie algebras
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turned out to be more difficult, and remains unsolved. Some intermediate results were obtained
in [21], [19].

In this paper, we propose a method for obtaining integrable equations of the form (1.2) by
discretizing integrable representatives of the more thoroughly studied class (1.1). To test the
method, we derive discrete versions of several quasilinear equations presented in the list above
(equations (E1)-(E3)). The discretization algorithm consists of the following steps. First, for a
given equation from the list, we seek its finite field Darboux integrable reduction in the form of
a system of partial differential equations, and construct complete sets of characteristic integrals
in the x and y directions for it. Next, we assume that all involved dynamical variables depend on
an additional discrete variable, and for each set of constructed characteristic integrals, we seek a
finite system of a different type, namely, a system of differential-difference equations, for which
this set is also a set of integrals. It is curious that for each of the two sets of integrals under
consideration, such a system is uniquely determined, with the exception of some degenerate
cases. Then, using the found system of differential-difference equations, we find the explicit
form of the desired lattice of class (1.2). For scalar 1+1 dimensional Liouville type models
method of discretization via integrals was suggested in [I1]. Some important properties of
characteristic integrals of Liouville type equations were noted in [33].

Let us briefly outline the contents of the paper. In the second section, we give the definition
of a complete set of characteristic integrals of a hyperbolic system and present a completeness
criterion. We discuss methods for constructing integrals. In Section 3, we explain in detail
the proposed algorithm for discretizing Toda type lattices using finite field reductions and
characteristic integrals. In Section 4 and Section 5, we apply the discretization algorithm to
the lattices (E3) and (E1). In Section 6, we obtain a discrete version of the chain (E2) using
a nonlocal Lax pair. In this case, for the equation (6.6), we constructed a Lax pair that also
depends on a nonlocal variable.

2. COMPLETE SETS OF CHARACTERISTIC INTEGRALS
We consider a hyperbolic system of the form
ui,xy:E(u17---7uN7u1,xa--->UN,m7u1,ya---;uN,y); Z: 1,2,...,N, (21)

where F} are analytic functions defined on a domain in the space C3V.

. .« . S
We recall some basic definitions (see, for example, [30]). Denote uy [y = Zsuj. Then a
smooth function of the form
I= ](ula s UNS UL gy oy UN gy UL gy + - -y UN gy -+ - 5 ULy - - 7uN,’r)7

is called an z-integral of order r of system (2.1), if D,/ = 0, where D, is the derivative with
respect to y by virtue of (2.1). In other words, for the z—integral we have the relation

0 0 0
D,I = ive— +E=——+ D, (F)=——+--- | [=Y]=0.
’ Z (u Y auz * 8ui7w * ( )8ul7m * )

A set of z-integrals {I;}'= with the orders ; for (2.1) forms a complete set of independent
x—integrals if the condition

0l o0l ol
8_[ 8u1,T1 duz,rl e a“N,rl
det () =| ... ... ... |40 (2.2)
i _OIn  _OIn _OIn
BuLTN 8u2,,«N e auNmN

holds. Let us formulate an effective algebraic criterion [36] for the existence of a complete set
of integrals of system (2.1).
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Theorem 2.1. System of equations (2.1) admits a complete set of independent x—integrals
of and only if the characteristic Lie algebra over the ring of locally analytic functions of the

variables Uy, U, Uy, Uyy, - .., where © = (ug, us, ..., uy), generated by the characteristic operators
0 0 0 0
=—, j=1,...,N; Y = Ujy=— + F;—— + D, (F; + e
/ auj,y J ZZ: Y ou; aui,x ( )auz,xa:

18 fintte—dimensional.

Remark 2.1. In Theorem 2.1, stating that «Lie algebra is finite—dimensionals, we mean its
dimension as a left module over the ring of locally analytic functions.

