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ATTRACTORS OF MODIFIED KELVIN — VOIGT MODEL
WITH MEMORY ALONG FLUID TRAJECTORIES

M.V. TURBIN, A.S. USTIUZHANINOVA

Abstract. In the work we prove the existence of trajectory and global attractors for the
modified Kelvin — Voigt model with memory along fluid trajectories. The proof is based
on approximate—topological approach to study problems in the hydrodynamics.

Namely, first we introduce the needed functional spaces and give an operator interpre-
tation of the considered problem. Then we pose an approximation problem and prove its
solvability on a finite segment and on the semi—axis. Under certain conditions for the coef-
ficients of the problem we establish exponential estimates of solutions, and these estimates
are independent on the approximation parameter. After that, on the base of limit passage,
we show the existence of a weak solution to the original problem on the semi—axis. Then
we determine the trajectory space for the considered problem, show that the definition is
well-defined and prove the existence theorem for minimal trajectory and global attractors.

Keywords: trajectory attractor, global attractor, modified Kelvin — Voigt model, regular
Lagrange flow, apriori estimate, existence theorem.

Mathematics Subject Classification: 35B41, 35Q35, 7T6A10

1. INTRODUCTION

Let @ C R™, n = 2,3, be a convex bounded domain with a smooth boundary. The system
of equations corresponding to the modified Kelvin — Voigt model with memory along fluid
trajectories reads

ov v 0Av "L 0Av
el ) CUAY — e o
8t+izlvﬁxi rerT Ty %;U ox;
Lo (1.1)
=30 [ e Al st ds+ Vo= J. (60) € Qr = 0.7 x
=1
dive =0, (t,x) € Qr; (1.2)
z(rit,x) =+ /v(s, z(s;t,x))ds, 0<t,7<T, x€q. (1.3)

t

Here v is the velocity vector of the fluid particles, p is the fluid pressure, f is the vector of
density of external forces, v > 0, »r > 0 are the viscosity of fluid and the delay, respectively, 5;,
a;, i = 1, L, are some constants. In view of the physical meaning we assume that the constant
i, i = 1, L, are different, real and positive. The function z(7;¢,z) is the trajectory of fluid
particles corresponding to the velocity field v.
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For the system (1.1)—(1.3) we consider the initial boundary value problem with the initial
and boundary conditions

v(0,2) =a(z), =€, v|prxen =0. (1.4)

The Kelvin — Voigt model describes the motion of various polymer solutions and melts [1]
and it was justified experimentally [2], [3]. This is one of the models of linear viscoelastic
fluids with finitely many discretely distributed relaxation and retardation times. The general
theory of such fluids, which includes the Kelvin — Voigt model, was constructed on the base
of the Boltzmann superposition principle, according to which all effects on the medium are
independent and additive, and the reactions of the medium to external effects are linear. For
more details on the system of equations corresponding to the Kelvin — Voigt model, see |5],
[6]. The modified Kelvin — Voigt model is obtained from the Kelvin — Voigt model in a way
similar to the work [I]. Namely, by virtue of the principle of smallness of relative strain rates,
one neglects the terms containing products of derivatives with respect to the spatial variables
of the fluid velocity.

Since (1.1) involves the integral, which is taken along the trajectories of fluid motion, this
model is more physical in comparison with the standard models, which are obtained from the
reological relation with the partial derivatives in time. Such models describe the behavior of
the fluid more accurately. But this is precisely the main problem in proving the existence of
weak solutions to the corresponding initial boundary value problem. The fact is that to find
the trajectories of the fluid particles, it is necessary to solve the Cauchy problem (1.3). But the
smoothness of the weak solution is usually insufficient for the classical solvability of the Cauchy
problem. The way to resolve this issue is to use the theory of regular Lagrangian flows created
in the work [7]. In the work [8], this theory was successfully applied to the Oldroyd-type
model. Also, based on this theory, the existence of weak solutions was proved for the original
Kelvin — Voigt model in the work [9].

The study of the limiting behavior of solutions, namely the behavior of solutions as the time
tends to infinity, is of particular interest in studying hydrodynamic problems. In such problems,
the solutions can tend to a certain set in the phase space. Here, the phase space is understood
as a set, the elements of which are identified with the states of the system. That is, regardless of
the initial conditions of the problem, its solutions end up in this set, possibly after a sufficiently
long time. Such sets are called attractors, since the solutions are attracted to them.

Since it is not always possible to establish the uniqueness of solutions in hydrodynamic
problems, the classical approach based on the theory of semigroups (see, for example, [10],
[11]) turns out to be not applicable. The solution to this problem was the theory of trajectory
attractors created by Vishik and Chepyzhov [12], [13], and independently of them, a similar
theory for the three-dimensional Navier — Stokes system was created by Sell and You [14].

In the theory of trajectory attractors, instead of a semigroup of evolutionary operators, a
certain set of functions is considered, which depend on time and take values in the phase space.
This set of functions is called the trajectory space, and the individual functions belonging to it
are called trajectories. Each trajectory represents a certain variant of system evolution. The
trajectory space allows one to bypass the requirement of uniqueness of solution. In the case
under consideration, several trajectories can originate from a certain point in the phase space,
or, what is the same, several solutions can exist for the same initial condition.

Later, the theory of trajectory attractors was developed in the works of Zvyagin and Vorot-
nikov [15], [16] and it was applied to a number of problems of mathematical hydrodynam-
ics [17]-[22]. In particular, it was possible to omit the condition of translational invariance
of trajectory space. This condition is too restrictive and often it is not satisfied in hydrody-
namic problems. The matter is that the trajectory spaces in the theory under consideration
are usually constructed on the base of energy estimates. It is not always possible to obtain the
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necessary translational invariant estimate. But it is often possible to establish an exponential
estimate, which, thanks to the results by V.G. Zvyagin and D.A. Vorotnikov, turns out to be
quite sufficient.

In this paper, on the base of attractor theory of non—invariant trajectory spaces, we prove the
existence of minimal trajectory and global attractors for the modified Kelvin — Voigt model
with the memory along the trajectories of fluid motion. Namely, for the studied model, we
introduce the concept of a weak solution on a finite segment and on a semi—axis. After that, on
the base on the approximate—topological approach to the study of problems of mathematical
hydrodynamics, see, for example, [0], [23]-|20], we prove the existence of solutions. Then,
on the base of the established exponential estimates of solutions, we introduce the space of
trajectories, prove that its definition is correct, and prove the existence of minimal trajectory
and global attractors of the studied problem.

2. NECESSARY FACTS FROM ATTRACTOR THEORY

In the work we use the following notions and statements from the attractor theory, for more
detail, see, for instance, the monograph [15], as well as the papers |16], [19].

Let E, Ey be two Banach spaces, the space E is reflexive and the embedding £ C Ej is
continuous. By R, we denote the nonnegative semi-axis of real line R.

The space C(Ry; Ey) consists of continuous functions defined on R, and taking values in
Ejy. Since the half-line R, is non—compact, in the linear space C'(R,; Ey) we can not define
the standard norm of space of continuous functions. In the space C'(R.; Fy) we introduce the
family of semi—norms

lulln = lellcqom e €N
The sequence {u,,} from C(R,; Ey) converges to the function u as m — oo if ||u,, — ul|, — 0
for each n € IN. Thus, the space C'(R,; Ep) is countably-—normed space. The topology of local
uniform convergence in the space C(R,; Ep) is metrizable with respect to the metrics
o0

p(u,0) = [lu—vllem,m) =Y 27"

n=1

[ — ]|
L+ |lu—vl,
The obtained metric space is complete.

In the work we use the notation ||u — v|c(r, g, for the metrics in C(R4; Ep), which is
conventional in works on attractors of non—invariant trajectory space. This is related with

using the abstract notions and statements from the works [15], [16], [19], in which this notation
is used. At the same time, the functional | - [[¢(®, g, is not a norm since

Ml e,z 7 Moy ;B

as A # +1.
Let ITy; (M > 0) be the restriction operator of functions defined on R to the segment [0, M].
The next lemma is true.

Lemma 2.1. The set P C C(Ry; Ey) is relatively compact in C(Ry; Ey) if and only if for
each M > 0 the set 11 P is relatively compact in C([0, M], Ep).

