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INTEGRAL INEQUALITIES INVARIANT

UNDER CONFORMAL TRANSFORMATIONS

F.G. AVKHADIEV

Abstract. Employing the Poincaré metric, we introduce conformally invariant integrals
for smooth compactly supported functions defined on domains of hyperbolic type in the
extended plane. For these integrals, which involve the hyperbolic radius, a smooth function,
and its gradient or Laplacian, we consider conformally invariant analogues of Hardy and
Rellich type inequalities with constants depending on the domain. We provide explicit
estimates for the constants using numerical characteristics, namely, the maximal moduluses
of the domain and a geometric constant involved in the linear hyperbolic isoperimetric
inequality.

In the paper we prove several new statements. In particular, we justify a criterion for
the positivity of constants for finitely–connected domains of hyperbolic type and prove
several integral inequalities universal in the sense that these inequalities involve no unknown
constants and are valid in each domain of hyperbolic type.

In the beginning of the paper, we briefly outline the properties of hyperbolic radius
and describe several related. In particular, we mention the results by Schmidt, Osserman,
Fernández, and Rodŕıguez on hyperbolic isoperimetric inequalities and their applications,
provide the Elstrodt — Patterson — Sullivan formula for the critical exponents of conver-
gence of the Poincaré — Dirichlet series, and present a result by Carleson and Gamelin on
the maximal moduli of a domain with uniformly perfect boundary.

Keywords: Poincaré metric, conformal mapping, isoperimetric inequality, Hardy type
inequality, Laplace operator.
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1. Introduction

Let Ω ⊂ C be a domain of hyperbolic type. In this domain we define the Poincaré metric
𝑑𝑠 = 𝜆Ω(𝑧)|𝑑𝑧| with the Gauss curvature 𝜅 = −4. We recall that a domain Ω ⊂ C is of
hyperbolic type if and only if its boundary 𝜕Ω contains at least three points. We briefly
describe some information about the hyperbolic radius 𝑅(𝑧,Ω) := 1/𝜆Ω(𝑧); it can be found in
the monographs by Goluzin [1], Ahlfors [2], Avkhadiev and Wirths [3].
The well–known formula for the Gauss curvature gives

𝑅2(𝑧,Ω)∆ ln𝑅(𝑧,Ω) ≡ −4(= 𝜅). (1.1)

The hyperbolic radius 𝑅(𝑧,Ω) is attractive since it is comparable with the Euclidean distance
dist(𝑧, 𝜕Ω) from the point 𝑧 ∈ Ω to the boundary 𝜕Ω of the domain

𝑅(𝑧,Ω) ⩾ dist(𝑧, 𝜕Ω) := min
𝑤∈𝜕Ω

|𝑧 − 𝑤|, 𝑧 ∈ Ω. (1.2)

For a series of domains Ω ⊂ C also the estimate

dist(𝑧, 𝜕Ω) ⩾ 𝛼(Ω)𝑅(𝑧,Ω), 𝑧 ∈ Ω,
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holds, where 𝛼(Ω) = const ∈ (0, 1/2].
We also recall the known examples: 𝑅(𝑧,D) = 1− |𝑧|2 for the unit circle D = {𝑧 ∈ C : |𝑧| <

1}, 𝑅(𝑧, 𝑃 ) = 2 dist(𝑧, 𝜕𝑃 ) for the half–plane, 𝑅(𝑧,D ∖ {0}) = 2 |𝑧| ln(1/|𝑧|) for the circle D
with the punctured center.
If ∞ ∈ Ω, then near this point we have 𝑅(𝑧,Ω) ≍ |𝑧|2.
Let 𝑓 : D→ Ω be the univercal covering mapping of the circle D to a domain Ω of hyperbolic

type. We note that the function 𝑓 is holomorphic or meromorphic. If Ω is a simply–connected
domain, then 𝑓 is a univalent conformal mapping, while if Ω is not simply–connected, then
the covering mapping is just locally univalent. For each domain Ω ⊂ C of hyperbolic type the
identity

