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SPECTRAL AND FUNCTIONAL INEQUALITIES
ON ANTISYMMETRIC FUNCTIONS

A. LAPTEV, I.A. SHCHERBAKOV

Abstract. We obtain a number of spectral and functional inequalities related to
Schrodinger operators defined on antisymmetric functions. Among them are Lieb —
Thirring and CLR inequalities. Besides, we find new constants for the Sobolev and the
Gagliardo — Nirenberg inequalities restricted to antisymmetric functions.
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1. INTRODUCTION

Lieb — Thirring (LTh) and Cwikel — Lieb — Rozenblum (CLR) inequalities have important
applications in mathematical physics, analysis, dynamical systems and attractors, to mention
a few. A current state of art and many aspects of the theory of such inequalities is presented in
the recent book [3]. We mention here the celebrated paper by Lieb and Thirring 1], where such
inequalities were studied for the questions of stability of matter. The famous CLR inequalities

were obtained in the papers [1], [13], [15] by Cwikel, Lieb and Rosenblum.
Let H be a Schrodinger operator in L?(RR™)
H=-A-V, Vo0, (1.1)

and let {—M\;} be the negative eigenvalues of the operator H counted with their multiplicities.
Assuming that the electric potential V is an element of LY*"/2(R"), v > 0, we have

TrH =Tr(-A—-V)) => N <Ly, /W*“/2 dr, (1.2)
k B
where s_ = —sif s <0and s_ =01if s > 0.

If v = 0, the inequality (1.2) is known as CLR inequality and for v > 0 as LTh inequality. It
is known that the constants in (1.2) are finite for

>1 if =1
7/2 - n=1,

v>0  if n=2, (1.3)

v=0 if n=>3.
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The constants L., are usually compared with the so—called semiclassical constant

1 L(y+1)
LY, = / 1— ¢ dé = —= : 1.4
Sharp constant in (1.2) are known only for v = 1, d = 1, where Li, = ;= 2L‘il1 and v > 3,
k) 5’

n =1, where L, ,, = Lgln
Obviously the inequalities (1.2) imply the inequalities on the lowest eigenvalue and thus there
are constants L#}n such that

(inf spec (~A = V)T < L! /V”*TZL dz. (1.5)
R"
Clearly we have L}m < L, ,. In [14] the authors made a conjecture (that is still open in the

most important cases) that the sharp values of L., coincide with the values L! . In the cases
where the sharp constants are found, this conjecture holds true.

One of the aims of this paper is to obtain better constants in the inequality (1.2) for
Schrodinger operators restricted to antisymmetric functions. In this case one assumes that
the potential V' is symmetric. It is expected that such constants will be a lot better since the
operator (1.1) is defined in a smaller class of functions. In the paper [9] the authors obtained
the inequality (1.2) for v = 0 with better constant for antisymmetric functions.

Let N and d be natural numbers. We consider x = (z1,...,zy) € R¥, where z; =
(751,...,7q) € R? for all 1 < i < N. Every function u defined on R we call antisymmetric
hereafter, if for all 1 < i,5 < N and z1,...,2x € R?

WT1, o Ty Ty EN) = =X, Ty Ty TN (1.6)
and symmetric if
WT1, e Ty oy Ty o EN) = U(T1, oy Ty ey Ty e, TN (1.7)

We shall use the notations L% (R*™), H(R¥) and H%(R) for subclasses of antisymmetric
functions from L?(R*) and Sobolev classes H*(R*) and H?(R) respectively.

We denote by —A,, the Laplacian in L?(R%) restricted to the antisymmetric functions and
let

Has = _Aas -V

be the respected Schrodinger operator.

