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SPECTRAL AND FUNCTIONAL INEQUALITIES
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Abstract. We obtain a number of spectral and functional inequalities related to
Schrödinger operators defined on antisymmetric functions. Among them are Lieb —
Thirring and CLR inequalities. Besides, we find new constants for the Sobolev and the
Gagliardo — Nirenberg inequalities restricted to antisymmetric functions.
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1. Introduction

Lieb — Thirring (LTh) and Cwikel — Lieb — Rozenblum (CLR) inequalities have important
applications in mathematical physics, analysis, dynamical systems and attractors, to mention
a few. A current state of art and many aspects of the theory of such inequalities is presented in
the recent book [8]. We mention here the celebrated paper by Lieb and Thirring [14], where such
inequalities were studied for the questions of stability of matter. The famous CLR inequalities
were obtained in the papers [1], [13], [15] by Cwikel, Lieb and Rosenblum.

Let ℋ be a Schrödinger operator in 𝐿2(R𝑛)

ℋ = −∆− 𝑉, 𝑉 ⩾ 0, (1.1)

and let {−𝜆𝑘} be the negative eigenvalues of the operator ℋ counted with their multiplicities.
Assuming that the electric potential 𝑉 is an element of 𝐿𝛾+𝑛/2(R𝑛), 𝛾 ⩾ 0, we have

Trℋ𝛾
− = Tr(−∆− 𝑉 )𝛾− =

∑︁
𝑘

𝜆𝛾𝑘 ⩽ 𝐿𝛾,𝑛

∫︁
R𝑛

𝑉 𝛾+𝑛/2 𝑑𝑥, (1.2)

where 𝑠− = −𝑠 if 𝑠 < 0 and 𝑠− = 0 if 𝑠 ⩾ 0.
If 𝛾 = 0, the inequality (1.2) is known as CLR inequality and for 𝛾 > 0 as LTh inequality. It

is known that the constants in (1.2) are finite for⎧⎪⎪⎨⎪⎪⎩
𝛾 ⩾

1

2
if 𝑛 = 1,

𝛾 > 0 if 𝑛 = 2,

𝛾 ⩾ 0 if 𝑛 ⩾ 3.

(1.3)
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The constants 𝐿𝛾,𝑛 are usually compared with the so–called semiclassical constant

𝐿cl
𝛾,𝑛 =

1

(2𝜋)𝑛

∫︁
R𝑛

(1− |𝜉|2)𝛾+ 𝑑𝜉 =
Γ(𝛾 + 1)

(4𝜋)
𝑛
2Γ(𝛾 + 𝑛

2
+ 1)

. (1.4)

Sharp constant in (1.2) are known only for 𝛾 = 1
2
, 𝑑 = 1, where 𝐿 1

2
,1 = 1

2
= 2𝐿cl

1
2
,1
and 𝛾 ⩾ 3

2
,

𝑛 ⩾ 1, where 𝐿𝛾,𝑛 = 𝐿cl
𝛾,𝑛.

Obviously the inequalities (1.2) imply the inequalities on the lowest eigenvalue and thus there
are constants 𝐿1

𝛾,𝑛 such that

(inf spec (−∆− 𝑉 ))𝛾− ⩽ 𝐿1
𝛾,𝑛

∫︁
R𝑛

𝑉 𝛾+𝑛
2 𝑑𝑥. (1.5)

Clearly we have 𝐿1
𝛾,𝑛 ⩽ 𝐿𝛾,𝑛. In [14] the authors made a conjecture (that is still open in the

most important cases) that the sharp values of 𝐿𝛾,𝑛 coincide with the values 𝐿1
𝛾,𝑛. In the cases

where the sharp constants are found, this conjecture holds true.
One of the aims of this paper is to obtain better constants in the inequality (1.2) for

Schrödinger operators restricted to antisymmetric functions. In this case one assumes that
the potential 𝑉 is symmetric. It is expected that such constants will be a lot better since the
operator (1.1) is defined in a smaller class of functions. In the paper [9] the authors obtained
the inequality (1.2) for 𝛾 = 0 with better constant for antisymmetric functions.

Let 𝑁 and 𝑑 be natural numbers. We consider 𝑥 = (𝑥1, . . . , 𝑥𝑁) ∈ R𝑑𝑁 , where 𝑥𝑖 =
(𝑥𝑖1, . . . , 𝑥𝑖𝑑) ∈ R𝑑 for all 1 ⩽ 𝑖 ⩽ 𝑁. Every function 𝑢 defined on R𝑑𝑁 we call antisymmetric
hereafter, if for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁 and 𝑥1, . . . , 𝑥𝑁 ∈ R𝑑

𝑢(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗, . . . , 𝑥𝑁) = −𝑢(𝑥1, . . . , 𝑥𝑗, . . . , 𝑥𝑖, . . . , 𝑥𝑁) (1.6)

and symmetric if

𝑢(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗, . . . , 𝑥𝑁) = 𝑢(𝑥1, . . . , 𝑥𝑗, . . . , 𝑥𝑖, . . . , 𝑥𝑁). (1.7)

We shall use the notations 𝐿2
𝐴(R

𝑑𝑁), 𝐻1
𝐴(R

𝑑𝑁) and 𝐻2
𝐴(R

𝑑𝑁) for subclasses of antisymmetric
functions from 𝐿2(R𝑑𝑁) and Sobolev classes 𝐻1(R𝑑𝑁) and 𝐻2(R𝑑𝑁) respectively.
We denote by −∆𝑎𝑠 the Laplacian in 𝐿2(R𝑑𝑁) restricted to the antisymmetric functions and

let

ℋ𝑎𝑠 = −∆𝑎𝑠 − 𝑉

be the respected Schrödinger operator.

Theorem 1.1. Let 𝑑 = 1 and 𝑉 ⩾ 0 be a symmetric potential such that 𝑉 ∈ 𝐿𝛾+𝑁
2 (R𝑁).