We denote by L. (Ry;E) the space of essentially bounded functions defined on R, and
taking values in the space E. The space Lo (R4; F) is Banach with the norm [27]

el e i) = vrai max[|u(t)]] -

Definition 2.1. Let J be a finite or infinite interval of real avis and J be its closure. Let
Y be a Banach space. The function u : J — Y 1s called weakly continuous if t, — t, t, € J,
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implies u(t,) — u(t) weakly in Y. The set of weakly continuous functions u: J — Y we denote
by Cy(J,Y).

In the work we shall employ the following theorem, see, for instance, [28].

Theorem 2.1. Let E and Ey be two Banach space such that & C Ey and the embedding is
continuous. If the function v belongs to Lo (0,T; E) and is continuous as a function with the
values in Ey, then the function v is weakly continuous as a function with values in E, that is,

v e Cy([0,T], E).

Therefore, the function v € C(R4; Ep) N Loo(R4; E) is weakly continuous as a function with
the values in E (and this is why v(t) € E for all ¢ € R,), the function v is bounded as a
function with the values F, and the identity

HUHC(R+;E0)0L00(]R+%E) = sup [lv(t)||p
teR 4
holds.

By T'(h) (h > 0) we denote the translation operators, each of which maps a function f into
a function T'(h)f such that T'(h)f(t) = f(t + h). The identity T'(hy)T(he) = T'(hy + hs) holds.

Let HT € C(Ry; Ey) N Loo(Ry; E) be a non—empty family of functions. The set H* is called
the trajectory space, the elements in H* are called trajectories.

Definition 2.2. The set P C C(Ry; Ey) N Loo(Ry; E) is called the attracting set for the
trajectory space H' if for each set B C HT bounded in Lo (Ry; E) the condition

sup inf |T(h)u — v|lcm,.m) — 0 as h — oo
ueB VEP

holds.

Definition 2.3. The set P C C(R4; Ey) N Loo(Ry; E) is called the absorbing set for the
space of trajectories HY if for each set B C HT bounded in Lo (R ; E) there exists h > 0 such
that for all t = h the embedding T (t)B C P holds.

Each absorbing set is attracting.

Definition 2.4. The set P C C(Ry; Ey) N Loo(Ry; E) is called the trajectory semi-attractor
of trajectory space H' if

(i) The set P is compact in C(Ry; Ey) and bounded in Lo(Ry; F).

(ii) The embedding T'(t)P C P holds for all t > 0.
(iii) The set P is attracting.

Definition 2.5. The set P C C(Ry; Ey) N Loo(Ry; E) is called the trajectory attractor of
trajectory space H* if

(i) The set P is compact in C(Ry; Ey) and bounded in Loo(Ry; F).

(ii) The identity T(t)P = P holds for all t > 0.
(iii) The set P is attracting.

Definition 2.6. The minimal trajectory attractor of trajectory space H' is the minimal in
embedding trajectory attractor.

Definition 2.7. The set A C E is called the global attractor (in Ey) of trajectory space H*
if it satisfies the following conditions:

(i) The set A is compact in Ey and bounded in E.
(ii) For each bounded in Lo(Ry; E) set B C HT the attraction condition

sup inf ||u(t) —yllg, = 0 as t— 0
ueB YA

holds.
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(iii) The set A is minimal in embedding obeying Conditions (i) and (ii).

If there exists a minimal trajectory attractor and global attractor, then it is unique.
In the work we also employ the following statement [15].

Lemma 2.2. Let P be relatively compact in C(R.; Ey) and bounded in Lo, (R4 ; E) absorbing
set for the trajectory space H.. Then its closure P in the space C(Ry; Ey) is compact in
C(Ry; Ey) and bounded in Lo.(Ry; E) absorbing set for trajectory space Hy. If, in addition,
the inclusion T(t)P C P holds for all t > 0, then P is a semi-attractor.

The following theorem on existence of minimal trajectory and global attractors is true [15].

Theorem 2.2. Let there exists a trajectory semi—attractor P of trajectory space Ht. Then
there exists a minimal trajectory attractor U and global attractor A of trajectory space H, and
the relation A =U(t), t > 0, holds.

3. FUNCTIONAL SPACES

To define the notion of weak solution, we need to introduce some spaces. As usually, C§°(£2)"
is the set of functions defined on €2 with the values in R™ from the class C*™° with compact
supports contained in (). Let

Y = {U(l’) = (Ul, . ,’Un) - CSO(QYL cdive = 0}

The space V? is the completion of V by the norm L,(Q)", V1 is the completion of V by the
norm H'(Q)", V= H?*(Q)"n V%
By the Weyl decomposition of vector fields in Ly (€)™, see, for instance, [28], [29],

Ly(Q)" =V VH(Q).

Here VH'(Q) ={Vp:pe H(Q)}.

Let m : Ly(Q)" — VO be the Leray projection. In the space V we consider the operator
A = —mA. As it is known, see [30], [31], the operator A is extended to a closed operator in
the space V0, and this closed operator is self-adjoint, positive and has a completely continuous
inverse operator. The domain of A coincides with V2. By the Hilbert theorem on spectral
decomposition of completely continuous operators, the eigenfunctions {e;} of the operator A
form an orthonormal basis in V°.

Let 0 < (1 < (o < (3 < ... < < ...be the eigenvalues of the operator A, and F., be
the set of finite linear combinations formed by e;. The space V¢, a € R, is defined as the
completion of F,, by the norm

1

[e%} 2

[ollve = (Z C1‘3|vk!2> ,
k=1

where vy = (v, e;) are the Fourier coefficients of the function v over the system of eigenfunctions
{er}, (-, ) is the scalar product in V°.

For o« = 0,1,2 the spaces V' coincide with the above introduced spaces V° V1 and V2,
respectively. Tt was show in [6] that the mentioned norms in the spaces V* «a € N, are
equivalent to the norms

[vllva = [|A%20]|ye. (3.1)
Hereafter the spaces V* are equipped with the norms (3.1).

To define the weak solution to the original and approximation problem on the segment, we

introduce the spaces

Wi[0,T]) = {u:u € Loo(0,T; V), 1’ € Loo(0, T5 V') } ;
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W5[0,T) = {u:ue C0,T],V°),u € Loo(0,T5V?)},
with the corresponding norms

lullw 0,01 = el e omv2) + 114 ] Lo 0,001

HUHWZ[OvT] = HUHC([O,T],W) + HUIHLOO(O,T;W)-

To define the weak solution on the half-line R, we consider the space W°‘(R, ), which
consists of the functions v defined almost everywhere on R, and taking the values in V2 such
the restriction of v to each segment [0, 7] belongs to W3[0, T]. We also consider the space
W3¢(R. ), which consists of functions v from the class C(Ry, V?) such that the restriction of
v on each segment [0, 7] belongs to W3[0, 7.

In the work we also employ the Aubin — Dubinsky — Simon theorem [32].

Theorem 3.1. Let X C E CY be Banach spaces and the embedding X C E be completely
continuous, while the embedding E C Y be continuous. Let ' C L,(0,7;X), 1 < p < oo.
We suppose that for each f € F its generalized derivative in the space D'(0,T;Y") belongs to
L.(0,T;Y), 1 <r < oo. Let

1. the set F' be bounded in L,(0,T; X),

2. the set {f": f € F} is bounded in L.(0,T;Y).

Then for p < oo the set F is relatively compact in L,(0,T; E), while for p =00 and r > 1 the
set F' is relatively compact in C([0,T], E).

We shall also employ the following Leray — Schauder theorem.

_ Theorem 3.2. Let G be an open bounded subset of Banach space X, 0 € G, and let =(7,-) :
G — X, 7 €10,1], be a one-parametric family of mappings obeying the conditions
1. The mapping = : [0,1] x G — X is compact in its variables.
2. E(r,z) # x for all T € [0,1] and x € OG, that is, the mapping Z(7,-) has no fized points
at the boundary G.
3. £(0,-)=0.
Then the mapping =Z(1,-) has a fized point x1 € G, that is, v1 = =(1,x7).

We provide needed statement on the solvability of problem

T

z2(rit,x) =x + /v(s, 2(s;t,x))ds, 0<t,7<T, =zl (3.2)
t

We shall assume that v € Li(0,7; W} (2)"), dive = 0 and v-n = 0 on 9, where n is the
normal vector.

Definition 3.1. The function z(7;t,x) : [0,T] x [0,T] x Q — Q is a regular Lagrangian flow
associated with v if the following conditions are satisfied:

1) For almost all © and each t € [0,T] the function (1) = z(7;t,x) is absolutely continuous
and satisfies Equation (3.2).

2) ForallT,t € [0,T] and arbitrary Lebesgue measurable set B C Q with the Lebesgue measure
m(B) the identity m(z(7;t, B)) = m(B) holds.