𝑅(𝑧,Ω) ≡ |𝑓 ′(𝜁)|(1− |𝜁|2), 𝜁 ∈ D, 𝑧 = 𝑓(𝜁) ∈ Ω,

holds. As a corollary of this identity we can obtain Equation (1.1) and the equivalent Liouville
equation

𝑅(𝑧,Ω)∆𝑅(𝑧,Ω) = |∇𝑅(𝑧,Ω)|2 − 4,

where the Euclidean gradient and Euclidean Laplacian of the function 𝜙 = 𝑅( · ,Ω) are defined
by the well–known formulas

∇𝜙(𝑧) = 2
𝜕𝜙(𝑧)

𝜕𝑧
, ∆𝜙(𝑧) = 4

𝜕2𝜙(𝑧)

𝜕𝑧 𝜕𝑧
.

As it was proved in the recent paper [4], the identity

𝑅3(𝑧,Ω)

4
∆2𝑅(𝑧,Ω) ≡ (1− |𝜁|2)4 |𝑆𝑓 (𝜁)|2 , 𝑧 = 𝑓(𝜁) ∈ Ω,

holds, where ∆2𝑅 := ∆(∆𝑅), the function 𝑆𝑓 is the Schwarzian derivative of the universal
covering mapping, that is,

𝑆𝑓 (𝜁) =
𝑓 ′′′(𝜁)

𝑓 ′(𝜁)
− 3

2

(︂
𝑓 ′′(𝜁)

𝑓 ′(𝜁)

)︂2

, 𝜁 ∈ D.

This identity implies that for each domain Ω ⊂ C of hyperbolic type the function 𝜓 : Ω → R

defined by the formula 𝜓(𝑧) = ∆𝑅(𝑧,Ω) is subharmonic.
In the domain Ω ∖ {∞} the hyperbolic radius 𝑅(𝑧,Ω) is a real analytic function. If ∞ ∈ Ω,

then near the infinity the function |𝑧|−2𝑅(𝑧,Ω) is real analytic and the limit

lim
𝑧→∞

𝑅(𝑧,Ω)

|𝑧|2
> 0

is well–defined. If 𝑧0 ∈ (𝜕Ω) ∖ {∞}, then
lim
𝑧→𝑧0

𝑅(𝑧,Ω) = lim
𝑧→𝑧0

dist(𝑧, 𝜕Ω) = 0.

We consider an 𝑚–connected domain 𝐺𝑚 ⊂ Ω with a piecewise–smooth boundary 𝜕𝐺𝑚 ⊂ Ω,
where 𝑚 stands for the number of boundary components. The hyperbolic area and perimeter
of a domain 𝐺𝑚 ⊂ Ω are defined by the following integrals

𝐴(𝐺𝑚) =

∫︁∫︁
𝐺𝑚

𝑑𝑥𝑑𝑦

𝑅2(𝑧,Ω)
, 𝐿(𝜕𝐺𝑚) =

∫︁
𝜕𝐺𝑚

|𝑑𝑧|
𝑅(𝑧,Ω)

, (1.3)

which are invariant with respect to the conformal mappings Ω.
Under some conditions on the pair (Ω, 𝐺𝑚) the following conformally invariant hyperbolic

isoperimetric inequality is true:

4𝜋 𝐴(𝐺𝑚)− 𝜅𝐴2(𝐺𝑚) ⩽ 𝐿2(𝜕𝐺𝑚),

where 𝑘 = 𝑐𝑜𝑛𝑠𝑡 < 0 is the curvature of the hyperbolic metrics, the area 𝐴(𝐺𝑚) and the length
𝐿(𝜕𝐺𝑚) are defined by the formulas (1.3). Let us provide the exact formulations.
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Theorem 1.1 ([5]). If Ω is a simply–connected domain of hyperbolic type and it is equipped

with the Poincaré metrics of the curvature 𝜅 = −4, then for each simply–connected domain

𝐺1 with a piecewise–smooth boundary, which is compactly embedded into the domain Ω the

inequality

4𝜋 𝐴(𝐺1) + 4𝐴2(𝐺1) ⩽ 𝐿2(𝜕𝐺1)

holds, in which the identity is achieved if and only if 𝐺1 is the hyperbolic circle.

