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ON COMMUTANT OF SYSTEM OF INTEGRATION

OPERATORS IN MULTIDIMENSIONAL DOMAINS

P.A. IVANOV, S.N. MELIKHOV

Abstract. We describe the commutant of system of integration operators in the Fréchet
space𝐻(Ω) of all functions holomorphic in a domain Ω in C𝑁 , which is polystar with respect
to the origin. In particular, among such domains, there are the products of domains C being
star with respect to the origin and complete Reinhardt domains with center at the origin. As
in the one–dimensional case, the operators in the commutant are the Duhamel operators. We
show that 𝐻(Ω) with the Duhamel product * is an associative and commutative topological
algebra. It is topologically isomorphic to the commutant with the product, which is the
composition of operators, and with the topology of bounded convergence. We obtain a
similar to one–dimensional representation of the product 𝑓 *𝑔 as a sum containing one term
being a multiple of 𝑓 and terms with the integrals at least in one variable of the function
independent of the derivatives of 𝑓 . By means of this representation we prove the criterion
of *–invertibility of a function in 𝐻(Ω) and the corresponding convolution operator. We
establish that the algebra (𝐻(Ω), *) is local. In the case when the domain Ω is in addition
convex, in the dual situation we obtain the criterion for the invertibility of operator from
the commutant of system of operators of partial backward shift.
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1. Introduction

In the present work we study continuous linear operators in the space 𝐻(Ω) of functions
holomorphic in a domain Ω in C𝑁 , which is polystar with respect to the origin; the operators
commute with each partial integration operator and the space is equipped with the Duhamel
product *. The Duhamel product in the spaces of holomorphic functions is rather intensively
studied, and it has applications in the theory of differential equations, spectral theory in the
generalized sense, in the operator calculus, in problem on spectral multiplicity of a linear
continuous operator, see [3]. For 𝑁 = 1, this product was first introduced and studied in the
space 𝐻(Ω) by Wigley [11]. The obtained results mostly concern the functions of one variable,
the case of many variables is significantly less studied.
The polystar domains Ω were earlier considered in [2], the integration operator 𝐽𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 ,

in separate variables are well–defined in 𝐻(Ω). The set of all such domains contains all products
of domains in C, which are star with respect to the origin and all complete Reinhardt domains
with the center at the origin. It is strictly narrower than the set of all domains in C𝑁 , which
are star with respect to the origin. The main results of work are Theorem 2.2 on representation
of operators in the commutant 𝒦(𝒥 ) of the system {𝐽𝑘 | 1 ⩽ 𝑘 ⩽ 𝑁} in the algebra of all
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continuous linear operators in 𝐻(Ω), Theorem 3.1 on a topological isomorphism between the
spaces 𝐻(Ω) and 𝒦(𝒥 ) with the topology of bounded convergence and on the isomorphism
between the algebras (𝐻(Ω), *) and 𝒦(𝒥 ), as well as Theorem 4.1 providing a criterion of the
invertibility of an element in the algebra (𝐻(Ω), *). For 𝑁 = 1 Theorems 2.2 and 4.1 are well–
known. Raichinov [6] described the commutant of the integration operator in the space 𝐻(Ω)
and established the condition for the invertibility of an operator in the commutant for domains
Ω in C, which are star with respect to the origin. Later Kiryutenko [4] obtained similar results
for a simply–connected star–shaped domain C containing the origin. Wigley [11] studied the
Duhamel product in 𝐻(Ω) (assuming that Ω is star with respect to the origin) and established
a criterion for the invertibility of an element in the algebra (𝐻(Ω), *).
As in [11], in the present paper the proof of *–invertibility of functions from 𝐻(Ω) uses the

Neumann series. This is possible owing to Lemma 2.1, which provides the representation for the
product 𝑓 *𝑔 as a sum containing one integrated term, which is a multiple of 𝑓 , and terms with
integrals at least in one of variables of the function independent of the derivatives of 𝑓 . Such
representation allows us to obtain estimates in multidimensional situation, which are used in
the proof of quasinilpotency of a Volterra operator in Banach spaces. The proven invertibility
criterion shows that, as in the one–dimensional case, the algebra (𝐻(Ω), *), is local and its only
maximal ideal is the set of all *–non–invertible elements.
If the domain Ω is in addition convex, by means of the Laplace transform the adjoint operators

for 𝐽𝑘 are realized as the operator 𝐷𝑘,0 of partial backward shift in some space 𝑃 (Ω) of entire
functions of exponential type. This gives an opportunity for the dual situation to obtain the
criterion of invertibility in 𝑃 (Ω) for an operator from the commutant of system {𝐷𝑘,0 | 1 ⩽ 𝑘 ⩽
𝑁}.