Then for any 𝛾 satisfying the conditions (1.3) we have

Tr(−∆− 𝑉 )𝛾− ⩽
𝐿𝛾,𝑁

𝑁 !

∫︁
R𝑁

𝑉 𝛾+𝑁
2 𝑑𝑥. (1.8)

The proof of this result is given in Section 2 and it is based on the recents papers [11],
[12], [16], where the authors considered properties of antisymmetric functions via properties of
Vandermond determinants. In particular, the authors also obtained some Hardy inequalities
which allow us in Section 3 to study the so–called Hardy — Lieb — Thirring inequalities, see
[5], [6], [7], [10].

It was obtained in [12] that for any 𝑢 ∈ 𝐻1
𝐴(R

𝑑𝑁) we have∫︁
R𝑑𝑁

|∇𝑢(𝑥)|2𝑑𝑥 ⩾ 𝐻𝐴(𝑑𝑁)

∫︁
R𝑑𝑁

|𝑢(𝑥)|2

|𝑥|2
𝑑𝑥. (1.9)
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The constant 𝐻𝐴(𝑑𝑁) is much larger than the classical Hardy constant (𝑑𝑁−2)2

4
and is defined

in (3.1). Besides, the inequality (1.9) holds even for 𝑑𝑁 = 2.
Let us denote by H𝑎𝑠 the Laplacian −∆𝑎𝑠 with subtracted Hardy term

H𝑎𝑠 = −∆𝑎𝑠 −𝐻𝐴(𝑑𝑁)
1

|𝑥|2
. (1.10)

Theorem 1.2. Let 𝑉 ⩾ 0 be a symmetric potential such that 𝑉 ∈ 𝐿𝛾+ 𝑑𝑁+𝛼
2 (R𝑑𝑁), where

𝑑𝑁 ⩾ 3, 𝛾 > 0, and 𝛼 ⩾ 0. Then there is a constant 𝐶𝛾,𝑑𝑁,𝛼 independent of 𝑉 such that

Tr (H𝑎𝑠 − 𝑉 )𝛾− ⩽ 𝐶𝛾,𝑑𝑁,𝛼

∫︁
R𝑑𝑁

𝑉 (𝑥)𝛾+
𝑑𝑁+𝛼

2 |𝑥|𝛼 𝑑𝑥. (1.11)

In the special case 𝛼 = 0 we have

Corollary 1.1. Let 𝑑𝑁 ⩾ 3 and 𝛾 > 0. Then we have the Hardy — Lieb — Thirring
inequality

Tr (H𝑎𝑠 − 𝑉 )𝛾− ⩽ 𝐶𝛾,𝑑𝑁,0

∫︁
R𝑛

𝑉 (𝑥)𝛾+
𝑑𝑁
2 𝑑𝑥.

We note that the sharp values of the constant 𝐶𝛾,𝑑𝑁,𝛼 are unknown even in the general case. In
our case there is an additional complication finding them for 𝑑 > 1 due to the multiplicity of the
minimal eigenvalue of the Laplace — Beltrami operator in 𝐿2(R𝑑𝑁) restricted to antisymmetric
functions.

Finally in Section 4 we shall obtain versions of Sobolev and Gagliardo — Nirenberg in-
equalities for antisymmetric function with applications to bounds of the lowest eigenvalues of
Schrödinger operators.

2. CLR and LTh inequalities for antisymmetric functions

We begin with presenting some results obtained in [11], [12], [16].

2.1. Vandermonde determinant. Let us consider the unitary monomials of 𝑑 variables

lexicographically, i.e. for 𝑡 ∈ R𝑑 denote 𝜙
(𝑑)
1 (𝑡) = 1, 𝜙

(𝑑)
2 (𝑡) = 𝑡1 and 𝜙

(𝑑)
𝑑+1(𝑡) = 𝑡𝑑, 𝜙

(𝑑)
𝑑+2(𝑡) = 𝑡21

and so on.
Consider the determinant

𝜓
(𝑑)
𝑁 (𝑥1, . . . , 𝑥𝑁) =

⃒⃒⃒⃒
⃒⃒⃒𝜙

(𝑑)
1 (𝑥1) · · · 𝜙

(𝑑)
1 (𝑥𝑁)

...
. . .

...

𝜙
(𝑑)
𝑁 (𝑥1) · · · 𝜙

(𝑑)
𝑁 (𝑥𝑁)

⃒⃒⃒⃒
⃒⃒⃒ . (2.1)

We denote by 𝒱𝑑(𝑁) the degree of 𝜓
(𝑑)
𝑁 that is the minimal degree of the antisymmetric poly-

nomial. Clearly the total degree of 𝜓
(𝑑)
𝑁 equals the sum of degrees in every row. Note that

the function 𝜓
(𝑑)
𝑁 (𝑥1, . . . , 𝑥𝑁) is an antisymmetric homogeneous harmonic polynomial. The re-

striction of such polynomial to S𝑑𝑁 is the eigenfunction of the Laplace — Beltrami operator in
𝐿2(S𝑑𝑁) whose respective eigenvalue equals

𝜇𝑑(𝑁) = 𝒱𝑑(𝑁)(𝒱𝑑(𝑁) + 𝑑𝑁 − 2). (2.2)

Note, that finding the multiplicity of the eigenvalue 𝜇𝑑(𝑁) is not an easy task for 𝑑 > 1. In
[16] the author was able to find an algorithm for their calculation and in [12] the asymptotic
behaviour for the value 𝒱𝑑(𝑁) as 𝑁 → ∞ for a fixed 𝑑 was obtained, namely,

𝒱𝑑(𝑁) =
𝑑

𝑑+ 1
𝑑
√
𝑑!𝑁1+ 1

𝑑 − 𝑑

2
𝑁 +𝑂(𝑁1− 1

𝑑 ) as 𝑁 → ∞.
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The easier case 𝑑 = 1 was considered in [11]. Then

𝜓
(1)
𝑁 (𝑥1, . . . , 𝑥𝑁) =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

1 1 1 . . . 1
𝑥1 𝑥2 𝑥3 . . . 𝑥𝑁
𝑥21 𝑥22 𝑥23 . . . 𝑥2𝑁
. . . . . . . . . . . . . . .
𝑥𝑁−1
1 𝑥𝑁−1

2 𝑥𝑁−1
3 . . . 𝑥𝑁−1

𝑁

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ . (2.3)

The degree of the polynomial 𝜓
(1)
𝑁 equals 𝒱1(𝑁) = 𝑁(𝑁−1)

2
and therefore

𝜇 = 𝜇1(𝑁) =
𝑁(𝑁 − 1)(𝑁2 +𝑁 − 4)

4
, (2.4)

the multiplicity of which equals 1.
If 𝑢 is antisymmetric, one can show that the equality 𝑥𝑖 = 𝑥𝑗 implies 𝑢(𝑥) = 0. Thus for 𝑑 = 1

the space R𝑑𝑁 can be split into 𝑁 ! cones with zero boundary condition for every antisymmetric
function on it. But for arbitrary 𝑑 the analogous proposition holds. When studying zeros of
antisymmetric functions it was proved in [12] that for every antisymmetric 𝑢 the space R𝑑𝑁

can be split into 𝑁 ! parts, where 𝑢 vanishes on the boundary.
Let us consider the action of symmetric group 𝒮𝑁 on the space R𝑑𝑁 . For an arbitrary 𝑥 =

(𝑥1, . . . , 𝑥𝑁) ∈ R𝑑𝑁 (𝑥𝑗 ∈ R𝑑) and 𝜎 ∈ 𝒮𝑁 denote by 𝜎𝑥 = (𝑥𝜎(1), . . . , 𝑥𝜎(𝑁)) the permutation
of elements 𝑥.

The important fact, see [12], is the following statement.

Proposition 2.1. Let 𝑢 be an antisymmetric function on R𝑑𝑁 . For an arbitrary 𝑥 ∈ R𝑑𝑁

and 𝜎 ∈ 𝒮𝑁 , 𝜎 ̸= 𝑖𝑑, there is no continuous path Γ : [0, 1] → R𝑑𝑁 , such that Γ(0) = 𝑥,
Γ(1) = 𝜎𝑥 and 𝑢(Γ(𝑡)) ̸= 0 for all 𝑡 ∈ [0, 1].

This proposition implies

Corollary 2.1. The support of each function 𝑢 ∈ 𝐻1
𝐴(R

𝑑𝑁) can be split into 𝑁 ! parts such
that each part can be obtained from another by action of 𝒮𝑁 and 𝑢 satisfies the Dirichlet bound-
ary conditions on every part.

For 𝑑 = 1 we can consider 𝐸𝑁 =
{︀
𝑥 ∈ R𝑁 : 𝑥1 < 𝑥2 < . . . < 𝑥𝑁

}︀
. In this case the parts

from Corollary 2.1 are 𝜎𝐸𝑁 ∩ supp𝑢, 𝜎 ∈ 𝒮𝑁 , because if 𝑥𝑖 = 𝑥𝑗 for some 𝑖 and 𝑗, then 𝑢 = 0.

2.2. Proof of Theorem 1.1. The proof of Theorem 1.1 is based on the inequality (1.2) and
the geometrical properties of the nodal sets of antisymmetric functions given in Proposition
2.1.

Each 𝑢 ∈ 𝐻1
𝐴(R

𝑁) satisfies the Dirichlet boundary conditions at the boundary of each cone
𝜎𝐸𝑁 . Let 𝑉 ⩾ 0 be a symmetric function satisfying the conditions of Theorem 1.1 and let us
consider the Schrödinger operator ℋ(𝐸𝑁), the quadratic form of which equals∫︁

𝐸𝑁

(︀
|∇𝑢|2 − 𝑉 |𝑢|2

)︀
𝑑𝑥, 𝑢 ∈ 𝐻1

0 (𝐸𝑁).

The class of functions 𝐻1
𝐴(R

𝑁) restricted to 𝐸𝑁 coincides with 𝐻1
0 (𝐸𝑁) and can be extended

by zero outside 𝐸. At the same time each function 𝑢 ∈ 𝐻1
𝐴(R

𝑁) can be defined by its values
on 𝐸𝑁 in the unique way. Using the classical CLR and LTh inequalities for each 𝛾 and 𝑁 = 𝑛
satisfying (1.3), we obtain

Tr(∆𝑎𝑠 − 𝑉 )𝛾− = Trℋ𝑎𝑠(𝐸𝑁)
𝛾
− ⩽ 𝐿𝛾,𝑁

∫︁
𝐸𝑁

𝑉 𝛾+𝑁
2 𝑑𝑥 =

𝐿𝛾,𝑁

𝑁 !

∫︁
R𝑁

𝑉 𝛾+𝑁
2 𝑑𝑥,

where the constants 𝐿𝛾,𝑁 are defined in (1.2).
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3. Lieb — Thirring inequalities with subtracted Hardy term

In order to proof Theorem 1.2 we need to remind some auxiliary results.

3.1. Hardy inequality for antisymmetric functions. We first notice that the properties
of Vandermonde type determinants (2.1) in [12] are used in the proof of the following Hardy
inequality.

Proposition 3.1. Let 𝑢 ∈ 𝐻1
𝐴(R

𝑑𝑁). Then∫︁
R𝑑𝑁

|∇𝑢(𝑥)|2𝑑𝑥 ⩾ 𝐻𝐴(𝑑𝑁)

∫︁
R𝑑𝑁

|𝑢(𝑥)|2

|𝑥|2
𝑑𝑥,

where the constant 𝐻𝐴(𝑑𝑁) is sharp and equals

𝐻𝐴(𝑑𝑁) =
(𝑑𝑁 − 2)2

4
+ 𝒱𝑑(𝑁)(𝒱𝑑(𝑁) + 𝑑𝑁 − 2). (3.1)

Thus

𝐻𝐴(𝑑𝑁) =
(𝑑𝑁 − 2)2

4
+ 𝜇𝑑(𝑁),

where 𝜇𝑑(𝑁) is defined in (2.2) and (𝑑𝑁 − 2)2/4 is the standard Hardy constant that comes
from the radial part of the Laplacian in 𝐿2(R𝑑𝑁).

In the case 𝑑 = 1 and 𝑁 ⩾ 2 the above formula (3.1) becomes explicit, see [11],∫︁
R𝑁

|∇𝑢|2 𝑑𝑥 ⩾
(𝑁2 − 2)2

4

∫︁
R𝑁

|𝑢|2

|𝑥|2
𝑑𝑥, 𝑢 ∈ 𝐻1

𝐴(R
𝑁). (3.2)

Remark 1. Note that the standard constant in the Hardy inequality for functions in

𝐻1(R𝑑𝑁) equals (𝑑𝑁 − 2)2/4 ∼ (𝑑𝑁)2/4 as 𝑁 → ∞, while 𝐻𝐴(𝑑𝑁) ∼
(︁

𝑑
𝑑√
𝑑!

𝑑+1

)︁2
𝑁2+ 2

𝑑/4 ac-

cording to [12].

3.2. Ekholm — Frank inequalities. In [3], [4] Egorov and Kondrat’ev proved the so–
called weighted LTh inequalities, which say that for any 𝛾 > 0, 𝑁 ⩾ 2, 𝛼 ⩾ 0, and any 𝑉 ⩾ 0

satisfying 𝑉 ∈ 𝐿𝛾+𝑁+𝛼
2 (R𝑁 , |𝑥|𝛼𝑑𝑥), there is a constant 𝐶𝐸𝐾

𝛾,𝑁,𝛼 independent of 𝑉 such that

Tr(−∆− 𝑉 )𝛾− ⩽ 𝐶𝐸𝐾
𝛾,𝑁,𝛼

∫︁
R𝑁

𝑉 𝛾+𝑁+𝛼
2 |𝑥|𝛼𝑑𝑥.

In [5] and [6] Ekholm and Frank obtained a stronger result, where the authors were able to
subtract from the Laplacian the sharp Hardy term.

Proposition 3.2. Let 𝛾 > 0, 𝑁 ⩾ 3, 𝛼 ⩾ 0, then for any 𝑉 ⩾ 0 satisfying 𝑉 ∈
𝐿𝛾+𝑁+𝛼

2 (R𝑁 , |𝑥|𝛼𝑑𝑥) there is a constant 𝐶𝐸𝐹
𝛾,𝑁,𝛼 independent of 𝑉 such that

Tr

(︂
−∆− (𝑁 − 2)2

4
− 𝑉

)︂𝛾

−
⩽ 𝐶𝐸𝐹

𝛾,𝑁,𝛼

∫︁
R𝑁

𝑉 𝛾+𝑁+𝛼
2 |𝑥|𝛼𝑑𝑥. (3.3)

One of important ingredients of the proof of the inequality (3.3) was its one–dimensional
version.

Let us consider the operator in 𝐿2(R+), R+ = (0,∞), with the Dirichlet boundary condition
at zero

− 𝑑2

𝑑𝑟2
− 1

4𝑟2
− 𝑉 (𝑟).
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Assume 𝛾 > 0 and 𝛼 ⩾ 0 such that 𝛾 + 1+𝛼
2

⩾ 1. Then there is a constant 𝐶𝛾,𝛼 independent of
the potential 𝑉 ⩾ 0, such that

Tr

(︂
− 𝑑2

𝑑𝑟2
− 1

4𝑟2
− 𝑉 (𝑟)

)︂𝛾

−
⩽ 𝐶𝛾,𝛼

∞∫︁
0

𝑉 𝛾+ 1+𝛼
2 𝑟𝛼 𝑑𝑟. (3.4)

3.3. Proof of Theorem 1.2. We give a proof that generalises the approach suggested in
[5, 6]. Some other proofs of Hardy — Lieb — Thirring inequalities for fractional Schrödinger
operators were given in [7], [10].

We introduce the orthogonal projection 𝑃 in 𝐿2
𝐴(S

𝑑𝑁−1) on the subspace

𝒴𝜇 = {𝑌𝜇,ℓ}κℓ=1

defined by the spherical functions 𝑌𝜇,ℓ associated with the eigenvalue 𝜇𝑑(𝑁) given by (2.2), the
multiplicity of which equals κ, see [16]. Then

𝑃𝑢(𝑥) =
κ∑︁

ℓ=1

𝑢ℓ 𝑌𝜇,ℓ , 𝑥 ∈ R𝑑𝑁 ,

where 𝑢ℓ are the Fourier coefficients

𝑢ℓ = (𝑢, 𝑌𝜇,ℓ)𝐿2(S𝑑𝑁−1), 𝑢 ∈ 𝐿2
𝐴(R

𝑑𝑁).

By 𝑄 we respectively denote its orthogonal complement 𝑄 = I−𝑃 in 𝐿2
𝐴(R

𝑑𝑁). For any smooth
function 𝑢 we have

2Re (𝑃 𝑉 𝑄𝑢, 𝑢) ⩽ 2‖𝑉
1
2𝑄𝑢‖‖𝑉

1
2𝑃𝑢‖ ⩽ (𝑃𝑉 𝑃𝑢, 𝑢) + (𝑄𝑉 𝑄𝑢, 𝑢).

This implies

𝑃𝑉 𝑄+𝑄𝑉 𝑃 ⩽ 𝑃𝑉 𝑃 +𝑄𝑉 𝑄. (3.5)

Let H𝑎𝑠 be difined in (1.10). Using (3.5) we obtain

H𝑎𝑠 − 𝑉 =𝑃 (H𝑎𝑠 − 𝑉 )𝑃 +𝑄(H𝑎𝑠 − 𝑉 )𝑄− 𝑃𝑉 𝑄−𝑄𝑉 𝑃

⩾𝑃 (H𝑎𝑠 − 2𝑉 )𝑃 +𝑄 (H𝑎𝑠 − 2𝑉 )𝑄

and thus

Tr(H𝑎𝑠 − 𝑉 )𝛾− ⩽ Tr(𝑃 (H𝑎𝑠 − 2𝑉 )𝑃 )𝛾− + Tr(𝑄(H𝑎𝑠 − 2𝑉 )𝑄)𝛾−.

After introducing polar coordinates the quadratic form of the operator 𝑃H𝑎𝑠𝑃 becomes equal
to

(H𝑎𝑠𝑃𝑢, 𝑃𝑢) =

∫︁
R𝑑𝑁

(︂
|∇𝑃𝑢|2 −𝐻𝐴(𝑑𝑁)

1

|𝑥|2
|𝑃𝑢|2

)︂
𝑑𝑥

=
κ∑︁

ℓ=1

∞∫︁
0

(︂
|(𝑢ℓ)′𝑟|2 −

(𝑑𝑁 − 2)2

4 𝑟2
|𝑢ℓ|2

)︂
𝑟𝑑𝑁−1 𝑑𝑟,

(3.6)

where we used the action of the Laplace — Beltrami operator in 𝐿2(S𝑑𝑁−1) and the identity

𝐻𝐴(𝑑𝑁)− (𝑑𝑁 − 2)2

4
= 𝜇𝑑(𝑁).

Changing in (3.6) the functions 𝑢ℓ = 𝑣ℓ𝑟
1−𝑑𝑁

2 , we find

(H𝑎𝑠𝑃𝑢, 𝑃𝑢) =
κ∑︁

ℓ=1

∞∫︁
0

(︂
|(𝑣ℓ)′𝑟|2 −

1

4 𝑟2
|𝑣ℓ|2

)︂
𝑑𝑟 (3.7)
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implying that for each ℓ the operator

− 𝑑2

𝑑𝑟2
− (𝑑𝑁 − 2)2

4 𝑟2
in 𝐿2(R+, 𝑟

𝑑𝑁−1𝑑𝑟)

is unitary equivalent to

− 𝑑2

𝑑𝑟2
− 1

4 𝑟2
in 𝐿2(R+).

We define ̃︀𝑉 (𝑟, 𝜗) =
κ∑︁

𝑚=1

𝑉𝑚 𝑌𝜇,𝑚 =
κ∑︁

𝑚=1

(𝑉, 𝑌𝜇,𝑚)𝐿2(S𝑑𝑁−1) 𝑌𝜇,𝑚.

Then ∫︁
R𝑑𝑁

𝑉 |𝑃𝑢|2 ⩽
∞∫︁
0

(︃
κ∑︁

𝑚=1

𝑉 2
𝑚

)︃ 1
2 κ∑︁

ℓ=1

|𝑢ℓ|2 𝑟𝑑𝑁−1 𝑑𝑟 =

∞∫︁
0

(︃
κ∑︁

𝑚=1

𝑉 2
𝑚

)︃ 1
2 κ∑︁

ℓ=1

|𝑣ℓ|2 𝑑𝑟. (3.8)

Combining (3.6) and (3.8), we obtain

𝑃 (H𝑎𝑠 − 𝑉 )𝑃 ⩾
κ⨁︁

ℓ=1

⎛⎝− 𝑑2

𝑑𝑟2
− 1

4 𝑟2
−

(︃
κ∑︁

𝑚=1

𝑉 2
𝑚

)︃ 1
2

⎞⎠ .

Due to (3.4) with 𝛼 + 𝑑𝑁 − 1 instead of 𝛼 and Hölder’s inequality we arrive at

Tr(𝑃 (H𝑎𝑠 − 2𝑉 )𝑃 )𝛾− ⩽ 𝐶

∞∫︁
0

(︃
κ∑︁

𝑚=1

𝑉 2
𝑚

)︃ 𝛾
2
+ 𝑑𝑁+𝛼

4

𝑟𝛼+𝑑𝑁−1 𝑑𝑟

⩽ 𝐶

∞∫︁
0

⎛⎝ ∫︁
S𝑑𝑁−1

𝑉 2 𝑑𝜗

⎞⎠
𝛾
2
+ 𝑑𝑁+𝛼

4

𝑟𝛼+𝑑𝑁−1 𝑑𝑟

⩽
𝐶

|S𝑁−1|
2𝛾+𝑑𝑁+𝛼−4
2𝛾+𝑑𝑁+𝛼

∞∫︁
0

∫︁
S𝑑𝑁−1

𝑉 𝛾+ 𝑑𝑁+𝛼
2 𝑟𝛼+𝑑𝑁−1 𝑑𝜗𝑑𝑟

=
𝐶

|S𝑑𝑁−1|
2𝛾+𝑑𝑁+𝛼−4
2𝛾+𝑑𝑁+𝛼

∫︁
R𝑑𝑁

𝑉 𝛾+ 𝑑𝑁+𝛼
2 |𝑥|𝛼 𝑑𝑥.

(3.9)

Treating the operator 𝑄(H𝑎𝑠 − 2𝑉 )𝑄 we consider 𝜇̃ > 𝜇𝑑(𝑁) to be the minimal eigenvalue of
the antisymmetric Laplace — Beltrami operator restricted to 𝑄 (𝐿2

𝐴(S
𝑑𝑁−1)). If 0 < 𝑡 < 1,

then due to the Hardy inequality

−𝑄∆𝑎𝑠𝑄 = −𝑡𝑄∆𝑎𝑠𝑄 − (1− 𝑡)𝑄∆𝑎𝑠𝑄 ⩾ −𝑡𝑄∆𝑎𝑠𝑄+ (1− 𝑡)

(︂
(𝑑𝑁 − 2)2

4
+ ̃︀𝜇)︂𝑄 1

|𝑥|2
𝑄.