3) For all t, ta, t3 € [0,T] and almost all x € Q the identity

Z(tg;tl,ﬂ?) = Z(tgﬂfz,Z(tg;tl,I)) (33)
holds.
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Here z(7;t, B) is the image of the set B, that is,

z(;t, B) = U z(15t, x);

zeB

for more details on regular Lagrangian flows see, for instance, |[7|. Here we consider a partial
case of a bounded domain §2 and a divergence—free function v. At the same time, in the case of
a smooth vector field v the regular Lagrangian flow coincides with the classical solution to the
Cauchy problem (3.2).

The following theorems are true |7].

Theorem 3.3. Let
v e L0, T; W)™, 1<p<+oo, divo=0, v]sq=0.

Then there exists a unique reqular Lagrangian flow z corresponding to v. Moreover,

a%_z(r;t,x) =uv(r,2(1;t,2)), t,7€Q, foralmost all z € Q,
2(1;t,Q) = Q  (up to zero measure set).
Theorem 3.4. Let

v, o™ € Ly(0,T; WF(Q)™), m=1,2,...

for some p > 1. Let
div o™ =0, ™90 =0, divo=0, v|sgg=0

and the inequalities
VOl 02,02 T 10l sy @)m) < M,
||VUmHL1(O,T;Lp(Q)” ) T 10| 2y 075220 < M,

hold. Let v™ converges to v in L1(Qr)" as m — oco. Let 2™ and z be reqular Lagrangian flows
corresponding to v'™ and v. Then the sequence 2™ converges to z in the Lebesque measure on
[0,T] x Q in the variables (1,x) uniformly in t € [0,T].

Throughout the work the constants are defined by the symbol C' with a subscript. The
constants essential for the proof are written explicitly and sometimes are denoted by the symbol
K with a subscript. The symbol ¢’ stands for a pointwise product of matrices.

4. DEFINITION OF WEAK SOLUTION
Let a € V2, fe VY.

Definition 4.1. A weak solution to the initial boundary value problem (1.1)—(1.4) on the
segment [0,T] is a function v € W1[0,T] obeying the identity

/vgodx—Z/vzv]a jd:v—l—z//Vv Vgodx+%/Vv Vodz

Bj=1¢ Q

+%Z /U,A"U] %dx— /Be ai(t= 5)/AU(S z(s;t, x))pdrds = /fgoda:

Li=1g =17 Q

(4.1)

for each test function ¢ € V1 for almost each t € (0,T) and obeying the initial condition
v(0) = a. (4.2)
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Here z is the regular Lagrangian flow generated by v, which exists due to Theorem 3.3.

Definition 4.2. A weak solution to the problem (1.1)—(1.4) on the semi-azis Ry is a func-
tion v € WP(R,) such that for each T > 0 the restriction of v to the segment [0,T)] is a weak
solution to the problem (1.1)—(1.4) on the segment [0,T].

5. APPROXIMATION PROBLEM
By the definition of the norms in the spaces V°, V! and V? the inequalities
[ullfo < Killullie,  lullfr < EKallullfe,  uwe V? (5.1)

hold. Here K; = 1/(;, where (; is the lowest eigenvalue of the operator A.
Let K5 be a constant determined by the following identity
v

Ky = : 5.2
T K24 2xK, + (5:2)

Let € > 0 and ~ be a constant, for which the inequality
0 <~ < min(Ky, ag,aqs,...qr) (5.3)

holds. The exact choice of v was described in the proof of Theorem 6.1. We consider the
following approximation problem

n 3 n
ov ov VAU_KaAv . _0A% %Z zaAv

o o R P
o (5.4)
- Z/ﬂieai(ts)Av(s, z(s;t,x))ds+Vp=f;, dive=0, (tz)€Qr;
i=1 9
z(tit,x) =2 + /v(s, z(s;t,x))ds, 0<t,7<T, x€, (5.5)
¢
v(0,2) =b(x), €8 v|prxen = Av|prxon = AQU’[O7T]><6Q =0. (5.6)

Let be V5, f € V.

Definition 5.1. A function v € W3[0, T is a called the solution to the approzimation prob-
lem (5.4)—(5.6) if it satisfies the identity

/v/godx— Z/Uivj%dx—l—u/VU:Vgpdw+%/Vv/:chdx
T
Li=lg Q )

Q
1 ge—Vt/V(A2U,) : Vdr + %Z /Uz‘AUj 8(2 dz (5.7)
0 V=l
I t
_ Z/ﬁieaz’(tS)/Av(s,Z(S;t,x))wdﬂde = /fSOd‘U
=17 0 @

for each function ¢ € V' for almost each t € (0,T) and it obeys the initial condition
v(0) = b. (5.8)

Here z is a solution to the problem (5.5). By the continuous embedding V° c C*(92)", which
holds for n = 2,3, the problem (5.5) has a unique classical solution.
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Definition 5.2. A solution to the approzimation problem (5.4)—(5.6) on the semi-azis R
is a function v € Wi°(Ry) such that for each T > 0 the restriction v to the segment [0,T]
solves the approzimation problem (5.4)—(5.6) on this segment.

In order to pass to the operator formulation of the problem, we introduce the operators by
the identities

A VPV (Au,p) = /Vu :Veodz, Yu,peVh

J: V=Vl (Ju, ) = /ugpdx, Yu,p € V1

Q
AV s VL (AP, ) = /V(AQU) :Vodr, YueV?® ¢eVh
Q
By : Ly(Q)" =V Z /ulu] . Py, Yue Ly(Q)", peVh
INES IQ
By:V? 5 VL Z/UZAUJ %dx YueV? eVl
INES IQ

C: Ly(0,T;V?) — Ly(0,T; V™Y, Yu € Ly(0,T;V?), peVh

(C(u)(t),p) = Z/ﬂieai(tS)/Au(s,z(s;t,x))godxds.

In terms of the introduced operators we can give an equivalent definition of the solution to
approximation problem.

Definition 5.3. A solution to the problem (5.4)—~(5.6) on the segment [0,T] is the function
v € W50, T obeying the operator equation
(J +ee A 4+ 2 AN (t) + vAv(t) — Bi(v)(t) + xBy(v)(t) — C(v)(t) = f (5.9)
for almost each in t € [0,T] and the initial condition (5.8).

The following lemma on the properties of operators holds [24].

Lemma 5.1. 1. For a function g € Ly(0,T; V') we have Ag € Ly(0,T; V1), the operator
A Ly(0,T; VYY) — Ly(0,T; V1Y) is continuous and for almost each t € (0,T) the estimate
[Ag@)llv-1 < lg(®)[lv+ (5.10)

holds.

2. The operator (J + »xA) : VI — V=1 is continuous and invertible. For each function
g € Ly(0,T; V') we have (J+A)g € Ly(0,T; V1), the operator (J+3A) : Ly(0,T; V) —
Ly(0,T; V=YY is continuous and for almost each t € (0,T) the estimate

#llg(@)llve <N+ 2A)g()]lv— (5.11)
holds.
3. For g € Ly(0,T;V°) we have (J + ee” A% + 32A)g € Lo(0,T; V1Y), the operator (J +
ge A3 + 3 A) : Ly(0,T;VP) — Ly(0,T; V1) is continuous, invertible and for almost all
€ (0,T) the estimate
ee Mlg(t)llvs < (J +ee A%+ sA)g(t) v (5.12)

holds.
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4. For a function g € Ly(0,T;V') we have Bi(g) € Lo(0,T;V™1), the mapping By :
Ly(0,T; VYY) — Ly(0,T; V1) is continuous and for almost all t € (0,T) the estimate

1B1(9)(®)[[v-1 < Cullg(®)[I7n (5.13)

holds. Here the constant C depends on the domain €2 and is independent of the function g.
5. For a function g € Ly(0,T;V?) we have By(g) € Ly(0,T;V™1), the mapping By :
Ly (0, T; V%) — Ly(0,T; V1) is continuous and for almost all t € (0,T) the estimate

1B2(9) () ]lv-1 < Collg(®)7 (5.14)
holds. Here the constant Cy depends on the domain Q) and is independent of the function g.

Lemma 5.2. The mapping
C : Ly(0,T;V?) — Ly(0, T; V1
is continuous and for almost all t € (0,T) the inequality

t 2

IC(9)(®)]lv-1 < Cs / e | g(5)| |2t (5.15)

0

holds. Here the constant Cy depends on K1, v, o, B;, i =1, L.

