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GLOBAL AND BLOW–UP SOLUTIONS

FOR A PARABOLIC EQUATION

WITH NONLINEAR MEMORY UNDER

NONLINEAR NONLOCAL BOUNDARY CONDITION

A.L. GLADKOV

Abstract. In this paper we consider parabolic equation with nonlinear memory and ab-
sorption

𝑢𝑡 = Δ𝑢+ 𝑎

𝑡∫︁
0

𝑢𝑞(𝑥, 𝜏) 𝑑𝜏 − 𝑏𝑢𝑚, 𝑥 ∈ Ω, 𝑡 > 0,

under nonlinear nonlocal boundary condition

𝑢(𝑥, 𝑡) =

∫︁
Ω

𝑘(𝑥, 𝑦, 𝑡)𝑢𝑙(𝑦, 𝑡) 𝑑𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

and nonnegative continuous initial data. Here 𝑎, 𝑏, 𝑞, 𝑚, 𝑙 are positive numbers, Ω is a
bounded domain in R𝑁 , 𝑁 ⩾ 1, with smooth boundary 𝜕Ω, 𝑘(𝑥, 𝑦, 𝑡) is a nonnegative
continuous function defined for 𝑥 ∈ 𝜕Ω, 𝑦 ∈ Ω and 𝑡 ⩾ 0. We prove that each solution
of the problem is global if max(𝑞, 𝑙) ⩽ 1 or max(𝑞, 𝑙) > 1 and 𝑙 < (𝑚 + 1)/2, 𝑞 ⩽ 𝑚. If
𝑙 > max{1, (𝑝+ 1)/2} and the function 𝑘(𝑥, 𝑦, 𝑡) is positive for small 𝑡, the solutions blow
up in finite time for large enough initial data. The obtained results improve previously
established conditions for the existence and absence of global solutions.

Keywords: Parabolic equation, nonlinear memory, nonlocal boundary condition, global
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1. Introduction

In this paper we consider the parabolic equation with nonlinear memory and absorption

𝑢𝑡 = ∆𝑢+ 𝑎

𝑡∫︁
0

𝑢𝑞(𝑥, 𝜏) 𝑑𝜏 − 𝑏𝑢𝑚, 𝑥 ∈ Ω, 𝑡 > 0, (1.1)

under the nonlinear nonlocal boundary condition

𝑢(𝑥, 𝑡) =

∫︁
Ω

𝑘(𝑥, 𝑦, 𝑡)𝑢𝑙(𝑦, 𝑡) 𝑑𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0, (1.2)
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and the initial data

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ Ω, (1.3)

where 𝑎, 𝑏,𝑞,𝑚,𝑙 are positive numbers, Ω is a bounded domain in R𝑁 for 𝑁 ⩾ 1 with a smooth
boundary 𝜕Ω. Here 𝑘(𝑥, 𝑦, 𝑡) is a nonnegative continuous function defined for 𝑥 ∈ 𝜕Ω, 𝑦 ∈ Ω
and 𝑡 ⩾ 0. The initial data 𝑢0(𝑥) is a nonnegative continuous function satisfying the boundary
condition at 𝑡 = 0.

Various phenomena in the natural sciences and engineering lead to the nonclassical mathe-
matical models subject to nonlocal boundary conditions. For global existence and blow–up of
solutions for parabolic equations and systems with nonlocal boundary conditions we refer to
[1] – [15] and the references therein. A blow–up problem for parabolic equations with nonlocal
boundary condition (1.2) was studied in [16]–[25]. The problem (1.1)–(1.3) with 𝑎 = 0 was
investigated in [18], [19].

A blow–up problem for (1.1) – (1.3) with 𝑎 = 1 and 𝑘(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) was considered in [21].
To formulate the results of [21] we introduce some notation. Let 𝜆1 be the lowest eigenvalue of
the following problem

−∆𝜙 = 𝜆𝜙, 𝑥 ∈ Ω, 𝜙 = 0, 𝑥 ∈ 𝜕Ω, (1.4)

and the associated eigenfunction 𝜙 = 𝜙(𝑥) is fixed by the condition∫︁
Ω

𝜙(𝑥) 𝑑𝑥 = 1.

We denote

𝐿 = max
Ω

𝜙(𝑥), 𝑚0 = min
𝜕Ω×Ω

𝑓(𝑥, 𝑦).

The main global existence and blow–up results of [21] are as follows.