Integrals and characteristic algebra in the direction y are defined similarly. Alternative
methods for constructing characteristic integrals were discussed in [32], [6], [16]. Below, to
construct complete sets of characteristic integrals, we use an algorithm based on the concept of
Lax pair.

3. ALGORITHM FOR DISCRETIZATION OF LATTICES IN 3D USING INTEGRALS

Let us consider the rule for finding a differential-difference equation for a given integral of
a partial differential equation using a simple example. As a touchstone, we take the Liouville
equation

Ugyy = €. (3.1)
As it is known, the Liouville equation has characteristic integrals of the form
1 1
I =uy, — §ui, J = Uy, — 51@ (3.2)

It is easy to verify the identities D,/ = 0, D,J = 0, where the derivatives D, and D, are
calculated by virtue of Equation (3.1). We assume that the dynamical variables u, u,, Uz,
... depend on an additional discrete variable n. By discretization of Equation (3.1) using the
integral (3.2) we mean an equation of the form

Un+1,e = H(unxa Un+1, un) (33)
such that the function

7

= Ungy — §unz
is an integral in the direction n for this equation. In other words, the relation
D,I™ = [ (3.4)

holds, where the shift is due to the equation (3.3). It is easy to verify (see [11]) that the function
H is uniquely determined from the condition (3.4). The desired equation has the form

Upt1e = Ung + Cez(untitun) (3.5)

where C' is an arbitrary constant. Note that Equation (3.5) admits an integral in another
direction as well

J — eé(un+l_un) _|_ e%(u7z+1_un+2).

To verify this, we check that the identity D,J = 0 holds, where the derivative is taken by virtue
of Equation (3.5). The example shows that the discretization by means of the integral preserves
integrability in the sense of Darboux.
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Based on this and many other similar examples, we propose the following discretization
algorithm in the class of integrable lattices with three independent variables. Consider an
integrable nonlinear lattice of the form (1.1). Take its finite field reduction

(ul,x,y = f1 (Ul,m, U1y, U2, Ul) )
Uy = [ (U, Uz, us, Uz, ur)

(3.6)
U1,y = f (Um—1.2, Um—1,y5 Um, Um—1, Um—2) ,

Kum,x,y = f2 (um,acy Um,y, Umn, um—l) )

where the functions f; and fy; are chosen so that this system is Darboux integrable, i.e., it
has complete sets of characteristic integrals in both directions. Boundary conditions for the
chains (E1)—(ET7), which ensure the Darboux integrable reductions, were found in [29], [13],
[20]. Suppose that set of functions I, I, ..., I, constitutes a complete set of characteristic
integrals of minimal orders in one of the directions (the definition of minimality can be found
in [30]); for definiteness, we will assume that these are z—integrals, i.e. they have the form

Iy = Ii(4, Uy, Ugg, .. .), k=1,m.

Here we use the notation @ = (uq,us, ..., u,). Recall that the x—integral satisfies the relation
D, I, = 0, where D, denotes the total derivative operator, and D, I} is calculated due to (3.6).

In what follows, we assume that the dynamical variables uq, us, ..., u,, depend on an
additional discrete variable, and we introduce the superscript ugj ), ugj ), cee u%). The dynamics

with respect to this variable is determined by means of the differential-difference system

(0 = 1 () ).

W1 = F (0™ ), ).
N (3.7)
W0,y = F (uf D, o),
8= B (. 20).
\ y Ly k)

Then we look for a specific form of the functions Fj, Fy, and F' by assuming that the functions

I, = (a9, @y @) )
are z-integrals of the system (3.7), i.e., they satisfy the condition D;I; = Iy, where operator
D; is the operator, which shifts the variable j. Note that under the discretization we have to

adhere to another requirement, which excludes a trivial result: it is as follows.

(A). The functions Iy, I, ..., L, provide a complete set of independent integrals of minimal
orders for (3.7).

From the found system, we reconstruct a semi—discrete 3D chain of the form (1.2). Examples
show that the solution to the discretization problem is independent of the choice of m > 3.
Therefore, we can limit ourselves to considering the case m = 3.