Proof. By the definition of the operator C for each function g € Ly(0,T;V?) for almost all
t € (0,T) for each ¢ € V! by the Holder inequality we have

(Clo)(B), )] = / 3 et / Ag(s, 2(s:t.2))ordids

Q

L

sz’ i(t=9) |Ag(s, z(s;t,))|dx lo|*dx | ds.
Jo (] Q/

In first integral in the right hand side we make the change of variables y = z(s; ¢, x) (the inverse
change x = z(t; s,y)). Since divg = 0, we have det % = 1. This is why

/!Ag(sw(s;t,x)ﬂ?dﬂf = / [Ag(s,y)Pdy = |Ag(s)[1Z, -
Q Q
Thus, by the Poincaré inequality (5.1) we get

L t

(C(9) (1), )] < VELY_ I8 /e““(t_s)||g(8)||v2d8||90||v1'

i=1 9
This yields

@Ol <V Zw / “lg(s)lvads. (5.10)

For each i = 1, L by the Holder inequality and (5.3) we find

t t

[ eI g(lvads = [ e er DI () fyads

0 0
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N

1
t t 2

< /B_Z(O‘i_,g)(t_s)ds /e‘V(t_s)Hg(s)H%/st

0 0
1 t 2
1—¢ 2(&17%)15 2
- (W) / e g(s)[lVds
0
1
¢ 3
1 —v(t—s
<= [Nl
0
Together with (5.16) this implies the desired inequality (5.15). The proof is complete. O

6. ESTIMATES

Theorem 6.1. Let v be the solution to the approzimation equation (5.9) and the coefficients
of the problem (5.4)~(5.6) satisfy the conditions

sxKoa; > 2L 3], i=1,L. (6.1)

Then for all t € [0,T] the estimate
¢

Io(0)% + Ko / 1) (8)[2.ads
0

<Cs + e (Cull(0)[72 + el|v(0) 35 + ex¢[|v(0)][7)
holds. Here A1, Ny are some constants such that

A >0, Ao >0, 0< M+ X<,
the constant Ky is determined by the identity (5.2),

(6.2)

IF
")/Kg(l — )\1 — )\2)

Proof. Let v € W,5[0,T] be a solution of Equation (5.9). Then for all s € [0,7] we have
v(s) € V5. By the continuity of the embedding V> C V!, the continuity of the operator
A : V3 — V3, which holds due to the construction of scale of spaces V¢, and the continuity
of embedding V3 C V! we obtain that (v + »xAv)(s) € V! for all s € [0,T]. We apply (5.9) to
(v + 2Av)(s), s € [0, T]. We get

((J +ee A% + 3 A" + vAv — B1(v) + 3Bs(v) — C(v),v + 3Av) = (f, v + 3 Av).
By the definition of the operators B; and By and by the Green formula we have

(=Bi(v) + #Ba(v),v + sAv) = Z /% %Av 0w — =), “‘Z /UZA% %Av) o — 7lhv); -

T

04 K —|—2%K1—|—% 05:

INES 1Q INES 1Q
—_Z/vzfu—%Av o %Av)d
ox;
INES 1Q
1 "L 0 ((v — 32Av);(v — 2Av);)
=—3 Zvl o, dx



ATTRACTORS OF MODIFIED KELVIN — VOIGT MODEL 85
1 -
=3 |v — 2Av|“divedx = 0.

By the definition of the operator (J + ee~7*A% + 5 A) and the Green formula we obtain

. 1d d 2 d
(e A+ 52A) 00+ 3eAv) =5 (@) + e [0() 31 + S 2 lo(s)I
—VSfi 2 —WS%i 2
e o(9)F + e () [

For the next term we have

(VAv, v + 2 Av) = V/VU : Vodzr + V%/AvAvdx =v(|lv(s)[|31ds + |lv(s)]}=).
Q Q
The latter term in the left hand side can be estimated from above by the Hélder inequality

(C(v), 0 + seAv)| = / > e / AV(E, 2(6: 5, 2)) (0 + 32 Av)(s)dude

0

w
~

[N}

[N}

<[Sige / Dol s )P dn | | [l vl dn | de

We make the change © = z(s; &, y) in the first factor. Then similarly to the proof of Lemma 5.2
we find

[(C(v), v+ >Av)] /ZI@!G““ /IAU(&y))\Qdy [(v + 2Av)(s)]|vodE

- Z 8 / s (&) 2| (v + 3eAv)(5) | vo.

Thus, we get the inequality
d d d d
() Ve + 2 [lo(s)l[v1 + 2° llo(s) [ + €% e—[[v(s)1Vs

e d
+e? 5%d—||v(s)|]%/4 +2v (Jlo(s)[[31 + sl[v(s)|l32)

<22|ﬁz!/ (€ llv=déll(v + sAv)(s)llvo + 2(f, (v + scAv)(5)).

On the space V? we consider the auxiliary norm
[l = llullo + 25l[ullir + 5 |ully-,
which is equivalent to the norm || - ||y2; indeed, the estimates (5.1) imply the estimates
s ullve < Jlull® < (K7 + 250K + 5 ||ul[ e (6.3)
Then by (5.3) we have

v(llu()l[vs + sllus) V=) = vaellu(s)lly

> e MO = Kl 2 )
1




86 M.V. TURBIN, A.S. USTIUZHANINOVA

This yields

d . d . d
T+ e e o(s)l[be + e s o (s) Ve + 2K o (s)

9 L
<

= 15 /6‘0”(8_5)IIU(é)IIdfllv(S)II +2(f, (v + 2Av)(s)).

-
1=

We estimate the latter term in the right hand side

2 Koy(l—X — A
(f, (0 + 52A0)(8)) < |If [lvol (v + 5¢A0)(8)|[vo < 2K2(1Hi“f_ a— o 21 ) (o).
where A1, Ay are some constants, A\;y > 0, Ao >0, 0 < A + \g < 1.

Thus,
d 2 —7s d 2 s d 2 2 2
—llv()I" + e e—[v(s)[lvs + e 5%d_HU<3)Hv4 + Kol|u(s)]]” + KaAa[[o(s)]

ds ds
2
+ Kadaljo(s u?——Zw / B L

Estimating the left hand side by means of (6.4) and denoting

Gs) = Koallo(s HZ——ZI@\ / (g o)

A1

= :
Ky(1—= A1 — o)

d . d . d
TSI+ v ” + e e u(s)[s + e e fo(s) [Ta + Kadllo(s)[” + G(s) < F

In the first and second term in the left hand side of the inequality we make the change v(s) =
e~ 2 (s). We obtain

Ll Fa(s) P +7e " (5) P + e % fuls) s

d
+e e o(9)[[b + KoM [lv(s)” + Gls) < F

Therefore,

-5 || —s d = -5 || 5 —s d
—ye IR()* + e (s + e ()P + e e lo(s)vs

d
+e e [o(s) [+ Ko flu(s)|” + Gls) < F
We multiply the latter inequality by e7*
d d d
TGP+ ello()|va +esello(s)[pa + " Kaha|o(s)]* +€°G(s) < €°F.

We integrate this inequality in s from O to t, t € [0,7T], and estimate the right hand side from
above
t t

D@ + ellv@)[Vs +€%Ilv(t)\|2v4+K2A1/e”Tllv(T)HQdTJr/WG(T)dT

0 0
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t
< /e”FdT +[19(0)1* + ellv(0) [Vs + 5[0 (0) [}
0

F _
:;(ew = 1)+ [[0(0)]* +el[o(0)[[Vs + e3]|v(0) [T

F _
Se [5(0)[1 + ello(0)[[3s + esl|v(0)][Fa-

Multiplying by e, we find
t
e o) + e ello)|[Zs + e Mesl[u(t)[[Fa + Ko / e lo(r) | Pdr

0 (6.5)

t

N oo
+/e MIG(r)dr < ST Te " (19O + ellv(O)1s + sllv(0)][4) -

0

We are going to establish the non—negativity of the latter term in the left hand side. Recalling
the above introduced notations, we have

t t I T

2

[ = [0 [ Kalo@l? = 232181 [ o) dslo()] | dr
n “

0 0 i=1 0

We introduce the auxiliary functions
b = o)l ar) = [T Iule)lds = [ Ihs)ds, i =TT
0 0

The function h is continuous on the segment [0, 7], while the functions g;, i = 1, L, are contin-
uously differentiable on this segment. The straightforward calculations give

T

gi(t) = h(1) — oy / e_o”(T_S)h(s)ds = h(1) — aigi(1), =

0

I, L.