2. Description of operators commuting with

system of integration operators

In what follows we consider a domain Ω in C𝑁 , 𝑁 ∈ N, which is polystar with respect to the
origin. We recall that a set 𝑄 ⊂ C𝑁 is called polystar with respect to the origin [2, Sect. 4.3]
if for each 𝑧 ∈ 𝑄 the parallelepiped

Π(𝑧) := [0, 𝑧1]× · · · × [0, 𝑧𝑁 ]

is contained in 𝑄. Let 𝑃𝑁 := {1, . . . , 𝑁}. The set 𝑄 ⊂ C𝑁 is polystar with respect to the origin
if and only if for all 𝑧 ∈ 𝑄, 𝑘 ∈ 𝑃𝑁 , 𝜉 ∈ [0, 𝑧𝑘] the point (𝑧1, . . . , 𝑧𝑘−1, 𝜉, 𝑧𝑘+1, . . . , 𝑧𝑁) belongs
to 𝑄.
If Ω = Ω1 × · · · × Ω𝑁 , where Ω𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 , are domains in C, then Ω is polystar with

respect to the origin if and only if each domain Ω𝑘 is polystar with respect to the origin. Each
complete Reinhart domain with center at the origin is polystar with respect to the origin. For
𝑁 ⩾ 2 not each convex domain in C𝑁 containing the origin possesses this property.
By the symbol 𝐻(Ω) we denote the space of all holomorphic in Ω functions with the topology

of uniform convergence on compact sets in Ω. For 𝑘 ∈ 𝑃𝑁 we introduce the operators of partial
integration

𝐽𝑘(𝑓)(𝑧) :=

𝑧𝑘∫︁
0

𝑓(𝑧1, . . . , 𝑧𝑘−1, 𝜉, 𝑧𝑘+1, . . . , 𝑧𝑁)𝑑𝜉, 𝑧 ∈ Ω, 𝑓 ∈ 𝐻(Ω),

where the integral is taken over the segment [0, 𝑧𝑘]. All of them are linear and continuous in
𝐻(Ω) and mutually commuting.
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The Duhamel product in 𝐻(Ω) is defined as follows [11], [10], [2]:

(𝑓 * 𝑔)(𝑧) := 𝜕𝑁

𝜕𝑧1 · · · 𝜕𝑧𝑁

∫︁
Π(𝑧)

𝑓(𝑡)𝑔(𝑧 − 𝑡)𝑑𝑡, 𝑔 ∈ 𝐻(Ω), 𝑧 ∈ Ω.

Here, for 𝑢 ∈ 𝐻(Ω), the latter integral is treated as iterated∫︁
Π(𝑧)

𝑢(𝑡)𝑑𝑡 :=

𝑧𝑁∫︁
0

· · ·
𝑧1∫︁
0

𝑢(𝑡)𝑑𝑡1 · · · 𝑑𝑡𝑁 , 𝑧 ∈ Ω;

it is independent of the integration order.
For 𝑁 = 1 the identity

(𝑓 * 𝑔)(𝑧) = 𝑔(0)𝑓(𝑧) +

𝑧∫︁
0

𝑔′(𝑧 − 𝑡)𝑓(𝑡)𝑑𝑡, 𝑧 ∈ Ω (2.1)

holds. Our aim is to prove its analogue for 𝑁 ⩾ 1. For a non–empty set 𝜏 ⊂ 𝑃𝑁 and 𝑧 ∈ C𝑁

the symbol 𝑧(𝜏) denotes a point in Ccard 𝜏 obtained from 𝑧 by omitting the coordinates 𝑧𝑗,
𝑗 ∈ 𝑃𝑁 ∖ 𝜏 , and preserving the order for others. If 𝜏 = 𝑃𝑁 , then 𝑧(𝜏) = 𝑧. For the multiindex
1 = (1, . . . , 1) ∈ N𝑁

0 , 𝜏 ⊂ 𝑃𝑁 , 𝜏 ̸= ∅, by 1[𝜏 ] we denote the multiindex in N𝑁
0 such that

1[𝜏 ]𝑘 = 1 for 𝑘 ∈ 𝜏,

and

1[𝜏 ]𝑘 = 0 for 𝑘 ∈ 𝑃𝑁 ∖ 𝜏 ;
𝑧′ := (𝑧1, . . . , 𝑧𝑁−1); N0 := N ∪ {0}.
We let

𝜕𝛼𝑓 :=
𝜕|𝛼|𝑓

𝜕𝑧𝛼1
1 · · · 𝜕𝑧𝛼𝑁

𝑁

, 𝛼 ∈ N𝑁
0 ; 𝜕𝑘𝑓 :=

𝜕𝑓

𝜕𝑧𝑘
, 𝑘 ∈ 𝑃𝑁 ;

here |𝛼| := 𝛼1 + · · ·+ 𝛼𝑁 . For 𝑡, 𝑧 ∈ C𝑁 , 𝜎 ⊂ 𝑃𝑁 the point 𝑡𝜎,𝑧 ∈ C𝑁 is defined as

(𝑡𝜎,𝑧)𝑘 :=

{︃
𝑧𝑘, 𝑘 ∈ 𝜎,

𝑡𝑘, 𝑘 ∈ 𝑃𝑁 ∖ 𝜎.

For 𝜀 > 0

𝐷𝑁(𝜀) := {𝑧 ∈ C𝑁 | |𝑧𝑘| < 𝜀, 𝑘 ∈ 𝑃𝑁}, 𝐷𝑁(𝜀) := {𝑧 ∈ C𝑁 | |𝑧𝑘| ⩽ 𝜀, 𝑘 ∈ 𝑃𝑁}.