Theorem 1.1. Let 𝑞 ⩽ 𝑚 and 𝑙 ⩽ 1. Then the problem (1.1)–(1.3) has global solutions for
each 𝑓(𝑥, 𝑦) and 𝑢0(𝑥).

Theorem 1.2. Let 𝑞 > 𝑚 ⩾ 1. Then a solution of the problem (1.1)–(1.3) blows up in finite
time for each 𝑓(𝑥, 𝑦) and 𝑢0(𝑥) ̸≡ 0.

Theorem 1.3. Let 𝑙 ⩾ 𝑚 ⩾ 𝑞 > 1 and 𝑚0𝜆1 > 𝑏𝐿. Then a solution of the problem (1.1)–
(1.3) blows up in finite time if the initial data 𝑢0(𝑥) satisfies

∫︀
Ω

𝑢0(𝑥)𝜙(𝑥) 𝑑𝑥≫ 1.

The aim of this paper is to improve global existence and blow–up results of [21].

2. Global existence and blow–up

We begin with the definition of the supersolution, subsolution and solution of (1.1)–(1.3).
Let

𝑄𝑇 = Ω× (0, 𝑇 ), 𝑆𝑇 = 𝜕Ω× (0, 𝑇 ), Γ𝑇 = 𝑆𝑇 ∪ Ω× {0}, 𝑇 > 0.
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Definition 2.1. We say that a nonnegative function 𝑢(𝑥, 𝑡) ∈ 𝐶2,1(𝑄𝑇 ) ∩ 𝐶(𝑄𝑇 ∪ Γ𝑇 ) is a
supersolution of (1.1)–(1.3) in 𝑄𝑇 if

𝑢𝑡 ⩾ ∆𝑢+ 𝑎

𝑡∫︁
0

𝑢𝑞(𝑥, 𝜏) 𝑑𝜏 − 𝑏𝑢𝑚, (𝑥, 𝑡) ∈ 𝑄𝑇 , (2.1)

𝑢(𝑥, 𝑡) ⩾
∫︁
Ω

𝑘(𝑥, 𝑦, 𝑡)𝑢𝑙(𝑦, 𝑡) 𝑑𝑦, 𝑥 ∈ 𝜕Ω, 0 < 𝑡 < 𝑇, (2.2)

𝑢(𝑥, 0) ⩾ 𝑢0(𝑥), 𝑥 ∈ Ω, (2.3)

and 𝑢(𝑥, 𝑡) ∈ 𝐶2,1(𝑄𝑇 ) ∩ 𝐶(𝑄𝑇 ∪ Γ𝑇 ) is a subsolution of (1.1)–(1.3) in 𝑄𝑇 if 𝑢 ⩾ 0 and the
reversed inequalities hold in (2.1)–(2.3). We say that 𝑢(𝑥, 𝑡) is a solution of the problem (1.1)–
(1.3) in 𝑄𝑇 if 𝑢(𝑥, 𝑡) is both a subsolution and a supersolution of (1.1)–(1.3) in 𝑄𝑇 .

To prove the main results, we use the comparison principle which can be established as
in [19].

Theorem 2.1. Let 𝑢 and 𝑢 be a supersolution and a subsolution of the problem (1.1)–(1.3)
in 𝑄𝑇 , respectively. Suppose that 𝑢(𝑥, 𝑡) > 0 or 𝑢(𝑥, 𝑡) > 0 in 𝑄𝑇 ∪ Γ𝑇 if min(𝑞, 𝑙) < 1. Then
𝑢(𝑥, 𝑡) ⩾ 𝑢(𝑥, 𝑡) in 𝑄𝑇 ∪ Γ𝑇 .

The proof of global existence of solutions relies on the continuation principle and the con-
struction of a supersolution.

Theorem 2.2. Let at least one from the following conditions hold:

a) max(𝑞, 𝑙) ⩽ 1;
b) max(𝑞, 𝑙) > 1 and 𝑙 < (𝑚+ 1)/2, 𝑞 ⩽ 𝑚.

Then each solution of (1.1)–(1.3) is global.

Proof. In order to prove global existence of solutions we construct a suitable explicit superso-
lution of (1.1)–(1.3) in 𝑄𝑇 for each positive 𝑇.
Suppose first that max(𝑞, 𝑙) ⩽ 1 or 𝑙 ⩽ 1, 1 < 𝑞 ⩽ 𝑚.We construct a supersolution as in [16],

[21]. Since 𝑘(𝑥, 𝑦, 𝑡) is a continuous function, there exists a constant 𝐾 > 0 such that

𝑘(𝑥, 𝑦, 𝑡) ⩽ 𝐾 (2.4)

in 𝜕Ω × 𝑄𝑇 . Let 𝜙(𝑥) be the eigenfunction of the problem (1.4) corresponding the lowest
eigenvalue 𝜆1 such that

𝐾

∫︁
Ω

𝑑𝑦

(𝜙(𝑦) + 1)𝑙
⩽ 1. (2.5)

We construct a supersolution of (1.1)–(1.3) in 𝑄𝑇 as

𝑢(𝑥, 𝑡) =
𝐶 exp(𝜇𝑡)

𝜙(𝑥) + 1
,

where constants 𝐶 and 𝜇 are chosen to satisfy the inequalities

𝐶 ⩾ max

{︂
sup
Ω
(𝜙(𝑥) + 1) sup

Ω
(𝑢0(𝑥) + 1), 1

}︂
, (2.6)

𝜇 ⩾ 1 + 𝜆1 + 2 sup
Ω

|∇𝜙|2

(𝜙(𝑥) + 1)2
+
𝑎

𝑞
for 𝑞 ⩽ 1, (2.7)

𝜇 ⩾ 𝜆1 + 2 sup
Ω

|∇𝜙|2

(𝜙(𝑥) + 1)2
+
𝑎

𝑏𝑞
for 1 < 𝑞 ⩽ 𝑚. (2.8)
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By (2.5)–(2.8) we easily obtain

𝑢𝑡 −∆𝑢− 𝑎

𝑡∫︁
0

𝑢𝑞(𝑥, 𝜏) 𝑑𝜏 + 𝑏𝑢𝑚 =𝜇𝑢−
(︂

𝜆1𝜙

𝜙(𝑥) + 1
+ 2

|∇𝜙|2

(𝜙(𝑥) + 1)2

)︂
𝑢

− 𝑎𝐶𝑞 exp(𝑞𝜇𝑡)

𝑞𝜇(𝜙(𝑥) + 1)𝑞
+

𝑎𝐶𝑞

𝑞𝜇(𝜙(𝑥) + 1)𝑞

+
𝑏𝐶𝑚 exp(𝑚𝜇𝑡)

(𝜙(𝑥) + 1)𝑚
⩾ 0

(2.9)

for (𝑥, 𝑡) ∈ 𝑄𝑇 ,

𝑢(𝑥, 𝑡) = 𝐶 exp(𝜇𝑡) ⩾ 𝐶 𝑙 exp(𝑙𝜇𝑡)𝐾

∫︁
Ω

𝑑𝑦

(𝜙(𝑦) + 1)𝑙
⩾

∫︁
Ω

𝑘(𝑥, 𝑦, 𝑡)𝑢𝑙(𝑦, 𝑡) 𝑑𝑦 (2.10)

for (𝑥, 𝑡) ∈ 𝑆𝑇 and

𝑢(𝑥, 0) ⩾ 𝑢0(𝑥) (2.11)

for 𝑥 ∈ Ω. By virtue of (2.9)–(2.11) the solution of (1.1)–(1.3) exists globally.
Suppose that 1 < 𝑙 < (𝑚 + 1)/2, 𝑞 ⩽ 𝑚. To construct a supersolution we use the change of

variables in a neighborhood of 𝜕Ω as in [26]. Let 𝑥 ∈ 𝜕Ω and ̂︀𝑛(𝑥) be the inward unit normal
to 𝜕Ω at the point 𝑥. Since 𝜕Ω is smooth, it is well known that there exists 𝛿 > 0 such that the
mapping 𝜓 : 𝜕Ω × [0, 𝛿] → R𝑛 given by 𝜓(𝑥, 𝑠) = 𝑥 + 𝑠̂︀𝑛(𝑥) defines new coordinates (𝑥, 𝑠) in
a neighborhood of 𝜕Ω in Ω. A straightforward computation shows that, in these coordinates,
∆ applied to a function 𝑔(𝑥, 𝑠) = 𝑔(𝑠), which is independent of the variable 𝑥, evaluated at a
point (𝑥, 𝑠) is given by

∆𝑔(𝑥, 𝑠) =
𝜕2𝑔

𝜕𝑠2
(𝑥, 𝑠)−

𝑛−1∑︁
𝑗=1

𝐻𝑗(𝑥)

1− 𝑠𝐻𝑗(𝑥)

𝜕𝑔

𝜕𝑠
(𝑥, 𝑠), (2.12)

where 𝐻𝑗(𝑥) for 𝑗 = 1, ..., 𝑛− 1, denote the principal curvatures of 𝜕Ω at 𝑥. For 0 ⩽ 𝑠 ⩽ 𝛿 and
small 𝛿 we have ⃒⃒⃒⃒

⃒
𝑛−1∑︁
𝑗=1

𝐻𝑗(𝑥)

1− 𝑠𝐻𝑗(𝑥)

⃒⃒⃒⃒
⃒ ⩽ 𝑐. (2.13)

Let

0 < 𝜀 < 𝜔 < min(𝛿, 1), max

(︂
1

𝑙
,

2

𝑚− 1

)︂
< 𝛽 <

1

𝑙 − 1
,

0 < 𝛾 <
𝛽

2
, 𝐴 ⩾ sup

Ω
𝑢0(𝑥), 𝑟 >

𝑎

𝑏𝑞
.

We modify the supersolution from [18]. For points in 𝑄𝛿,𝑇 = 𝜕Ω × [0, 𝛿] × [0, 𝑇 ] with the
coordinates (𝑥, 𝑠, 𝑡) we define

𝑣(𝑥, 𝑡) = 𝑣((𝑥, 𝑠), 𝑡) =
(︁[︀

(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾
]︀𝛽

𝛾

+
+ 𝐴

)︁
exp(𝑟𝑡), (2.14)

where 𝑠+ = max(𝑠, 0). For points in 𝑄𝑇 ∖𝑄𝛿,𝑇 we let 𝑣(𝑥, 𝑡) = 𝐴 exp(𝑟𝑡). We are going to show
that 𝑣(𝑥, 𝑡) is the supersolution of (1.1)–(1.3) in the set 𝑄𝑇 . It is easy to verify that⃒⃒⃒⃒

𝜕𝑣

𝜕𝑠

⃒⃒⃒⃒
⩽ 𝛽min

(︁
[𝐷(𝑠)]

𝛾+1
𝛾

[︀
(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾

]︀𝛽+1
𝛾

+
, (𝑠+ 𝜀)−(𝛽+1)

)︁
exp(𝑟𝑡), (2.15)⃒⃒⃒⃒

𝜕2𝑣

𝜕𝑠2

⃒⃒⃒⃒
⩽ 𝛽(𝛽 + 1)min

(︁
[𝐷(𝑠)]

2(𝛾+1)
𝛾

[︀
(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾

]︀𝛽+2
𝛾

+
, (𝑠+ 𝜀)−(𝛽+2)

)︁
exp(𝑟𝑡), (2.16)
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where

𝐷(𝑠) =
(𝑠+ 𝜀)−𝛾

(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾
.

Then 𝐷′(𝑠) > 0 and for each 𝜀 > 0

1 ⩽ 𝐷(𝑠) ⩽ 1 + 𝜀, 0 < 𝑠 ⩽ 𝑠, (2.17)

where

𝑠 = [𝜀/(1 + 𝜀)]1/𝛾𝜔 − 𝜀, 𝜀 < [𝜀/(1 + 𝜀)]1/𝛾𝜔.

We denote

𝐿𝑣 ≡ 𝑣𝑡 −∆𝑣 − 𝑎

𝑡∫︁
0

𝑣𝑞(𝑥, 𝜏) 𝑑𝜏 + 𝑏𝑣𝑚. (2.18)

By (2.12)–(2.18) we can choose 𝜀 small and 𝐴 large so that in 𝑄𝑠,𝑇 the inequalities hold

𝐿𝑣 ⩾

{︂
𝑟
(︁[︀

(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾
]︀𝛽

𝛾

+
+ 𝐴

)︁
+ 𝑏

(︁[︀
(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾

]︀𝛽
𝛾

+
+ 𝐴

)︁𝑚

exp[𝑟(𝑚− 1)𝑡]

− 𝛽(𝛽 + 1) [𝐷(𝑠)]
2(𝛾+1)

𝛾
[︀
(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾

]︀𝛽+2
𝛾

+
+ 𝛽𝑐 [𝐷(𝑠)]

𝛾+1
𝛾

[︀
(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾

]︀𝛽+1
𝛾

+

− 𝑎

𝑟𝑞

(︁[︀
(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾

]︀𝛽
𝛾

+
+ 𝐴

)︁𝑞

exp[𝑟(𝑞 − 1)𝑡]

}︂
exp(𝑟𝑡) ⩾ 0.