Let us consider the linear systems associated with the lattices (E1)—(E3), the discrete versions
of which will be presented below. We start with (E2), which has a Lax pair of the form (see [21])

¢n,x = un,:ﬂwn + 77Z)n+17 wn,y = _eun_unill/}n—l‘ (38)
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The function u,, = u,(x,y) in the coefficients of this linear system solves the lattice (E2) if and
only if system (3.8) is consistent. Recall that Equations (E1)—(E3) can be rewritten as

— n _2 n+ n—
(E1) vy gy = et o0nTon—t,
(EQ) un,wy — eun+1_1l7z _ eun_unflj
(E3> Wn,zy = elntl — 2e¥n ¥t
are mutually related by the linear transformations
Wy = Ups1 — Un, Up = Vpi1 — Up- (3.9)

The linear systems associated with (E1) and (E3) can be obtained from (3.8) by using the
substitutions (3.9). For example, for (E1) we have

¢n,z _ (Un—i-l,:c . Un,w)#}n + ¢n+17 77Z)n,y — _e'l)n+1_2'l)n+'l/'n71/l/}n_1‘ (310)

However, the compatibility condition of the system (3.10) is only necessary, but not sufficient
for the fulfillment of Equation (E1).
For the lattice (E3) we obtain the system

¢n,:p - un,zwn + wn+17 7w/}n,y = _ewn_lwnfh (311)

which contains a nonlocal variable u,, determined by the equation

Unp+1,e — Unz = Wn g,

where the compatibility of the system is a necessary and sufficient condition for the fulfillment
of Equation (E3).

4. DISCRETIZATION OF EQUATION (FE3)

In this section we discretize the lattice (E3) by using integrals of finite field systems of
equations, which are obtained from the considered lattice by imposing special truncation
conditions. By setting ug = oo, uy = —oo in (E3) we obtain the following integrable in the
sense of Darboux hyperbolic system

v—u

Ugy = € s

Ugy = €77 — "7, (4.1)
_ w—v

wxy = —¢ )

where u = uy, v = ug, W = ugz.
Let us find a complete set of characteristic y—integrals of the system (4.1). To this end we
use the generating function of integrals defined by the operator [32]

B = (Dy — wy) (D — v2) (D — ug) -
The coefficients of polynomial
B=D-1D?-1I,D, — I
form a complete set of indepedent y-integrals of the system (4.1). Obviously, they have the

form
Il :um+vx+wxa
I2 = 2u:p:v T+ Vpy — UpVp — Ug Wy — VpWy,

[3 = Uggy — UgUgy — UglUgy — Walgy + Uy Vg Wy -
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Note that the completeness of set of integrals is easily verified by calculating the
determinant (2.2)

on o on

Ouy Ovg Owg 1 1 1

als ol ol | _

T s B | = 2 1 0l=1#0.
a5 a5 ol 1 00

Ouzzz Ovzza OWzza
Our next goal is to find a system of differential-difference equations of the form

ugc-&-l — fl (ugm uj-i-l7 uj7 Uj) ,
Vit = fy (vI It wd wd It (4.2)
Wit = fy (wi, Wit wi | pitl) |
for which functions Iy, Iy, I3 are j-integrals, i.e. they satisfy the conditions
(D;j—1)1; =0 for i=1,2,3. (4.3)

In what follows we assume that the variables u, v and w depend on the continuous variable z
and discrete variable j, therefore we set u = u’(x), v = v’/ (z) and w = w’(z). Then we rewrite
Equation (4.3) in an enlarged form and obtain three equations
J+1 J+1 JHL 00 I i —
wT ol wl ul, — vl —wl =0,
RS R XS N RS G S R N U S B S G XS |
9y d 4 Jyd Japd Jond —
2u), — vl +ulvl + wlwl +vlwl =0, (4.4)
RS NS G NS R NS Gy N Y SIS NI I NS G SE Gy XS |
_ Jayd JgJ Jod 0 dadand —

to find the unknown system (4.2). In Equations (4.4) we replace the derivatives of variables v/,
v/ and w/t! with respect to x due to the system (4.2). For example, after the replacement,

the first equation of system (4.4) becomes
fl (ugm uj+17 uj7 'U]) + f2 (Uglw Uj+1a Uj) wjv uj+1)
+ f3 (wi,wjﬂ,wj,vjﬂ) —ul — ) —wl =0,