It is easy to show that the following theorem holds; it is simultaneously the generalization
and corollary of Theorem 1.1.

Theorem 1.2. Suppose that Ω ⊂ C is a domain of hyperbolic type equipped with the Poincaré

metrics of the curvature 𝜅 = −4 and let 𝑓 : D → Ω be the universal covering mapping of

the circle D to the domain Ω. Let 𝐺𝑚 be an 𝑚–connected domain with a piecewise–smooth

boundary and 𝐺𝑚 ⊂ Ω. If we additionally suppose that a univalent branch of the analytic

function 𝑓−1 : Ω → D is well–defined on the domain 𝐺𝑚, then the inequality

4𝜋 𝐴(𝐺𝑚) + 4𝐴2(𝐺𝑚) ⩽ 𝐿2(𝜕𝐺𝑚) (1.4)

holds.

It is obvious that if the domain Ω is simply–connected, then the additional condition holds
immediately. We also recall that for each domain Ω of hyperbolic type the existence of the
univalent branch of the function 𝑓−1 in the simply–connected domain 𝐺1 ⊂ Ω is satisfied by
the monodromy theorem. It is easy to verify that without the additional condition on 𝐺𝑚 with
𝑚 ⩾ 2 the inequality (1.4) can be wrong even in the case of doubly–connected domains Ω.
We note that for sufficiently smooth functions 𝑢 : Ω → R the integrals∫︁∫︁

Ω

|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦,
∫︁∫︁
Ω

∆𝑢(𝑧)𝑑𝑥𝑑𝑦,

∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑑𝑥𝑑𝑦

are conformally invariant. We also mention that the Green formula∫︁∫︁
Ω

(𝑢∆𝑣 + (∇𝑢,∇𝑣))𝑑𝑥𝑑𝑦 =

∫︁
𝜕Ω

𝑢 (𝜕𝑣/𝜕𝑛)|𝑑𝑧|

is a conformally invariant identity.
It is easy to construct a series of other conformally invariant integrals. For 𝑝 ∈ [1,∞) the

integrals of form
∫︀∫︀
Ω

|∇𝑢(𝑧)|𝑝𝑅𝑝−2(𝑧,Ω) 𝑑𝑥𝑑𝑦 are conformally invariant. Indeed, if Φ : Π → Ω

is a univalent conformal mapping of the domain Π of hyperbolic type to the domain Ω, then

𝑅(𝑧,Ω) = |Φ′(𝜁)|𝑅(𝜁,Π), 𝜁 = 𝜉 + 𝑖𝜂 ∈ Π, 𝑧 = 𝑥+ 𝑖𝑦 = Φ(𝜁) ∈ Ω.

Therefore,

|∇𝑧 𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 =

|∇𝜁 𝑢(Φ(𝜁))|𝑝

𝑅2−𝑝(𝜁,Π)
𝑑𝜉𝑑𝜂

(︂
𝑑𝑥𝑑𝑦

𝑅2(𝑧,Ω)
=

𝑑𝜉𝑑𝜂

𝑅2(𝜁,Π)

)︂
. (1.5)