Lemma 2.1. For each domain Ω in C𝑁 , which is polystar with respect to the origin, and all

𝑓, 𝑔 ∈ 𝐻(Ω), 𝑧 ∈ Ω the identity

(𝑓 * 𝑔)(𝑧) = 𝑔(0)𝑓(𝑧) +
∑︁
𝜎⫋𝑃𝑁

∫︁
Π(𝑧(𝑃𝑁∖𝜎))

𝜕1[𝑃𝑁∖𝜎]𝑔(𝑧 − 𝑡𝜎,𝑧)𝑓(𝑡𝜎,𝑧)𝑑𝑡(𝑃𝑁 ∖ 𝜎) (2.2)

holds.

Proof. We first suppose that Ω is a polydisk 𝐷𝑁(𝜀), 𝜀 > 0. The identity (2.2) is this case will
be proved by the induction in 𝑁 . For 𝑁 = 1 it holds, see (2.1). Suppose that it holds for 𝑁 −1
with 𝑁 ⩾ 2. Differentiating under the integral, which is possible, see, for instance, [5, Ch. 4,
Sect. 1, 1.2], we obtain

(𝑓 * 𝑔)(𝑧) = 𝜕

𝜕𝑧𝑁

𝑧𝑁∫︁
0

⎛⎜⎝ 𝜕𝑁−1

𝜕𝑧1 · · · 𝜕𝑧𝑁−1

∫︁
Π(𝑧′)

𝑔(𝑧′ − 𝑡′, 𝑧𝑁 − 𝑡𝑁)𝑓(𝑡
′, 𝑡𝑁)𝑑𝑡

′

⎞⎟⎠ 𝑑𝑡𝑁 , 𝑧 ∈ 𝐷𝑁(𝜀).
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We fix 𝑧𝑁 ∈ C such that |𝑧𝑁 | < 𝜀 and 𝑡𝑁 ∈ [0, 𝑧𝑁 ]. By the induction assumption applied to the
functions 𝑓( · , 𝑡𝑁) and 𝑔( · , 𝑧𝑁 − 𝑡𝑁) we have the identity

𝜕𝑁−1

𝜕𝑧1 · · · 𝜕𝑧𝑁−1

∫︁
Π(𝑧′)

𝑔(𝑧′ − 𝑡′, 𝑧𝑁 − 𝑡𝑁)𝑓(𝑡
′, 𝑡𝑁)𝑑𝑡

′ = 𝑔(0′, 𝑧𝑁 − 𝑡𝑁)𝑓(𝑧
′, 𝑡𝑁)

+
∑︁

𝜈⫋𝑃𝑁−1

∫︁
Π(𝑧′(𝑃𝑁−1∖𝜈))

𝜕1′[𝑃𝑁−1∖𝜈]𝑔(𝑧′ − 𝑡′𝜈,𝑧′ , 𝑧𝑁 − 𝑡𝑁)𝑓(𝑡
′
𝜈,𝑧′ , 𝑡𝑁)𝑑𝑡

′(𝑃𝑁−1 ∖ 𝜈), 𝑧′ ∈ 𝐷𝑁−1(𝜀).

Taking into consideration the one–dimensional identity (2.1), for 𝑧 ∈ 𝐷𝑁(𝜀) we obtain

(𝑓 * 𝑔)(𝑧) =𝑔(0)𝑓(𝑧) +

𝑧𝑁∫︁
0

𝜕𝑁𝑔(0
′, 𝑧𝑁 − 𝑡𝑁)𝑓(𝑧

′, 𝑡𝑁)𝑑𝑡𝑁

+
∑︁

𝜈⫋𝑃𝑁−1

∫︁
Π(𝑧′(𝑃𝑁−1∖𝜈))

(︃
𝜕

𝜕𝑧𝑁

𝑧𝑁∫︁
0

𝜕1′[𝑃𝑁−1∖𝜈]𝑔(𝑧′ − 𝑡′𝜈,𝑧′ , 𝑧𝑁 − 𝑡𝑁)

· 𝑓(𝑡′𝜈,𝑧′ , 𝑡𝑁)𝑑𝑡𝑁

)︃
𝑑𝑡′(𝑃𝑁−1 ∖ 𝜈)

=𝑔(0)𝑓(𝑧) +

𝑧𝑁∫︁
0

𝜕𝑁𝑔(0
′, 𝑧𝑁 − 𝑡𝑁)𝑓(𝑧

′, 𝑡𝑁)𝑑𝑡𝑁

+
∑︁

𝜈⫋𝑃𝑁−1

∫︁
Π(𝑧′(𝑃𝑁−1∖𝜈))

(︁
𝜕1′[𝑃𝑁−1∖𝜈]𝑔(𝑧′ − 𝑡′𝜈,𝑧′ , 0)𝑓(𝑡

′
𝜈,𝑧′ , 𝑧𝑁)

+

𝑧𝑁∫︁
0

𝜕𝑁(𝜕
1′[𝑃𝑁−1∖𝜈]𝑔)(𝑧′ − 𝑡′𝜈,𝑧′ , 𝑧𝑁 − 𝑡𝑁)𝑓(𝑡

′
𝜈,𝑧′ , 𝑡𝑁)𝑑𝑡𝑁

)︁
𝑑𝑡′(𝑃𝑁−1 ∖ 𝜈)

=𝑔(0)𝑓(𝑧) +
∑︁
𝜎⫋𝑃𝑁

∫︁
Π(𝑧(𝑃𝑁∖𝜎))

𝜕1[𝑃𝑁∖𝜎]𝑔(𝑧 − 𝑡𝜎,𝑧)𝑓(𝑡𝜎,𝑧)𝑑𝑡(𝑃𝑁 ∖ 𝜎).