(4.5)

We shall not write the remaining two equations of the system (4.4) explicitly since they are
quite cumbersome.

Let us concentrate on the study of Equation (4.5). Differentiating Equation (4.5) with respect
to variables v/, vJ and w?, we respectively obtain three equations

wfl (ugjnvu]+17u]7vj) - 1= 07

x

Wf? (Ug:7v]+17vj7wj7uj+1) —1= 07
x

9 o o
Wf?) (wivw]+17wj7vj+1) 1= 07

from which we have
fi (W, w?t ol ) =l + i (W7 W07
fo (03,07 0wl ) = o 4 fo (09 07wl ) |
f3 (wi,wjﬂ,wj,vjﬂ) =wl + f3 (wj+1,wj,vj+1) ,

where f11, fo1, f31 are new sought functions.
Due to the found values of functions fi, fa, f3, Equation (4.5) becomes

f11 (U‘j+1, U‘j, UJ) + f21 (Uj+17 Uja wj7 uj+1) + f31 (wj+17 wj7 vj+1) = 0. (46)
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Note that in the above equation the variables v/ and w’*! are involved only in functions
fii (W w? 7)) and f3y (w T w? w7 1)) respectively. This fact implies

fll (uj+17uj’vj) - fll (uj+17vj) 9
fa1 (ij; wj; UjH) = fa (wj; UjH) .

Further analysis of equation (4.6) makes it clear that the function fo; (v/*1 07w/ w/*1) can be
eliminated

J21 (UjH,Uj,wj,UjH) =—fn (Ujﬂ,vj) — fa (wjﬂfjﬂ) .
We proceed to studying the second equation in (4.4), which, in view of the above calculations,
casts into the form

<8U€+1 f11 (uj+17 Uj) + fll (uj+17 Uj)) (U:]ﬂ + fll (uj+17 UJ))
0

! (%f u () = gt (00 = S () — fa (wﬂ,wl)) vl

- (85} f31 (wj,UjH) — f3 (wj7Uj+1)) w?,}

+ (81}?“ fs1 (wj,vj+1) + f31 (wj,ijrl)) <f11 (“ijUj) + fa (wj’vjﬂ)) =0

Collecting the coefficients at the independent variables in the latter equation, we obtain the
following four equations

% Fin (@, 09) + fu (@ 00) = 0, (4.7)
%f{ﬂ (w071 = fyr (wf,07*1) =0, (4.8)
o5 (709) = S (0, = fu (91 00) = fr (w07 <0, (49
(e o (2,077 s 0907 ) G 0) o (09,07°)) =0
By Equations (4.7) and (4.8) we find
fir (W) = fio (V) e e (w07 ) = fa (07T €

where fi9 (v7) and f3p (v/!) are some functions to be determined. We rewrite Equation (4.9)
as

(e 09 =1 () = = (G (7)1 (77 ) e =,

and it can be easily integrated
fi2 (V) = Cre”, fao (V1) = Coe™"",

where (', Cy are arbitrary constants.
Thus, we finally obtain the sought system of equations

g+l _ 5 vl —yd 1
uw ™ =ul + Che :

vt = i — Oye?’ v — Che' VT (4.10)
witt = wl + Cope’ v
This system is completely determined due to the first two equations in (4.4). The third equation
is satisfied immediately.



NONLINEAR INTEGRABLE LATTICES 113

We assume that the system (4.10) is obtained from a three—dimensional lattice

J+1 J g+ 5 . J+1 o .
ul's = f(unx,un Ul ), 00 < n,j < 00,

by imposing truncation conditions and we then conclude that the lattice reads

A » i+l j 1
G+l _ g U=y (OeUng1—n
up, = u,, + Cer Ce'n+

where C] = —Cy =: C'. We can put C' = 1, since C' can be removed by the dilatation z = C'z.
Thus, we have obtained the discretization of the lattice (E3)

; ; J i+t j j+1
witl =l | 4 et — gt

This lattice is known to be integrable, see [7].

5. DISCRETIZATION OF EQUATION (E1)

We consider the lattice
Up 2y = €u7z+1*2un+un—1. (51)

The finitefield reduction of the lattice (5.1) is

_ uv—2u
uxy € ’
— —2v+
/Uﬂfy - ew v u7 (5.2)
v—2w
wxy e s

where u 1= uy, v := ug, w = ug. It is obtained by imposing the truncation conditions ug = 0,
Uy = 0.

The system (5.2) was previously studied in [30], and it was shown that the system admits
complete sets of integrals in both characteristic directions. Let us construct in explicit form a
complete set of the y—integrals of the system (5.2). To this purpose, we use the linear system

Pn,x = (un—l—l,w - un,z) ©n + Pn+1,
— n -2 n n—
Pny = —glin 1T 2untu 19071717

associated with the lattice (5.1). Terminating the linear system in accordance with the boundary
conditions uy = 0, uy = 0 of the chain (5.1), we obtain

L0,z = UzP0 + ©1, Yo,y = 07
P10 = (Ve — Us) P1 + P2, P1y = —e" oy, (5.3)
P20 = (We — Vz) P2 + 3, oy = —€ T2y,
P30 = —WeP3, Pz = —€ 2y,
where u := uj, v 1= up, w = ug. System of equations (5.3) is compatible if and only if its

coeflicients satisfy the system (5.2), i.e. (5.3) is a Lax pair for (5.2).
From (5.3) we obtain the operator

B = (D, +w;) (Dy — wy +v;) (Dy — vy + tg) (Dy — uy)
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that can be used as a generating function of the y—integrals. We expand the operator B in the
polynomial form and get three y—integrals

2 2 2
[1 =Ugy + Vpg + Wey + U, + (% + W, — UgVyp — UpWy,

]2 :2ua:a:m + Vgzx + 4uxu:ca: — UgUgy — QUJ:UMC + QUxUJ::E — Vg Wgy
2

2 2 2
T+ ULV — UV, + UV Wy — VW,
Iy = +2 — +2 — VUge +
2 2 2 2
— Wyllgy + Uy Upy — UyWay — 2UgUpUsg + UpUpWey + 2Uy,

2 2 2 2 2
— UpgVpz — UpgWeg + U UpWy — UL W, — UgUp Wy + UgUg W,

Let us check whether the integrals ;I35 form a complete set of independent integrals.We
calculate the determinant (2.2)

ol ol ol
Ols ols Ols _
oI oI oI 1 00

OUgraa Ogzaa Wz

We look for a system of equations of the form
ug:+1 = fl (ugm uj+17 uj> Uj) 9
Ug;Jrl = f2 (Ui7 UjJrlv Uj) wj7 uj+1) )
wiJrl — f3 (wi’ ijrl7 w]” UjJrl)
for which the functions I, I, I3 are j—integrals, i.e. relations of the form
(D; —1)1; =0, 1=1,2,3, (5.4)
hold. We present one of these equations explicitly
(D; = 1) I =ul i + ol + wl 4+ ()2 + (07 + (with)? — ul Mol ™ — o Tl
— (ul, + v, +wl, + (W) + () + (w))® — wlvl — vjw))
+ (f3)wiwd 4+ (f3)wer fo + (fo)w fo + (f2)wrr f1 + (f1)wirr fi
+ (f3)wi 3+ (f1)wtd + (f1)wvl + (f2)wvl + (fo)wiwl + wlv]
— fifa = fafs + L + f5 + f3 + vlwd — (w))? = (v))? — (w))? = 0.
Since the variables u/, v7, and w’, are independent, it follows from (5.5) that
or, what is the same,
fi (uf;,ujﬂ,uj,vj) =ul + fin (ujH,uj,vj) ,
fo (U, 070wl ) =0l 4 for (V0w 7Y
fa (wl, W™ w o) = wd + fyy (W w0t