In each domain of hyperbolic type the Euclidean distance dist(𝑧, 𝜕Ω) satisfies the Lipschitz
condition

| dist(𝑧1, 𝜕Ω)− dist(𝑧2, 𝜕Ω)| ⩽ |𝑧1 − 𝑧2|, 𝑧1, 𝑧2 ∈ Ω,

but it is not a smooth function even for bounded convex domains Ω. In view of the inequality
(1.2) and other mentioned properties of the hyperbolic radius, the quantity 𝑅(𝑧,Ω) can be
regarded as a smooth replacement for the Euclidean distance dist(𝑧, 𝜕Ω) in known integral
inequalities of mathematical physics.
Let 𝑘 ∈ N. By the symbol 𝐶𝑘

0 (Ω) we denote the family 𝑘 times continuously differentiable
functions 𝑢 : Ω → R compactly supported in the domain Ω.
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If ∞ ∈ Ω, then the continuity of 𝑢(𝑧) and its derivatives at the point 𝑧 = ∞ means the
continuity of 𝑢(1/𝑧) and its derivatives in the variables 𝑥 and 𝑦 (𝑥+ 𝑖𝑦 = 𝑧) at the point 𝑧 = 0.
Let 𝑝 ∈ [1,∞). Using the formulas (1.5) and their analogues for the Laplacian, we define

and study a series of new conformally invariant numerical characteristics for the domains of
hyperbolic type. The basic ones are the following constants

𝑐𝑝(Ω) = inf
𝑢∈𝐶1

0 (Ω),𝑢̸≡0

∫︀∫︀
Ω

|∇𝑢(𝑧)|𝑝𝑅𝑝−2(𝑧,Ω)𝑑𝑥𝑑𝑦∫︀∫︀
Ω

|𝑢(𝑧)|𝑝𝑅−2(𝑧,Ω)𝑑𝑥𝑑𝑦
,

𝑐**𝑝 (Ω) = inf
𝑢∈𝐶2

0 (Ω),𝑢̸≡0

∫︀∫︀
Ω

|∆𝑢(𝑧)|𝑝𝑅2𝑝−2(𝑧,Ω)𝑑𝑥𝑑𝑦∫︀∫︀
Ω

|𝑢(𝑧)|𝑝𝑅−2(𝑧,Ω)𝑑𝑥𝑑𝑦
.

These characteristics 𝑐𝑝(Ω) ∈ [0,∞) and 𝑐**𝑝 (Ω) ∈ [0,∞) are conformally invariant. The quan-
tity 𝑐𝑝(Ω) is the exact constant in the integral identity∫︁∫︁

Ω

|∇𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾ 𝑐𝑝(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1

0(Ω),

while the quantity 𝑐**𝑝 (Ω) is a sharp constant in the inequality∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝

𝑅2−2𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾ 𝑐**𝑝 (Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶2

0(Ω).

If 𝑐𝑝(Ω) = 0 or 𝑐**𝑝 (Ω) = 0, then the corresponding inequality becomes meaningless. This is
why it is important to find the positivity of these constants. In Sections 2 and 3 we describe
such conditions and also provide the estimates for these constants via geometric characteristics
of the domains.

2. Constants ℎ(Ω) and 𝑐2(Ω), maximal moduluses 𝑀(Ω) and 𝑀0(Ω)

The following linear isoperimetric inequalities

𝐴(𝐺𝑚) ⩽ ℎ(Ω)𝐿(𝜕𝐺𝑚), ℎ(Ω) := sup
𝐺𝑚

𝐴(𝐺𝑚)

𝐿(𝜕𝐺𝑚)
. (2.1)

turned out to be useful in applications. Here the area 𝐴(𝐺𝑚) of the domain 𝐺𝑚 and the length
𝐿(𝜕𝐺𝑚) of its boundary are defined by the formulas (1.3).
The supremum in the formula (2.1) is taken over the set of finitely–connected domains 𝐺𝑚

(𝑚 ∈ N) having piecewise–smooth boundaries and being compactly embedded into the do-
main Ω. It is obvious that if the isoperimetric inequality (1.4) holds for the pair (Ω, 𝐺𝑚), then

𝐴(𝐺𝑚) ⩽
1

2
𝐿(𝜕𝐺𝑚).