Therefore,
gi(1) + aigi(t) = h(7); ¢:(0)=0, i=1,L.
Then we have

G(r) = Kydoh? ——h ngz

E(KW (1) + i) - 22 (g r) + ) ) )

i=1

L . . 2 18,
> (F2 0+ (222 - 22 gy + (22 - 22 ).

=1

Integrating by parts for each i = 1, L we get

t t

2/67(t7)g§(T)9i(T)dT = e (gl (7)) |- 671t/ewg?(T)dT

0 0
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t

= 2(0) ~ 7 [ g ryar
0
This implies
t

/e—’Y(t—T)G(T)dT :Z (KZAQ /e_y(t—q—)(g;(T))QdT X (CY KoM _ )
0 i=1 0
N (Oéi (%I%)Q B 2‘£z|> . <041K2)\2 |G| >) d7'>
0

Let us show that for each ¢« = 1, L under the conditions and for an appropriate choice of the
positive number p; the expression

t
Ko Ko i
Kde [ vty + (4522 Y g
L L
0

»

lK)\ 21 lK)\ 4 t_tT
(e 2 (s )Y
0

is non—negative. For the first term in the right hand side we have
t

2 [t ngin)par > 0

0

By (6.1) we have

Koc: 2|8 .
> .
and this is why we can choose Ay, probably rather close to 1 such that
Kada 2P . —
aiftzhe 215 >0 forall i=1,L. (6.6)
L >
Hence,
;Koo Bl
Hih2A2 2(7) > 0.
(272 - 2D gy
Since Ko 2 Ko
QoA |6i|>0, 041'22_|5i|>0,
L > L >

we can choose p; such that 0 < p; <~ and

o; K3 )\s 2’BZ| a; Koo |6Z’ 2
. _ —_ s | —== 7 ‘ > 0.
(Oéz ( L 2 IU“L L P gZ (T) = O

t

/6_7(t_T)G(T)dT > 0.

0
Thus, using the non—negativity of the terms, by the estimate (6.5) we get

This implies

t

oty C(tes Fooo
e ”tHv(t)||2+K2A1/e 1o (s)|Pds < - te " (IRO)1* + ellw(0) Vs + sl[v(0)][4) -
0
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Making the inverse change o(t) = ¢7*/?v(t) and recalling the definition of the auxiliary norm,
we get the needed estimate (6.2). O

Theorem 6.2. Let v be the solution of Equation (5.9) on the segment [0, T], T > 0, and the
coefficients s, v, «;, Bi, i = 1, L, satisfy the conditions (6.1). Then the estimates

ee V' (t)llvs < Cs + Coe™" (Cullv(0) 72 + el|v(0)[[3s + e3[|v(0)][F4) 5 (6.7)

[V () [[vs < Cro + Crie™™ (Cullv(0)I[52 + €l[v(0) |5 + e3¢ v(0)[34) +

e Mo®)llvs < e o(0)llvs + % (Cs + Co (Callo ()32 + £llw(O)][Vs + exl[v(0)[[74))  (6.9)

hold. The constants Cs, Cy, Cig and Cyy depend on f, 7, s, v, ay, f;, i = 1,L, and are
independent of €.

Proof. Since v is the solution of Equation (5.9), for almost all ¢ € (0,7") we have the equality
I(J +ee A% + 3 A)' () [v-1 = || — vAu(t) + Bi(v)(t) — B2 (v)(t) + C(0)(t) + fllv-.
Then by the estimates (5.10), (5.13), (5.14), (5.15), the continuity of embedding V? C V1,
V% C V!, the elementary inequality a < 1+ a? and the above obtained estimate (6.2) we have

I(J + ee™ A% + s A ||y1 <vllv(t)llvr + Collo@)[[F + 2Callo(®)]-
1
t 2

e / eI g()|2adt |+ [ flly-s
0
¢ 3
<Collo(®)[[3= + Cs / e g()[Zadt |+ Coll e
0
<Cs+ Coe™ (Callv(0)[[22 + (O s + e52][w(0)[[2)

By the inequality (5.12) this gives the desired estimate (6.7).
The estimate (6.8) can be obtained in a similar way. Namely, since v solves Equation (5.9),
using the estimate (5.12) for almost all ¢ € (0,7") we have

(T + 22A)0' ()| -1 =|| — e A3 () — vAv(t) + By(v)(t) — 2Ba(v)(t) + C(v)(t) + flly-
<[] = ee” AR ()]
+ || = vAu(t) + Bi(v)(t) — 2Ba(v)(t) + C(v)(t) + fllv-
L2 = vAvu(t) + Bi(v)(t) — 3Ba(v)(t) + C(v)(t) + fllv—
<205 + 2Coe ™" (Cal|v(0) |32 + [|v(0) |75 + e5¢][v(0)][34) -

As above, by the estimate (6.7) and (5.11) we obtain the desired estimate (6.8).
In order to obtain the estimate (6.9), we observe that for all ¢ € [0, 7] the identity

holds. We multiply both sides of the identity by e~7* and by (6.7) we find

t
le " u(t)]|ys = ||e " U(O)—l—/e”se”v’(s)ds

0 %
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t

< ulO)llvs + [ €I () ysds
0
< o(0) v

t
1
42 [0 (€t Coe (CalloO) + elo0)3 + lu()2)) ds
0
C:
<o (O) v+ (1 -7

C. .
+ ;s(l — e ) (Cullo(0)I[52 + ello(0)[Vs + exl|v(0)][74)

<e v(0) v
1
o (Cs + Co (Callo ()32 + £llv(0)Ivs + exl[v(0)][4)) -

This yield the desired estimate (6.9). The proof is complete. O
As a direct corollary of the obtained inequality we have the next lemma.

Lemma 6.1. Let v be the solution of Equation (5.9) on the segment [0,T], T > 0, and the
coefficients s, v, oy, B, @ = 1, L, obey the conditions (6.1). Then for almost all t € (0,T) the
estimates

[o@®)llvz+ ([0 ()]l < Crz + Cize™ (Callv(0) 72 + ellv(0)[[3s + exllv(0)[[F4) 5 (6.10)
e " (lo(®)llvs + 11v'()]lvs) < Cuay (6.11)

hold, where the constant Ch4 is independent of ¢, and the constants Co and Ci3 depend on f,
v, %, v, a5, Bi, © =1, L, and are independent of €.

7. EXISTENCE THEOREMS FOR SOLUTIONS TO APPROXIMATION PROBLEM

The following theorems on existence of solutions to approximation and original problems on
the segment.

Theorem 7.1. Let the coefficients », v, oy, B, i = 1, L, obey the conditions (6.1). Then for
each segment [0,T] there exists a solution of Equation (5.9) obeying the initial condition (5.8),
and this solution satisfies the estimates (6.10), (6.11).

Proof. The proof follows the lines of proof of Theorem 7 in [9] and because of its large volume
we provide it schematically. First for a fixed function u belonging to the space C([0,T],V?)
and obeying the inequality |lu|lc(o,vs) < M (here M is a constant, the exact value of which
is given below), we prove the existence of the unique solution Z, to the Cauchy problem

T

2(rit,x) =x + /u(s,z(s;t,x))ds.

Then for Z, and the same function u we prove the existence of a function w € W5[0, T'| obeying
the integral identity

/w'gpdx—f/;uiwjgijdx—i-ﬁy/Vw : Vdz
Q W= Q

Q




ATTRACTORS OF MODIFIED KELVIN — VOIGT MODEL 91

dx

—I—%/Vw’ : Vgpdx+€/V(A2w/) : Vgpd:zc—kf%/ Z uiijgi]:
Q Q Q ! '

1,5=1

tr
—fo/izlﬁie_ai(t_s)Q/Aw(s,Zu(s;t,x))wdxds—§Q/fg0dx

for each test function ¢ € V! for almost all ¢ € (0,7) and satisfying the initial condition
w(0) =&,  £€[0,1].

Thus, we obtain the family of mappings ¥, which maps the number £ € [0, 1] and the function
u € C([0,T],V?) into the function w € W5[0, T]. After that we directly establish the continuity
of this mapping W : [0, 1] x By, — W3[0, T] with respect to its variables. Here B); is the ball of
radius M centered at zero in the space C([0,T],V?). After that by means of Theorem 3.1 we
prove the compactness of the mapping ¥ : [0,1] x By, — C([0,T], V?).

By the estimates (6.7) and (6.9) for fixed points of ¥ we have the inequality

[vllwatory = llvlleqorvs) + 1V | womsvs) < M. (7.1)
Then by the continuity of the embedding W5[0,T] C C([0,T],V?) we have the inequality

[olleqomve) < Ma|vllwajo,n-
This directly implies that the fixed points of the mapping U satisfy the inequality
V]| co.ry,vs) < MiMs.

Letting M = MM, + 1, we conclude that the mapping ¥ has no fixed points at the boundary
of the ball Bj;, which is centered at zero.

Since W(0,-) = 0 and 0 € By, all assumptions of the Leray — Schauder theorem are satisfied,
see Theorem 3.2. Therefore, the mapping (1, -) has at least one fixed point. This is why there
exists at least one solution to the approximation problem (5.4)—(5.6). Namely, there exists a
solution v € W5[0,T] of the operator equation (5.9) satisfying the initial condition (5.8). And
by (6.10) and (6.11) this solution obeys the desired inequalities. The proof is complete. O

We note that it is possible to prove the solvability of the approximation problem on an
arbitrary finite segment without the conditions (6.1) for the coefficients. But in the general
situation the solution does not necessarily satisfy the inequality (6.10), which is needed to use
the attractor theory.

In what follows we shall employ the next technical lemma.

Lemma 7.1. Let a sequence {v,} be bounded in Lo (0,T;V?), and a sequence {v. } be
bounded in Lo (0,T; V). Then the following statements are true.

1) There exists a subsequence {vn, } converging strongly to a limiting function v, in the space
C([0,T]; V) and the limiting relations

Ju,, — Ju, weakly in Ly (0,T;V™1); (7.2)
Av,, — Av, weakly in Lo(0,T; V1), (7.3)
Avy,, — Av, weakly in  Ly(0,T;V™1); (7.4)
B1(vp,) — Bi(v.)  strongly in  Leo(0,T;V™1); (7.5)
By(vm,) = Ba(v.)  weakly in  Ly(0,T;V 1), (7.6)
C(vm,) = C(vs) weakly in  Lo(0,T;V 1) (7.7)

hold.
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2) Let €, — 0 be a scalar sequence and the sequence {e,v),} be bounded in the space
Loo(0,T, V), then without loss of generality 5mke*7tA3v7’m — 0 weakly in Ly(0,T; V1.
3) Let the sequence {v,,} be bounded in L..(0,T;V?), then without loss of generality

(J 4+ A+ ee A%, — (J + A +ee A%,
weakly in Lo(0,T; V1.

Proof. 1) The embedding V? C V! is compact and this is why the assumptions of Theorem 3.2
are satisfied and the embedding W1 [0, 7] C C([0,T], V') is compact. Since {v,,} is bounded in
W10, T, it is relatively compact in C([0,T], V') and there exists a subsequence {v,,, } strongly
converging in C([0,T], V') to some function v,.

We pass from non-reflexive spaces Lo, to the reflexive spaces L,, 1 < p < oo, in order to
use the weak compactness of bounded sets. Since the space L, is continuously embedded into
L,, the sequences {v,,} and {v/,} are bounded in Ly(0,7;V?) and Ly(0,T; V"), respectively.
Therefore, without loss of generality we can suppose that

. — v, weakly in Ly(0,T;V?),
v =, weakly in  Lo(0,T; V7).

mp *

Um

Thus, the convergence (7.9) implies (7.2). By Lemma 5.1 the linear operator A is continuous.
This is why by (7.8) and (7.9) we respectively get the desired convergences (7.4) and (7.3).
Since V! C L4()", the strong convergence v, — v, in C([0,T], Ly(Q)") and (7.5) are
implied by the continuity of the operator Bj.
By Theorem 3.1 due to the compactness of the embedding V2 C C(Q)" for n = 2,3 we have

the compact embedding W1[0,7] C C([0,T],C(£2)™). Without loss of generality this yields
the strong convergence v,,, — v, in C([0,7],C(Q)"). Together with (7.8) this yields the weak
CONVergence vVp,, Avy,, — v Av, in Ly(0,T; Ly(€2)™). This is why (7.6) is implied by the definition
of the operator B,.

To prove the weak convergence (7.7), we are going to show that for each i = 1, L in the space
Ly(0,T; Lo (2)™) the weak convergence

’ t
/e_a"(t_s)Avmk(s,zmk(s;t,x))ds - /e_ai(t_s)AU*(S,Z*(S§ta$))d3 (7.10)
0 0

holds. Here z,,, and z, are regular Lagrangian flows corresponding to v,,, and v,, respectively.
By the Holder inequality

t

/e‘ai(t_S)Avmk (S, Zm, (851, 2))ds
0

2

L2(0,T5L2()™)
2

¢
//e‘ai(t_s)Avmk(s,zmk(s;t,x))ds dxdt
Q

N\
Ot — s T T
e O

0
¢ 2

/\Avmk(s,zmk(s;t,x)ﬂds dxdt
0

2

2

t
Vi /\Avmk(s,zmk(s;t,:zc))|2 ds dxdt
0

N
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t

T
<T///\Avmk(s,zmk(s;t,x))lzdxdsdt.
00 0

0

Similarly to the proof of Lemma 5.2, by making the change © = z,,, (t; s,y) in the latter integral

we obtain

t 2

/ eiai(tis)AUmk (57 “my (S; tv I))ds < T2 vak ||%2(0,T;V2)'
0 L2(0,T;L2()™)
The boundedness of {v,,, } in the space L. (0,T;V?) implies the boundedness
t
/ e‘ai(t_S)Avmk (S, zm, (s;t,))ds
0
in Ly(0,T; La(2)™).
Therefore, without loss of generality, there exists w € Lo(0,T’; L2(£2)™) such that
t
/eai(ts)Avmk (S, zm, (83, x))ds
0

converges weakly to w in the space Lo(0,7T; Lo(£2)") as my — oco. But in the sense of distribu-
tions this sequence converges to
t

/eai(tS)AU*(sz*(s;t,x))dS-

0

Indeed, for each p € V, x € C3°(0,T) we make the change of variable x = 2, (t;s,y) and
interchange the integration order; this gives

Tt
/ / /e‘ai(t_S)Avmk (S, zm, (83 t, 2))dsp(x)dzx (t)dt
0 Q0

¢
/ e Ay, (8, y)ds@(2m, (£ 5, y) ) dydsx (t)dt
0

SR

T
Avp, (8,9) / e ) (2, (8 5, y)) x(t)dtdyds

S

I
Tt — s Ty T
S

Av™(s,y)H™ (s, y)dyds,

SR

where
T

Hon(s:9) = [ €D p(a (65, ).

By Theorem 3.4, the sequence z,, converges to z, in the Lebesgue measure on [0,77] x 2
uniformly in ¢ € [0, T]. By the smoothness the function (2, (£;s,y)) converges to the function
©(z4(t; s,y)) almost everywhere on Q7 as my, — 0o. By the Lebesgue theorem on the dominated
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convergence the uniformly bounded sequence H,,, (s,y) converges almost everywhere on Qr to
a bounded function

H(s,y) = / e~ o, (s, ) X (1)t

We thus obtain

T T
//Avmk(s, y)Hy, (s, y)dyds — //AU*(S, y)H (s,y)dyds
0 Q 0 Q
as my, — o0o. Here the first factor converges weakly in La(Q7)", while the second factor converges
almost everywhere on Q7. In the obtained integral we interchange the integration order and
make the change y = z.(s;t, x)

T

O/Q/Av*(s,y)H(s,y)dyds ://AU*(S,y)/e—ai(t—s)gp(z*(t;Sjy)))((t)dtdyds

s
t

e =) A, (s, y)dsp(z.(t; 5, y))dsdyx (t)dt

Q

St — 5 TT—
—_ ®

0
t
//e—ai(t—s)AU* (Z*<S; t, :L‘))dS(,O(t, x)dxX(t)dt
Q 0

By the uniqueness of the limit
t

w = /e‘ai(t_s)Av*(z*(s;t,x))ds,
0

and the weak convergence (7.10) holds. The required weak convergence (7.7) follows from (7.10)
and the definition of the operator C.

2) Without loss of generality, the sequence {e,,, e "*v;, } converges weakly to some function
w in Ly(0,T; V). But in the sense of distributions on the segment [0, T] with the values in V=°
the sequence 5mke_7tA3v§nk converges to zero.

Indeed, for all y € C5°(0,T), ¢ € V5, using the Green formula and the weak convergence
(7.9), we obtain

lim
mp—00

//V (A%, ) : Vipdax(t)dt

= lim ¢,, lim //vak V (A%p) dzx(t)dt

mp—00 mp—»00

mp—00

T
= //vak(t) 1 V (A%) dex(t)dt| lim e, =O0.
0 Q
By the uniqueness of the weak limit

Emy, /V (A%, ) : Vedz — 0
Q
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as my — +00.

3) Without loss of generality, {v], } converges to v} weakly in Ly(0,T,V?). This is why the
desired convergence is implied by the continuity of the linear operator J 4 »A + e " A3. The
proof is complete. O

Theorem 7.2. Let the coefficients », v, oy, Bi, i = 1, L, satisfy the conditions (6.1). Then
for each b € V° the problem (5.9),(5.8) has a solution on the semi-axis Ry, which obeys the
following inequality

lo@llve + [Vl < Cis + Crre™ (Cullbll- + ellbllys + esllblli) ; (7.11)
ee [V (t)llvs < Cs + Coe™ (Cullbll2 + ellbllirs + e5blf) | (7.12)

where the constants Cyg and Ci7 are independent of f, v, », v, oy, Bi, i = 1, L, are independent

of €.

Proof. Let v, be the solution to the problem (5.9), (5.8) on the segment [0,m], m = 1,2,...,
which exists due to Theorem 7.1. We continue the functions v,, to the semi-axis R, as follows

on(t) = 4 Ul Ost<m,
T Yom(m), t=m.

By our assumption, the functions ©,, belong to the space Wi°(R,). We are going to show
that the sequence {0,,} is relatively compact in C(R,, V). According to Lemma 2.1, in order
to do this, it is sufficient to establish that for each 7" > 0 the sequence of restrictions {IIr0,,}
is relatively compact in the space C([0,T], V).

We choose an arbitrary 7" > 0. Neglecting possibly several first terms of the sequence, we can
suppose that the functions {II70,,} are solutions to the problem (5.9), (5.8) on the segment
[0, 7. Since the functions I179,, have the same value for ¢t = 0, it follows from Lemma 6.1 that
for almost all ¢ € [0, 7] they satisfy the estimate

e (L () [[vs + 1Lz oy, () [lvs) < Cha
Therefore,
[T7 0 ()] Lo 0,73v5) + [Hr 07, ()| o 0,73v5) < Chs (7.13)

with a constant C'5, which depends on T" and é and is independent of m.

Thus, the sequence {II7?,,} is bounded in L. (0,7;V?), while the sequence of derivatives
{TI79,} is bounded in L. (0,7;V?). It follows from the compactness of embedding V5 C V!
and Theorem 3.1 that the sequence {II70,,} is relatively compact in C([0,77,V1).

By the arbitrariness of choice of T' the sequence {0,,} contains a subsequence {0y, } converg-
ing in C(Ry, V1) to some function v,. We are going to show that this limiting function is the
solution of problem (5.9),(5.8) on R.

Let us verify that the function v, belongs to space Wi°¢(R,). It follows from the esti-
mate (7.13) that for each T" > 0 the sequences {Il70,, } and {llz?,, } are bounded in
Loo(0,T;V?), this is why without loss of generality we can suppose that they converge *—
weakly in L., (0,T; V?) respectively to v, and some function u € L. (0,T;V?). However in the
sense of distributions on (0,7) with the values in V° the derivatives {IIz?], } converge to v,
and this is why u = ITIpv.. Thus, the function II7v, belongs to the space Lo (0,T;V?) together
with its derivative. This implies that the function II;v, can be represented as the integral with
the varying upper limit and this is why it is continuous as a function with the values in V.
Therefore, [I7v, belongs to W50, T]. This is true for each T and hence, v, belongs to Wi°*(R, ).

The convergence in C'([0, 7], V') implies the pointwise convergence. Since all functions {0,,, }
satisfy the same initial condition and the sequence {IIr0,,, } converges pointwise, the function
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v, also satisfies the initial condition (5.8). It remains to verify that this function solves Equa-
tion (5.9). In order to do this, we need establish that the restriction of v, to each segment [0, 7]
(T > 0) solves Equation (5.9) on this segment.

The convergence of the sequence {0y, } to v, in C(Ry, V') implies the convergence of restric-
tions {Il70,,, } to IIrv, in C([0,T], V?'). Starting from some index, the function Iz0,,, solve
Equation (5.9), that is, they obey the identity

(J + e AP 4 e A)Updl, + vAlgi, — Bi(lgpbp,) + 5Bs(lgipm,) — C(Ilpdy,) = f. (7.14)

It follows from the inequality (7.13) that the sequence {II7%,,, } is bounded in L., (0,T;V?),
and the sequence of derivatives {II1?/, } is bounded in L. (0,T;V?). This is why the assump-
tions of Lemma 7.1 hold. According to this lemma, passing in (7.14) to the weak limit in
Ly(0,T; V1), we obtain that the limiting function satisfies the relation

(J +ee A + 2 Al + vAllpv, — By (Ilpv,) + »2By(Tlv,) — C(gv,) = f.

This means that II7v, solves Equation (5.9) on [0, 7). In view of the arbitrary choice of T this
gives that v, solves Equation (5.9) on the semi-axis.
We proceed to proving the estimate (7.11). By Lemma 6.1 we have the inequality

[, ()llve + [0, (D)llvr < Crz + Crase™ (Callbl[2 + el|bllys + esllbll34) - (7.15)

For each my this inequality holds for all t € Ry \ @y, , where Q),,, is some set of zero measure.
This is why for all t € R, \ @, where @ = U,,,, Qum, is a set of zero measure, this inequality
holds for each my,.

For each ¢ belonging to the set of complete measure R, \ @, in view of the aforementioned
strong convergence v, — v. in C(R;, V') we obtain that v, (t) — v.(t) in V!. By the
inequality (7.15) the sequence {v,,, } is bounded in V?, and {v;, } is bounded in V'. This is
why there exist subsequences @;(¢) and @)(¢), which converge weakly in V2 to v,(t) and in V!
to v.(t), respectively. This is why

le(®)llve < lim [[5:(8)[[ve < Crz + Crse ™" (Callbllis + ellbllys + esel[bllT4) ;

l—o0

[W.(B)llvr < lim [[5(#)][v2 < Crz + Crze ™ (Callblly2 + ellbllys + exl[bl[ys) -

l—00

Summing up these estimates, we obtain the desired estimate (7.11). The estimate (7.12) can
be established in the same way. The proof is complete. O]

8. SOLVABILITY OF PROBLEM (1.1)—(1.4) ON SEMI-AXIS

The notion of weak solution of initial boundary value problem (1.1)—(1.4) on a finite segment
and a semi—axis can be rewritten in the following equivalent form.

Definition 8.1. The weak solution of problem (1.1)—(1.4) on the segment [0,T] is a function
v € W40, T obeying the operator equation

(J + 2 A)'(t) + vAvu(t) — B1(v)(t) + 2B (v)(t) — C(v)(t) = f (8.1)
for almost all t € [0,T] and the initial condition (4.2).

Definition 8.2. The weak solution of problem (1.1)—~(1.4) on the semi-axis Ry is a function
v € WEF(R,) such that for each T > 0 the restriction of v to the segment [0,T] solves the
operator equation (8.1) on this segment and satisfies the initial condition (4.2).
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Theorem 8.1. Let the coefficients », v, oy, B, i = 1, L, obey the conditions (6.1). Then for
each a € V? the problem (8.1), (4.2) has a solution on the semi-azis Ry, which satisfies the
nequality

lo@)llve + 1[0/ (O)]vr < Cro(1+ e lall72) (8.2)
for almost all t > 0. Here the constant Chg is independent of f, vy, », v, i, s, i =1, L.

Proof. Since the space V° is dense in V2, for each a € V? there exists a sequence {b,,} C V°
such that ||b,, — ally= — 0.
We let .

m(1 =+ [[bml[54)

Em —

In this case we have ¢,, — 0 and
Emlbmlle < 1. (8.3)

By Theorem 7.2, for each b,, € V?° there exists a solution v, of Equation (5.9) with ¢ = ¢,
on R, which obeys the initial condition

U (0) = by

By Theorem 7.2, the inequality (8.3) and the compactness of embedding V* C V3 the
estimates

[0m () [[v2 + [0}, (O)][v1 < Crg + Crre™™ (Callbm[72 + 5+ Chs) ; (8.4)
ene a1 lve < Ci Coe™ (Callblls + 52+ Cis) (85)

hold. For each m this inequality is satisfied for all ¢ € R \ @, where @Q,, is some set of zero
measure. This is why for all t € Ry \ @, where @ = U,,Q,, is a set of zero measure, this
inequality holds for each m.