Afterwards we analyze Equations (5.4) in a way similar to the previous case. As a result we
find that the desired functions fi, fo, f3 read

fi (u;,u] ,u],v]) =ul + Che ,
j j+1 j j +1\ _ .J — I Tl I fapd i T
fa (v;,v] TN T ) = 4+ Che ,

j j+1 i+ j —wI Tl —qpd i+l
fg(w;,wj ,w!v! )—w~;+036 )

(5.5)
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Finally, we get a three—dimensional lattice
Wt = u] .+ Che' CARE _QL'];L+7L%+1, (5.6)

n,T
where C,, # 0 is an arbitrary function of n. Apparently, this lattice is integrable in a sense, it
is associated with the linear system

{szwc = _eufm 2“n+“n 1§0n 1

P = s et )
In this article we are interested only on autonomous lattices in the class (1.2), therefore we
set C,, = C' = const in (5.6); the nonautonomous case requires further investigation. We put
C =1, since C' can be removed by the change x = C'Z, and we get

Tl Jj+1

J+1 _] 1~ Un 7u¥1+uj 1
unw — u + e WU — n+ ,

that was found earlier in [1]. It is obvious that the above lattice is related with the lattice

. . j j+1 i, i+l
J+1r _ g wj, lfwﬁl _ pWn—wy g
Wy, —wnw—l—e n+ e n—

TR S R E |
by means of the substitution u/, Uy = W,

6. DISCRETIZATION OF THE LATTICES IN 3D VvIiA LAX PAIRS

Discretization of Equation (E3) via integrals formally leads to a lattice of the trivial form

wit! = wj . However, in this case one of our requirements is violated (see Condition (A)). The

employed Complete set of integrals of minimal orders defined by (E3) is not a set of integrals
of minimal orders for the obtained lattice. This shows that difficulties arise when discretizing
the lattice (E3) using characteristic integrals. Apparently, they are related to the presence
of a nonlocal variable in its Lax pair, see (3.11). An alternative approach to the problem of
discretizing integrable equations was proposed many years ago in [22]. This approach can be
called discretization by Lax pair. We follow the ideas of [22] to discretize the lattice (E3)

Wy gy = €771 — 2" 4 €1, (6.1)
Let us recall that the Lax pair for this equation is
Yoy = =€ Y1, Une = GnaPn + Pni, (6.2)
where the additional (nonlocal) variable g, is determined by the condition
Wn = Gn+1 — qn-
We look for a lattice of the form
ol = Py i vl 00 v))

and at the same time determine a Lax pair for it by spec1fy1ng its structure

y —e" n 1¢n 1 wg—i—l =€ byl +A]L n+1- (63)

Here the sought function v = v/ (y) depends on two discrete variables n, j and one continuous
variable y. The unknown functional parameters 0/, and A7 are supposed to be found from the
compatibility condition of the system (6.3)

. .
Djzﬁ%,y - Dyl/)ij_ )

where D; and D, denote the operator, which shifts the variable j, and the operator of the total

derivative with respect to the variable y. The compatibility condition implies the equation

_Dj<€wz"11/)271> Dy(e "1/)J+A n+1)
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By this equation we easily obtain three relations

0 . .

8_14?"” =0 = A = const,
Y

by, + U’Zkl = bngl + w%ﬂy

0 T

_b% — ewﬁ;—b‘zl o ewn_1 bZl

dy
The first relation yields that the function A’ is independent on the dynamical variables and we
can set A7 = 1 without loss of generality. The second relation is reduced to

(D — 1)[%71 =(D; - 1)1‘%71-
The latter allows us to introduce a new function X7 as a solution to the equations

b= (D; = 1)X5,  wy = (D, —1)X).
As a result, the third relation becomes the semi-discrete Toda lattice from the class (1.2)
Xyt = Xy = X R, (6.4)

derived in Section 3, see also [9]. We obtain the well-known Lax pair.for Equation (6.4) by
substituting the above representations for the parameters A7 &/ and w’ into (6.3), see [9],

i X=Xy
Y N €j+1 J nA_l, i (6'5)
it = X~ Xyl 4 Uit

Under substitution v/ = X7 — X7*1 Equation (6.4) becomes
Uf;g/l - Uiy — eVhtl g eUni1 _ gt eV, (6.6)
It is easy to verify that the obtained equation is a discretization of Equation (6.1). Equation
.6) was first derived in [5], an en it was studied in a series of papers, see, for example,
6.6 first derived i d then it tudied i ies of fi 1
. However, to the best of our knowledge, the Lax pair for it has not been constructed yet.
H to the best of knowledge, the L ir for it h t b tructed yet
Our goal in this section is to present the Lax pair for (6.6). In the system of linear equations
(6.5) we make a discrete substitution by assuming

95;1 = W;LH - ZH—l'
Then it follows from the second equation of the system that the relation
1/}51 = exrjzﬂ_Xiﬁ@Zl

holds, which allows us to exclude the function ¢ from the system (6.5). As a result, (6.5)
becomes _ , _ _
{% = gl — S gl
@it = XX @+ Utz Un2 @iﬂ-
We simplify the system using a point change of the variables
9031+2 = e—X,{jrﬁ 957]1

As a result, we obtain the desired Lax pair for Equation (6.6)
. j j i1 . .
Phy = (e — 61/?"? - erl-i—_l,y)(pgz — 1,
pitt = @l + e%SD%H-
As it has been expected, it contains the nonlocality Xﬂ;ﬂ,y, which, however, occurs only in one

of the Lax equations, as in the original Lax pair (6.2) for the chain (6.1). The nonlocal variable
is defined by the equation v/ = X7 — X711,
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CONCLUSIONS

The problem on finding an exhaustive list of integrable chains of the form (1.2) is
extremely difficult and remains open. Therefore, it is relevant to expand the list of integrable
representatives of this class and to study their specific features in detail. In this paper, we
discuss two methods for obtaining integrable examples of (1.2) by discretizing the equations
of the Toda lattice type (1.1). The first discretization method is based on the Lax pair, and
the second one is based on Darboux integrable reductions and discretization with respect to
characteristic integrals. Using discretization of Equations (E1)—(E3), we obtain three chains of
the form (1.2)

; ; it it
W = a4 e — e,
. . i+1 G+l G g
u‘ZLtEI — ugl . + euifliu‘%/ 7u21+ui+17
, 4 J j+1 j+1 j
Wt =l A etni fetnet — et — elin, (6.7)
The corresponding Lax pairs are
J _ A1 + eu%_ui+1 J
n+1 — n n?
Joo— _puh —uh i1 )
(pn,x - $n
. J J J 1
j . ou —2un+ul ]
g = —CT T O, (6.9)
j+1 . J wh g Tl gt i .
30% =@l + eUnTUnit1~Un n+1gp¥”

. g j i1 . .
7 _ Up _ pWy 4 7+ V|
gpn,a: - (6 " 6_" ! Xn—l,a:)cpn “n—1>
i+1 _ ud, J i Y Jj+1
SO% —QD%—}—@ "1y U% _X%_Xn—l'

The Lax pairs (6.8) and (6.9) were found earlier in [9], while the Lax pair for (6.7) is new.
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