Now let Ω be an arbitrary domain in C𝑁 , which is polystar with respect to the origin. There
exists 𝜀 > 0 such that 𝐷𝑁(𝜀) ⊂ Ω. As it has been proved above, the identity (2.2) holds for
each 𝑧 ∈ 𝐷𝑁(𝜀). Since the function 𝑓 * 𝑔 and each term in the right hand side of (2.2) are
holomorphic in Ω, the uniqueness theorem ensures its validity for all 𝑧 ∈ Ω.

For a compact set 𝑄 ⊂ Ω we let

𝑝𝑄(𝑓) := sup
𝑧∈𝑄

|𝑓(𝑧)|, 𝑓 ∈ 𝐻(Ω).

Lemma 2.1 implies the following result on the continuity of product *.

Lemma 2.2. Let Ω be a domain C𝑁 , which is polystar with respect to the origin. For each

compact set 𝑄 in Ω, which is polystar with respect to the origin, and each 𝜀 > 0 such that

𝑄(𝜀) := 𝑄+𝐷𝑁(𝜀) ⊂ Ω,

there exists a constant 𝐶 > 0 such that

𝑝𝑄(𝑓 * 𝑔) ⩽ 𝐶𝑝𝑄(𝑓)𝑝𝑄(𝜀)(𝑔)

for all functions 𝑓, 𝑔 ∈ 𝐻(Ω).
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For the functions with separated variables their Duhamel product is reduced to one–
dimensional product in the following sense. For the functions 𝑢 and 𝑣 we define the variables
𝑧𝑘, 𝑘 ∈ 𝑃𝑁 and one–dimensional products in 𝑧𝑘:

(𝑢 *𝑘 𝑣)(𝑧𝑘) :=
𝜕

𝜕𝑧𝑘

𝑧𝑘∫︁
0

𝑢(𝑧𝑘 − 𝑡𝑘)𝑣(𝑡𝑘)𝑑𝑡𝑘.

The next lemma is obvious.

Lemma 2.3. Let

𝑓(𝑧) = 𝑓1(𝑧1) · · · 𝑓𝑁(𝑧𝑁), 𝑔(𝑧) = 𝑔1(𝑧1) · · · 𝑔𝑁(𝑧𝑁),
where the functions 𝑓𝑘 and 𝑔𝑘 are holomorphic in polystar with respect to the origin domain

𝐺𝑘 ⊂ C, 𝑘 ∈ 𝑃𝑁 . Then

(𝑓 * 𝑔)(𝑧) = (𝑓1 *1 𝑔1)(𝑧1) · · · (𝑓𝑁 *𝑁 𝑔𝑁)(𝑧𝑁)

for each 𝑧 ∈ 𝐺1 × · · · ×𝐺𝑁

We let

𝑓𝛼(𝑧) :=
1

𝛼!
𝑧𝛼1
1 · · · 𝑧𝛼𝑁

𝑁 , 𝐽𝛼 := 𝐽𝛼1
1 · · · 𝐽𝛼𝑁

𝑁 , 𝑧 ∈ C𝑁 , 𝛼 ∈ N𝑁
0 .

We denote by 1 the function, which is identically equal to 1, while C[𝑧] stands for the set of all
polynomials of variables 𝑧1, . . . , 𝑧𝑁 over C.
For 𝑁 = 1 the identities in the next statement are known, see, for instance, [3], [11].

Lemma 2.4. The following statements hold.

(i) For all 𝛼, 𝛽 ∈ N𝑁
0 the identity 𝑓𝛼 * 𝑓𝛽 = 𝑓𝛼+𝛽 holds.

(ii) Let Ω be a Runge domain in C𝑁 , which is polystar with respect to the origin. For all

𝛼 ∈ N𝑁
0 , 𝑓, 𝑔 ∈ 𝐻(Ω) the identities

𝐽𝛼(𝑓 * 𝑔) = 𝐽𝛼(𝑓) * 𝑔 = 𝑓 * 𝐽𝛼(𝑔), 𝐽𝛼(𝑓) = 𝑓 * 𝑓𝛼
hold in Ω.

Proof. The validity of (i) is implied by the same identities for 𝑁 = 1 and Lemma 2.3.
By (i), the first relations in (ii) are true if the functions 𝑓 and 𝑔 are monomials and hence,

by Lemma 2.2 and the density of C[𝑧] in 𝐻(Ω), they hold for arbitrary functions 𝑓, 𝑔 ∈ 𝐻(Ω).
The second identity in (ii) is a particular case of the first identity with 𝑔 = 1.

Theorem 2.1. Let Ω be a Runge domain in C𝑁 , which is polystar with respect to the origin.

(i) The space 𝐻(Ω) with the multiplication * is an associative and commutative topological

algebra.

(ii) The algebra (𝐻(Ω), *) has no divisors of zero.