Therefore

𝑄(H𝑎𝑠 − 2𝑉 )𝑄 ⩾ 𝑡𝑄
(︀
−∆𝑎𝑠 − 𝑡−12𝑉

)︀
𝑄

+

(︂
(1− 𝑡)

(︂
(𝑑𝑁 − 2)2

4
+ ̃︀𝜇)︂− (𝑑𝑁 − 2)2

4
− 𝜇𝑑(𝑁)

)︂
𝑄

1

|𝑥|2
𝑄

and we now choose 𝑡 such that

(1− 𝑡)

(︂
(𝑑𝑁 − 2)2

4
+ ̃︀𝜇)︂− (𝑑𝑁 − 2)2

4
− 𝜇𝑑(𝑁) = 0.
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By using Proposition 3.2 and the variational principle we have

Tr (𝑄(H𝑎𝑠 − 2𝑉 )𝑄)𝛾− ⩽ 𝑡𝛾 Tr
(︀
𝑄(−∆𝑎𝑠 − 𝑡−12𝑉 )𝑄

)︀𝛾
−

⩽ 𝑡𝛾 Tr
(︀
(−∆𝑎𝑠 − 𝑡−12𝑉 )

)︀𝛾
−

⩽ 𝑡−
𝑑𝑁+𝛼

2 2𝛾+
𝑑𝑁+𝛼

2 𝐶

∫︁
R𝑑𝑁

𝑉 (𝑥)𝛾+
𝑑𝑁+𝛼

2 |𝑥|𝛼 𝑑𝑥.
(3.10)

Adding together the inequalities (3.9) and (3.10), we complete the proof.

4. Sobolev and Gagliardo — Nirenberg inequalities

In this section we obtain versions of two classical inequalities for functions from 𝐻1
𝐴(R

𝑑𝑁).

4.1. Sobolev inequalities. The classical Sobolev inequality (see [17]) states that for any
𝑢 ∈ 𝐻1(R𝑛), 𝑛 ⩾ 3, we have∫︁

R𝑛

|∇𝑢|2 𝑑𝑥 ⩾ 𝑆(𝑛)

⎛⎝∫︁
R𝑛

|𝑢|
2𝑛
𝑛−2 𝑑𝑥

⎞⎠𝑛−2
𝑛

, (4.1)

where 𝑆(𝑛) is the Sobolev constant

𝑆(𝑛) = 𝜋𝑛 (𝑛− 2)

(︃
Γ
(︀
𝑛
2

)︀
Γ(𝑛)

)︃ 2
𝑛

.

Remark 2. Note that the Sobolev inequality (4.1) holds for any 𝑢 ∈ 𝐻1
0 (Ω), Ω ⊂ R𝑛, with

the same constant 𝑆(𝑛).

Clearly when considering the class of functions from 𝐻1
𝐴(R

𝑑𝑁) we expect an improvement
of the constant 𝑆𝐴(𝑑𝑁) in (4.1). Indeed, in the paper [12] the authors obtained the following
result.

Theorem 4.1. For any 𝑢 ∈ 𝐻1
𝐴(R

𝑑𝑁), 𝑑𝑁 ⩾ 3, we have∫︁
R𝑑𝑁

|∇𝑢|2 𝑑𝑥 ⩾ 𝑆𝐴(𝑑𝑁)

⎛⎝ ∫︁
R𝑑𝑁

|𝑢|
2𝑑𝑁
𝑑𝑁−2 𝑑𝑥

⎞⎠ 𝑑𝑁−2
𝑑𝑁

, (4.2)

where the constant 𝑆𝐴(𝑑𝑁) equals

𝑆𝐴(𝑑𝑁) = (𝑁 !)
2

𝑑𝑁 𝑆(𝑑𝑁). (4.3)

Proof. The proof is simple and we present it here for completeness. Let 𝐸 be one of the cones
defined in Corollary 2.1. Then applying the classical Sobolev inequality to 𝑢 ∈ 𝐻1

0 (𝜎𝐸), where
𝜎 is a permutation from 𝒮𝑁 , we obtain∫︁

𝜎𝐸

|∇𝑢|2 𝑑𝑥 ⩾ 𝑆(𝑑𝑁)

⎛⎝∫︁
𝜎𝐸

|𝑢|
2𝑑𝑁
𝑑𝑁−2 𝑑𝑥

⎞⎠ 𝑑𝑁−2
𝑑𝑁

.

Note that due to the antisymmetry the integrals in the above inequalities are independent of
𝑁 ! cones 𝜎𝐸. Therefore∫︁

R𝑑𝑁

|∇𝑢|2 𝑑𝑥 = 𝑁 !

∫︁
𝐸

|∇𝑢|2 𝑑𝑥 ⩾ 𝑁 !𝑆(𝑑𝑁)

⎛⎝∫︁
𝐸

|𝑢|
2𝑑𝑁
𝑑𝑁−2 𝑑𝑥

⎞⎠ 𝑑𝑁−2
𝑑𝑁
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= 𝑁 !𝑆(𝑑𝑁)

⎛⎝(𝑁 !)−1

∫︁
R𝑑𝑁

|𝑢|
2𝑑𝑁
𝑑𝑁−2 𝑑𝑥

⎞⎠ 𝑑𝑁−2
𝑑𝑁

= (𝑁 !)
2

𝑑𝑁 𝑆(𝑑𝑁)

⎛⎝ ∫︁
R𝑑𝑁

|𝑢|
2𝑑𝑁
𝑑𝑁−2 𝑑𝑥

⎞⎠ 𝑑𝑁−2
𝑑𝑁

.

Corollary 4.1. Let 𝑉 ∈ 𝐿
𝑑𝑁
2 (R𝑑𝑁) be a symmetric function, 𝑉 ⩾ 0. Assume that⎛⎝ ∫︁

R𝑑𝑁

𝑉
𝑑𝑁
2 𝑑𝑥

⎞⎠ 2
𝑑𝑁

⩽ 𝑆𝐴(𝑑𝑁).

Then
spec(−∆𝑎𝑠 − 𝑉 )− = ∅.

Proof. We consider the quadratic form of the operator −∆𝑎𝑠 − 𝑉 , applying Hölder’s inequality
and using the Sobolev inequality (4.2) to find∫︁

R𝑑𝑁

(︀
|∇𝑢|2 − 𝑉 |𝑢|2

)︀
𝑑𝑥 ⩾

⎛⎜⎝𝑆𝐴(𝑑𝑁)−

⎛⎝ ∫︁
R𝑑𝑁

𝑉
𝑑𝑁
2 𝑑𝑥

⎞⎠ 2
𝑑𝑁

⎞⎟⎠
⎛⎝ ∫︁
R𝑑𝑁

|𝑢|
2𝑑𝑁
𝑑𝑁−2 𝑑𝑥

⎞⎠ 𝑑𝑁−2
𝑑𝑁

⩾ 0.

4.2. Gagliardo — Nirenberg interpolation inequality. Similarly we can find a better
constant in the classical Gagliardo — Nirenberg interpolation inequality that states⎛⎝∫︁

R𝑛

|∇𝑢|2𝑑𝑥

⎞⎠𝜃⎛⎝∫︁
R𝑛

|𝑢|2𝑑𝑥

⎞⎠1−𝜃

⩾ 𝑆(𝑞, 𝑛)

⎛⎝∫︁
R𝑛

|𝑢|𝑞𝑑𝑥

⎞⎠ 2
𝑞

. (4.4)

Here 𝑛 ⩾ 2, 𝑞 ∈
(︀
2, 2𝑛

𝑛−2

)︀
and 𝜃 ∈ (0, 1) satisfies the identity 𝜃(𝑛 − 2) + (1 − 𝜃)𝑛 = 2𝑛

𝑞
. The

constant 𝑆(𝑞, 𝑛) in (4.4) equals

𝑆(𝑞, 𝑛) = inf
0̸=𝑢∈𝐻1(R𝑛)

(︂∫︀
R𝑛

|∇𝑢|2𝑑𝑥
)︂𝜃 (︂∫︀

R𝑛

|𝑢|2𝑑𝑥
)︂1−𝜃

(︂∫︀
R𝑛

|𝑢|𝑞𝑑𝑥
)︂ 2

𝑞

. (4.5)

Remark 3. The sharp constant 𝑆(𝑞, 𝑛) are known that for some values (𝑞, 𝑛), see for exam-
ple [2]. However, it is known that the infimum in (4.5) is achieved and up to translation and
dilation such an infimum is a solution of the non–linear Euler — Lagrange equation

−∆𝑢− 𝜆|𝑢|𝑞−2𝑢 = −𝜇𝑢 in R𝑛.

It is also known that the minimiser in (4.4) is spherical symmetric. Therefore, the constant
𝑆(𝑞, 𝑛) can be computed by using numerical methods applied to solutions of one–dimensional
differential operator.

Remark 4. The inequality (4.4) holds for any 𝑢 ∈ 𝐻1
0 (Ω), Ω ⊂ R𝑛, with the same constant

𝑆(𝑞, 𝑛).

We now can obtain a version of the Gagliardo — Nirenberg inequality.
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Theorem 4.2. Let 𝑑,𝑁 ∈ N, 𝑁 ⩾ 2 and 𝑞 ∈
(︀
2, 2𝑑𝑁

𝑑𝑁−2

)︀
. Then for any 𝑢 ∈ 𝐻1

𝐴(R
𝑑𝑁) we

have ⎛⎝ ∫︁
R𝑑𝑁

|∇𝑢|2𝑑𝑥

⎞⎠𝜃⎛⎝ ∫︁
R𝑑𝑁

|𝑢|2𝑑𝑥

⎞⎠1−𝜃

⩾ 𝑆𝐴(𝑞, 𝑑𝑁)

⎛⎝ ∫︁
R𝑑𝑁

|𝑢|𝑞𝑑𝑥

⎞⎠ 2
𝑞

, (4.6)

where 𝜃 ∈ (0, 1) such that 𝜃(𝑑𝑁 − 2) + (1− 𝜃)𝑑𝑁 = 2𝑑𝑁
𝑞

and

𝑆𝐴(𝑞, 𝑑𝑁) = 𝑁 !1−
2
𝑞𝑆(𝑞, 𝑑𝑁).

Proof. We use similar arguments as in the proof of Theorem 4.1. Let 𝐸 is the set from Corollary
2.1. Then for any 𝑢 ∈ 𝐻1(R𝑑𝑁) we consider its restriction to 𝐸 and use the property 𝑢 ∈ 𝐻1

0 (𝐸).
Therefore we can apply the Gagliardo — Nirenberg inequality on 𝐸 and obtain⎛⎝ ∫︁

R𝑑𝑁

|∇𝑢|2𝑑𝑥

⎞⎠𝜃⎛⎝ ∫︁
R𝑑𝑁

|𝑢|2 𝑑𝑥

⎞⎠1−𝜃

= 𝑁 !

⎛⎝∫︁
𝐸

|∇𝑢|2𝑑𝑥

⎞⎠𝜃⎛⎝∫︁
𝐸

|𝑢|2𝑑𝑥

⎞⎠1−𝜃

⩾ 𝑁 !𝑆(𝑞, 𝑑𝑁)

⎛⎝∫︁
𝐸

|𝑢|𝑞 𝑑𝑥

⎞⎠ 2
𝑞

= 𝑁 !1−
2
𝑞 𝑆(𝑞, 𝑑𝑁)

⎛⎝ ∫︁
R𝑑𝑁

|𝑢|𝑞 𝑑𝑥

⎞⎠ 2
𝑞

.

The proof is complete.

4.3. Inequalities on the lowest eigenvalue. In this subsection we obtain some bounds
on the bottom of the spectrum of the Schrödinger operator −∆𝑎𝑠 − 𝑉 .

Theorem 4.3. Let 𝑑,𝑁 ∈ N, 𝑁 ⩾ 2, and 𝛾 > 0. Assume that 𝑉+ ∈ 𝐿𝛾+ 𝑑𝑁
2 (R𝑑𝑁), 𝑉 ⩾ 0

and that 𝑉 is symmetric (see (1.7)). Then

inf spec (−∆𝑎𝑠 − 𝑉 ) ⩾ −
(︁
𝐿
(1)
𝐴 (𝛾, 𝑑𝑁)

∫︁
R𝑑𝑁

𝑉
𝑑𝑁
2

+𝛾
+ 𝑑𝑥

)︁ 1
𝛾
, (4.7)

where

𝐿
(1)
𝐴 (𝛾, 𝑑𝑁) = 𝑆𝐴(𝑞, 𝑑𝑁)−

𝑑𝑁
2

−𝛾 (2𝛾)𝛾(𝑑𝑁)
𝑑𝑁
2

(𝑑𝑁 + 2𝛾)
𝑁
2
+𝛾
, 𝑞 =

2(𝑑𝑁 + 2𝛾)

𝑑𝑁 − 2 + 2𝛾
.

Proof. Let 𝑢 ∈ 𝐻1
𝐴(R

𝑑𝑁). Then by using Hölder’s inequality we find

∫︁
R𝑑𝑁

𝑉 |𝑢|2 𝑑𝑥 ⩽

⎛⎝ ∫︁
R𝑑𝑁

|𝑢|
2𝑑𝑁+4𝛾
𝑑𝑁−2+2𝛾 𝑑𝑥

⎞⎠
𝑑𝑁−2+2𝛾
𝑑𝑁+2𝛾

⎛⎝ ∫︁
R𝑑𝑁

𝑉
𝑑𝑁
2

+𝛾
+ 𝑑𝑥

⎞⎠ 2
𝑑𝑁+2𝛾

.

We denote

𝑞 =
2(𝑑𝑁 + 2𝛾)

𝑑𝑁 − 2 + 2𝛾

and choose

𝜃 =
𝑑𝑁

𝑑𝑁 + 2𝛾
∈ (0, 1).
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Then

𝜃(𝑑𝑁 − 2) + (1− 𝜃)𝑑𝑁 =
2𝑑𝑁

𝑞

and we can apply the inequality (4.6)∫︁
R𝑑𝑁

𝑉 |𝑢|2𝑑𝑥 ⩽
1

𝑆𝐴(𝑞, 𝑑𝑁)

⎛⎝ ∫︁
R𝑑𝑁

𝑉
𝑑𝑁
2

+𝛾
+ 𝑑𝑥

⎞⎠ 2
𝑑𝑁+2𝛾

⎛⎝ ∫︁
R𝑑𝑁

|∇𝑢|2𝑑𝑥

⎞⎠𝜃⎛⎝ ∫︁
R𝑑𝑁

|𝑢|2𝑑𝑥

⎞⎠1−𝜃

.

Let us introduce the notation

𝑍 =
1

𝑆𝐴(𝑞, 𝑑𝑁)

⎛⎝ ∫︁
R𝑑𝑁

𝑉
𝑑𝑁
2

+𝛾
+ 𝑑𝑥

⎞⎠ 2
𝑑𝑁+2𝛾

.

Then ∫︁
R𝑑𝑁

(|∇𝑢|2 − 𝑉 |𝑢|2)𝑑𝑥 ⩾
∫︁
R𝑑𝑁

|𝑢|2𝑑𝑥 · (𝑡− 𝑍𝑡𝜃),

where

𝑡 =

∫︀
R𝑑𝑁

|∇𝑢|2 𝑑𝑥∫︀
R𝑑𝑁

|𝑢|2𝑑𝑥.

The minimum of the function 𝑓(𝑡) = 𝑡−𝑍𝑡𝜃 is achieved on the positive semiaxis at 𝑡 = (𝜃𝑍)
1

1−𝜃 .
Then ∫︁

R𝑑𝑁

(|∇𝑢|2 − 𝑉 |𝑢|2)𝑑𝑥 ⩾
∫︁
R𝑑𝑁

|𝑢|2𝑑𝑥 · ((𝜃𝑍)
1

1−𝜃 − 𝑍(𝜃𝑍)
𝜃

1−𝜃 )

= 𝑍
1

1−𝜃 𝜃
𝜃

1−𝜃 (𝜃 − 1)

∫︁
R𝑑𝑁

|𝑢|2𝑑𝑥.

Due to the variational principle we obtain

inf spec (−∆𝑎𝑠 − 𝑉 ) ⩾ − 2𝛾

𝑑𝑁 + 2𝛾
·
(︂

𝑑𝑁

𝑑𝑁 + 2𝛾

)︂ 𝑑𝑁
2𝛾

𝑆𝐴(𝑞, 𝑑𝑁)−
𝑑𝑁+2𝛾

2𝛾

⎛⎝ ∫︁
R𝑑𝑁

𝑉
𝑑𝑁
2

+𝛾
+ 𝑑𝑥

⎞⎠ 1
𝛾

= −

⎛⎝𝑆𝐴(𝑞, 𝑑𝑁)−
𝑑𝑁
2

−𝛾 (2𝛾)𝛾(𝑑𝑁)
𝑑𝑁
2

(𝑑𝑁 + 2𝛾)
𝑑𝑁
2

+𝛾
·
∫︁
R𝑑𝑁

𝑉
𝑑𝑁
2

+𝛾
+ 𝑑𝑥

⎞⎠ 1
𝛾

and thus we complete the proof of Theorem 4.3.
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