Theorem 1.1. Let d = 1 and V > 0 be a symmetric potential such that V € L2 (RY).
Then for any ~y satisfying the conditions (1.3) we have

Tr(—A — V)7 < L]z[—fv /szv da. (1.8)
RN

The proof of this result is given in Section 2 and it is based on the recents papers [l 1],

[12], [16], where the authors considered properties of antisymmetric functions via properties of

Vandermond determinants. In particular, the authors also obtained some Hardy inequalities

which allow us in Section 3 to study the so—called Hardy — Lieb — Thirring inequalities, see

51, 101, 171, [10].

It was obtained in [12] that for any u € H}(R*) we have

/ \Vu(z)|*dz > Ha(dN) Mdm. (1.9)

RaN RAN
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The constant H4(dN) is much larger than the classical Hardy constant M and is defined
n (3.1). Besides, the inequality (1.9) holds even for dN = 2.
Let us denote by £, the Laplacian —A,, with subtracted Hardy term

1
|z

Theorem 1.2. Let V > 0 be a symmetric potential such that V € L+ (RN, where
dN =23, v> 0, and o > 0. Then there is a constant C, 4n o independent of V' such that

Nas = _Aas - HA(dN> (].]_0)

dN+a

Tr (f)as - V)Z < C’y,dN,a / V(m)'YJF 2 ‘Z”a dx. (111)

RaN

In the special case @ = 0 we have

Corollary 1.1. Let dN > 3 and v > 0. Then we have the Hardy — Lieb — Thirring
mequality

Tr ($as — V) < Cranpo /V(x)wdév dx.
Rn

We note that the sharp values of the constant C, 4 o are unknown even in the general case. In
our case there is an additional complication finding them for d > 1 due to the multiplicity of the
minimal eigenvalue of the Laplace — Beltrami operator in L*(R%Y) restricted to antisymmetric
functions.

Finally in Section 4 we shall obtain versions of Sobolev and Gagliardo — Nirenberg in-
equalities for antisymmetric function with applications to bounds of the lowest eigenvalues of
Schrodinger operators.

2. CLR AND LTH INEQUALITIES FOR ANTISYMMETRIC FUNCTIONS
We begin with presenting some results obtained in [L1], [12], [L0].

2.1. Vandermonde determinant. Let us consider the unitary monomials of d variables
lexicographically, i.e. for t € R? denote gogd) (t) =1, gogd) (t) =ty and gog_?l(t) = ta, gp&?Q(t) =t
and so on.

Consider the determinant

G - oD (aw)

d

Py, )= 0 | (2.1)
o D(@) - dPan)

We denote by Vy(N) the degree of @/Jﬁ) that is the minimal degree of the antisymmetric poly-
nomial. Clearly the total degree of 1/15\‘,1) equals the sum of degrees in every row. Note that

the function @D](\C,l) (x1,...,xy) is an antisymmetric homogeneous harmonic polynomial. The re-
striction of such polynomial to $ is the eigenfunction of the Laplace — Beltrami operator in
L?($%) whose respective eigenvalue equals

pa(N) =Vy(N)(Va(N) + dN — 2). (2.2)
Note, that finding the multiplicity of the eigenvalue py(N) is not an easy task for d > 1. In
[16] the author was able to find an algorithm for their calculation and in [12] the asymptotic

behaviour for the value V4(N) as N — oo for a fixed d was obtained, namely,

d L d ,
Va(N) = m\ﬁz\flﬁ —oN+OW'"1) as N = oco.
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The easier case d = 1 was considered in [11]. Then
1 1 1 1
T T I3 N
Y (@1, an) =] 23 2} a3 7% (2.3)
:C'zlx}ll x'é\}ll x.é\‘f‘fl x'%‘;l
(D) _ N(N-1)
The degree of the polynomial ¢y’ equals Vi(N) = —5— and therefore
N(N —1)(N?+ N —4
= () = L = ) (2.4)

4 )
the multiplicity of which equals 1.