Let 𝑠 ∈ [𝑠, 𝛿]. It follows from (2.12)–(2.16) that

|∆𝑣| ⩽

{︃
𝛽(𝛽 + 1)𝜔−(𝛽+2)

(︂
1 + 𝜀

𝜀

)︂𝛽+2
𝛾

+ 𝛽𝑐𝜔−(𝛽+1)

(︂
1 + 𝜀

𝜀

)︂𝛽+1
𝛾

}︃
exp(𝑟𝑡)

and 𝐿𝑣 ⩾ 0 for large values of 𝐴. It is obvious that

𝐿𝑣 = 𝑟𝐴 exp(𝑟𝑡)− 𝑎𝐴𝑞

𝑟𝑞
[exp(𝑟𝑞𝑡)− 1] + 𝑏𝐴𝑚 exp(𝑟𝑚𝑡) ⩾ 0

in 𝑄𝑇 ∖𝑄𝛿,𝑇 for 𝐴 ⩾ 1.
Let us prove the inequality

𝑣(𝑥, 0, 𝑡) ⩾
∫︁
Ω

𝐾𝑣𝑙(𝑥, 𝑠, 𝑡) 𝑑𝑦, (𝑥, 𝑡) ∈ 𝑆𝑇 (2.19)

for a suitable choice of 𝜀. To estimate the integral 𝐼 in the right hand side of (2.19), we use the
change of variables in a neighborhood of 𝜕Ω as above. Let

𝐽 = sup
0<𝑠<𝛿

∫︁
𝜕Ω

|𝐽(𝑦, 𝑠)| 𝑑𝑦,

where 𝐽(𝑦, 𝑠) is Jacobian of the change of variables. Then we have

𝐼 ⩽2𝑙−1𝐾

⎧⎨⎩
∫︁
Ω

[︀
(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾

]︀𝛽𝑙
𝛾

+
𝑑𝑦 + 𝐴𝑙|Ω|

⎫⎬⎭ exp(𝑟𝑙𝑡)

⩽2𝑙−1𝐾

⎧⎨⎩𝐽
𝜔−𝜀∫︁
0

[︀
(𝑠+ 𝜀)−𝛾 − 𝜔−𝛾

]︀𝛽𝑙
𝛾 𝑑𝑠+ 𝐴𝑙|Ω|

⎫⎬⎭ exp(𝑟𝑙𝑡)

⩽2𝑙−1𝐾

{︂
𝐽

𝛽𝑙 − 1

[︀
𝜀−(𝛽𝑙−1) − 𝜔−(𝛽𝑙−1)

]︀
+ 𝐴𝑙|Ω|

}︂
exp(𝑟𝑙𝑡),
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where the constant 𝐾 was defined in (2.4). On the other hand, since

𝑣(𝑥, 0, 𝑡) =
(︁[︀
𝜀−𝛾 − 𝜔−𝛾

]︀𝛽
𝛾

+
+ 𝐴

)︁
exp(𝑟𝑡),

the inequality (2.19) holds if 𝜀 is small enough. At last,

𝑢(𝑥, 0) ⩽ 𝑣(𝑥, 0) in Ω.

Hence, by Theorem 2.1 we get

𝑢(𝑥, 𝑡) ⩽ 𝑣(𝑥, 𝑡) in 𝑄𝑇 .

The proof is complete.

Now we prove finite time blow–up result. We shall suppose that

𝑘(𝑥, 𝑦, 𝑡) ⩾ 𝑘0 > 0, 𝑥 ∈ 𝜕Ω, 𝑦 ∈ Ω, 0 < 𝑡 < 𝛽 (2.20)

for some positive 𝑘0 and 𝛽.

Theorem 2.3. Let 𝑙 > max{1, (𝑚 + 1)/2} and (2.20) hold. Then the solutions of problem
(1.1)–(1.3) blow up in finite time for large enough initial data.

Proof. We observe that each solution of (1.1) – (1.3) is a supersolution of the same problem with
𝑎 = 0. Then by Theorem 2.2 and Theorem 2.6 of [18] the solutions of the problem (1.1)–(1.3)
blow up in finite time for large enough initial data.

Remark 2.1. In the case 𝑞 ⩽ 𝑚, 𝑙 = (𝑚+1)/2 > 1 the global existence and blow–up results
depend on 𝑏 and 𝑘(𝑥, 𝑦, 𝑡).

Remark 2.2. We note that the proof of Theorem 1.2 in [21] is valid also for 𝑞 > 1 > 𝑚. So,
a solution of the problem (1.1)–(1.3) blows up in finite time for each 𝑢0(𝑥) ̸≡ 0 if 𝑞 > max(𝑚, 1).
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