Proof. (i): The mapping (𝑓, 𝑔) ↦→ 𝑓 * 𝑔 from 𝐻(Ω) ×𝐻(Ω) into 𝐻(Ω) is bilinear. Lemma 2.2
implies its continuity. It is clear that the multiplication * is commutative. The associativity of
multiplication * is implied by Lemma 2.4, its continuity and the density of C[𝑧] in 𝐻(Ω).
(ii): We choose 𝑟 > 0 such that 𝐷𝑁(𝑟) ⊂ Ω. Let

𝑓, 𝑔 ∈ 𝐻(Ω), 𝑓 =
∑︁
𝛼∈N𝑁

0

𝑏𝛼𝑓𝛼, 𝑔 =
∑︁
𝛼∈N𝑁

0

𝑐𝛼𝑓𝛼 in 𝐷𝑁(𝑟).

By Lemma 2.4 we have

𝑓 * 𝑔 =
∑︁
𝛾∈N𝑁

0

𝑎𝛾𝑓𝛾, where 𝑎𝛾 =
∑︁

0⩽𝛼⩽𝛾

𝑏𝛼𝑐𝛾−𝛼, 𝛾 ∈ N𝑁
0 ,
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and the series for 𝑓 * 𝑔 converges in 𝐻(𝐷𝑁(𝑟)). If 𝑓 * 𝑔 = 0 in 𝐻(Ω), then all coefficients 𝑎𝛾
vanish. This yields that one of multi–sequences 𝑏 and 𝑐 is zero.

For each function 𝑔 ∈ 𝐻(Ω) we introduce the operator

𝑆𝑔(𝑓) := 𝑓 * 𝑔, 𝑓 ∈ 𝐻(Ω).

It is linear and due to Lemma 2.2 it is continuous in 𝐻(Ω).

Corollary 2.1. For each non–zero function 𝑔 ∈ 𝐻(Ω) the operator 𝑆𝑔 : 𝐻(Ω) → 𝐻(Ω) is

injective.

By the symbol 𝒦(𝒥 ) we denote the commutant of set 𝒥 = {𝐽𝑘 | 𝑘 ∈ 𝑃𝑁} in the algebra of
all linear continuous operators 𝐻(Ω) with composition of operators as multiplication; 𝒦(𝒥 ) is
its subalgebra.

Theorem 2.2. Let Ω be a Runge domain in C𝑁 , which is polystar with respect to the origin.

(i) If 𝐴 ∈ 𝒦(𝒥 ), then there exists a unique function 𝑔 ∈ 𝐻(Ω), for which 𝐴 = 𝑆𝑔.

(ii) 𝑆𝑔 ∈ 𝒦(𝒥 ) for each function 𝑔 ∈ 𝐻(Ω).

Proof. The second part of theorem is implied by Lemmas 2.2 and 2.4.
(i): Let 𝐴 ∈ 𝒦(𝒥 ). We take 𝑔 := 𝐴(1). It is sufficient to show that 𝐴(𝑓𝛼) = 𝑓𝛼 * 𝑔 for each

𝛼 ∈ N𝑁
0 . Since 𝑓𝛼 = 𝐽𝛼(1), we have the identities

𝐴(𝑓𝛼) = 𝐴(𝐽𝛼(1)) = 𝐽𝛼(𝐴(1)) = 𝐽𝛼(1 * 𝑔) = 𝑓𝛼 * 𝑔.
The uniqueness of function 𝑔 is due to the identity 1 * ℎ = ℎ for all ℎ ∈ 𝐻(Ω).

Remark 2.1. Each domain 𝐺 = 𝐺1×· · ·×𝐺𝑁 , where 𝐺𝑘, 1 ⩽ 𝑘 ⩽ 𝑁 , are simply–connected

domains in C, is a Runge domain [7, Ch. 1, Sect. 3]. Each complete Reinhardt domain and

each convex domain in C𝑁 are also Runge domains [1, Ch. IV, Sect. 24, Subsect. 8, 9].

3. Isomorphism between space 𝐻(Ω) and commutant

Let 𝐶𝑜(Ω) be the set of all compact subsets in Ω, and ℬ(𝐻(Ω)) be the set of all subsets in
𝐻(Ω). By 𝒦(𝒥 )𝑏 we denote the space 𝒦(𝒥 ) equipped with the topology of bounded conver-
gence. It is defined by the family of pre–norms

𝑝𝑄,𝐵(𝐴) := sup
𝑓∈𝐵

sup
𝑧∈𝑄

|𝐴(𝑓)(𝑧)|, 𝐴 ∈ 𝒦(𝒥 ), 𝑄 ∈ 𝐶𝑜(Ω), 𝐵 ∈ ℬ(𝐻(Ω)).

Theorem 3.1. Let Ω be a Runge domain in C𝑁 , which is polystar with respect to the origin.

The mapping 𝜒(𝑔) := 𝑆𝑔 is a topological isomoprhism of the space 𝐻(Ω) onto 𝒦(𝒥 )𝑏 and is an

isomorphism of the algebra (𝐻(Ω), *) onto the algebra 𝒦(𝒥 ).

Proof. By Theorem 2.2, the mapping 𝜒 : 𝐻(Ω) → 𝒦(𝒥 ) is bijective. It is clear that 𝜒 is linear.
For 𝑄 ∈ 𝐶𝑜(Ω) we choose 𝜀 > 0, for which 𝑄(𝜀) = 𝑄+𝐷𝑁(𝜀) ⊂ Ω, and 𝐶 > 0 by Lemma 2.2.
For 𝐵 ∈ ℬ(𝐻(Ω)), 𝑔 ∈ 𝐻(Ω) we have

𝑝𝑄,𝐵(𝑆𝑔) = sup
𝑓∈𝐵

sup
𝑧∈𝑄

|(𝑓 * 𝑔)(𝑧)| ⩽ 𝐶 sup
𝑓∈𝐵

(𝑝𝑄(𝑓)𝑝𝑄(𝜀)(𝑔)) = 𝐶1𝑝𝑄(𝜀)(𝑔),

where 𝐶1 := 𝐶 sup
𝑓∈𝐵

𝑝𝑄(𝑓) < +∞. Hence, the linear mapping 𝜒 is continuous from 𝐻(Ω) into

𝒦(𝒥 )𝑏.
Since for each compact set 𝑄 in Ω we have

𝑝𝑄(𝑔) = sup
𝑧∈𝑄

|𝑔(𝑧)| = sup
𝑧∈𝑄

|(1 * 𝑔)(𝑧)| = 𝑝𝑄,𝐵(𝑆𝑔)
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for all 𝑔 ∈ 𝐻(Ω), where 𝐵 = {1} ∈ ℬ(𝐻(Ω)), the mapping 𝜒−1 is contiunous from 𝒦(𝒥 )𝑏 into
𝐻(Ω).
Since 𝜒(𝑓𝛼) = 𝐽𝛼 for each 𝛼 ∈ N𝑁

0 , for all polynomials 𝑔, ℎ the identity 𝜒(𝑔 * ℎ) = 𝑆𝑔𝑆ℎ

holds. Due to the continuity of multiplication * from 𝐻(Ω)×𝐻(Ω) into 𝐻(Ω), the continuity
of 𝜒 and 𝜒−1 and the density of C[𝑧] in 𝐻(Ω), the identity 𝜒(𝑔 * ℎ) = 𝑆𝑔𝑆ℎ holds also for all
functions 𝑔, ℎ ∈ 𝐻(Ω).

Let C[𝒥 ] be the set of all polynomials of operators 𝐽𝑘, 𝑘 ∈ 𝑃𝑁 , that is, the set of operators
of form ∑︁

|𝛼|⩽𝑛

𝑏𝛼𝐽
𝛼, 𝑏𝛼 ∈ C, 𝑛 ∈ N0.

Corollary 3.1. Let Ω be a Runge domain in C𝑁 , which is polystar with respect to the origin.

The set C[𝒥 ] is dense in 𝒦(𝒥 )𝑏.

In the terminology of paper [9] Corollary 3.1 means that the commutant 𝒦(𝒥 ) is minimal.

4. Criterion of invertibility of element

in algebra (𝐻(Ω), *) and Duhamel operator

For 𝑧 ∈ C𝑁 , 𝜏 ⊂ 𝑃𝑁 , 𝜏 ̸= ∅, and 𝑧 ∈ C𝑁 by |𝑧|(𝜏) we denote the point [0,+∞)card 𝜏 obtained
from (|𝑧1|, . . . , |𝑧𝑁 |) by omitting the coordinates |𝑧𝑗|, 𝑗 ∈ 𝑃𝑁 ∖ 𝜏 , and preserving the order of
others.
The next result is a multidimensional analogue of [11, Sect. 1, Thm.].

Lemma 4.1. Let Ω be a Runge domain in C𝑁 , which is polystar with respect to the origin.

If ℎ ∈ 𝐻(Ω), ℎ(0) = 0, then the function 1− ℎ is invertible in the algebra (𝐻(Ω), *).
Proof. We let

ℎ[0] := 1, ℎ[𝑛] := ℎ[𝑛−1] * ℎ, 𝑛 ∈ N.

We fix a compact set 𝑄 ⊂ Ω, which is polystar with respect to the origin. Let

𝑀 := max

{︂
sup
𝑧∈𝑄

|𝜕𝛼ℎ(𝑧)|
⃒⃒⃒
0 ⩽ 𝛼𝑘 ⩽ 1, 𝑘 ∈ 𝑃𝑁 , 𝛼 ∈ N𝑁

0

}︂
.

By Lemma 2.1 for 𝑧 ∈ 𝑄 we have

|ℎ[2](𝑧)| ⩽ 𝑀2
∑︁
𝜎⫋𝑃𝑁

∏︁
𝑘∈𝑃𝑁∖𝜎

|𝑧𝑘| ⩽ 𝑀2(2𝑁 − 1)
∏︁
𝑘∈𝑃𝑁

(1 + |𝑧𝑘|).

Let us show that for all 𝑛 ⩾ 2, 𝑧 ∈ 𝑄 the identity

|ℎ[𝑛](𝑧)| ⩽ 𝑀𝑛(2𝑁 − 1)𝑛−1

(𝑛− 1)!

∏︁
𝑘∈𝑃𝑁

(1 + |𝑧𝑘|)𝑛−1 (4.1)

holds. For 𝑛 = 2 this estimate holds. Suppose that it holds for some 𝑛 ⩾ 2. Then by Lemma 2.1

|ℎ[𝑛+1](𝑧)| ⩽
∑︁
𝜎⫋𝑃𝑁

⃒⃒⃒⃒
⃒⃒⃒ ∫︁
Π(𝑧(𝑃𝑁∖𝜎))

𝜕1(𝑃𝑁∖𝜎)ℎ(𝑧 − 𝑡𝜎,𝑧)ℎ
[𝑛](𝑡𝜎,𝑧)𝑑𝑡(𝑃𝑁 ∖ 𝜎)

⃒⃒⃒⃒
⃒⃒⃒

⩽
𝑀𝑛+1(2𝑁 − 1)𝑛−1

(𝑛− 1)!

∑︁
𝜎⫋𝑃𝑁

∫︁
Π(|𝑧|(𝑃𝑁∖𝜎))

∏︁
𝑘∈𝑃𝑁

(1 + 𝑟𝑘)
𝑛−1𝑑𝑟(𝑃𝑁 ∖ 𝜎)

⩽
𝑀𝑛+1(2𝑁 − 1)𝑛

𝑛!

∏︁
𝑘∈𝑃𝑁

(1 + |𝑧𝑘|)𝑛.
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We let 𝑑 := sup
{︁
|𝑧𝑘|

⃒⃒⃒
𝑧 ∈ 𝑄, 𝑘 ∈ 𝑃𝑁

}︁
. It follows from the estimates (4.1) that for each

𝑛 ⩾ 2

sup
𝑧∈𝑄

|ℎ[𝑛](𝑧)| ⩽ 𝑀𝑛(2𝑁 − 1)𝑛−1(1 + 𝑑)𝑁𝑛

(𝑛− 1)!
.

By [2, Lm. 3] the family of all polystar with respect to the origin compact sets in Ω forms a

fundamental family of compact subsets in Ω. Hence, the series
∞∑︀
𝑛=0

ℎ[𝑛] converges absolutely in

𝐻(Ω) to some function 𝑣 ∈ 𝐻(Ω). At the same time, (1− ℎ) * 𝑣 = 1.

Theorem 4.1. Let Ω be a Runge domain C𝑁 , which is polystar with respect to the origin,

𝑔 ∈ 𝐻(Ω). The following statements are equivalent.

(i) The operator 𝑆𝑔 : 𝐻(Ω) → 𝐻(Ω) is invertible.

(ii) The element 𝑔 is invertible in the algebra (𝐻(Ω), *).
(iii) 𝑔(0) ̸= 0.

Proof. The implication (iii)⇒(ii) is true by Lemma 4.1.
(ii)⇒(i): Let 𝑔 * ℎ = ℎ * 𝑔 = 1, ℎ ∈ 𝐻(Ω). By Theorem 3.1

𝑆1 = 𝑆𝑔𝑆ℎ = 𝑆ℎ𝑆𝑔.

Since 𝑆1 is the identity operator, we see that - 𝑆ℎ is the inverse operator for 𝑆𝑔.
(i)⇒(iii): Suppose that 𝑔(0) = 0. By Lemma 2.1

𝑆𝑔(𝑓)(0) = 0

for each function 𝑓 ∈ 𝐻(Ω). Hence, 𝑆𝑔 : 𝐻(Ω) → 𝐻(Ω) is not surjective and therefore, is not
bijective.

Corollary 4.1. Let Ω be a Runge domain in C𝑁 , which is polystar with respect to the origin.

The algebra (𝐻(Ω), *) is local. Its only maximal ideal is the set of all its *–non–invertible
elements.

A similar result for the Hardy space in a polydisk was obtained by another method in the
paper [10, Cor. 3]. In [10] it was proved via considering an appropriate space of functions
with values in the same Banach space with the number of variables less by one and subsequent
reduction to the one–dimensional situation.

5. Corollaries for dual situation

We consider the dual situation, when the domain Ω is in addition convex. We fix a sequence of
convex compact sets 𝑄𝑛, 𝑛 ∈ N, in Ω such that 𝑄𝑛 ⊂ int𝑄𝑛+1 for each 𝑛 ∈ N and Ω =

⋃︀
𝑛∈N

𝑄𝑛;

here int𝑀 denotes the interior of a set 𝑀 ⊂ C𝑁 in C𝑁 . Let

𝐻𝑛(𝑧) := sup
𝑡∈𝑄𝑛

Re⟨𝑧, 𝑡⟩, 𝑧 ∈ C𝑁 ,

be the complex–valued support function of 𝑄𝑛, 𝑛 ∈ N; here ⟨𝑧, 𝑡⟩ :=
𝑁∑︀
𝑘=1

𝑧𝑘𝑡𝑘. We define the

weighted space 𝑃 (Ω) of entire in C𝑁 functions

𝑃 (Ω) :=
⋃︁
𝑛∈N

𝑃 (𝑄𝑛),

where

𝑃 (𝑄𝑛) :=

{︂
𝑓 ∈ 𝐻(C𝑁)

⃒⃒⃒
‖𝑓‖𝑛 := sup

𝑧∈C𝑁

|𝑓(𝑧)|
exp(𝐻𝑛(𝑧))

< +∞
}︂
, 𝑛 ∈ N.
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It is equipped with the topology of inductive limit of sequence of Banach spaces (𝑃 (𝑄𝑛), ‖ ·‖𝑛),
𝑛 ∈ N, with respect to their embeddings into 𝑃 (Ω). The space 𝑃 (Ω) is contained in C[𝑧].
The Laplace transform

ℱ(𝜈)(𝑧) := 𝜈𝑡(𝑒
⟨𝑧,𝑡⟩), 𝜈 ∈ 𝐻(Ω)′, 𝑧 ∈ C𝑁 ,

is a topological isomorphism of strong dual space for 𝐻(Ω) onto 𝑃 (Ω) [8, Thm. 4.5.3]. The
bilinear form

(ℎ, 𝑓) ↦→ ℱ−1(𝑓)(ℎ), ℎ ∈ 𝐻(Ω), 𝑓 ∈ 𝑃 (Ω),

establishes the duality between 𝐻(Ω) and 𝑃 (Ω). According to [2], the operators of partial
backward shift

𝐷𝑘,0(𝑓)(𝑧) :=
𝑓(𝑧)− 𝑓(𝑧1, . . . , 𝑧𝑘−1, 0, 𝑧𝑘+1, . . . , 𝑧𝑁)

𝑧𝑘
, 𝑓 ∈ 𝑃 (Ω), 𝑘 ∈ 𝑃𝑁 ,

linearly and continuously map 𝑃 (Ω) into 𝑃 (Ω). For a functional 𝜙 ∈ 𝑃 (Ω)′ we let

𝐵𝜙(𝑓)(𝑧) := 𝜙(𝑇𝑧(𝑓)), 𝑧 ∈ C𝑁 , 𝑓 ∈ 𝑃 (Ω).

The operator 𝐵𝜙 is linear and continuous in 𝑃 (Ω), the set {𝐵𝜙 |𝜙 ∈ 𝑃 (Ω)′} is a commutant
of the system {𝐷𝑘,0 |𝑘 ∈ 𝑃𝑁} in the algebra of all linear continuous operators in 𝑃 (Ω) [2];
in the present situation the latter also implied by Theorem 2.2. Let ℱ ′ : 𝑃 (Ω)′ → 𝐻(Ω) be
the mapping adjoint to ℱ : 𝐻(Ω)′ → 𝑃 (Ω) with respect to the dual pairs (𝐻(Ω)′, 𝐻(Ω)) and
(𝑃 (Ω), 𝑃 (Ω)′). We note that 𝜙(1) = ℱ ′(𝜙)(0) for each functional 𝜙 ∈ 𝑃 (Ω)′.

Lemma 5.1. Let Ω be a convex domain in C𝑁 , which is polystar with respect to the origin.

(i) For 𝑔 ∈ 𝐻(Ω), the adjoint operator for the operator 𝑆𝑔 with respect to the dual pair

(𝐻(Ω), 𝑃 (Ω)) is the operator 𝐵𝜙 for 𝜙 = (ℱ ′)−1(𝑔).
(ii) For 𝑘 ∈ 𝑃𝑁 , the adjoint operator for the operator

𝐽𝑘 : 𝐻(Ω) → 𝐻(Ω)

with respect to the dual pair (𝐻(Ω), 𝑃 (Ω)) is the operator

𝐷𝑘,0 : 𝑃 (Ω) → 𝑃 (Ω).

Proof. Statement (i) was proved in [2, Cor. 4], while (ii) is a particular case of (i) for 𝑔(𝑡) = 𝑡𝑘;
then (ℱ ′)−1(𝑔)(𝑓) = 𝜕𝑓

𝜕𝑧𝑘
(0).

Theorem 4.1 and Lemma 5.1 imply the following statement.

Theorem 5.1. Let Ω be a convex domain in C𝑁 , which is polystar with respect to the origin,

𝜙 ∈ 𝑃 (Ω)′. The operator 𝐵𝜙 is invertible in 𝑃 (Ω) if and only if 𝜙(1) ̸= 0.

BIBLIOGRAPHY

1. V.S. Vladimirov.Methods of theory of functions of many complex variables. Nauka, Moscow (1964).
(in Russian).

2. P.A. Ivanov, S.N. Melikhov. Many–dimensional Duhamel product in the space of holo-

morphic functions and backward shift operators // Math. Notes 113:5, 650–662 (2023).
https://doi.org/10.1134/S000143462305005X

3. M.T. Karaev. Duhamel algebras and applications // Funct. Anal. Appl. 52:1, 1–8 (2018).
https://doi.org/10.1007/s10688-018-0201-z

4. Yu.A. Kiryutenko. Invertibility of a Volterra operator in a space of analytic functions // Math.
Notes 35:6, 418–422 (1984). https://doi.org/10.1007/BF01139943

5. A.I. Markushevich. Theory of analytic functions. V. 1. Nauka, Moscow (1967). (in Russian).
6. I. Raichinov. On linear operators commuting with integration // in ”Mathematical Analysis and

Applications”, V. 2. Rostov State Univ. Publ., Rostov–on–Don, 63–72 (1970).

https://doi.org/10.1134/S000143462305005X
https://doi.org/10.1007/s10688-018-0201-z
https://doi.org/10.1007/BF01139943


36 P.A. IVANOV, S.N. MELIKHOV

7. B.A. Fuks. Special chapters in the theory of analytic functions of several complex variables. Fiz-
matgiz, Moscow (1963). [Amer. Math. Soc. Providence, RI (1965).]
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