If w is antisymmetric, one can show that the equality z; = x; implies u(z) = 0. Thus for d =1
the space R can be split into N! cones with zero boundary condition for every antisymmetric
function on it. But for arbitrary d the analogous proposition holds. When studying zeros of
antisymmetric functions it was proved in [12] that for every antisymmetric u the space R
can be split into N! parts, where u vanishes on the boundary.

Let us consider the action of symmetric group Sy on the space R, For an arbitrary x =

(z1,...,zy) € R¥ (2; € R?) and o € Sy denote by o = (2,(1), . .., Zsv)) the permutation
of elements .
The important fact, see [12], is the following statement.

Proposition 2.1. Let u be an antisymmetric function on R*. For an arbitrary x € R
and o € Sy, o # id, there is no continuous path T' : [0,1] — R, such that T(0) = z,
['(1) = ox and u(T'(t)) # 0 for all t € [0, 1].

This proposition implies

Corollary 2.1. The support of each function u € HY(R™) can be split into N! parts such
that each part can be obtained from another by action of Sy and u satisfies the Dirichlet bound-
ary conditions on every part.

For d = 1 we can consider Ey = {x e RV

from Corollary 2.1 are o Ex Nsuppu, o € Sy, because if x; = x; for some ¢ and j, then u = 0.

T < Ty < ... < :L‘N}. In this case the parts

2.2. Proof of Theorem 1.1. The proof of Theorem 1.1 is based on the inequality (1.2) and
the geometrical properties of the nodal sets of antisymmetric functions given in Proposition
2.1.

Each u € H}(R") satisfies the Dirichlet boundary conditions at the boundary of each cone
oEy. Let V > 0 be a symmetric function satisfying the conditions of Theorem 1.1 and let us
consider the Schrodinger operator H(Ey), the quadratic form of which equals

/ (|Vu|2 — V|u]2) dz,

En

The class of functions H}(RY) restricted to Ey coincides with H}(FEy) and can be extended
by zero outside E. At the same time each function u € H}(RY) can be defined by its values
on Ey in the unique way. Using the classical CLR and LTh inequalities for each v and N =n
satisfying (1.3), we obtain

u e Hé(EN)

TI'(AaS — V)z ="Tr Has(EN)z < L%N / V’H%dl' = [}'\y]_,f\/ / V’Y+%dl’,

En RN

where the constants L, y are defined in (1.2).
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3. LIEB — THIRRING INEQUALITIES WITH SUBTRACTED HARDY TERM

In order to proof Theorem 1.2 we need to remind some auxiliary results.

3.1. Hardy inequality for antisymmetric functions. We first notice that the properties
of Vandermonde type determinants (2.1) in [12] are used in the proof of the following Hardy
inequality.

Proposition 3.1. Let u € H{(R™). Then

/ V() Pde > Ha(dN) %d@;
RN RN
where the constant H4(dN) is sharp and equals
Ha(dN) = M#—Vd(]\f)(]/d(N)%—dN—Q). (3.1)
Thus
vy = N2 ),

where pg(N) is defined in (2.2) and (dN — 2)?/4 is the standard Hardy constant that comes
from the radial part of the Laplacian in L*(R*Y).
In the case d =1 and N > 2 the above formula (3.1) becomes explicit, see [11],

N2 _ 9)2 2
/|Vu|2d:c > y ) Iz;de, we HY(RY). (3.2)

RN RN

Remark 1. Note that the standard constant in the Hardy inequality for functions in

2 2
HY(RY) equals (AN — 2)%/4 ~ (dN)?/4 as N — oo, while Hy(dN) ~ (%?) N*i/4 ac-

cording to [12].

3.2. Ekholm — Frank inequalities. In [3], [{] Egorov and Kondrat’ev proved the so—
called weighted LTh inequalities, which say that for any v > 0, N > 2, a > 0, and any V' > 0

satisfying V € L7 2" (R, |z|*dz), there is a constant CP} o independent of V' such that

Tr(-A—-V) <CIN . /VWJ“N;Q |z|*dz.
RN

In [5] and [6] Ekholm and Frank obtained a stronger result, where the authors were able to
subtract from the Laplacian the sharp Hardy term.

Proposition 3.2. Let v > 0, N > 3, a = 0, then for any V > 0 satisfying V €

L7+%(RN, |z|*dzx) there is a constant CTY | independent of V' such that

N - 2 2 ’y (o]
Tr (—A W2 V) <Oy /VWNI |z|“d. (3.3)

4 vV«
RN

One of important ingredients of the proof of the inequality (3.3) was its one-dimensional
version.

Let us consider the operator in L?(R. ), R, = (0, 00), with the Dirichlet boundary condition
at zero
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Assume v > 0 and « > 0 such that v+ =< 1+a > 1. Then there is a constant C, , independent of
the potential V' > 0, such that

&1 L R
Tr|————-V(r)| <C,o [ V"2 r%dr. (3.4)

3.3. Proof of Theorem 1.2. We give a proof that generalises the approach suggested in
[5, 6]. Some other proofs of Hardy — Lieb — Thirring inequalities for fractional Schrédinger
operators were given in [7], [10].

We introduce the orthogonal projection P in L2 ($%~!) on the subspace

yu = {YMZ}Z{:l

defined by the spherical functions Y, , associated with the eigenvalue jiq(/N) given by (2.2), the
multiplicity of which equals s, see [16]. Then

Pu(x) = ZW Y., x€RY,
=1

where u, are the Fourier coefficients
Uy = (U, YM73)L2(34N—1), u e Li(RdN)

By Q we respectively denote its orthogonal complement ) = I— P in L% (R%). For any smooth
function u we have

2Re (PVQu,u) < 2|V2Qul||||VzPul| < (PVPu,u) + (QVQu, ).
This implies
PVQ+QVP < PVP+QVQ. (3.5)
Let $,5 be difined in (1.10). Using (3.5) we obtain
fJas -V :P(g)as - V)P + Q(g)as - V)Q - PVQ - QVP
>P(~6as - 2V)P + Q (ﬁas - 2V) Q
and thus
Tr(f.)as - V)Z < Tr(P<ﬁa5 - QV)P)K + Tr(Q(ﬁas - QV)Q)Z

After introducing polar coordinates the quadratic form of the operator P$),,P becomes equal
to

Owpura) = [ (9P~ HaaN) o 1Pu ) o

RaN
- 2 (3.6)
& (AN —2) _
= Z/ <\(u@);\2 -7 lug)? | vt dr,
=1
where we used the action of the Laplace — Beltrami operator in L2($*¥=1) and the identity
dN — 2)?
ma(an) — By

Changing in (3.6) the functions u, = ver' 2, we find

(FPu, Pu) = S / ( - yw) dr (3.7)

:10
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implying that for each ¢ the operator

d? (AN — 2>2 . 2 dN—1
—w — 4—712 mn L (R+, T d?")
is unitary equivalent to
d? 1 9
_W — 4_7”‘2 m L (IR,+>
We define
‘7(7“, ’l9) = Z Vm Y,u,m = Z(‘/’ Yu,m)LQ(SdN—l) YH»m'
m=1 m=1

Then

/ V|Pu|?* < / (Z Vi) Z\W\QT‘WA dr = / (Z Vé) Z]w]er. (3.8)
0 m

RiN S \m=1 =1 =1 =1
Combining (3.6) and (3.8), we obtain
P x d? 1 L :
B =VIPZD | =5~ 12 <mZ: vm>

Due to (3.4) with a + dN — 1 instead of a and Holder’s inequality we arrive at

Yy dN+«o
2+ 4

(P, —2V)P) < C (z v@) a1 gy
m=1

0
Y AN+«
2+ 4

o
<C / / V2 do ot dp
0 dN -1 (39)
o0
C 'y—i—dNJra a+dN -1
< AN TaTd Vit didr
|$N—1‘W
0 gaN-1
C dN+a
— Y+ e
- 2v+dNta—4 4 2 |I| dx.
|SdN—1|W
]RdN

Treating the operator Q($.s — 2V)Q we consider i > pqs(N) to be the minimal eigenvalue of
the antisymmetric Laplace — Beltrami operator restricted to @ (L% (SV=1)). If 0 < ¢t < 1,
then due to the Hardy inequality

N —2)?

_QAasQ =—t QAQSQ - (1 - t)QAasQ = —t QAQSQ + (1 - t) (MT

- 1
+1) Q0
|z
Therefore

Q(fjas - 2V)Q > tQ (_Aas - t_12V) Q

w(0-0 (B2 ) - ) e

and we now choose ¢ such that

- (B ) - ) o
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By using Proposition 3.2 and the variational principle we have
Tr (Q($as — 2V)Q)? <7 Tr (Q(—Aus —t72V)Q)”

£ Tr ((—Ags — t712V))

< t dN+a 2,Y+dN2+aC / V(gj)

RIN

N\

(3.10)

dzx.

Adding together the inequalities (3.9) and (3.10), we complete the proof.

4. SOBOLEV AND GAGLIARDO — NIRENBERG INEQUALITIES
In this section we obtain versions of two classical inequalities for functions from H(R).

4.1. Sobolev inequalities. The classical Sobolev inequality (see [17]) states that for any
u € HY(R"), n > 3, we have

/\Vu\zdx>5’(n) /|uyn2—"z dx , (4.1)
Rn n

where S(n) is the Sobolev constant

S(n) =mn(n—2) (?EE;)H .

Remark 2. Note that the Sobolev inequality (4.1) holds for any u € H}(Q), Q C R", with
the same constant S(n).

Clearly when considering the class of functions from HY(R%) we expect an improvement
of the constant S4(dN) in (4.1). Indeed, in the paper [12] the authors obtained the following
result.

Theorem 4.1. For any u € H4(R¥), > 3, we have
dN -2
dN
/ |Vul?dr > S4(dN) ({R/ |u|dN 5 dy , (4.2)
RIN
where the constant S4(dN) equals
S4(dN) = (ND)av S(dN). (4.3)

Proof. The proof is simple and we present it here for completeness. Let £ be one of the cones
defined in Corollary 2.1. Then applying the classical Sobolev inequality to u € Hj(cE), where
o is a permutation from Sy, we obtain

/\Vu|2dx > S(dN) /yu|fﬁNz da
oFE E

Note that due to the antisymmetry the integrals in the above inequalities are independent of
N! cones o E. Therefore

dN—2
dN

dN -2

dN
/ IVul? dz = NI /yvu|2d:c> N1S(dN) /\uyfz?Nz d

RIN E E
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daN—2

— N1S(@@N) [ (v /]u|dN  da

RAN

_ (N1)# S(dN) (R/ WE PR

Corollary 4.1. Let V € L% (RN be a symmetmc function, V- > 0. Assume that

dN—2
dN

V Y de | < Sa(dN).

Then
spec(—Au — V) = @.

Proof. We consider the quadratic form of the operator —A,s — V', applying Holder’s inequality
and using the Sobolev inequality (4.2) to find

aw i
/ (|Vul> = Viul?) dz > | Sa(dN) — V > dx / |u|6121<’”—V2 dx >0
RAN AN
O
4.2. Gagliardo — Nirenberg interpolation inequality. Similarly we can find a better

constant in the classical Gagliardo — Nirenberg interpolation inequality that states

(m/w dx (m/u%zx . S(g,n (m/uqu . (4.4)

Here n > 2, q € ,% and 0 € (0,1) satisfies the identity 6(n — 2) + (1 — 0)n 2?”. The
constant S(g,n) in (4.4) equals
({Rf \Vu\de) <mf ]u\%lx)
S(¢g,n) = inf