It is known, see the review by R. Osserman [6]), that the following statement is true.

Proposition 2.1. If Ω is a simply–connected or doubly–connected domain of hyperbolic type

equipped with the Poincaré metrics of curvature 𝑘 = −4, then ℎ(Ω) = 1/
√
−𝜅 = 1/2.

In [6] Osserman also pointed out that there exist domains of hyperbolic type, for which
ℎ(Ω) = ∞, in particular, ℎ(C ∖ {0, 1}) = ∞.
We recall that by the symbol 𝐶1

0(Ω) we denote the set of continuously differentiable functions
𝑢 : Ω → R compactly supported in the domain Ω ⊂ C of hyperbolic type. We consider the
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following conformally invariant analogue of Hardy type inequality:∫︁∫︁
Ω

|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ⩾ 𝑐2(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|2

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1

0(Ω), (2.2)

where the constant 𝑐2(Ω) ⩾ 0 is supposed to be the maximal possible. The exact definition
of 𝑐𝑝(Ω) for each fixed 𝑝 ∈ [1,∞) is given above. It is clear that the inequality (2.2) is also a
hyperbolic analogue of the classical Poincaré — Friedrichs inequality.
The next statement is known, see [7], [8], [9].

Theorem 2.1. For each simply–connected or doubly–connected domain we have 𝑐2(Ω) = 1.

The next statement is also well–known, [10], [6], [11], see also [12].

Theorem 2.2. For each domain Ω ⊂ C equipped with the Poincaré metrics of curvature

𝑘 = −4 the inequalities

1

4ℎ2(Ω)
⩽ 𝑐2(Ω) ⩽

3

ℎ(Ω)
(2.3)

hold.

We first mention a simple corollary.

Corollary 2.1. For each domain Ω ⊂ C of hyperbolic type

𝑐2(Ω) > 0 ⇐⇒ ℎ(Ω) <∞.

The next nontrivial statement complements Proposition 2.1.

Proposition 2.2. For each domain Ω ⊂ C equipped with the Poincaré metrics of curvature

𝑘 = −4 the inequalities

𝑐2(Ω) ⩽ 1, ℎ(Ω) ⩾
1

2
hold.

Proof. By Elstrodt — Patterson — Sullivan formula [8]

𝑐2(Ω) =

⎧⎪⎨⎪⎩
1, 0 ⩽ 𝛽 ⩽

1

2
,

4𝛽(1− 𝛽),
1

2
⩽ 𝛽 ⩽ 1.

where 𝛽 = 𝛽(Ω) ∈ [0, 1] is the critical convergence exponent of the Poincaré — Dirichlet series
for the fundamental group of transformations of Ω. This formula implies that 𝑐2(Ω) ⩽ 1 for
each domain of hyperbolic type. Combining this fact with the lower bound in the inequalities
(2.3), we get ℎ(Ω) ⩾ 1/2. The proof is complete.

In what follows we shall use the conformal maximal modulus 𝑀(Ω). Let Ω2 be a doubly–
connected domain, which is conformally equivalent to the annulus

𝐴(𝑎, 𝑧0, 𝑏) = {𝑧 ∈ C : 𝑎 < |𝑧 − 𝑧0| < 𝑏}.

As usually, the conformal modulus mod(Ω2) of the doubly–connected domain Ω2 is defined by
the identity

mod(Ω2) = mod(𝐴(𝑎, 𝑧0, 𝑏)) =
1

2𝜋
ln
𝑏

𝑎
(0 ⩽ 𝑎 < 𝑏 ⩽ ∞)

under the convention that if 𝑎 = 0 and (or) 𝑏 = ∞, then mod(𝐴(𝑎, 𝑧0, 𝑏)) = ∞.
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Definition 2.1. The conformal maximal modulus 𝑀(Ω) of non–simply–connected domain

Ω ⊂ C is defined by the identity

𝑀(Ω) = sup
Ω2

mod(Ω2),

where the supremum is taken over the set of doubly–connected domains Ω2 ⊂ Ω, each of which

partitions the boundary of Ω. In particular, if the domain Ω is doubly–connected, then 𝑀(Ω) =
mod(Ω). If Ω is a simply–connected domain of hyperbolic type, we let 𝑀(Ω) = 0.