We are going to show that the sequence {v,,} is relatively compact in the space C'(R., V).
According to Lemma 2.1, it is sufficient to establish that for each T" > 0 the sequence of
restrictions {II7v,,} is relatively compact in C([0,T],V?'). However, this is implied by the
first assertion of Lemma 7.1 since the estimate (8.4) yields that the sequence {IIrv,,} is
bounded in L. (0,7;V?), while the sequence of the derivatives {IIzv/,} is bounded in the
space Lo (0,T;V1).

Since the sequence {v,,} is relatively compact, it contains a subsequence {v,,, } converging
to some function v, in C'(Ry, V). Let us show that v, is the sought solution.

We first note that v, belongs to the space W{°°(R, ). Indeed, it follows from the estimate (8.4)
that for an arbitrary 7' > 0 the sequences {II;vy,, } and {IIzv], } are bounded in Lo (0,T;V?)
and L. (0,7; V"), respectively. This is why without loss generality, by the uniqueness of the
limit we can suppose that the sequence {IIzv,,, } converges x—weakly in L. (0,7;V?) to v,.
Similarly, without loss of generality we can suppose that the sequence {Ilzv], } converges *—
weakly in Lo, (0,7; V') to some function u € Lo (0,T; V). However, in the sense of distributions
the sequence {Ilrv;, } converges to v, and hence u = Ilzv,. Thus, the function II7v, belongs
to the space Lo, (0,T;V?), while its derivative is an element of the space Lo (0,T;V!), that is,
v, € W1[0,T]. Since this is true for each T, the function v, belongs to W{°¢(R).

We are going to verify that the function v, solves Equation (8.1) on R,. In order to do this,
we need to establish that the restriction of Ilyv, to each segment [0, 7] (7 > 0) is a solution of
Equation (8.1) on this segment.

The strong convergence of {0y, } to v, in C(Ry, V') implies the convergence of restrictions
{Tlrvy, } to v, in C([0,T], V). The functions Ilzv,,, are solutions of Equation (5.9), that
is,

(J+ smk,e_wA3 + %A)HTU;% + vAllpv,,, — Bi(Ilpvy,, ) + 2 Bo(Ilpvy,, ) — C (v, ) = f. (8.6)
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It follows from the inequality (8.4) that the sequence {IIzv,,, } is bounded in L. (0,7;V?),
and the sequence of derivatives {II;v), } is bounded in L (0,7 V'?'). The estimate (8.5) yields
that the sequence &,,, vy, is bounded in Lo (0,7; V°) and by our choice €,,, — 0. This is why by
Lemma 7.1 without loss of generality we can suppose that the left hand side of (8.6) converges

to
(J + s A)Ipv., + vAlrv, — By(Il7v,) + 2 By(Mrv,) — C(ro,),

for instance, weakly in Lo(0,T;V~!). By the arbitrariness of the choice of T we find that v,
satisfies the following identity

(J + A, + vAv, — Bi(v.) + xBa(vi) — C(vi) = f. (8.7)

This yields that the function v, solves the problem (8.1), (4.2).
Let us show that the function v, obeys the initial condition (4.2). The convergence in
C(R,, V1) implies the pointwise convergence and hence

by = U, (0) = v,(0) in V'

However, by our choice of the sequence {b,,} we have that b,,, — a in V. By the uniqueness
of the limit v,(0) = a and hence the initial condition is satisfied.

It remains to prove the inequality (8.2). The inequality (8.4) holds for each k and all t,
which belong to some independent of k£ subset R, of a complete measure. We choose such t.
It follows from the inequality (8.4) that the sequences {v,,, (t)} and {v;, (t)} are bounded in
V2 and V| respectively. Therefore, each of them contains subsequences ;(t) and 9;(t), which
converge weakly in V2 to v,(t) and in V! to v’ (¢). This is why

[o.(®)]lv2 < lim [|T(t)][v2 < Cio + Crre ™ (Cullal[f2 + 3+ Chs) 5

l—00

@)l < lim [[5/(8)]lvr < C16 + Crre™™ (Cullally + 3¢+ Cag) -

l—o00

Summing these estimates, we obtain the estimate, which can be written in the form (8.2). O

9. TRAJECTORY SPACE AND ATTRACTORS

In the present case F = V? and E;, = V. The trajectory space H™ of Equation (8.1)
is introduced as the set of solutions of this equation defined on R, essentially bounded as
functions with values in V2 and obeying the estimate

lo@®)llv2 + [V @)llvr < Cro(1+ e PlIT m, v2) (9-1)

for almost all ¢ > 0.
It is necessary to show that the inclusion

HY C C(Ry; VY N Loo(Ry; V)

holds.

The inclusion HT C Lo (R, ; V?) is immediately implied by the definition of trajectory space.
The inequality (9.1) yields that if v is some trajectory, then Ilzv" € Lo, (0, T; V1) for an arbitrary
segment [0, T]. This is why II7v belongs to the space C'([0,7], V') as the integral with varying
upper limit. This is true for each T and therefore v € C(R; V?!).

The non—emptiness of the space H* is due to the next theorem.

Theorem 9.1. Let the coefficients », v, oy, B, i = 1, L, obey the conditions (6.1). Then for
each a € V? there exists a trajectory v € H™ such that v(0) = a.
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Proof. Theorem 8.1 states there exists a solution v € W{°¢(R,) to the problem (8.1), (4.2) on
R,. We are going to show that this function is the sought trajectory. In order to do this,
it is sufficient to verify the estimate (9.1). Since v satisfies (8.2), it is sufficient to obtain the
inequality
[0(0)llv2 < vl Lo i v2)- (9-2)
It follows from the estimate (8.2) that the function v belongs to L. (R.;V?), while its
derivative is an element of L. (Ry; V). This implies that v € C(R,;V?) (by reproducing the
arguing from Theorem 8.1). Thus, v € C(Ry; V') N Loo(Ry;V?), and by Theorem 2.1 the
function v belongs to the space C\,(R; V?). This is why for each ¢t € R, the value v(t) € V? is
well-defined. By the definition of norm in L (R, V?) this gives the desired inequality (9.2).
The proof is complete. O

The main result of work is the following theorem on existence of the minimal and global
attractor.

Theorem 9.2. Let the coefficients s, v, a;, i, i = 1, L, satisfy the conditions (6.1). Then
there exists the minimal trajectory attractor U and the global attractor A of trajectory space

HE.

Proof. According to Theorem 2.2, it is sufficient to establish the existence of trajectory semi—
attractor.
We consider the set

P={veCR; V)N Lo(Ry; V?): v € Loo(Ry, V'),
lo()][vz + [V (E)][yr < 2C19 for almost all ¢ € R, }.

The definition of P implies immediately that this set is bounded in L. (R.;V?) and transla-
tionally invariant, that is, T'(h)P C P, h > 0.

Now we are going to show that the set P is relatively compact in C'(Ry;V?!). In view of
Lemma 2.1, in order to do this, it is sufficient to show that for each 7" > 0 the set Il P is
relatively compact in C([0, 7], V!). Indeed, by the definition of P we have that for each T' > 0
the set II7 P is bounded in L., (0,T; V?), and the set {v": v € Il P} is bounded in L. (0,7; V).
As above, by Theorem 3.1 this implies that the set I P is relatively compact in C([0,T], V).
By the arbitrariness of T we get the relative compactness of set P in C'(R;V?).

Let us show that the set P is absorbing for the trajectory space H™. We consider an arbitrary
set B C H' bounded in L (R,;V?). For the sake of definiteness,

[Vl < B

for all v € B.
We choose hy > 0 such that R2e=7% < 1. Let v be an arbitrary function in B. Since v satisfies
the inequality (9.1), for h > hy we have

IT(h)o(@)llv2 + 1T (R @)y = vt + k) llv2 + [[o'(E + 2)[lv
< 019(1 + B_W(H—h)RQ) g 019(1 + 6_%) g 2019.
Thus, T'(h)v € P.
By the arbitrariness of v we obtain that T(h)_B C P for all h > hg. Therefore, P is an
absorbing set. Then by Lemma 2.2 we see that P is the trajectory semi-attractor. Then by

Theorem 2.2 there exist a trajectory attractor U and global attractor A of trajectory space H*.
The proof is complete. O
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