0£ucH!(R™) ({Rf | ‘ p )
ulldx

Remark 3. The sharp constant S(q,n) are known that for some values (q,n), see for exam-
ple [2]. However, it is known that the infimum in (4.5) is achieved and up to translation and
dilation such an infimum is a solution of the non-linear Fuler — Lagrange equation

—Au— ANu|'%u = —pu in R"
It is also known that the minimiser in (4.4) is spherical symmetric. Therefore, the constant

S(q,n) can be computed by using numerical methods applied to solutions of one—dimensional
differential operator.

(4.5)

Remark 4. The inequality (4.4) holds for any u € H} (), Q C R™, with the same constant
S(gn).

We now can obtain a version of the Gagliardo — Nirenberg inequality.
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Theorem 4.2. Let d,N € N, N > 2 and q € (2, 225). Then for any u € H(R™N) w
have

(R/ |Vul*dz ({R/ |lu|*dz 4(q,dN) (R/ lulfdz | (4.6)

where 0 € (0,1) such that O(dN — 2)

Sa(q,dN) = N!l_ES(q, dN).

Proof. We use similar arguments as in the proof of Theorem 4.1. Let F is the set from Corollary
2.1. Then for any u € H'(R®) we consider its restriction to £ and use the property u € HZ(E).
Therefore we can apply the Gagliardo — Nirenberg inequality on E and obtain

0 1-6 0 1-6
/ |Vul*dz / |u|? dz = N! /|Vu|2dac /]u|2dx
dN dN E E

q

> N!S(q,dN) /|u|qda:

2
q

= NI'"% S(q,dN) /|u|qdw

The proof is complete. O

4.3. Inequalities on the lowest eigenvalue. In this subsection we obtain some bounds
on the bottom of the spectrum of the Schrodinger operator —A,, — V.

Theorem 4.3. Let d,N € N, N > 2, and v > 0. Assume that V, € L”%(]R‘m), V=0
and that V' is symmetric (see (1.7)). Then

. 1) Ny N
inf spec (—Ags — V) = —(LA (v,dN) [ V.2 dm) , (4.7)
RAN
where
dN)% 2(dN + 2
LY (y.N) = Sa(q.any- 8- LU E o, 2V L2
(dN—|-2fy)2 dN — 2+ 2~
Proof. Let u € HY{(R). Then by using Holder’s inequality we find
dN—2+42~ 2
dN+2~ dN+2~
N an
/ Viu*de < / |u\d1gN2++427dx V+2 T dx
RIN
We denote
~ 2(dN +27)
AN -2+ 2y
and choose
dN
€ (0,1).

" dN + 24
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Then DN
O(dN —2)+ (1 —0)dN = —
q
and we can apply the inequality (4.6)
dN?m 0 1-6
/ Vul*dz < dN / V., ERr” / |Vul*dz / lu|*dz
RAN dN
Let us introduce the notation
N
Z = Ve Y
e dN / !
Then
/(|Vu|2 V) > / ul2ds - (t — Z1%),
RaN RAN
where
[ |Vul*dx
o RaN
[ Julda.
RIN

The minimum of the function f(t) =t — Zt’ is achieved on the positive semiaxis at t = (§Z)7=7.
Then

/ (IVuf> — V]uP)dz > / uf*de - (92)77 — 2(92)™7)

RAN RAN

= ZT90759 (0 — 1) / |u|?dz.
RdAN

Due to the variational principle we obtain

2=

dN
‘ 2 IN \ % 121 av .,
Fspec (—Age — V) > — - N 21
inf spec ( VIZ—iNi o <dN n 27) Sala, dN)- / Ve

2 (AN) % .
= SA(q,dN)_dTN_7 (29)7(d C)iN2 . / Vjévﬂdx
(AN +2v) =27

and thus we complete the proof of Theorem 4.3. n
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