Theorem 2.3 ([12]). For each non–simply–connected domain of hyperbolic type we have

𝑀(Ω) <∞ =⇒ 𝑐2(Ω) > 0 (2.4)

The opposite implication is wrong. In particular, for the unit circle with the punctured center
we have 𝑐2(D ∖ {0}) = 1, but 𝑀(D ∖ {0}) = mod(D ∖ {0}) = ∞. There is an open problem
posed in [12]: in terms of the Euclidean geometry, describe all domains Ω, for which 𝑐2(Ω) > 0.
This problem is not solved yet. There is only the following partial advantage: the implication

(2.4) can be replaced by the equivalent implication 𝑀0(Ω) < ∞ =⇒ 𝑐2(Ω) > 0, where 𝑀0(Ω)
is a constant defined in terms of the Euclidean geometry of the domain Ω without using the

conformal mappings. Let us give the definition of 𝑀0(Ω).

Definition 2.2. The Euclidean maximal modulus 𝑀0(Ω) of a non–simply–connected domain

Ω ⊂ C is defined by the identity

𝑀0(Ω) = sup
𝐴(𝑎,𝑧0,𝑏)

(2𝜋)−1 ln(𝑏/𝑎),

where the supremum is taken over the set of annuli

𝐴(𝑎, 𝑧0, 𝑏) = {𝑧 ∈ C : 𝑎 < |𝑧 − 𝑧0| < 𝑏},
such that 𝐴(𝑎, 𝑧0, 𝑏) ⊂ Ω, 𝐴(𝑎, 𝑧0, 𝑏) partitions the boundary Ω, 𝑧0 ∈ 𝜕Ω and 0 < 𝑎 < 𝑏 <∞.

If there is no such annuli, we then we let 𝑀0(Ω) = 0. We let that 𝑀0(Ω) = 0 for each

simply–connected domain Ω ⊂ C of hyperbolic type.

If𝑀0(Ω) <∞, then following [13], we say that 𝜕Ω is a uniformly perfect set. If the domain Ω
is a piecewise–connected, then its boundary 𝜕Ω is uniformly perfect if and only if it is perfect.
The Euclidean maximal modulus 𝑀0(Ω) plays the most essential role for finitely–connected
domains. And in this case the uniform perfectness of boundary differs substantially from the
perfectness of boundary.
Carleson and Gamelin pointed out [14] that by rescaling and applying normal families one

can prove the following statement:

𝑀(Ω) <∞ ⇐⇒𝑀0(Ω) <∞.

It is obvious that the estimate 𝑀0(Ω) ⩽𝑀(Ω) is trivial and the implication

𝑀0(Ω) <∞ =⇒𝑀(Ω) <∞
is an unexpected statement. Because of this, we draw the attention of the reader to the fact
that in the paper [12] the domains obeying the condition 𝑀(Ω) < ∞, were called modulated
domains. Together with modulated domains, in this paper we separately consider the domains
with uniformly perfect boundaries obeying the condition 𝑀0(Ω) <∞. Thus, the appearance of
the term «modulated domains» in the paper [12] is related just with the fact that the authors
did not know the implication

𝑀0(Ω) <∞ =⇒𝑀(Ω) <∞.

The upper bounds for 𝑀(Ω) via 𝑀0(Ω) appear in few works. The best known estimates are
represented in the following theorem.
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Theorem 2.4 ([3] for ∞ ̸∈ Ω; [15] for ∞ ∈ Ω). For each non–simply–connected domain

Ω ⊂ C the following statements hold:

1) If ