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BI–CONTINUOUS SEMIGROUPS OF

STOCHASTIC QUANTUM DYNAMICS

A.V. UTKIN

Abstract. This paper is devoted to the aspects of derivation of dynamics equation of
quantum system under a stochastic dynamics. We study the conditions, under which a
sequence of random variations of wave function can approximate a random diffusion pro-
cess in a Hilbert space. A random variation |𝜓0⟩ ↦→ 𝐺𝑡𝑁 . . . 𝐺𝑡1 |𝜓0⟩ = |𝜓𝑡𝑁 ⟩ is associated
with a transform of distribution of vector |𝜓⟩, as well as with the variation of its charac-
teristic functional 𝜙(𝑣) = E exp(𝑖Re⟨𝑣|𝜓⟩). For a continuous random walk we study the
approximation of a Markov semigroup by the Markov operators of discrete random walk.
We pay a special attention to the cases, when the derivative of random operator 𝐹 ′(0) is an
unbounded operator. However, we restrict the consideration to the case when the Markov
operators of random walks with the operators 𝐺𝑡 mutually commute.

The characteristic functional is transformed by the Markov operator of adjoint process,
and in contrast to the dynamics of wave function, it has a deterministic nature that allows
us to rely on the developed theory of semigroups in Banach spaces. The most illustrative ex-
amples are the process of continuous measurement, that is, the measurement of trajectories
of some observable, and the random control.
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1. Introduction

Let ℋ be a separable Hilbert space, on which a family of random operators {𝐺𝑡} act. For
each 𝑡 ∈ [0, 𝑇 ], 𝜔 ↦→ 𝐺𝑡(𝜔) is a measurable mapping from the probability space (Ω,F ,P) into
the space of bounded operators ℬ(ℋ) on ℋ. We suppose that in some sense, which will be
clarified later, as 𝑡 → 0, the operators 𝐺𝑡 tend to the identity operator 𝐼. We are going to
construct a model of continuous process of random walk on a Hilbert space by using the model
of second wonderful limit. We partition the segment [0, 𝑡] into 𝑁 equal parts and on each of
them we define a random variation of vectors |𝜓⟩ ↦→ 𝐺𝑡/𝑁 |𝜓⟩. We say that the total variation
on the segment [0, 𝑡] is the sum of composition of independent transforms on each segment in
the chronological order, that is, the vector |𝜓⟩ is transformed by the rule

|𝜓⟩ ↦→ 𝐺𝑁 . . . 𝐺1|𝜓⟩, (1.1)

where the operators 𝐺𝑁 , . . . , 𝐺1 are independent and identically distributed in accordance with
the distribution 𝐺 𝑡

𝑁
. The question is whether it is possible, in the limit 𝑁 → ∞, to approximate

a time–continuous stochastic dynamics. The solution is made in accordance with Markov
semigroups approach. The above described stochastic process is Markov and for each 𝑡 ∈ [0, 𝑇 ],
it is assigned with the system of Markov operators {F[𝐺𝑡]

𝑘, 1 ⩽ 𝑘 ⩽ 𝑁}. The operator F[𝐺𝑡]
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acts on the space of bounded Borel functions 𝐵𝐵(ℋ) on the Hilbert space, and we study
the question under which conditions for each 𝑡 ⩾ 0 some Markov semigroup {T𝑡} can be
approximated by the operators {F[𝐺 𝑡

𝑁
]𝑁} as 𝑁 → ∞. All the obtained below results are

true under the assumption that the commutation conditions
[︁
F[𝐺𝑡],F[𝐺𝑠]

]︁
= 0 hold for all

0 ⩽ 𝑠, 𝑡 ⩽ 𝑇 . It should be said that while the condition is rather restrictive, it does not
imply that the corresponding random operators 𝐺𝑡(𝜔) and 𝐺𝑠(𝜔) commute almost surely, see
Example 3.1.
The main results are Theorem 5.1, which establishes the conditions for approximation of T𝑡

by Chernoff iterations F[𝐺 𝑡
𝑁
]𝑁 on some closed subspace 𝐹𝐺 ⊂ 𝐵𝐵(ℋ), and Theorem 5.2, which

admits to continue the limiting semigroup on 𝐵𝐵(ℋ) to a Markov semigroup.
We deal with the following functional spaces: 𝐵𝐵(ℋ) is the space of Borel (with respect with

the topology of norm or weak topology, this is the same) bounded functions on the Hilbert
space with sup–norm: ‖𝑓‖ = sup

𝑣∈ℋ
|𝑓(𝑣)|, 𝐶𝐵(ℋ) is the space of continuous bounded functions

on ℋ with the sup–norm and an additional topology 𝜏 of uniform convergence on bounded
sets, 𝐶𝐵𝑊𝑆(ℋ) is the space of bounded weakly sequentially continuous functions. For this

operator family F[𝐺𝑡] obeying
[︁
F[𝐺𝑡],F[𝐺𝑠]

]︁
= 0, we define the subspace ℒ𝐺 ⊂ 𝐶𝐵(ℋ) of

functions 𝑓, for which the uniformly bounded in norm and uniform on balls in ℋ convergence

of differential inclusions
F[𝐺𝑡]𝑓 − 𝑓

𝑡
holds. The space 𝐹𝐺 is defined as the set of functions,

which are approximated uniformly on balls by the uniformly bounded sequence of functions in
ℒ𝐺. Then under the condition that for all 𝑟 > 0, 𝜀 > 0 there exists 𝑅 > 0, for which

sup
{︁
P
(︁
‖𝐺⊥⊥𝑚

𝑡 𝑣‖ > 𝑅
)︁
, ‖𝑣‖ ⩽ 𝑟, 𝑡 ∈ [0, 𝑇 ], 𝑚 ∈ N

}︁
< 𝜀, (1.2)

Theorem 5.1 states that for each 𝑓 ∈ 𝐹𝐺 the identity 𝜏 lim
𝑁→∞

F[𝐺 𝑡
𝑁
]𝑁𝑓 = T𝑡𝑓 holds for some

semigroup T𝑡 uniformly in 𝑡 on the segments of ray [0,+∞). The symbol 𝐺⊥⊥𝑚
𝑡 denotes the

product of independent identically distributed random operators 𝐺𝑡, the total amount of which
is 𝑚.
It turns out that under the assumption that 𝐶𝐵𝑊𝑆(ℋ) ⊂ 𝐹𝐺, the semigroup T𝑡 can be

extended from 𝐹𝐺 to the Markov semigroup Q𝑡 on 𝐵𝐵(ℋ) (Theorem 5.2), and for all 𝑓 ∈
𝐶𝐵(ℋ), 𝑣 ∈ ℋ, 𝑡 ⩾ 0 we have lim

𝑁→∞
F[𝐺 𝑡

𝑁
]𝑁𝑓(𝑣) = Q𝑡𝑓(𝑣). Nevertheless, sometimes it is very

non–trivial to verify the inclusion 𝐶𝐵𝑊𝑆(ℋ) ⊂ 𝐹𝐺. It is interesting that if F[𝐺𝑡] is already a
semigroup on 𝐶𝐵𝑊𝑆(ℋ), then the conditions

∀𝜀 > 0, 𝑟 > 0 ∃𝑅 > 0 such that sup
𝑡∈[0,𝑇 ]

sup
‖𝑣‖⩽𝑟

P
(︁
‖𝐺𝑡𝑣‖ > 𝑅

)︁
< 𝜀,

∀𝜀 > 0, 𝑤 ∈ ℋ lim
𝑡→0

P
(︁
‖(𝐺*

𝑡 −𝐺*
𝑡0
)𝑤‖ > 𝜀

)︁
= 0

are sufficient to ensure that F[𝐺𝑡] is bi–continuous semigroup (Theorem 4.1).
There exist semigroups represented explicitly (Proposition 4.3). The main attention is paid

to the diffusion processes, the generator of which is a second order differential operator. If the
homomorphism Υ : ℰ → ℬ(ℋ) is defined on subalgebra ℰ ⊂ 𝐶𝐵(R) containing the functions
of form {𝑔[𝑎, 𝑏] := 𝑒−𝑎𝑥

2+𝑏𝑥}, then the family {F[𝐺𝑡]} for 𝐺𝑡(𝑦) = Υ(𝑔[𝑎𝑡, 𝑦𝑏
√
𝑡]) with some

𝑎 > 0, 𝑏 ∈ R forms a semigroup on 𝐵𝐵(ℋ) with respect to the measure 𝑑P(𝑦) =
𝑒−𝑦

2
𝑑𝑦√
𝜋

. For

instance, for a self–adjoint operator 𝐶 the family {exp(𝑦𝑏
√
𝑡𝐶 − 𝑎𝑡𝐶2)} defines a semigroup.

Under some natural assumptions this semigroup is Markov and its restriction to 𝐶𝐵𝑊𝑆(ℋ) is
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bi–continuous. The generator of this semigroup is the operator

𝑓(𝑣) ↦→ −
(︂
𝑎− 𝑏2

4

)︂
𝑑𝑓(𝑣)[𝐶𝑣] +

𝑏2

4
𝑑2𝑓(𝑣)[𝐶𝑣,𝐶𝑣], (1.3)

the domain of which has bi–dense closure containing the space 𝐶𝐵𝑊𝑆(ℋ).
The proposed method allows one to construct more complicated semigroups not writing

out explicitly the expressions for the operators. For instance, there arises a question whether
the operator–valued function obtained by averaging the above proposed semigroups {F[𝐺𝑡]},
𝐺𝑡(𝑦, 𝛼) = exp(𝑦𝑏

√
𝑡𝐶𝛼 − 𝑎𝑡𝐶2

𝛼), with a random self–adjoint operator 𝐶 = {𝐶𝛼} satisfies the
conditions of Chernoff approximation. More precisely, let 𝑑𝜈(𝛼) be a probability measure and

(F𝑡𝑓)(𝑣) =

∫︁
𝑑𝜈(𝛼)

∫︁
𝑑𝑦√︀
𝜋/𝛾

𝑒−𝛾𝑦
2

𝑓
(︁
𝑒𝑦𝑏

√
𝑡𝐶𝛼−𝑎𝑡2𝐶2

𝛼𝑣
)︁
. (1.4)

However, it is not easy to answer this question in the general case. We introduce the operators

𝐴1 : D(𝐴1) → ℋ, 𝐴2 : D(𝐴2) → ℋ⊗2,

appearing in the limits

lim
𝑡→0

∫︁
𝑑𝜈(𝛼)

∫︁
𝑑𝑦√︀
𝜋/𝛾

𝑒−𝛾𝑦
2 𝐺𝑡(𝑦, 𝛼)𝑤 − 𝑤

𝑡
= 𝐴1𝑤, 𝑤 ∈ D(𝐴1),

lim
𝑡→0

∫︁
𝑑𝜈(𝛼)

∫︁
𝑑𝑦√︀
𝜋/𝛾

𝑒−𝛾𝑦
2 (𝐺𝑡(𝑦, 𝛼)𝑤 − 𝑤)⊗2

2𝑡
= 𝐴2𝑤

⊗2, 𝑤⊗2 ∈ D(𝐴2).

We give the positive answer if the commutation condition for Markov operators hold, 𝐴1 and
𝐴2 are bounded or possess in some sense consistent point spectrum. This example is described
in more detail in Section 5.1. There we also provide a similar example of random control
characterized by the fact that instead of self–adjoint operators 𝐶𝛼, anti–Hermitian operators
𝑖𝐻𝛼 are used. The reason of difficulty is that for unbounded operators 𝐴1, 𝐴2 it is non–trivial

to construct the functions 𝑓 ∈ 𝐶𝐵(ℋ), which remain in 𝐶𝐵(ℋ) under the action
𝑑

𝑑𝑡
𝐹𝑡

⃒⃒⃒
𝑡=0
.

Examples of diffusion and Poisson processes have long been known and are used in physical
applications. Methods of white noise theory and stochastic processes are successfully employed
to analyze bosonic, fermion, nonlinear and open quantum systems ([1]–[4]). In particular, the
behavior of system under the influence of continuous measurement were studied in the works
([5]–[7]) theoretically and experimentally.
The paper consists of four sections. Sections 2 and 3 elucidate some issues of quantum the-

ory, Markov processes, and the theory of strongly continuous and bi–continuous semigroups and
their approximation. The study is based on an illustrative example of a continuous process of
inaccurate coordinate measurement ([8]–[10]), leading to a stochastic differential Schrödinger —
Belavkin equation. Its feature is in the commutativity of operators realizing the random walk,
which allows one to decompose the dynamics into independent processes in terms of the com-
ponents 𝜓(𝑥) of wave function |𝜓⟩. This example is generalized to arbitrary processes in an
infinite–dimensional separable Hilbert space (Section 4). Section 5 contains formulations of the
main theorems 5.1, 5.2 and justification of examples of processes in the scheme of continuous
measurements and random unitary controls.

2. Preliminaries

2.1. Process of quantum measurement. A fundamental feature of quantum mechanics
is that the measurement process is probabilistic. In addition, it makes a destructive effect on
the system, often called the collapse of the wave function, or the reduction of the wave packet
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determined by the Lüders — von Neumann projection postulate [3], [11]. The most general
(for our purposes) definition of quantum measurement is formulated in terms of the completely
positive instrument introduced in [12]. The measurement means obtaining the distribution
of measurement result in the measurable space (𝒴 ,Σ) for a given state 𝜌 ∈ S(ℋ), and the
law of change of statistical ensemble (state) during measurement, if the information about
the obtained measurement event is available. For example, the result of a measurement can
be an element of the measurable space (X,B), then in the case of repeated measurements
the result already lies in the measurable space (𝒴 ,Σ) = (X𝐽 ,B⊗𝐽) of functions 𝐽 → X (for
example, 𝐽 ⊂ R is countable for a discrete measurement process and 𝐽 = [0, 𝑇 ] for a continuous
measurement process on the interval 𝑡 ∈ [0, 𝑇 ]).
We give the definition of a completely positive instrument [13]–[15]. The set of positive trace–

class operators on ℋ with the trace 1 is denoted by S(ℋ) and is called the set of quantum
states. The space of trace–class operators on ℋ is denoted by T(ℋ).

Definition 2.1. The mapping M[𝐵](𝜌) : Σ×T(ℋ) → T(ℋ) is called the completely positive
instrument if the conditions hold:

1. for each 𝐵 ∈ Σ the mapping 𝜌 ↦→ M[𝐵](𝜌) is affine (can be continued to a linear mapping
on T(ℋ));

2. M[𝐵] is a completely positive mapping for all 𝐵 ∈ Σ;
3. M[𝐵](𝜌) is 𝜎–additive in the sense of weak topology on T(ℋ) for each 𝜌 ∈ T(ℋ);
4. M[𝒴 ] preserves the trace: TrM[𝒴 ](𝜌) = 1 for all 𝜌 ∈ S(ℋ).

In what follows a completely positive instrument is sometimes simply called instrument.
In the concept of instruments it is supposed that when measuring by an instrument M, the

probability that the result is into the measurable set 𝐵 for the initial state 𝜌 ∈ S(ℋ) (which is
also called a priori) is equal to

𝜇𝜌(𝐵) = TrM[𝐵](𝜌), (2.1)

while the part of statistical ensemble for such events is described by the state

𝜌′ =
M[𝐵](𝜌)

TrM[𝐵](𝜌)
. (2.2)

According to the above definitions, under a successive measuring by means of the instruments
M1, . . . ,M𝑛 at the times 𝑡1 < . . . < 𝑡𝑛 with the space of events (X,B), the statistics is defined
by the probability distribution on (X𝑛,B⊗𝑛) associated with the instrument

M𝑡1,...,𝑡𝑛 [𝐵1 × . . .×𝐵𝑛](𝜌) = M𝑡𝑛 [𝐵𝑛](. . .M𝑡1 [𝐵1](𝜌) . . .), 𝐵𝑖 ∈ B. (2.3)

2.2. Random processes corresponding to quantum instrument. For clarity, let us
consider an example of an instrument with a discrete set of events. Namely, let X = {𝑥𝑘},
Σ = 2X be the 𝜎–algebra containing all subsets and the instrument be defined in the form
M[𝐵](𝜌) =

∑︀
𝑥𝑘∈𝐵

M𝑘(𝜌), where M𝑘 are completely positive mappings of form

M𝑘(𝜌) =
∑︁
𝑚

𝐺𝑘𝑚𝜌𝐺
*
𝑘𝑚.

We require
∑︀
𝑚,𝑘

𝐺*
𝑘𝑚𝐺𝑘𝑚 = 𝐼.

There is a state transformation rule for each obtained event 𝑥𝑘:

(𝜌, 𝑘) ↦→ M𝑘(𝜌)

Tr M𝑘(𝜌)
. (2.4)

We follow the interpretation that an ensemble in which a pure state with a unit vector |𝜓𝑘⟩
occurs with probability 𝑝𝑘 can be described by a quantum state of form 𝜌 =

∑︀
𝑘

𝑝𝑘|𝜓𝑘⟩⟨𝜓𝑘|.
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Therefore, the action of the instrument M can be written in terms of a random walk on ℋ:

(|𝜓⟩, 𝜔) ↦→
𝐺𝑘(𝜔)𝑚(𝜔)|𝜓⟩

‖𝐺𝑘(𝜔)𝑚(𝜔)|𝜓⟩‖
, (2.5)

where 𝑘 and 𝑚 are random indices and only 𝑘(𝜔) is the observable fixed by a measur-
ing device. The wave function in the right hand side is normalized and the probability
𝑝𝑘0𝑚0(𝜓) = P(𝑘(𝜔) = 𝑘0,𝑚(𝜔) = 𝑚0) is defined by the formula

𝑝𝑘0𝑚0(𝜓) = ‖𝐺𝑘0𝑚0|𝜓⟩‖2, ∀𝑘0,𝑚0,

which in accordance with the axioms of quantum mechanics, gives a correct expression for the
state

M[R](|𝜓⟩⟨𝜓|) =
∑︁
𝑘,𝑚

𝑝𝑘𝑚(𝜓)
𝐺𝑘𝑚|𝜓⟩

‖𝐺𝑘𝑚|𝜓⟩‖
⟨𝜓|𝐺*

𝑘𝑚

‖𝐺𝑘𝑚|𝜓⟩‖
. (2.6)

The transition probabilities 𝑝𝑘𝑚 depend on |𝜓⟩, and this fact is due a restriction for the
normalization of wave functions. An attempt to remove the dependence of probabilities on the
initial state gives rise to a random walk on the Hilbert space, which can be characterized as
linear.
We consider the following transformation. Let {𝜋𝑘𝑚}𝑘,𝑚 be the probability distribution.

Then the mapping

(|𝜓⟩, 𝜔) ↦→
𝐺𝑘(𝜔)𝑚(𝜔)|𝜓⟩
√
𝜋𝑘(𝜔)𝑚(𝜔)

, (2.7)

where 𝜋𝑘0𝑚0 = P
(︁
𝑘(𝜔) = 𝑘0,𝑚(𝜔) = 𝑚0

)︁
, defines the action of the instrument M in the sense

that

M[R](|𝜓⟩⟨𝜓|) =
∑︁
𝑘,𝑚

𝜋𝑘𝑚
𝐺𝑘𝑚|𝜓⟩√
𝜋𝑘𝑚

⟨𝜓|𝐺*
𝑘𝑚√

𝜋𝑘𝑚
(2.8)

The distribution of random variables 𝑘, 𝑚 are independent of |𝜓⟩ and this is why we can
choose a probability space with random elements |𝜓⟩, 𝑘,𝑚, independent in total so that the
formulas (2.7) and (2.8) are satisfied.
We have described just a case of the single action of instrument. If several measurements

are made successively, the events form a random sequence (𝑘1(𝜔), 𝑘2(𝜔), . . .). At the same
time, each outcome is assigned with a random process on the set of quantum states, so–called
quantum trajectory {𝜌𝑛, 𝑘𝑛} (see, for instance, [5]), which can be described recursively

(𝜌𝑛, 𝑘𝑛) ↦→ (𝜌𝑛+1, 𝑘𝑛+1), 𝜌𝑛+1(𝜔) =

∑︀
𝑚

𝐺𝑘𝑛+1𝑚𝜌𝑛𝐺
*
𝑘𝑛+1𝑚

Tr
∑︀
𝑚

𝐺𝑘𝑛+1𝑚𝜌𝑛𝐺
*
𝑘𝑛+1𝑚

. (2.9)

In the general case by a linear random walk on a Hilbert space we mean the following random
process.

Definition 2.2. Let (Ω,F ,P) be a probability space, ℋ be a Hilbert space. A linear random
walk on ℋ is the set {𝐺(𝑡|𝑠)(𝜔)}0⩽𝑠⩽𝑡, 𝑡,𝑠∈𝐽 ⊂ ℬ(ℋ) if

1. 𝜔 ↦→ 𝐺(𝑡|𝑠)(𝜔) is measurable in the pair (F ,B𝑊𝑂𝑇 ), where B𝑊𝑂𝑇 is the Borel 𝜎–algebra
of weak operator topology;

2. 𝐺(𝑟|𝑡)𝐺(𝑡|𝑠) = 𝐺(𝑟|𝑠) almost surely for all 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑟 and 𝐺(𝑡|𝑡) = 𝐼 almost surely.

The additional requirement

E
[︁
𝐺*

(𝑡|𝑠)𝐺(𝑡|𝑠)

]︁
= 𝐼
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in the sense of the Pettis integral allows us to relate this linear random walk with the system
of quantum channels

Φ(𝑡|𝑠)(𝜌) = E
[︁
𝐺(𝑡|𝑠)𝜌𝐺

*
(𝑡|𝑠)

]︁
, 0 ⩽ 𝑠 ⩽ 𝑡.

The above described example of discrete process of measurements is a particular case of linear
random walks when 𝐽 = {𝑡0, 𝑡1, . . . , 𝑡𝑁} ⊂ R+ is discrete,

𝐺(𝑡ℓ|𝑡ℓ+1)(𝜔) =
𝐺𝑘(𝜔)𝑚(𝜔)
√
𝜋𝑘(𝜔)𝑚(𝜔)

,

and

P
(︁
𝑘(𝜔) = 𝑘,𝑚(𝜔) = 𝑚

)︁
= 𝜋𝑘𝑚.

The main object of our study is the passage to the limit as the number of measurements
tend to infinite and the influence lessens ([5], [10], [16]). Here we obtain stochastic differential
equations for the density operator or for the wave function. Such approach is called unravelling,
see [3, Ch. III], [4] for more detail.

2.3. Markov processes and semigroups. We should give some ideas about the Markov
processes, which we shall deal with ([17]–[19]).

Definition 2.3. Let (𝒴 ,Σ) be a measurable space. A random process {𝑋𝑡 : Ω → 𝒴 , 𝑡 ⩾ 0}
is called Markov if the identity E(𝑋𝑡|F𝑠) = E(𝑋𝑡|𝜎(𝑋𝑠)) holds for all 0 ⩽ 𝑠 ⩽ 𝑡. Here
F𝑠 = 𝜎 (𝑋𝑠′ , 0 ⩽ 𝑠′ ⩽ 𝑠) is the natural filtration of process 𝑋𝑡.

Markov processes are associated with a transition probability that completely characterizes
their probabilistic properties (i.e., completely specifies their joint distributions). Note that
the existence of a transition probability is not trivial and the condition that 𝒴 is a separable
complete metric space is sufficient [17, Vol. 2, Ch. I, Sect. 2].

Definition 2.4. The system of functions 𝑃 (𝐵, 𝑡|𝑥, 𝑠), where 𝑥 ∈ 𝒴 , 0 ⩽ 𝑠 ⩽ 𝑡, 𝐵 ∈ Σ is
called the transition probability of the process 𝑋𝑡 if

1. for fixed 0 ⩽ 𝑠 ⩽ 𝑡 and 𝐵 ∈ Σ the function 𝑃 (𝐵, 𝑡|𝑥, 𝑠) is measurable in 𝑥, and for fixed
𝑠, 𝑡 and 𝑥 ∈ 𝒴 it is a probability measure of 𝐵;

2. 𝑃 (𝐵, 𝑡|𝑥, 𝑡) = 𝜒𝐵(𝑥);
3. 𝑃 (𝐵, 𝑡|𝑥, 𝑠) = P(𝑋𝑡 ∈ 𝐵 | 𝑋𝑠 = 𝑥) (for almost each 𝑥 with respect to the measure P𝑋𝑠);
4. for P𝑋𝑠–almost each 𝑥 the Chapman — Kolmogorov equation

𝑃 (𝐵, 𝑡|𝑥, 𝑠) =
∫︁
𝑃 (𝐵, 𝑡|𝑦, 𝑟)𝑃 (𝑑𝑦, 𝑟|𝑥, 𝑠), 0 ⩽ 𝑠 ⩽ 𝑟 ⩽ 𝑡, (2.10)

holds.

By the functions 𝑃 (𝐵, 𝑡|𝑥, 𝑠) we construct Markov operators P(𝑡|𝑠) on the Banach space
𝐵𝐵(𝒴) of Borel bounded functions with sup–norm

(P(𝑡|𝑠)𝑓)(𝑥) =

∫︁
𝑓(𝑦)𝑃𝑡(𝑑𝑦, 𝑡|𝑥, 𝑠) = E(𝑓(𝑋𝑡)|𝑋𝑠 = 𝑥). (2.11)

If the transition probability 𝑃 (𝐵, 𝑡|𝑥, 𝑠) depends only on the difference of times 𝑡 − 𝑠, that
is, 𝑃 (𝐵, 𝑡+ ℎ|𝑥, 𝑡) = 𝑃ℎ(𝐵, 𝑥), then the corresponding Markov process 𝑋𝑡 is called time homo-
geneous.
It follows from the Chapman — Kolmogorov equation that for a homogeneous Markov process

the family {P𝑡 := P(𝑡|0), 𝑡 ⩾ 0} forms a Markov semigroup with the generator

L = lim
𝑡→0

P𝑡+ℎ −P𝑡

ℎ
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on the domain

𝒟(L) =
{︁
𝑓 ∈ 𝐵𝐵(𝒴)

⃒⃒⃒
∃ lim

𝑡→0

P𝑡+ℎ𝑓 −P𝑡𝑓

ℎ

}︁
;

the limit is taken in the sense of the norm.
To a linear random walk on a Hilbert space, under which a random vector |𝜓⟩ ∈ ℋ is mapped

into the random vector 𝐺(𝑡|𝑠)|𝜓⟩ under the condition that the operator 𝐺(𝑡|𝑠) is independent of
|𝜓⟩, the Markov operator

𝑓(𝑣) ↦→
∫︁
𝑑P(𝑑𝜓𝑡, 𝑡|𝑣, 0)𝑓(𝜓𝑡) =

∫︁
𝑑P(𝜔) 𝑓(𝐺(𝑡|𝑠)(𝜔)𝑣), 𝑣 ∈ ℋ, (2.12)

is related.
In this example, the process is defined on a separable Hilbert space, so the transition proba-

bilities are given.
The characteristic functional of a random vector 𝜉 with a value in an infinite–dimensional

Banach space 𝑋 is defined by the formula 𝜙(𝑣) = E𝑒𝑖Re ℓ(𝜉), ℓ ∈ 𝑋* (see [18, Ch. V, Def. 9],
where the definition is given for real–valued random vectors). The complex case is reduced to
the real one by the realification procedure 𝑋 → 𝑋R, in which, as it is easy to see, (𝑋R)

* =
{𝑥 ↦→ Re ℓ(𝑥)}. The important for us example is 𝑋 = ℋ, in which any continuous functional
is a scalar product with a fixed vector 𝑣 ∈ ℋ. In general, the Markov operator P(𝑡|𝑠) does not
map the characteristic functional of the random vector |𝜓𝑠⟩ into the characteristic functional
of the random vector |𝜓𝑡⟩. However, for a linear random walk {𝐺(𝑡|𝑠)}, the variation

𝜙𝑠(𝑣) = E𝑒𝑖Re⟨𝑣|𝜓𝑠⟩ ↦→ 𝜙𝑡(𝑣) = E𝑒𝑖Re⟨𝑣|𝜓𝑡⟩

under the evolution on the interval (𝑠, 𝑡) occurs under the action of Markov process of adjoint
linear random walk {𝐺*

(𝑡|𝑠)} as the identity

E𝑒𝑖Re⟨𝑣|𝜓𝑡⟩ = E𝑒𝑖Re⟨𝐺*
(𝑡|𝑠)𝑣|𝜓𝑠⟩ =

∫︁
𝑑P(𝜔) 𝜙𝑠(𝐺*

(𝑡|𝑠)𝑣)

shows.
We will be interested in random processes being the solutions to stochastic differential equa-

tions of a special type on a finite–dimensional space⎧⎨⎩𝑑𝑋𝑡 = 𝐴𝑋𝑡𝑑𝑡+
∑︀
𝑘

𝐵𝑘𝑋𝑡𝑑𝑊𝑘,𝑡,

𝑋0 = 𝜉,
(2.13)

where {𝐴,𝐵𝑘} are linear operators, 𝑊𝑡 = (𝑊𝑘,𝑡) is a multi–dimensional Wiener process, and
their generalizations to the infinite–dimensional case. Such processes are called geometric Brow-
nian motions, and they play an important role in financial mathematics (see [18], [20], [21])
and quantum mechanics. These are Markov processes, and in finite–dimensional spaces they
are described by Markov semigroups with generators of the form

(L𝑓)(𝑣) = (𝐴𝑣, 𝑑𝑓(𝑣)) +
1

2

∑︁
𝑘,𝑙

(𝐵𝑘𝑣,𝐵𝑙𝑣)
𝜕2𝑓(𝑣)

𝜕𝑘𝜕𝑙
. (2.14)

The definition of infinite–dimensional analogues is non–trivial; the works [22]–[24] are devoted
to them. This work also touches the issue of constructing processes, the Markov operators of
which have a generator similar to (2.14).
The process 𝑋𝑡 with the initial condition 𝑋0 = 𝜉 can be obtained by approximating by

discrete–time processes 𝑋
(𝑁)
𝑡

𝑋
(𝑁)
𝑡𝑁

=

(︃
1 + 𝐴(𝑡𝑁 − 𝑡𝑁−1) +

∑︁
𝑘

𝐵𝑘(𝑊𝑘,𝑡𝑁 −𝑊𝑘,𝑡𝑁−1
)

)︃
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. . .

(︃
1 + 𝐴(𝑡1 − 𝑡0) +

∑︁
𝑘

𝐵𝑘(𝑊𝑘,𝑡1 −𝑊𝑘,𝑡0)

)︃
𝜉.

In the next sections we implement the following idea: for a homogeneous linear random walk
on a Hilbert space we construct a Markov semigroup, calculate its generator, which will have a
form similar to the generator of diffusion process (2.13), and approximate the semigroup by a
family of Markov operators of a discrete linear random walk.

2.4. Process of continuous imprecise measurements of coordinates. As usually, the
set of states on a separable Hilbert space ℋ is denoted by S(ℋ), and the space of bounded
operators is denoted by ℬ(ℋ). However, we often deal with unbounded operators on a dense
domain. These are the coordinate operator 𝑥̂ and the momentum operator 𝑝. Using the coor-
dinate representation, that is, the identification ℋ ≃ L2(R, 𝑑𝑥), |𝜓⟩ ↦→ 𝜓(𝑥), we can develop a
functional calculus for the operator 𝑥̂. For each Borel bounded function 𝑓(𝑥) on the line, the
operator 𝑓(𝑥̂) ∈ ℬ(L2(R)) of multiplication by the function 𝑓 is defined

(𝑓(𝑥̂)𝜓)(𝑥) = 𝑓(𝑥)𝜓(𝑥).

The measurement instrument corresponding to the simplest imprecise measurement of the
coordinate, see [25, Ex. 2], [15], reads as follows

𝜌 ↦→ M[𝐵](𝜌) =

∫︁
𝐵

√︀
𝑝(𝑦𝐼 − 𝑥̂)𝜌

√︀
𝑝(𝑦𝐼 − 𝑥̂) 𝑑𝑦, 𝐵 ∈ B(R), 𝜌 ∈ S(ℋ). (2.15)

Here 𝐼 is the identity mapping, 𝑥̂ is the operator of coordinate, 𝑝 is the density of some
probability measure. The random event of measurement 𝑞(𝜔) has the distribution∫︁

𝐵

𝑑P𝑞 =
∫︁
𝐵

Tr 𝜌𝑝(𝑦𝐼 − 𝑥̂) 𝑑𝑦 = TrM[𝐵](𝜌). (2.16)

Under an imprecise measurement of the pure state the a posteriori state is also pure. The
random walk of the normalized wave function reads

(|𝜓⟩, 𝜔) ↦→
√︀
𝑝(𝑞(𝜔)𝐼 − 𝑥̂)|𝜓⟩

‖
√︀
𝑝(𝑞(𝜔)𝐼 − 𝑥̂)|𝜓⟩‖

, (2.17)

since the probability density for the random variable 𝑞(𝜔) depends on the initial wave function

𝑑P𝑞(𝑦) = ‖
√︀
𝑝(𝑦𝐼 − 𝑥̂)|𝜓⟩‖2 𝑑𝑦.

Suppose that some probability measure 𝜇 is absolutely continuous with respect to the
Lebesgue measure 𝑑𝜇(𝑦) = 𝜋(𝑦)𝑑𝑦 and 𝜋(𝑦) > 0. Then, in accordance with the arguing in
Section 2.1, we can consider a random walk of the form

(|𝜓⟩, 𝜔) ↦→
√︀
𝑝(𝑞(𝜔)𝐼 − 𝑥̂)|𝜓⟩√︀

𝜋(𝑞(𝜔))
(2.18)

with the event probability P(𝑞 ∈ 𝑑𝑦) = 𝜋(𝑦)𝑑𝑦. In particular, if the density 𝑝(𝑥) is strictly
positive, it can serve as 𝜋(𝑥).

For simplicity, we suppose that 𝑝𝑁(𝑥) ∝ 𝑒−𝑡𝜆𝑥
2
, 𝑡 =

𝑇

𝑁
, 𝜋(𝑥) = 𝑝𝑁(𝑥) for each fixed 𝑁 (see

[9]). Here the constant 𝜆 > 0 is interpreted as the degree of accuracy of measurements made
in a series.
The Schrödinger — Belavkin equation, which describes the limit evolution, contains a random

component in addition to the Hamiltonian part, and it represents the stochastic differential
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equation (SDE) given in the paper [9]

𝑑|𝜓𝑡⟩ = −𝑖𝐻|𝜓𝑡⟩𝑑𝑡−
𝜆2

4
𝑥̂2|𝜓𝑡⟩𝑑𝑡+

√︂
𝜆2

2
𝑥̂|𝜓𝑡⟩𝑑𝑊𝑡. (2.19)

The given example of a continuous quantum measurement process corresponds to a homo-
geneous linear random walk on a Hilbert space, where all random walk operators mutually
commute.

3. Chernoff theorem for bi–continuous semigroups

3.1. Bi–continuous semigroups. The concept of bi–continuous semigroups was formu-
lated and developed in the dissertation by Kühnemund (see [26]) and subsequent works. Bi–
continuous semigroups quite naturally generalize strongly continuous semigroups, for which
Chernoff approximation theorem [27, Thm. 5.2] is well–known. The possibility of approximat-
ing bi–continuous semigroups was studied in the works [28], [29], where an analogue of Chernoff
theorem was proved.
Let (𝑋, ‖·‖) be a Banach space dual for 𝑋* and equipped also with a locally convex topology

𝜏, which possesses the properties

1. ‖ · ‖–bounded 𝜏–closed sets are sequentially 𝜏–complete (each fundamental in 𝜏 sequence
converges),

2. the topology 𝜏 is Hausdorff and coarser than the norm topology;
3. for each 𝑥 ∈ 𝑋

‖𝑥‖ = sup {|ℓ(𝑥)| : ℓ ∈ (𝑋, 𝜏)′, ‖ℓ‖𝑋* ⩽ 1} ,

where (𝑋, 𝜏)′ is the space topologically dual to (𝑋, 𝜏), on which we consider the norm
‖ · ‖𝑋* of the dual space 𝑋*.

Remark 3.1. In what follows such conditions on the topology of 𝜏 with respect to the Banach
space (𝑋, ‖·‖) will be called bi–conditions. In addition, for a mapping 𝑓 :𝑀 → 𝑋 and a metric
space 𝑀 we denote

bi lim
𝑎→𝑎0

𝑓(𝑎) = 𝑓0 ∈ 𝑋,

if {𝑓(𝑎), 𝑎 ̸= 𝑎0} is ‖ · ‖–bounded and 𝜏 lim
𝑎→𝑎0

𝑓(𝑎) = 𝑓0, and we call it the bi–convergence.

We note that since 𝜏 is coarser than the norm topology, we can treat (𝑋, 𝜏)′ as a subspace
𝑋* with the induced norm.
As (𝑋, ‖ · ‖, 𝜏), the spaces of bounded continuous functions on a Banach space 𝐸 with the

sup–norm and the convergence topology on some class of subsets of 𝐸 are widely used (see
examples in [26]).

Example 3.1. Let 𝐸 be a Banach space, 𝑋 = 𝐶𝐵(𝐸) with sup–norm. The topology of
uniform convergence on bounded sets 𝜏 is generated by the sup–seminorms ‖ · ‖𝐵, where 𝐵 is a
ball in 𝐸. Let us verify that such a topology satisfies the bi–conditions.
Let 𝑀 ⊂ 𝑋 be a uniformly bounded family of functions closed in the topology of uniform

convergence on balls, then the set 𝑀 |𝐵 of functions from 𝑀 bounded on 𝐵 is closed in 𝐶𝐵(𝐵).
If {𝑓𝑛} is a 𝜏–fundamental sequence of functions, then their restrictions to 𝐵 converge in 𝐶𝐵(𝐵)
to a function, which we denote by 𝑓𝐵. Obviously, the balls 𝐵 and 𝐵′ satisfy the compatibility
condition (𝑓𝐵)|𝐵∩𝐵′ = (𝑓𝐵′)𝐵∩𝐵′, which allows us to construct a function 𝑓𝐸, which is continuous
at each point and bounded.
The second condition is obvious.
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Among the functionals from (𝑋, 𝜏)′ there are all 𝛿–functionals of the form

𝛿𝑒0(𝑓) = 𝑓(𝑒0), 𝑒0 ∈ 𝐸.

Thus, the sup–norm of 𝑓 is attained.

Remark 3.2. It also suggests itself to consider the topology of pointwise convergence (which
plays a large role in working with characteristic functions of random variables). But it does not
satisfy the first condition. Even in the one–dimensional case, one can take a countable family
of functions

ℳ = {𝑓𝑛(𝑥) = arctg(𝑛𝑥), 𝑛 ∈ N},
which is obviously uniformly bounded and closed in the topology of pointwise convergence. If
each neighbourhood of the function 𝑓(𝑥) ∈ 𝐶𝐵(R) contains the elements of ℳ, it is easy to
verify that it is also its element. But ℳ is sequentially incomplete since for all 𝑥 ∈ R the
sequence {𝑓𝑛(𝑥)} converges.

Definition 3.1. We say that a semigroup {𝑇𝑡} on (𝑋, ‖ · ‖, 𝜏) is bi–continuous if
1. there exist ∃𝑀 ⩾ 1, 𝑤 ∈ R such that ‖𝑇𝑡‖ ⩽𝑀𝑒𝑤𝑡 for all 𝑡 ⩾ 0,
2. 𝜏 lim

𝑡→0
𝑇𝑡𝑥 = 𝑥 for all 𝑥 ∈ 𝑋,

3. for each bi–converging sequence {𝑥𝑛} to 𝑥 the identity bi lim
𝑛→∞

𝑇𝑡𝑥𝑛 = 𝑇𝑡𝑥 holds uniformly

in 𝑡 in each segment in R+.

Definition 3.2. A generator of bi–continuous semigroup {𝑇𝑡} is the operator 𝐿 : 𝒟(𝐿) → 𝑋
defined as the limit

𝐿𝑥 = 𝜏 lim
𝑡→0

𝑇𝑡𝑥− 𝑥

𝑡
, 𝒟(𝐿) =

{︃
𝑥 ∈ 𝑋 : sup

𝑡∈(0,1]

‖𝑇𝑡𝑥− 𝑥‖
𝑡

<∞, ∃ 𝜏 lim
𝑡→0

𝑇𝑡𝑥− 𝑥

𝑡
∈ 𝑋

}︃
.

We shall also employ the following definitions ([26]).

Definition 3.3. Let (𝐿,𝒟(𝐿)) be an operator on 𝑋.

1. The subspace 𝒟 ⊂ 𝒟(𝐿) is called bi–core domain if for all 𝑥 ∈ 𝒟(𝐿) there exists {𝑥𝑛} ⊂ 𝒟
such that {𝑥𝑛} and {𝐿𝑥𝑛} bi–converge to 𝑥 and 𝐿𝑥, respectively.

2. 𝐿 is bi–closable if it admits a bi–closed extension (the closure 𝐿
‖·‖,𝜏

is the minimal closed
extension).

Definition 3.4. The set 𝑀 ⊂ 𝑋 is called bi–dense if for each 𝑥 ∈ 𝑋 there exists a bi–
convergent to a point 𝑥 sequence {𝑥𝑛} ⊂𝑀.

Definition 3.5. The familly {𝑆𝛼}𝛼∈𝒜 of ‖·‖–continuous operators is called bi–equicontinuous
if for each bi–converging to 𝑥 sequence {𝑥𝑛} the identity 𝜏 lim

𝑛→∞
𝑆𝛼𝑥𝑛 = 𝑥 holds uniformly in 𝛼.

Now we formulate the Chernoff theorem for bi–continous semigroups [29, Thm. 4.1].

Theorem 3.1. Let 𝐹 : [0,+∞) → ℬ(𝑋) be a function such that

1. 𝐹0 = 𝐼,
2. ‖𝐹𝑚

𝑡 ‖ ⩽𝑀𝑒𝑚𝑤𝑡,
3. {𝑒−𝑚𝑤𝑡(𝐹𝑡)𝑚, 𝑡 ⩾ 0} is locally uniformly bi–equicontinuous in 𝑚, that is, for each bi–

converging to 𝑥 sequence {𝑥𝑛} the identity

𝜏 lim
𝑛→∞

(𝑒−𝑤𝑡𝐹𝑡)
𝑚(𝑥− 𝑥𝑛) = 0

holds uniformly in 𝑚 and 𝑡 from segments in R+,

4.
𝐹𝑡𝑥− 𝑥

𝑡
is ‖ · ‖–bounded on (0, 𝑇 ] and the limit 𝜏 lim

𝑡→0

𝐹𝑡𝑥− 𝑥

𝑡
= 𝐿𝑥 is well–defined on

bi–dense subspace 𝒟 ⊂ 𝑋.
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Let (𝜆0𝐼 − 𝐿)(𝒟) be bi–dense for some 𝜆0 > 𝑤. Then the closure 𝐿
‖·‖,𝜏

is a generator of
bi–continuous semigroups {𝑇𝑡} given by the approximation

𝑇𝑡𝑥 = 𝜏 lim
𝑁→∞

(𝐹 𝑡
𝑁
)𝑁𝑥

uniform on segments in R+.

3.2. Semigroup related with process of continuous measuring. By the symbol 𝜂 we
denote the normal random variable 𝜂 ∼ 𝒩 (0, 1/2).
In terms of random walks in the Hilbert space, in the simplest formulation, the wave function,

in accordance with the obtained result 𝜂 (independent of 𝜓(𝑥)), «collapses» into (see the formula
(2.18))

𝜓(𝑥) ↦→ exp

⎛⎜⎝−𝑡𝜆

(︁
𝜂√
𝑡𝜆
− 𝑥
)︁2

2

⎞⎟⎠ 𝑒
𝜂2

2 𝜓(𝑥) = 𝑒−
𝑡𝜆𝑥2

2
+𝜂𝑥

√
𝑡𝜆𝜓(𝑥). (3.1)

Remark 3.3. The formulas involve the combination 𝑡𝜆 and this is why in what follows we
can let 𝜆 = 1.

When performing a sequence of measurements, at each step there arises a variation of the
same form independent of the previous moments of time. Thus, we can speak about the Markov
character of the vector random process |𝜓𝑡⟩, but in this section we consider a one–dimensional
real random process Re𝜓𝑡(𝑥), since the random operators of the linear walk can be represented
as a function of the coordinate operator. In this example, we construct an approximation of the
Markov semigroup of a one–dimensional random process, and the derivation of the presented
result can be taken from the case of a walk on an arbitrary separable Hilbert space.
The single variation (3.1) with parameter 𝑡 corresponds to the Markov operator

(T𝑡𝑓)(𝑧) =

∫︁
𝑑𝑦√
𝜋
𝑒−𝑦

2

𝑓

(︂
exp

(︂
−𝑡𝑥

2

2
+ 𝑦𝑥

√
𝑡

)︂
𝑧

)︂
, (3.2)

which is obtained according the formula (2.12).
Moreover, a simple calculation shows (see Proposition 4.3) that T𝑡 is already a semigroup,

but it is not strongly continuous in the norm topology, and it is bi–continuous if the domain
is the space (𝐶𝐵(R), ‖ · ‖, 𝜏) of bounded continuous functions with the sup-norm and the
uniform convergence topology on compact sets. Indeed, as 𝑡→ 0, the function 𝑓(𝑧) = sin(𝑧) is
immediately approximated in a neighborhood of the origin, while in a neighborhood of infinity
the image of T𝑡𝑓 can be well molified. The bi–continuity will be shown in the general case.
The generator L of the semigroup T𝑡 is easily calculated:

L𝑓(𝑧) = −𝑥
2

4
𝑧𝑓 ′(𝑧) +

𝑥2

4
𝑧2𝑓 ′′(𝑧)

(its domain includes the Schwartz space), therefore, the random process 𝜓𝑡(𝑥) satisfies the
stochastic Schrödinger — Belavkin equation

𝑑𝜓(𝑥) = −𝑥
2

4
𝜓(𝑥)𝑑𝑡+

𝑥√
2
𝜓(𝑥)𝑑𝑊𝑡(𝑥), (3.3)

where 𝑊𝑡(𝑥) is the standard Wiener process.
It is interesting that under the choice of other densities {𝑝𝑡} the semigroup property can fail

and we need to employ the theorem on approximation of bi–continuous semigroup.
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4. Random walks in Hilbert space

Now we obtain some generalization of the established result for an infinite–dimensional non–
commutative case.

4.1. On weakly continuous and differentiable functions on Hilbert space. Let ℋ
be a complex Hilbert space with the scalar product ⟨·|·⟩ linear in the second argument. To
realify ℋR as a vector space over R, the scalar product ⟨𝑢|𝑣⟩R = Re⟨𝑢|𝑣⟩ is induced. The weak
topology of ℋ coincides with the weak topology of ℋR.
We consider the space 𝐵𝐵(ℋ) of complex bounded Borel functions with respect to the weak

topology on ℋ complete with respect to the norm

‖𝑓(𝑣)‖ = sup
𝑣∈ℋ

|𝑓(𝑣)|. (4.1)

The completeness of 𝐵𝐵(ℋ) is implied by the fact that the pointwise limit of measurable
functions is measurable.
Among the closed subspaces 𝐵𝐵(ℋ), we can distinguish the Banach subspaces of bounded

continuous 𝐶𝐵(ℋ) and bounded weakly sequentially continuous 𝐶𝐵𝑊𝑆(ℋ) functions. There is
an embedding 𝐶𝐵𝑊𝑆(ℋ) ⊂ 𝐶𝐵(ℋ) ⊂ 𝐵𝐵(ℋ). By definition, 𝑓 ∈ 𝐶𝐵𝑊𝑆(ℋ), if for each weakly
convergent sequence 𝜏𝑊 lim

𝑛→∞
𝑣𝑛 = 𝑣0 we have 𝑓(𝑣𝑛) = 𝑓(𝑣0), and if the restriction of 𝑓 to each

ball 𝐵 ⊂ ℋ is uniformly approximated by weakly continuous functions, then 𝑓 ∈ 𝐶𝐵𝑊𝑆(ℋ).
Moreover, it is known that weakly continuous functions on bounded sets are uniformly weakly
continuous. For completeness, the proof of these facts and some other properties are given in
the Appendix.
Let 𝐹 ⊂ 𝐶𝐵(ℋ) be some ‖·‖–closed subspace. On 𝐹 , we introduce the topology 𝜏 of uniform

convergence on bounded sets ℋ. We denote the corresponding seminorms by ‖ · ‖𝐵 if 𝐵 is a
bounded subset. Note that 𝜏 is metrizable since there exists a countable system of seminorms

generating 𝜏 , namely
{︁
‖𝑓‖𝑛 = sup

‖𝑣‖⩽2𝑛
|𝑓(𝑣)|, 𝑛 ∈ N

}︁
.

Proposition 4.1. The space (𝐹, ‖ · ‖, 𝜏) satisfies the bi–conditions.

Proof. It was noted (example 3.1) that the bi–conditions are satisfied by the space
(𝐶𝐵(ℋ), ‖ · ‖, 𝜏). Then the result is also extended to the ‖ · ‖–closed subspace of 𝐹 . First,
‖ · ‖–bounded 𝜏–closed 𝑀 ⊂ 𝐹 is the same in 𝐶𝐵(ℋ), and therefore it is also sequentially 𝜏–
complete. Second, the topology 𝜏 and 𝜏–continuous linear functionals are induced from 𝐶𝐵(ℋ),
preserving the stated properties.

Remark 4.1. The bi–conditions are formulated in terms of sequential convergence in the
topology 𝜏 . For example, the bi–density assumes the existence of a sequence with certain prop-
erties. In our case, there is no difference between a topological and a sequential condition, since
bounded sets of a Hilbert space are metrizable in the weak topology.

Definition 4.1. Let (Ω,F ,P) be a probability space. The mapping |𝜓⟩ : Ω → ℋ is called the
random vector if it is measurable in the pair (F ,B𝑊 ). By B𝑊 we mean a Borel 𝜎–algebra
with respect to the weak topology.

Definition 4.2. A random (bounded) operator is the mapping 𝐺 : Ω → ℬ(ℋ) measurable
with respect to the pair (F ,B𝑊𝑂𝑇 ), where B𝑊𝑂𝑇 stands for the 𝜎–algebra generated by the
weak operator topology.

Remark 4.2. The norm topology and the weak topology on a separable Hilbert space gener-
ates the same Borel 𝜎–algebra [30, Prop. 6.10.64]. In particular, the sets

{𝜔 : ‖𝜓(𝜔)‖ < 𝑅}, 𝑅 > 0
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are measurable, and this is why for each 𝜀 > 0 there exists 𝑅𝜀 > 0 such that P(‖𝜓(𝜔)‖ <
𝑅𝜀) > 1− 𝜀. The space of bounded Borel functions on ℋ appearing in the definition of Markov
operators is denoted by 𝐵𝐵(ℋ). The norm topology, SOT and WOT topologies on ℬ(ℋ) also
generate the same 𝜎–algebra [31, Prop. 2.11]. The random operator has a bounded norm with
a large probability.

The characteristic functional of random vector |𝜓⟩ is the function

𝜙(𝑣) = E𝑒𝑖⟨𝑣|𝜓⟩R : ℋ → C. (4.2)

For a given 𝑣 ∈ ℋ the mapping |𝑤⟩ ↦→ 𝑒𝑖⟨𝑣|𝑤⟩R is weakly continuous, and this is why the
composition 𝜔 ↦→ 𝑒𝑖⟨𝑣|𝜓(𝜔)⟩R is a random variable and the integral 𝜙(𝑣) = E𝑒𝑖⟨𝑣|𝜓⟩R is well–
defined.
In the present work an important example of transformation of functions is the Markov

operator, which acts on the space 𝐵𝐵(ℋ) by the rule

(F[𝐺]𝑓)(𝑣) =

∫︁
𝑑P(𝜔) 𝑓(𝐺(𝜔)𝑣). (4.3)

Proposition 4.2. For a random operator 𝐺 : Ω → ℬ(ℋ) the Markov operator F[𝐺] :
𝐵𝐵(ℋ) → 𝐵𝐵(ℋ) is well–defined by the formula (4.3). The subspaces 𝐶𝐵(ℋ) and 𝐶𝐵𝑊𝑆(ℋ)
are invariant with respect to the operator F[𝐺].

Proof. For each 𝑣 we define a probability measure 𝑃 (𝐵|𝑣), where 𝑣 ∈ ℋ, 𝐵 ∈ B𝑊 , as the
distribution of a random vector 𝐺(𝜔)𝑣 on ℋ. Then the action of the operator F[𝐺] has the
form 𝑓(𝑣) ↦→

∫︀
𝑃 (𝑑𝜓|𝑣) 𝑓(𝜓), it is Markov. It is easy to see that bounded weakly sequentially

continuous functions map B𝑊–Borel sets to Borel sets on C, and therefore lie in 𝐵𝐵(ℋ).
Let {𝑣𝑛} be a sequence weakly converging to 𝑣0 and 𝑓 ∈ 𝐶𝐵𝑊𝑆(ℋ). This yields that {𝐺(𝜔)𝑣𝑛}

converges almost surely weakly to 𝐺(𝜔)𝑣0. For 𝜀 > 0, the union of measurable sets

Ω(𝜀,𝑁) ={𝜔 ∈ Ω : |𝑓(𝐺(𝜔)𝑣𝑛)− 𝑓(𝐺(𝜔)𝑣0)| < 𝜀, ∀𝑛 > 𝑁}

=
⋂︁
𝑛⩾𝑁

{𝜔 ∈ Ω : |𝑓(𝐺(𝜔)𝑣𝑛)− 𝑓(𝐺(𝜔)𝑣0)| < 𝜀}

has the probability 1, this is why for some 𝑁𝜀 the inequality

P
(︁
Ω
(︁𝜀
2
, 𝑁𝜀

)︁)︁
> 1− 𝜀

4‖𝑓‖
holds and

|F[𝐺]𝑓(𝑣𝑛)− F[𝐺]𝑓(𝑣0)| <
𝜀

4‖𝑓‖
2‖𝑓‖+

∫︁
Ω( 𝜀

2
,𝑁𝜀)

𝑑P(𝜔) |𝑓(𝐺(𝜔)𝑣𝑛)− 𝑓(𝐺(𝜔)𝑣0)| < 𝜀, 𝑛 > 𝑁𝜀,

hence, F[𝐺]𝑓 ∈ 𝐶𝐵𝑊𝑆(ℋ).
For 𝐶𝐵(ℋ) the statement can be proved in the same way.

The scheme of proof of weak sequential continuity for characteristic functionals of random
vectors |𝜓⟩ is similar. Note that Sazonov theorem establishes necessary and sufficient conditions
on the characteristic functional [30, Cor. 7.13.8].

4.2. Semigroups related with linear random walk on ℋ. Before proceeding to the
general case, we present the explicit form of some important semigroups.

Proposition 4.3. Suppose that a subalgebra ℰ ⊂ 𝐶𝐵(R) contains the functions

𝑔[𝑎, 𝑏](𝑥) = 𝑒−𝑎𝑥
2+𝑏𝑥, 𝑎 > 0, 𝑏 ∈ R,
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and a homomorphism Υ : ℰ → ℬ(ℋ) is given. Then the family {F[𝐺𝑡]} for

𝐺𝑡(𝑦) = Υ(𝑔[𝑎𝑡, 𝑦𝑏
√
𝑡]) with some 𝑎 > 0, 𝑏 ∈ R with respect to the measure 𝑑P(𝑦) =

𝑒−𝑦
2
𝑑𝑦√
𝜋

forms a semigroup on 𝐵𝐵(ℋ).

Proof. The identities

F[𝐺𝑡1 ]F[𝐺𝑡1 ]𝑓(𝑣) =

∫︁
𝑑𝑦1𝑑𝑦2
𝜋

𝑒−𝑦
2
1𝑒−𝑦

2
2 𝑓
(︁
Υ(𝑔[𝑎𝑡1, 𝑦1𝑏

√
𝑡1])Υ(𝑔[𝑎𝑡2, 𝑦2𝑏

√
𝑡2])𝑣

)︁
=

∫︁
𝑑𝑦1𝑑𝑦2
𝜋

𝑒−𝑦
2
1𝑒−𝑦

2
2 𝑓
(︁
Υ(𝑔[𝑎(𝑡1 + 𝑡2), 𝑏(𝑦1

√
𝑡1 + 𝑦2

√
𝑡2)])𝑣

)︁
hold.
If 𝜂1,2 ∼ 𝒩 (0, 1/2) and the random variables 𝜂1, 𝜂2 are independent, then

𝜂1
√
𝑡1 + 𝜂2

√
𝑡2 ∼ 𝒩 (0, 𝑡1 + 𝑡2),

and this is why

F[𝐺𝑡1 ]F[𝐺𝑡1 ]𝑓(𝑣) =

∫︁
𝑑𝑦√
𝜋
𝑒−𝑦

2

𝑓
(︁
Υ(𝑔[𝑎(𝑡1 + 𝑡2), 𝑏𝑦

√
𝑡1 + 𝑡2])𝑣

)︁
= F[𝐺𝑡1+𝑡2 ]𝑓(𝑣).

Remark 4.3. If for an operator 𝐶 : D(𝐶) → ℋ the functional calculus is developed, that
is, the homomorphism Υ𝐶 : L∞(C) → ℬ(ℋ) is defined, then a semigroup is constructed by the
operators of form 𝐺𝑡(𝑦) = Υ𝐶(𝑔[𝑎𝑡, 𝑦𝑏

√
𝑡]) = exp(𝑦𝑏

√
𝑡𝐶 − 𝑎𝑡𝐶2).

The next result provides conditions, under which the operator–valued functions (OVF) F[𝐺𝑡],
and in particular, the semigroups of such form on 𝐶𝐵𝑊𝑆(ℋ) are bi–continuous.

Theorem 4.1. Suppose that we are given OVF {F[𝐺𝑡]}𝑡∈[0,𝑇 ] of operators on 𝐶𝐵(ℋ).

1. If

for all 𝜀 > 0, 𝑟 > 0 there exists 𝑅 > 0 such that sup
𝑡∈[0,𝑇 ]

sup
‖𝑣‖⩽𝑟

P
(︁
‖𝐺𝑡𝑣‖ > 𝑅

)︁
< 𝜀, (4.4)

then for each bi–converging to 𝑓0 sequence {𝑓𝑛} the sequence F[𝐺𝑡]𝑓𝑛 bi–converges to
F[𝐺𝑡]𝑓0 uniformly in 𝑡 ∈ [0, 𝑇 ].

2. If

for all 𝜀 > 0, 𝑤 ∈ ℋ lim
𝑡→𝑡0

P
(︁
‖(𝐺*

𝑡 −𝐺*
𝑡0
)𝑤‖ > 𝜀

)︁
= 0, (4.5)

then for all 𝑓 ∈ 𝐶𝐵𝑊𝑆(ℋ) the convergence bi lim
𝑡→𝑡0

F[𝐺𝑡]𝑓 = F[𝐺𝑡0 ]𝑓 holds.

Proof. 1) Let 𝑓𝑛 bi–converge to 𝑓 . For all 𝜀 > 0 and 𝑟 > 0 we find 𝑅𝜀 > 0 (depending also on
𝑟) such that for all 𝑣 ∈ 𝐵𝑟 and 𝑡 ∈ [0, 𝑇 ] the inequality

P
(︁
‖𝐺𝑡(𝜔)𝑣‖ > 𝑅𝜀

)︁
<

𝜀

4𝐶

holds, where 𝐶 = sup
𝑛∈N

‖𝑓𝑛‖. Employing the sets

Ω𝑡
𝜀(𝑣) = {𝜔 : ‖𝐺𝑡(𝜔)𝑣‖ ⩽ 𝑅𝜀},

we obtain the estimate

‖F[𝐺𝑡]𝑓𝑛(𝑣)− F[𝐺𝑡]𝑓0(𝑣)‖𝐵𝑟 ⩽
𝜀

4𝐶
2𝐶 +

∫︁
Ω𝑡

𝜀(𝑣)

𝑑P(𝜔) |𝑓𝑛(𝐺𝑡(𝜔)𝑣)− 𝑓0(𝐺𝑡(𝜔)𝑣)|. (4.6)
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Since ‖𝑓𝑛 − 𝑓0‖𝐵𝑅𝜀
→ 0 as 𝑛 → ∞, we can estimate the right hand side of the inequality

(4.6) by 𝜀 for sufficiently large 𝑛. The arbitrariness of 𝜀 > 0 implies the first condition of
bi–continuity at the point 𝑡0.

2) As before, there are 𝜀 > 0, 𝑅𝜀 > 0. On the ball 𝐵𝑅𝜀 the function 𝑓 ∈ 𝐶𝐵𝑊𝑆(ℋ) is uniformly
weakly continuous, that is, there exist 𝛿 > 0 and 𝑤1, . . . , 𝑤𝑛 ∈ ℋ such that |⟨𝑤𝑙|𝑣′ − 𝑣′′⟩| < 𝛿
implies |𝑓(𝑣′) − 𝑓(𝑣′′)| < 𝜀. By the assumption, for some neighbourhood 𝑈(𝑡0) and for all
𝑡 ∈ 𝑈(𝑡0), 𝜀 > 0, 𝑣 ∈ 𝐵𝑟 there exist sets Ω

𝑡
𝜀(𝑣) ⊂ Ω such that

P(Ω𝑡
𝜀(𝑣)) > 1− 2𝜀, Ω𝑡

𝜀(𝑣) =
{︁
∀𝑙 ‖(𝐺*

𝑡 −𝐺*
𝑡0
)𝑤𝑙‖ <

𝛿

𝑟
, ‖𝐺𝑡𝑣‖, ‖𝐺𝑡0𝑣‖ ⩽ 𝑅𝜀

}︁
.

Therefore, on Ω𝑡
𝜀(𝑣) the inequality |𝑓(𝐺𝑡(𝜔)𝑣)− 𝑓(𝐺𝑡0(𝑦)𝑣)| < 𝜀 holds as well as⃒⃒⃒⃒⃒⃒

(F[𝐺𝑡]− F[𝐺𝑡0 ])𝑓
⃒⃒⃒⃒⃒⃒
𝐵𝑟

⩽ 4𝜀‖𝑓‖+ 𝜀.

Since 𝜀 > 0 is arbitrary, F[𝐺𝑡]𝑓 converges uniformly on bounded sets to F[𝐺𝑡0 ]𝑓 and this
completes the proof.

Corollary 4.1. If the semigroup {T𝑡} on 𝐶𝐵𝑊𝑆(ℋ) is of form T𝑡 = F[𝐺𝑡], which satisfies
the assumptions of Theorem 4.1, then it is a bi–continuous semigroup on 𝐶𝐵𝑊𝑆(ℋ).

Of course, the convergence 𝜏 lim
𝑡→𝑡0

F[𝐺𝑡]𝑓 = F[𝐺𝑡0 ]𝑓 can hold not only for 𝑓 ∈ 𝐶𝐵𝑊𝑆(ℋ).

Example 4.1. We define {𝐺𝑡(𝜔) = 𝑒𝑡I}, 𝑓(𝑣) = exp(−‖𝑣‖2). Then

F[𝐺𝑡]𝑓(𝑣) = exp
(︁
−𝑒2𝑡‖𝑣‖2

)︁
,

and in this case the convergence F[𝐺𝑡]𝑓(𝑣) → 𝑓(𝑣) as 𝑡→ 0 is uniform on ℋ.

Moreover, if a function 𝑓 ∈ 𝐶𝐵(ℋ) is such that
⃒⃒⃒⃒⃒⃒F[𝐺𝑡]𝑓 − 𝑓

𝑡

⃒⃒⃒⃒⃒⃒
< 𝐶 for all 𝑡 ∈ [0, 𝑇 ], then

F[𝐺𝑡]𝑓(𝑣) → 𝑓(𝑣) as 𝑡→ 0 uniformly on ℋ.
We recall that the bi–closure ℒ ⊂ 𝐶𝐵(ℋ) is the set of functions 𝑓 ∈ 𝐶𝐵(ℋ), which are

bi–approximated by sequences in ℒ.

Proposition 4.4. Let OVF {F[𝐺𝑡]} satisfy the condition (4.4) and[︁
F[𝐺𝑡],F[𝐺𝑠]

]︁
= 0 for all 𝑡, 𝑠 ∈ [0, 𝑇 ].

By 𝐹𝐺 we denote the bi–closure of set of functions 𝑓 ∈ 𝐶𝐵(ℋ) obeying

sup
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒⃒⃒F[𝐺𝑡]𝑓 − 𝑓

𝑡

⃒⃒⃒⃒⃒⃒
<∞ and there exists 𝜏 lim

𝑡→0

F[𝐺𝑡]𝑓 − 𝑓

𝑡
.

Then 𝐹𝐺 is invariant with respect to all operators in OVF {F[𝐺𝑡]}.

Proof. Let for 𝑓 ∈ 𝐶𝐵(ℋ) and all 𝑡 ∈ [0, 𝑇 ] the relations⃒⃒⃒⃒⃒⃒F[𝐺𝑡]𝑓 − 𝑓

𝑡

⃒⃒⃒⃒⃒⃒
⩽ 𝐶, 𝜏 lim

𝑡→0

F[𝐺𝑡]𝑓 − 𝑓

𝑡
= 𝜃

hold. Then for an arbitrary operator 𝐴 ∈ ℬ(ℋ) the estimate⃒⃒⃒⃒⃒⃒∫︁
𝑑P(𝜔)

𝑓(𝐺𝑡(𝜔)𝐴𝑣)− 𝑓(𝐴𝑣)

𝑡

⃒⃒⃒⃒⃒⃒
⩽ 𝐶,

holds and this implies⃒⃒⃒⃒⃒⃒∫︁
𝑑P(𝜔)

∫︁
𝑑P̃(𝜔̃)

𝑓(𝐺𝑡(𝜔)𝐺̃(𝜔̃)𝑣)− 𝑓(𝐺̃(𝜔̃)𝑣)

𝑡

⃒⃒⃒⃒⃒⃒
⩽ 𝐶

for the random operator (𝐺̃, P̃).
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Let 𝜀 > 0, 𝐵𝑟 be the ball of radius 𝑟 centered at zero, (𝐺̃, P̃) be an arbitrary random operator.
As it has already been mentioned, there exists 𝑅𝜀 > 0 such that

P
(︁
‖𝐺̃‖ > 𝑅𝜀

)︁
<

𝜀

4𝐶
.

Suppose that ⃒⃒⃒⃒⃒⃒∫︁
𝑑P(𝜔)

𝑓(𝐺𝑡(𝜔)𝑣)− 𝑓(𝑣)

𝑡
− 𝜃(𝑣)

⃒⃒⃒⃒⃒⃒
𝐵𝑟𝑅𝜀

⩽
𝜀

2
.

We observe that the boundedness in norm of the differential relations implies the estimate
‖𝜃‖ ⩽ 𝐶. Then⃒⃒⃒⃒⃒⃒∫︁

𝑑P(𝜔)
∫︁
𝑑P̃(𝜔̃)

(︁𝑓(𝐺𝑡(𝜔)𝐺̃(𝜔̃)𝑣)− 𝑓(𝐺̃(𝜔̃)𝑣)

𝑡
− 𝜃(𝐺̃(𝜔̃)𝑣)

)︁⃒⃒⃒⃒⃒⃒
𝐵𝑟

⩽
2𝐶𝜀

4𝐶
+
𝜀

2
⩽ 𝜀.

Thus, the subspace

ℒ𝐺 =
{︁
𝑓 ∈ 𝐶𝐵(ℋ)

⃒⃒⃒
sup
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒⃒⃒F[𝐺𝑡]𝑓 − 𝑓

𝑡

⃒⃒⃒⃒⃒⃒
<∞, ∃𝜏 lim

𝑡→0

F[𝐺𝑡]𝑓 − 𝑓

𝑡

}︁
is invariant with respect to the actions of each operator F[𝐺̃] if

[︁
F[𝐺̃],F[𝐺𝑡]

]︁
= 0 for all 𝑡 ∈ [0, 𝑇 ],

and in particular, {F[𝐺𝑡]}. We note that

𝜏 lim
𝑡→0

F[𝐺𝑡]𝑓 − 𝑓

𝑡
∈ 𝐶𝐵(ℋ),

as the bi–limit of a sequence of functions in 𝐶𝐵(ℋ).
Now we take 𝑓 ∈ 𝐹𝐺 and an approximating it bi–sequence {𝑓𝑛} ⊂ ℒ𝐺. We suppose that

sup
𝑛∈N

‖𝑓𝑛‖ = 𝐶. Then for a random (𝐺̃, P̃) we have

‖F[𝐺̃]𝑓 − F[𝐺̃]𝑓𝑛‖ ⩽ 𝐶,

and the 𝜏–convergence F[𝐺̃]𝑓𝑛 ∈ ℒ𝐺 to F[𝐺̃]𝑓 is implied by the first assertion of Theorem 4.1
applied to the constant OVF {F[𝐺̃]}. Thus, 𝐹𝐺 is invariant with respect to the action of operator
F[𝐺̃].

In what follows we shall employ the subspace

ℒ𝐺 =
{︁
𝑓 ∈ 𝐶𝐵(ℋ)

⃒⃒⃒
sup
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒⃒⃒F[𝐺𝑡]𝑓 − 𝑓

𝑡

⃒⃒⃒⃒⃒⃒
<∞, ∃𝜏 lim

𝑡→0

F[𝐺𝑡]𝑓 − 𝑓

𝑡

}︁
⊂ 𝐹𝐺. (4.7)

We introduce the linear operator

L𝑓 = lim
𝑡→0

F[𝐺𝑡]− I

𝑡
𝑓

on a bi–dense subspace ℒ𝐺 ⊂ 𝐹𝐺.

4.3. Approximations of bi–continuous semigroups by operators F[𝐺 𝑡
𝑁
]𝑁 . Chernoff

Theorem 3.1 for bi–continuous semigroups allows one not only to prove the possibility of ap-
proximation of semigroups, but also to construct a bi–continuous semigroup if it is not given
explicitly. This section is devoted to verifying the assumptions of Theorem 3.1 for a given OVF

F[𝐺𝑡]
⃒⃒⃒
𝐹𝐺

. Namely, we need to verify that F[𝐺𝑡] is locally uniformly bi–equicontinuous, and

for the derivative L =
𝑑

𝑑𝑡
F[𝐺𝑡]

⃒⃒⃒⃒
⃒
𝑡=0

with the domain ℒ𝐺 the subspace (𝜆I − L)(ℒ𝐺) ⊂ 𝐹𝐺 is

bi–dense for some 𝜆 > 0.
We denote the products of independent random operators as

(𝐺⊥⊥𝑚
𝑡 ,P⊗𝑚) = ({𝐺𝑡(𝜔1) . . . 𝐺𝑡(𝜔𝑚)}, 𝑑P(𝜔1) . . . 𝑑P(𝜔𝑚)).
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Proposition 4.5. The assertions hold.

1. Assume that we are given an operator–valued function {𝐺𝑡} and for all 𝑟 > 0, 𝜀 > 0 there
exists 𝑅 > 0 such that

sup
{︁
P
(︁
‖𝐺⊥⊥𝑚

𝑡 𝑣‖ > 𝑅
)︁
, ‖𝑣‖ ⩽ 𝑟, 𝑡 ∈ [0, 𝑇 ], 𝑚 ∈ N

}︁
< 𝜀. (4.8)

Then the OVF F[𝐺𝑡] on 𝐵𝐵(ℋ) is locally uniformly bi–equicontinuous.
2. The condition

sup
𝑡∈[0,𝑇 ]

‖𝐺𝑡‖1 <∞, (4.9)

where ‖𝐺𝑡‖1 = E‖𝐺𝑡‖, is sufficient for the assumptions of previous assertion.

Proof. We begin with showing the sufficiency of (4.9) for ensuring the inequalities (4.8), and
then we shall prove the uniform bi–equicontinuity. Let 𝐵𝑟 be a ball in ℋ, 𝜀 > 0 and 𝑀 =
sup
𝑡∈[0,𝑇 ]

‖𝐺𝑡‖1. We introduce the function

𝑝(𝑅) = 1− inf
𝑡∈[0,𝑇 ]

P(Ω𝑡
𝑅) ⩽

𝑀

𝑅
,

where Ω𝑡
𝑅 = {𝜔 : ‖𝐺𝑡(𝜔)‖ ⩽ 𝑅}. For 𝜀 ∈ (0, 1) we let 𝑅𝜀 = max(1, (𝑀/𝜀)1/𝜀), then for all 𝑅 >

𝑅𝜀, on one hand, for 𝑠 ∈ [0, 𝜀] by the Bernoulli inequality

(1− 𝑝(𝑅𝑠))𝑠 ⩾

(︂
1− 𝑀

𝑅𝑠

)︂𝑠
⩾ 1− 𝑠

𝑀

𝑅𝑠
⩾ 1− 𝜀,

and on the other hand, for 𝑠 ∈ [𝜀, 1],

(1− 𝑝(𝑅𝑠))𝑠 ⩾ 1− 𝑀

𝑅𝑠
⩾ 1− 𝜀.

Therefore, for all 𝑅 > 𝑅𝜀, 𝑡 ∈ [0, 𝑇 ], 𝑚 ∈ N, 𝑣 ∈ 𝐵𝑟 the inequality

‖𝐺𝑡(𝜔1) . . . 𝐺𝑡(𝜔𝑚)𝑣‖ ⩽ 𝑟𝑅𝜀

holds with a probability at least 1− 𝜀.
We proceed to verifying the condition. We suppose that the sequence {𝑓𝑛} in uniformly

bounded in the norm by a constant 𝐶 > 0 and converges uniformly to zero on each bounded
set. We denote

𝑓 𝑡𝑛𝑚(𝑣) = (F[𝐺𝑡])
𝑚𝑓𝑛(𝑣) =

∫︁
𝑑P(𝜔1) . . . 𝑑P(𝜔𝑚)𝑓𝑛(𝐺𝑡(𝜔𝑚) . . . 𝐺𝑡(𝜔1)𝑣).

Partitioning the events in «far» and «close», we estimate

|𝑓 𝑡𝑛𝑚(𝑣)| ⩽ 𝜀𝐶 + sup
𝑣∈𝐵𝜀

|𝑓𝑛(𝑣)|.

But on the bounded set 𝐵𝜀 = 𝐵𝑟𝑅𝜀 the sequence {𝑓𝑛} uniformly converges to zero and this is
why by the arbitrariness of 𝜀 > 0 the sequence {𝑓 𝑡𝑛𝑚(𝑣)} converges to zero as 𝑛→ ∞ uniformly
in 𝑡 ∈ [0, 𝑇 ], 𝑚 ∈ N and 𝑣 ∈ 𝐵𝑟.

Remark 4.4. The property of locally uniform bi–equicontinuity of {F[𝐺𝑡]} is preserved under
the restriction to each subspace 𝐵𝐵(ℋ).

Remark 4.5. The finiteness of sup
𝑡∈[0,𝑇 ]

‖𝐺𝑡‖1 implies the first condition of Theorem 4.1 uni-

formly for all compositions of independent operators 𝐺⊥⊥𝑚
𝑡 , 𝑚 ∈ N, 𝑡 ∈ [0, 𝑇 ].
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We introduce the operators acting on 𝐵𝐵(ℋ) by the formula

F𝑡,𝜆 =
∞∑︁
𝑚=0

𝑡𝑒−𝜆𝑚𝑡F[𝐺𝑡]
𝑚, 𝑡 ∈ [0, 𝑇 ], 𝜆 > 0. (4.10)

The general fact is that if {F𝛼,𝑘, 𝑘 ∈ N, 𝛼 ∈ 𝒜} is bi–equicontinuous operator family on a
closed subspace 𝐹 ⊂ 𝐵𝐵(ℋ), then for the sequences {𝑝𝛼 = (𝑝𝛼,𝑘)𝑘}𝛼 satisfying the condition∑︀
𝑘

|𝑝𝛼| = 1 the family {F𝛼}𝛼, where F𝛼𝑓 =
∑︀
𝑘

𝑝𝛼,𝑘F𝛼,𝑘𝑓, is also bi–equicontinuous for all 𝑓 ∈ 𝐹 .

Indeed, for a given 𝜀 > 0 by the definition of bi–equicontinuity, for each ball 𝐵 ⊂ ℋ, a sequence
𝑓𝑛 bi–convergent to 𝑓0, the convergence sup

𝛼,𝑘
‖F𝛼,𝑘(𝑓𝑛 − 𝑓0)‖𝐵 → 0 holds as 𝑛 → ∞. This

inequality is obviously preserved while passing to the operators {F𝛼}.
In our case the locally uniform bi–equicontinuity of {F[𝐺𝑡]} implies the bi–equicontinuity of

the family {F𝑡,𝜆} for a fixed 𝜆 > 0.

Proposition 4.6. Let a random OVF {𝐺𝑡} satisfies the conditions of first assertion of

Proposition 4.5 and the commutation condition
[︁
F[𝐺𝑡],F[𝐺𝑠]

]︁
= 0 for all 𝑡, 𝑠 ∈ [0, 𝑇 ]. The

subspaces 𝐶𝐵(ℋ), 𝐶𝐵𝑊𝑆(ℋ), 𝐹𝐺 and ℒ𝐺 are invariant with respect to F𝑡,𝜆.

Proof. Using the invariance of 𝐶𝐵(ℋ), 𝐶𝐵𝑊𝑆(ℋ) and 𝐹𝐺 with respect to the Markov operators
F[𝐺𝑡], 𝑡 ∈ [0, 𝑇 ] (Proposition 4.4), their closedness in norm and the absolute convergence of
series in the definition of F𝑡,𝜆, we obtain the invariance of the subspaces 𝐶𝐵(ℋ), 𝐶𝐵𝑊𝑆(ℋ), 𝐹𝐺
with respect to F𝑡,𝜆.
Then for 𝜀 > 0 we employ the inequalities (4.8) to find 𝑅𝜀 > 0, such that with the probability

at least 1− 𝜀 a vector from the ball 𝐵𝑟 is mapped into the ball 𝐵𝑅𝜀 for all random operators
of the family {𝐺⊥⊥𝑚

𝑡 , 𝑡 ∈ [0, 𝑇 ], 𝑚 ∈ N}. Suppose that 𝑓 ∈ ℒ𝐺 obeys the conditions⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
𝑓 − L𝑓

⃒⃒⃒⃒⃒⃒
𝐵𝑅𝜀

< 𝜀,
⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
𝑓
⃒⃒⃒⃒⃒⃒
⩽ 𝐶.

Then ⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
F[𝐺𝑡]

𝑚𝑓
⃒⃒⃒⃒⃒⃒
⩽ 𝐶,

for all 𝑡, 𝑚 since ⃒⃒⃒F[𝐺𝑠]− I

𝑠
𝑓(𝐺⊥⊥𝑚

𝑡 𝑣)
⃒⃒⃒
⩽ 𝐶

almost surely and, using the commutation condition,⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
F[𝐺𝑡]

𝑚𝑓 − LF[𝐺𝑡]
𝑚𝑓
⃒⃒⃒⃒⃒⃒
𝐵𝑟

< 𝜀(𝐶 + 1)

by the same reason. We note that the estimate is uniform in 𝑚 and 𝑡 ∈ [0, 𝑇 ]. We have⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
F𝑡,𝜆𝑓

⃒⃒⃒⃒⃒⃒
⩽ 𝐶

∞∑︁
𝑚=0

𝑡𝑒−𝜆𝑚𝑡 ⩽
𝐶𝑇

1− 𝑒−𝜆𝑇
,
⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
F𝑡,𝜆𝑓 − LF𝑡,𝜆𝑓

⃒⃒⃒⃒⃒⃒
𝐵𝑟

<
𝜀(𝐶 + 1)𝑇

1− 𝑒−𝜆𝑇
.

As a result we obtain that F𝑡,𝜆𝑓 ∈ ℒ𝐺 for all 𝑡 ∈ [0, 𝑇 ].

Proposition 4.7. Let a random OVF {𝐺𝑡} satisfy the conditions in the first assertion of
Proposition 4.5, the commutation condition and 𝜆 > 0. Then the space (𝜆I−L)(ℒ𝐺) is bi–dense
in 𝐹𝐺.

Proof. We observe an elementary relation

F[𝐺𝑡]− I

𝑡
F𝑡,𝜆 =

𝑒𝜆𝑡 − 1

𝑡
F𝑡,𝜆 − I. (4.11)
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Let 𝜀 > 0, 𝑓 ∈ ℒ𝐺. There exists 𝑠𝜀 > 0 such that for all 𝑠 ∈ [0, 𝑠𝜀]⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
𝑓 − L𝑓

⃒⃒⃒⃒⃒⃒
𝐵𝑅𝜀

< 𝜀,
⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
𝑓
⃒⃒⃒⃒⃒⃒
⩽ 𝐶,

where 𝑅𝜀 > 0 is fixed by the requirement

P
(︁
‖𝐺⊥⊥𝑚

𝑡 𝑣‖ > 𝑅𝜀, ∀𝑣 : ‖𝑣‖ ⩽ 𝑟
)︁
< 𝜀, ∀𝑡 ∈ [0, 𝑇 ], 𝑚 ∈ N. (4.12)

Then, according the estimates from the proof of Proposition 4.6, for all 𝑡, 𝑠 ∈ [0, 𝑠𝜀] we have⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
F𝑡,𝜆𝑓 −

(︁𝑒𝜆𝑡 − 1

𝑡
F𝑡,𝜆𝑓 − 𝑓

)︁⃒⃒⃒⃒⃒⃒
⩽
⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
F𝑡,𝜆𝑓

⃒⃒⃒⃒⃒⃒
+
⃒⃒⃒⃒⃒⃒F[𝐺𝑡]− I

𝑡
F𝑡,𝜆𝑓

⃒⃒⃒⃒⃒⃒
⩽ 2

𝐶𝑇

1− 𝑒−𝜆𝑇
,⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
F𝑡,𝜆𝑓 −

(︁𝑒𝜆𝑡 − 1

𝑡
F𝑡,𝜆𝑓 − 𝑓

)︁⃒⃒⃒⃒⃒⃒
𝐵𝑟

⩽
⃒⃒⃒⃒⃒⃒F[𝐺𝑠]− I

𝑠
F𝑡,𝜆𝑓 − LF𝑡,𝜆𝑓

⃒⃒⃒⃒⃒⃒
𝐵𝑟

+
⃒⃒⃒⃒⃒⃒F[𝐺𝑡]− I

𝑡
F𝑡,𝜆𝑓 − LF𝑡,𝜆𝑓

⃒⃒⃒⃒⃒⃒
𝐵𝑟

< 2
𝜀(𝐶 + 1)𝑇

1− 𝑒−𝜆𝑇
.

Hence, the bi–closure (𝜆I − L)(ℒ𝐺) contains a function 𝑓 and it can be bi–approximated by
the functions {(𝜆I− L)F𝑡𝑘,𝜆𝑓} for a sequence {𝑡𝑘} converging to zero.

4.4. On one class of differential operators. Some important examples of semigroups and
operator–valued functions are related with differential operators on the space of functions from
ℋ to C, so we provide the necessary information about them.
The classical approach to differential operators in general is as follows. Let 𝑋, 𝑌 be linear

normed spaces, and 𝐹 (𝑋, 𝑌 ) be the space of all functions from 𝑋 to 𝑌 . A function 𝑓 ∈ 𝐹 (𝑋, 𝑌 )
is Fréchet differentiable at 𝑥 ∈ 𝑋 if the limit

lim
𝑡→0

𝑓(𝑥+ 𝑡ℎ)− 𝑓(𝑥)

𝑡
= 𝑑𝑓(𝑥)ℎ

is well–defined uniformly in ℎ from a neighbourhood of 0 ∈ 𝑋. At the same time, the Fréchet
derivative 𝑑𝑓(𝑥) is an element of the space ℬ(𝑋, 𝑌 ) of continuous linear maps from 𝑋 to
𝑌 . If 𝑓 ∈ 𝐹 (𝑋, 𝑌 ) is Fréchet differentiable at each point, then its derivative 𝑑𝑓 belongs to
the space 𝐹 (𝑋,ℬ(𝑋, 𝑌 )). Higher–order Fréchet derivatives are defined by induction. Let
ℬ1(𝑋, 𝑌 ) = ℬ(𝑋, 𝑌 ), and the spaces ℬ𝑛+1(𝑋, 𝑌 ) = ℬ(𝑋,ℬ𝑛(𝑋, 𝑌 )), defined for all 𝑛 ∈ N, be
normed spaces with respect to the operator norm; we denote 𝑑1𝑓 := 𝑑𝑓 . If 𝑓 has derivatives
𝑑𝑓, 𝑑2𝑓, . . . , 𝑑𝑛−1𝑓 in some neighborhood of a point 𝑥 ∈ 𝑋, and the mapping 𝑥 ↦→ 𝑑𝑛−1𝑓(𝑥)
is Fréchet differentiable at 𝑥, then the derivative of order 𝑛 > 1, 𝑑𝑛𝑓(𝑥), at 𝑥 is the Fréchet
derivative 𝑑(𝑑𝑛−1𝑓)(𝑥) of the function 𝑑𝑛−1𝑓 acting from the space 𝑋 to ℬ𝑛−1(𝑋, 𝑌 ). The space
ℬ𝑛(𝑋, 𝑌 ) is naturally embedded into the space ℒ𝑛(𝑋, 𝑌 ) of 𝑛–linear mappings𝑋×. . .×𝑋 → 𝑌 ,
where the values of derivatives define symmetric multilinear mappings.
Then differential operators are introduced.

Definition 4.3. [32, Def. 7.1.1] Let 𝑍 be a topological vector space and 𝐹𝑛 be some space
consisting of 𝑛 times Fréchet differentiable functions 𝑋 → 𝑌 at each point 𝑥 ∈ 𝑋. A mapping
𝒟 : 𝐹𝑛 → 𝐹 (𝑋,𝑍) is called the 𝑛th order differential operator if there exists a mapping

𝜃 : 𝑋 → ℒ(ℬ𝑛(𝑋, 𝑌 ), 𝑍), 𝑥 ↦→ 𝜃𝑥, (4.13)

such that for all 𝑥 ∈ 𝑋, 𝑓 ∈ 𝐹𝑛 the identity

(D𝑓)(𝑥) = 𝜃𝑥(𝑑
𝑛𝑓(𝑥)) (4.14)

holds.
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In what follows we consider the case, when 𝑋 = ℋR is the realification of the complex Hilbert
space ℋ, 𝑌 = C, or 𝑌 = R. On ℋR the scalar product is induced by the scalar product in ℋ:
⟨𝑤|𝑣⟩R = Re⟨𝑤|𝑣⟩. However, despite the difference between the spaces ℋ and ℋR, the spaces
of functions on them 𝐹 (ℋ, 𝑌 ) and 𝐹 (ℋR, 𝑌 ) are naturally isomorphic for any set 𝑌 . The scalar
product on the complexification of ℋR and its tensor powers are denoted by the brackets ⟨·|·⟩C.

Example 4.2. Let 𝐴𝑛 : D(𝐴𝑛) → ℋ⊗𝑛
R be a (possibly unbounded) operator on the Hilbert

tensor product ℋ⊗𝑛
R , and let 𝐹 be the space of real 𝑛 times differentiable functions on ℋR, for

which the derivative 𝑑𝑛𝑓 at each point 𝑣 ∈ ℋ as an 𝑛–linear function admits a continuous
extension to ℋ⊗𝑛

R , and 𝑑𝑛𝑓(𝑣) ∈ D(𝐴𝑛). The functional 𝜃𝑣 : 𝐹 → R defined by the identity

𝜃𝑣𝑑
𝑛𝑓(𝑣) = ⟨𝐴𝑛𝑑𝑛𝑓(𝑣)|𝑣⊗𝑛⟩R, (4.15)

defines the action of a differential operator D(𝐴𝑛) : 𝐹 → 𝐹 (ℋ,R).
Let 𝐴 = (𝐴1, . . . , 𝐴𝑛) be a family of operators 𝐴𝑘 : D(𝐴𝑘) → ℋ⊗𝑘

R , 1 ⩽ 𝑘 ⩽ 𝑛. Let 𝐹 be
a subspace of functions ℋ → R having Fréchet derivatives of 𝑛th order at all points 𝑣 ∈ ℋ,
each of which admits an extension to a linear continuous functional 𝑑𝑛𝑓(𝑣) ∈ (ℋ⊗𝑛

R )*, ∀𝑣 and
𝑑𝑘𝑓(𝑣) ∈ D(𝐴𝑘) for all 1 ⩽ 𝑘 ⩽ 𝑛, 𝑣 ∈ ℋ. We define the differential operator by the identity

D(𝐴)𝑓 =
𝑛∑︀
𝑘=1

D(𝐴𝑘)𝑓, which maps 𝐹 into 𝐹 (ℋ,R).

This scheme allows us to extend the differential operator D(𝐴) to the case of complex func-
tions. If for 𝑓 ∈ 𝐹 (ℋ,C) the real and imaginary parts lie in the subspace 𝐹 specified in
Example 4.2, then we let

(D(𝐴)𝑓)(𝑣) = (D(𝐴) Re 𝑓)(𝑣) + 𝑖(D(𝐴) Im 𝑓)(𝑣). (4.16)

Let us demonstrate the action of the above differential operator D(𝐴𝑛) using polynomials as
the example. Let the subspace 𝐹 ⊂ 𝐹 (ℋ,C) contain monomials

𝑝 : 𝑣 ↦→ ⟨𝑤1|𝑣⟩R . . . ⟨𝑤𝑚|𝑣⟩R,

which obey the condition 𝑑𝑛𝑝(𝑣) ∈ D(𝐴𝑛). It sufficient to suppose that for all injective mappings
𝑗 : {1, . . . , 𝑛} → {1, . . . ,𝑚} we have

𝑤𝑗(1) ⊗ . . .⊗ 𝑤𝑗(𝑛) ∈ D(𝐴𝑛).

In this case it is easy to find that

(D(𝐴𝑛)𝑝)(𝑣) =
∑︁

𝜎∈𝑆(𝑚)

⟨𝐴𝑛(𝑤𝜎1 ⊗ . . .⊗ 𝑤𝜎𝑛)|𝑣⊗𝑛⟩R
⟨𝑤𝜎𝑛+1|𝑣⟩R . . . ⟨𝑤𝜎𝑚|𝑣⟩R

(𝑚− 𝑛)!
. (4.17)

Let us clarify the reasons why second–order differential operators will appear in what follows.
In general, we could consider averaging over any complex measures of finite variation. For a
measure 𝜈 (𝜈(Ω) = 1) on a measurable space (Ω,F ) with finite total variation, the structure of

the probability space (Ω,F ) is naturally defined by taking P =
|𝜈|

|𝜈|(Ω)
. As we shall see below,

by averaging over the measure 𝜈 we can obtain a probability function

F𝜈 [𝐺𝑡] : 𝑓(𝑣) ↦→
∫︁
𝑑𝜈(𝜔) 𝑓(𝐺𝑡(𝜔)𝑣),

the derivative of which can be a differential operator of any order. But if 𝜈 is positive, then
under sufficiently weak technical constraints only differential operators of order at most two
are possible.
Let 𝐴 = (𝐴1, . . . , 𝐴𝑛) be a set of densely defined operators

𝐴𝑘 : D(𝐴𝑘) → ℋ⊗𝑘
R , 1 ⩽ 𝑘 ⩽ 𝑛,
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𝐹 ⊂ 𝐹 (ℋ,C) be the space of 𝑛 + 1 times Fréchet differentiable functions 𝑓 , the derivatives
{𝑑𝑘𝑓(𝑣)} of which are continued by the continuation to the complex space C(ℋ⊗𝑘

R ) under the
condition 𝑑𝑘𝑓(𝑣) ∈ CD(𝐴𝑘) for all 1 ⩽ 𝑘 ⩽ 𝑛, 𝑣 ∈ ℋ, and sup

𝑣∈ℋ
‖𝑑𝑛+1𝑓(𝑣)‖ <∞.

Proposition 4.8. Assume that we are give a finite measure 𝜈 (𝜈(Ω) = 1) on a measurable
space (Ω,F ) and an operator–valued function F𝜈 [𝐺𝑡], for which

1. the limiting relations

lim
𝑡→0

∫︁
𝑑𝜈(𝜔)

⟨𝑤|(𝐺𝑡(𝜔)𝑣 − 𝑣)⊗𝑘⟩R
𝑘!𝑡

= ⟨𝐴𝑘𝑤|𝑣⊗𝑘⟩R, ∀𝑤 ∈ D(𝐴𝑘) ⊂ ℋ⊗𝑘
R , 1 ⩽ 𝑘 ⩽ 𝑛

hold;
2. for each 𝑣 ∈ ℋ the convergence∫︁

𝑑|𝜈|(𝜔) ‖(𝐺𝑡(𝜔)− 𝐼)𝑣‖𝑛+1

𝑡
→ 0

holds as 𝑡→ 0.

Then for 𝑓 ∈ 𝐹 for each vector 𝑣 ∈ ℋ the derivative
𝑑

𝑑𝑡
(F𝜈 [𝐺𝑡]𝑓(𝑣))

⃒⃒⃒
𝑡=0

is equal to (D(𝐴)𝑓)(𝑣).

If the convergences of Bochner integrals

lim
𝑡→0

∫︁
𝑑𝜈(𝜔)

(𝐺*
𝑡 (𝜔)− 𝐼)⊗𝑘𝑤

𝑘!𝑡
= 𝐴𝑘𝑤, ∀𝑤 ∈ D(𝐴𝑘), 1 ⩽ 𝑘 ⩽ 𝑛; (4.18)

hold in the sense of norm, then
F[𝐺𝑡]− I

𝑡
𝑓, 𝑓 ∈ 𝐹, tends to D(𝐴)𝑓 as 𝑡 → 0 uniformly on

bounded sets.

Proof. By the Taylor formula, see [30, Thm. 12.4.4]) we have

𝑓(𝐺𝑡(𝜔)𝑣) = 𝑓(𝑣) +
𝑛∑︁
𝑘=1

1

𝑘!
⟨𝑑𝑘𝑓(𝑣)|(𝐺𝑡(𝜔)− 𝐼)⊗𝑘𝑣⊗𝑘⟩C + 𝑟𝑛(𝑡, 𝜔, 𝑣),

𝜈–almost everywhere and

𝑟𝑛(𝑡, 𝜔, 𝑣) =

1∫︁
0

𝑑𝑠
(1− 𝑠)𝑛

𝑛!
⟨𝑑𝑛+1𝑓(𝑣)|(𝐺𝑡(𝜔)𝑣 − 𝑣)⊗(𝑛+1)⟩C.

The estimate
|𝑟𝑛(𝑡, 𝜔, 𝑣)|

𝑡
⩽

𝑀𝑛+1

(𝑛+ 1)!

‖(𝐺𝑡(𝜔)− 𝐼)𝑣‖𝑛+1

𝑡

holds; averaging this estimate over |𝜈| gives the uniform on balls estimate for the error term.
Applying the condition to the real and imaginary parts of 𝑓 , we obtain that the difference

𝑛∑︁
𝑘=1

∫︁
𝑑𝜈(𝜔)

⟨𝑑𝑘𝑓(𝑣)|(𝐺𝑡(𝜔)𝑣 − 𝑣)⊗𝑘⟩C
𝑘!𝑡

−
𝑛∑︁
𝑘=1

∫︁
𝑑𝜈(𝜔) ⟨𝐴𝑘𝑑𝑘𝑓(𝑣)|𝑣⊗𝑘⟩C

tends to zero as 𝑡 → 0 for each 𝑣 ∈ ℋ. If this convergence is uniform in 𝑣 on balls, then
F[𝐺𝑡]− I

𝑡
𝑓 → D(𝐴)𝑓, 𝑓 ∈ 𝐹 as 𝑡→ 0 uniformly on balls and this completes the proof.

Let us consider the case when a random OVF {𝐺𝑡} has the analytic form

𝐺𝑡(𝜔) = 𝐼 +
𝑚∑︁
𝑘=1

𝑡
1
𝑘𝐺𝑘,𝑡(𝜔), (4.19)
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and the convergence lim
𝑡→0

⟨𝑤|𝐺𝑘,𝑡(𝜔)𝑣⟩ = ⟨𝐿𝑘(𝜔)𝑤|𝑣⟩ holds 𝜈–almost everywhere for all 𝑤 in the

dense subspace D ⊂ ℋ and all 𝑣 ∈ ℋ. Suppose also that the conditions hold

1. lim
𝑡→0

∫︁
𝑑𝜈(𝜔) (⟨𝐿𝑘(𝜔)𝑤|𝑣⟩)𝑗 = 0, 𝑗 < 𝑘 ⩽ 𝑚, 𝑤 ∈ D , 𝑣 ∈ ℋ;

2. lim
𝑡→0

∫︁
𝑑𝜈(𝜔) (⟨𝐿𝑘(𝜔)𝑤|𝑣⟩)𝑘 = ⟨𝐴𝑘𝑤⊗𝑘|𝑣⊗𝑘⟩, 𝑤 ∈ D , 𝑣 ∈ ℋ.

Then it follows from 4.8 that for 𝑓 ∈ 𝐹 the identity

𝑑

𝑑𝑡
F𝜈 [𝐺𝑡]𝑓(𝑣)

⃒⃒⃒
𝑡=0

= D(𝐴)𝑓(𝑣)

holds for all 𝑣 ∈ ℋ.
If 𝜈 ⩾ 0, then the conditions of the previous point are satisfied only in the case 𝐿𝑘 = 0 for

all 𝑘 > 2 𝜈–almost everywhere. Indeed, if 𝑘 > 2, 𝑤 ∈ D , then∫︁
𝑑𝜈(𝜔) |⟨𝐿𝑘(𝜔)𝑤|𝑣⟩|2 = 0

is equivalent to

⟨𝐿𝑘(𝜔)|𝑣⟩ = 0

𝜈–almost everywhere, whence ∫︁
𝑑𝜈(𝜔) (⟨𝐿𝑘(𝜔)𝑤|𝑣⟩)𝑘 = 0.

This argument illustrates the fact that among the generators of Markov semigroups, differential
operators of order higher than two do not arise.

5. Main result

We proceed to the formulation of main result. For the brevity by the symbol (#) we denote

the condition of the first assertion of Proposition 4.5. The condition
[︁
F[𝐺𝑡],F[𝐺𝑠]

]︁
= 0 for all

𝑡, 𝑠 ∈ [0, 𝑇 ] will be called the commutation condition.
The closed subspace 𝐹𝐺 ⊂ 𝐶𝐵(ℋ) is chosen as the bi–closure of the subspace ℒ𝐺 defined in

accordance with (4.7). It is the domain of the operator L.
The operators {F𝑡,𝜆, 𝑡 ∈ [0, 𝑇 ]}, 𝜆 > 0, are the discrete analogue of the resolvent and have

ℒ𝐺 as an invariant subspace under the condition (#).
Under these conditions, the main theorem is as follows.

Theorem 5.1. Let OVF {F[𝐺𝑡]} satisfy the condition (#) and the commutation condition.
Then for each function 𝑓 ∈ 𝐹𝐺 the action of bi–continuous semigroup {T𝑡}𝑡⩾0 is defined in the
space 𝐹𝐺 and

T𝑡𝑓 = 𝜏 lim
𝑁→∞

F[𝐺 𝑡
𝑁
]𝑁𝑓 (5.1)

uniformly on the segments in R+ in the variable 𝑡 > 0.

The choice of the space (𝐹𝐺, ‖ ·‖, 𝜏) already provides the desired properties of the differential

relation
F[𝐺𝑡]− I

𝑡
𝑓 on a bi–dense subspace, and if we want to work with the dynamics of

characteristic functionals, we need to understand whether 𝐶𝐵𝑊𝑆(ℋ) is embedded into 𝐹𝐺.
However, one can weaken the functional properties of the semigroup by extending its action to
Borel bounded functions.
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Theorem 5.2. Let {T𝑡} be a bi–continuous semigroup on 𝐶𝐵𝑊𝑆(ℋ) and be approximated
by the Chernoff iterates of an OVF {F[𝐺𝑡]} satisfying (#). Then it has a unique extending
semigroup {Q𝑡} on 𝐵𝐵(ℋ), which is Markov. Moreover, for each 𝑓 ∈ 𝐶𝐵(ℋ) we have

lim
𝑁→∞

F[𝐺 𝑡
𝑁
]𝑁𝑓(𝑣) = Q𝑡𝑓(𝑣)

for all 𝑣 ∈ ℋ, 𝑡 ⩾ 0.

Proof. We recall that a family of random elements {𝑥𝛼}𝛼 on a metric space (𝑆, 𝜌) is called tight
if for all 𝜀 > 0 one can find a compact 𝐾𝜀 ⊂ 𝑆 such that P(𝑥𝛼 /∈ 𝐾𝜀) < 𝜀 for all 𝛼, see [18,
Ch. V, Def. 4]. In our case, the family of random vectors ℳ𝑣 = {𝐺⊥⊥𝑚

𝑡 𝑣} in the topology of
weak sequential convergence 𝜏𝑊𝑆 is tight for fixed 𝑣 ∈ ℋ according to (#) (this topology is
generated by intersections of 𝜏𝑊–open sets with concentric balls in ℋ with integer radii; 𝜏𝑊𝑆

is metrizable, and the balls are compact).
By the Prokhorov theorem [18, Ch. V, Thm. 5]) the set of measures of random vectorsℳ𝑣 in

(ℋ,B𝑊 ) is weakly relatively compact, that is, in each sequence inℳ𝑣 one can choose a sequence
of random vectors converging in distribution. For example, there exists a sequence {𝑁𝑘} ⊂
N such that 𝐺⊥⊥𝑁𝑘

𝑡
𝑁𝑘

𝑣 converges in distribution to some random vector 𝜓𝑣,𝑡 with distribution

(probability measure on ℋ) P𝑣,𝑡 (this choice is not unique). Moreover, {𝑁𝑘} can be chosen as a
subsequence from any prescribed sequence. Then we can define operators {Q𝑡} of norm 1 from
𝐵𝐵(ℋ) into the space of all functions,

(Q𝑡𝑓)(𝑣) =

∫︁
𝑑P𝑣,𝑡(𝜓) 𝑓(𝜓), 𝑓 ∈ 𝐵𝐵(ℋ). (5.2)

However, we have not proved that the Borel function are mapped into the Borel ones. Let the
sequence {𝑓𝑛} ⊂ 𝐶𝐵𝑊𝑆(ℋ) 𝜋–approximate 𝑓0 ∈ 𝐵𝐵(ℋ) (that is, the sequence {𝑓𝑛} is uniformly
bounded and converges to 𝑓0 pointwise; this type of convergence was introduced by Priola in
his paper [33] devoted to 𝜋–continuous semigroups). By the Lebesgue theorem∫︁

𝑑P𝑣,𝑡(𝜓) 𝑓𝑛(𝜓) →
∫︁
𝑑P𝑣,𝑡(𝜓) 𝑓0(𝜓),

that is, T𝑡𝑓𝑛 𝜋–converges to Q𝑡𝑓0 (the uniform boundedness is implied by fact that the measure
P𝑣,𝑡 is probabilistic). The space of bounded Borel functions is the 𝜋–closure 𝐶𝐵𝑊𝑆(ℋ) (the
indicator functions of sets of form {𝑣 : ⟨𝑤|𝑣⟩ ∈ [𝑎, 𝑏]} are 𝜋–approximated by weakly continuous
functions), this is why the functions 𝑣 ↦→ Q𝑡𝑓 , 𝑓 ∈ 𝐵𝐵(ℋ) are approximated pointwise by Borel
functions, and hence, 𝐵𝐵(ℋ) is invariant with respect to the operators Q𝑡. Thus, the operators
Q𝑡 are Markov and extend T𝑡, moreover, uniquely since they are approximated pointwise by
the actions of operator T𝑡.
Let us show that the system {Q𝑡}𝑡⩾0 is a semigroup on 𝐵𝐵(ℋ). For an arbitrary 𝑓0 ∈ 𝐵𝐵(ℋ)

we find a sequence {𝑓𝑛} ⊂ 𝐶𝐵𝑊𝑆, which 𝜋–approximates 𝑓0. Then

Q𝑡Q𝑠𝑓0 = 𝜋 lim
𝑛→∞

T𝑡T𝑠𝑓𝑛 = 𝜋 lim
𝑛→∞

T𝑡+𝑠𝑓𝑛 = Q𝑡+𝑠𝑓0.

By construction, Q0 = I.
We choose an arbitrary sequence {𝑛𝑘} ⊂ N. As it has been mentioned, we can choose a

subsequence {𝑁𝑘}, for which the distributions of random vectors {𝐺⊥⊥𝑁𝑘
𝑡

𝑁𝑘

𝑣} weakly converge to

some measure P̃𝑣,𝑡. However, due to the coincidence∫︁
𝑑P𝑣,𝑡(𝜓) 𝑓(𝜓) =

∫︁
𝑑P̃𝑣,𝑡(𝜓) 𝑓(𝜓)

on 𝐶𝐵𝑊𝑆(ℋ), we obtain the identities P̃𝑣,𝑡 = P𝑣,𝑡 and
lim
𝑘→∞

F[𝐺 𝑡
𝑁𝑘

]𝑁𝑘𝑓(𝑣) = Q𝑡𝑓(𝑣).
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Therefore, lim
𝑁→∞

F[𝐺 𝑡
𝑁
]𝑁𝑓(𝑣) = Q𝑡𝑓(𝑣).

Example 5.1. A random operator–valued function {𝐺𝑡(𝑦) = 𝑒𝑏𝑦
√
𝑡𝐶−𝑎𝑡𝐶2} with respect to the

measure 𝑑P(𝑦) =
𝑑𝑦√︀
𝜋/𝛾

𝑒−𝛾𝑦
2
satisfies the condition (#) for each self–adjoint operator 𝐶 on

ℋ, 𝑎 > 0, 𝛾 >
𝑏2

4𝑎
. It can be easily verified taking into account the representation

𝐺𝑡(𝑦) = 𝑒
𝑦2𝑏2

4𝑎 exp
(︁
−
(︁
𝐶
√
𝑎𝑡− 𝑏𝑦

2
√
𝑎

)︁2)︁
,

which implies
𝑑P(𝑦)
𝑑𝑦

‖𝐺𝑡(𝑦)‖ ⩽
1√
𝜋
𝑒
−
(︁
𝛾− 𝑏2

4𝑎

)︁
𝑦2
.

Using some class of OVF described in 5.1, there is a possibility to construct the Chernoff
approximations of bi–continuous semigroups. However, we separately need to verify the com-
mutation condition, which can be violated by the following operations. Namely, we can

1. average avaliable OVF: if for each 𝛼 OVF {F[𝐺𝛼,𝑡]} satisfies (#) and a quasiprobability
measure 𝑑𝜈(𝛼) of bounded measure is given, then {F𝜈 [𝐺𝑡] :=

∫︀
𝑑𝜈(𝛼) F[𝐺𝛼,𝑡]} satisfies

(#);
2. reparametrize the family: if the OVF {F[𝐺𝑡]} satisfies (#) on the segment [0, 𝑇 ], and
𝑠 : [0, 𝑇 ] → [0, 𝑆], then {F[𝐺𝑠(𝑡)]} also satisfies (#), but on the segment [0, 𝑆].

The first option corresponds to the replacement of probability space (Ω,F ,P) on(︁
𝒜× Ω,Σ⊗ F , P̃ :=

|𝜈|
|𝜈|(𝒜)

⊗ P
)︁
. It is supposed that the necessary measurability conditions

with respect to (Σ⊗ F ,B𝑊𝑂𝑇 ) are satisfied for the random operators {𝐺𝛼,𝑡(𝜔)} and

𝜁(𝛼) :=
{︁

sup
𝑡∈[0,𝑇 ], ‖𝑣‖⩽𝑟

P
(︁
‖𝐺𝛼,𝑡(𝜔)𝑣‖ > 𝑅

)︁}︁
.

The mapping 𝛼 ↦→ 𝜁(𝛼) is measurable and this is why for all 𝜀 > 0 there exist 𝑅𝜀 > 0 and a
measurable 𝒜𝜀 ⊂ 𝒜 such that

|𝜈|(𝒜𝜀)

|𝜈|(𝒜)
> 1− 𝜀

and |𝜁(𝛼)| ⩽ 𝑅𝜀 for all 𝛼 ∈ 𝒜𝜀. At the same time,

P̃
(︁
𝛼 ∈ 𝒜𝜀, ‖𝐺𝛼,𝑡(𝜔)𝑣‖ ⩽ 𝑅𝜀

)︁
⩾ 1− 2𝜀.

The second option is obvious.

5.1. Examples.

5.1.1. Quantum measurements. We consider a particular example of a quantum measurement
scheme that, in the limit of the interval 𝑡 > 0 between measurements with identical instruments
tending to zero, gives a continuous process in the state space admitting the description in
terms of linear random walks. Suppose that a measurable space with measure (𝒜,Σ, 𝜈) and
measurable mappings 𝛼 ↦→ ⟨𝑤|𝐶𝛼𝑣⟩ for all 𝑤 ∈ ℋ, 𝑣 ∈ D (the subspace D is dense in ℋ) and
some self–adjoint operators {𝐶𝛼} are given. We consider a completely positive instrument

M[𝐵](𝜌) =

∫︁
𝐵

𝑑𝜈(𝛼)

∫︁
𝑑𝑦√︀
𝜋/𝛾

𝑒−𝛾𝑦
2

𝐺𝛼,𝑡(𝑦)𝜌𝐺
*
𝛼,𝑡(𝑦), (5.3)

where 𝐵 ∈ Σ, 𝐺𝛼,𝑡(𝑦) = 𝑒𝑏𝑦
√
𝑡𝐶𝛼−𝑎𝑡𝐶2

𝛼 , 𝑎 > 0, 𝑏 ∈ R.
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A linear random walk with a parameter 𝑡 is defined by the family of random operators
{𝐺𝛼,𝑡(𝑦)}. As it has been already noted, the condition (#) is satisfied for 𝛾 > 𝑏2

4𝑎
, so it remains

to verify that on some space 𝒟0 ⊂ 𝐶𝐵(ℋ), the bi–closure of which contains 𝐶𝐵𝑊𝑆(ℋ), we have

lim
𝑡→0

⃒⃒⃒⃒⃒⃒F[𝐺𝑡]− I

𝑡
𝑓 − L𝑓

⃒⃒⃒⃒⃒⃒
= 0, 𝑓 ∈ 𝒟0. (5.4)

Let

lim
𝑡→0

∫︁
𝑑𝜈(𝛼)

∫︁
𝑑𝑦√︀
𝜋/𝛾

𝑒−𝛾𝑦
2 𝐺𝛼,𝑡(𝑦)𝑤 − 𝑤

𝑡
= 𝐴1𝑤, 𝑤 ∈ D ,

lim
𝑡→0

∫︁
𝑑𝜈(𝛼)

∫︁
𝑑𝑦√︀
𝜋/𝛾

𝑒−𝛾𝑦
2 (𝐺𝛼,𝑡𝑤 − 𝑤)⊗2

2𝑡
= 𝐴2𝑤

⊗2, 𝑤 ∈ D ,

denote 𝐴 = (𝐴1, 𝐴2) and let 𝐴1 ∈ ℬ(ℋ), 𝐴2 ∈ ℬ(ℋ⊗2).
Formally the relation of the operators 𝐴1, 𝐴2 with the random operator 𝐶𝛼 can be expressed

by the formulas

−
(︁
𝑎− 𝑏2

4𝛾

)︁∫︁
𝑑𝜈(𝛼) ⟨𝑤|𝐶2

𝛼𝑣⟩ = ⟨𝐴1𝑤|𝑣⟩, (5.5)

𝑏2

4𝛾

∫︁
𝑑𝜈(𝛼) ⟨𝑤|𝐶𝛼𝑣⟩2 = ⟨𝐴2𝑤

⊗2|𝑣⊗2⟩. (5.6)

We form 𝒟0 as a C–linear span of functions of form

𝑓(𝑣) = 𝑝(⟨𝑤1|𝑣⟩R, . . . , ⟨𝑤𝑛|𝑤⟩R)ℎ(𝛿‖𝑣‖2),

where 𝑝 ∈ R[𝑥1, . . . , 𝑥𝑛], 𝑛 ∈ N, 𝛿 > 0, and the function ℎ(𝑥) : R → R obey the following
conditions

1. ℎ(𝑥) ∈ 𝒮(R);
2. ‖ℎ‖ = 1;
3. ℎ(𝑥) = 1 for all 𝑥 ∈ [−1, 1], and ℎ(𝑥) = 0 for all 𝑥 ∈ R ∖ [−2, 2].

Under these conditions the function 𝑓(𝑣) has bounded derivatives of all orders, which are
non–zero only inside some bounded set. We restrict ourselves by the case, when the operators
𝐴1 and 𝐴2 are continuous and hence, at each point 𝑣 ∈ ℋ the action (D(𝐴)𝑓)(𝑣) is well–
defined for 𝐴 = (𝐴1, 𝐴2) and D(𝐴)𝑓 ∈ 𝐶𝐵(ℋ). Since the condition (4.18) of Proposition 4.8

is satisfied, on the bounded sets the convergence
F[𝐺𝑡]− I

𝑡
𝑓 − L𝑓 is uniform and therefore,

𝑓 ∈ ℒ𝐺. It remains to note that each weakly sequentially continuous function can be uniformly
approximated by polynomials on each bounded subset of ℋ, and hence, for each 𝑓 ∈ 𝐶𝐵𝑊𝑆(ℋ)
there exists a sequence from 𝒟0, which bi–converges to this function.
Thus, the Chernoff iterations of the constructed OVF {F[𝐺𝑡]} bi–approximate some bi–

continuous semigroup on 𝐶𝐵𝑊𝑆(ℋ), which can be extended to a Markov semigroup on 𝐵𝐵(ℋ)
if the commutation condition is satisfied; this conditions is to be verified separately.
The same conclusion can be made in the case, when 𝐴1, 𝐴2 are self–adjoint (not necessarily

bounded) operators, where {𝑒𝑘} is an orthonormal basis of eigenvectors of 𝐴1, and {𝑒𝑗⊗𝑒𝑘} is an
orthonormal basis of eigenvectors of 𝐴2. Then, as 𝒟0, we can take C, the linear span of functions
of the form 𝑓(𝑣) = 𝑔(⟨𝑒𝑘|𝑣⟩R), where 𝑔 ∈ 𝒮(R). It is easy to see that D(𝐴)𝑓 ∈ 𝐶𝐵(ℋ) and the
bi–closure of 𝒟0 contains 𝐶𝐵𝑊𝑆(ℋ). That is, D(𝐴) can potentially serve as a generator of a
bi–continuous semigroup. If we additionally require that (5.4) hold for the OVF F[𝐺𝑡], then the
Chernoff iterations of the constructed OVF {F[𝐺𝑡]} also bi–approximate some bi–continuous
semigroup according to Theorems 5.1 and 5.2.
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5.1.2. Random control. Let the random Hamiltonian (𝐻𝛼, 𝜈) be bounded by the norm, that is,
the inequality ‖𝐻𝛼‖ ⩽ 𝑀 holds 𝜈–almost everywhere for some constant 𝑀 > 0. We construct

the random OVF {𝐺𝑡}, 𝐺𝛼,𝑡(𝑦) = exp
(︁
𝑖𝑏𝑦

√
𝑡𝐻𝛼 + 𝑎𝑡𝐻𝛼

)︁
with respect to the measure 𝜈 ⊗

𝑑𝑦√︀
𝜋/𝛾

𝑒−𝛾𝑦
2
, for which the commutation condition is supposed to hold.

The condition (#) is obviously implied by the estimate for the norm ‖𝐺𝛼,𝑡(𝑦)‖ ⩽ 𝑒𝑎𝑡𝑀 ,
the boundedness of the Hamiltonians is employed essentially. The differential operators are
similarly defined on the family 𝒟0 and they read D(𝐴), where 𝐴 = (𝐴1, 𝐴2),

𝐴1𝑤 =
(︁
𝑎− 𝑏2

4𝛾

)︁∫︁
𝑑𝜈(𝛼) 𝐻2

𝛼𝑤,

𝐴2𝑤
⊗2 = − 𝑏2

4𝛾

∫︁
𝑑𝜈(𝛼) 𝐻⊗2

𝛼 𝑤⊗2, 𝑣 ∈ ℋ,

and they generate the bi–continuous semigroup T𝑡 on 𝐶𝐵𝑊𝑆.

5.1.3. Validity of commutation condition for non–commuting random OVF. It has been noted
more than once that although the commutation condition is essentially restrictive, it does not
require almost sure commutation [𝐺𝑡(𝜔), 𝐺𝑠(𝜔)] = 0, 𝑡, 𝑠 ∈ [0, 𝑇 ]. Let us give an example when
the Markov operators corresponding to the random operators

𝐺 = {(𝑝𝑗, 𝐺𝑗)}𝑛𝑗=1, 𝐺̃ = {(𝑝𝑗, 𝐺̃𝑗)}𝑛𝑗=1

commute, but [𝐺𝑗, 𝐺̃𝑘] ̸= 0 for 𝑗 ̸= 𝑘.
We let 𝑛 = 2 (dimℋ = 2),

𝑝1 = 𝑝2 = 𝑝1 = 𝑝2 =
1

2
,

𝐺1 = 𝜎̂𝑥, 𝐺2 = 𝜎̂𝑧, 𝐺̃1 = 𝑖𝜎̂𝑦, 𝐺̃2 = −𝑖𝜎̂𝑦,

where {𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧} are the Pauli matrices. Then the random operators 𝐺𝐺̃ and 𝐺̃𝐺 have the
same distribution

{(𝑝𝑖𝑝𝑗, 𝐺𝑖𝐺𝑗)} = {(𝑝𝑖𝑝𝑗, 𝐺𝑗𝐺𝑖)} ∼
{︂(︂

1

4
, 𝜎̂𝑥

)︂
,

(︂
1

4
,−𝜎̂𝑥

)︂
,

(︂
1

4
, 𝜎̂𝑧

)︂
,

(︂
1

4
,−𝜎̂𝑧

)︂}︂
Therefore, the commutation

[︁
F[𝐺],F[𝐺̃]

]︁
= 0 holds.

This example allows us to construct OVF {F[𝐺𝑡]} of mutually commuting Markov operators
on the base of non–commuting random operators: 𝐺𝑡(𝜔) = 𝐼 with the probability1 − 𝑡, and
𝐺𝑡(𝜔) is equal to one of the operators {𝜎̂𝑥, 𝜎̂𝑧, 𝑖𝜎̂𝑦,−𝑖𝜎̂𝑦} with the probability 𝑡/4.

Conclusion

It has been established that under the commutation condition and under the natural technical
assumption (#) on the bounded behavior of random operators, a discrete in time random
walk approximates a continuous Markov homogeneous process described by a semigroup, the
restriction of which to the space of bounded weakly sequentially continuous functions has the
bi–continuity property. The importance of such a space is that each bounded Borel function can
be approximated pointwise by its elements. Processes important for applications in quantum
mechanics can be approximated by discrete processes with the above property. This result not
only indicates a method of approximation that is certainly useful in modeling processes, but also
implicitly indicates the existence of a semigroup with a certain type of generator. In the general
case, the question of the existence of a semigroup with some unbounded operator as a generator
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was not resolved completely. The commutation condition of Markov operators of the family
{F[𝐺𝑡]} turns out to be the most restrictive in our analysis, but, as it is shown in Example 3,
is not equivalent to the commutation of random operators almost surely. In the framework of
this approach we have not succeeded to overcome the necessity of this requirement.
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Appendix. Some known properties of functions on Hilbert space

The weak topology 𝜏𝑊 on ℋ is generated by the intersections of the neighbourhoods of form

𝑈(𝑤, 𝑎, 𝜀) = {𝑣 ∈ ℋ | ⟨𝑤|𝑣⟩ ∈ (𝑎− 𝜀, 𝑎+ 𝜀)}
and it coincides with the weak topology. On the set 𝐾 ⊂ ℋ the weak topology is induced by
the weak topology on ℋ. A weakly continuous function is one continuous with respect to the
weak topology. The each closed ball 𝐵 ⊂ ℋ the weak topology is metrizable, and 𝐵 is a weakly
compact set. We recall that a function 𝑓 : ℋ → C is called weakly sequentially continuous if
𝜏𝑊 lim

𝑛→∞
𝑣𝑛 = 𝑣0 implies lim

𝑛→∞
𝑓(𝑣𝑛) = 𝑓(𝑣0).

Proposition 5.1. A function 𝑓 : ℋ → C is weakly sequentially continuous at a point 𝑣 ∈ ℋ
if and only if its restriction to each bounded neighborhood 𝑈 of 𝑣 is weakly continuous.

Proof. ⇒ Let 𝑈𝑟(𝑣) be a ball centered at 𝑣. The weak topology on this ball is metrizable.
Therefore, the weak continuity is equivalent to the weak sequential continuity.

⇐ A weakly convergent sequence 𝜏𝑊 lim
𝑛→∞

𝑣𝑛 = 𝑣0 is bounded, so it can be placed into

a spherical neighborhood of 𝑈 . The weak continuity of 𝑓 on 𝑈 then implies lim
𝑛→∞

𝑓(𝑣𝑛) =

𝑓(𝑣0).

The spaces of bounded Borel functions (𝐵𝐵(ℋ)), bounded continuous (𝐶𝐵(ℋ)), bounded
weakly sequentially continuous (𝐶𝐵𝑊𝑆(ℋ)) and bounded weakly continuous functions
(𝐶𝐵𝑊 (ℋ)) satisfy the following chain of inclusions: 𝐶𝐵𝑊 (ℋ) ⊂ 𝐶𝐵𝑊𝑆(ℋ) ⊂ 𝐶𝐵(ℋ) ⊂ 𝐵𝐵(ℋ).
Each of these subspaces is Banach with respect to the sup–norm. We shall verify this property
for the space 𝐶𝐵𝑊𝑆(ℋ) we are interesting in.

Proposition 5.2. The space 𝐶𝐵𝑊𝑆(ℋ) with the sup–norm is Banach.

Proof. It is sufficient to show that it is closed in 𝐶𝐵(ℋ). We take

𝑓1 ∈ 𝐶𝐵(ℋ) ∖ 𝐶𝐵𝑊𝑆(ℋ).

Then there exists a sequence {𝑣𝑛} ⊂ ℋ weakly converging to 𝑣0, but

|𝑓1(𝑣𝑛)− 𝑓1(𝑣0)| > 𝜀

for some 𝜀 > 0. Then it is sufficient to consider the neighbourhood 𝑈 𝜀
3
(𝑓1) of the radius 𝜀/3 of

element 𝑓1. For each 𝑓2 ∈ 𝑈𝜀/3(𝑓1) and for all 𝑣 ∈ ℋ we have |𝑓1(𝑣)− 𝑓2(𝑣)| < 𝜀/3 and

|𝑓2(𝑣𝑛)− 𝑓2(𝑣0)| ⩾ |𝑓1(𝑣𝑛)− 𝑓1(𝑣0)| − |𝑓1(𝑣𝑛)− 𝑓2(𝑣𝑛)| − |𝑓1(𝑣0)− 𝑓2(𝑣0)| >
𝜀

3
, (5.7)

and this implies the absence of weak sequential continuity of 𝑓2.
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The weak uniform continuity of a function 𝑓 : 𝐾 → C is expressed by the fact that for each
𝜀 > 0 there exist 𝛿 > 0, 𝑤1, . . . 𝑤𝑛 ∈ ℋ such that the inequality |⟨𝑤𝑘|𝑣′ − 𝑣′′⟩| < 𝛿 for all
𝑘 = 1, . . . , 𝑛, 𝑣′, 𝑣′′ ∈ 𝐾 implies |𝑓(𝑣′)− 𝑓(𝑣′′)| < 𝜀. On balls (or on other weakly compact set)
the weakly continuous functions are uniformly continuous.
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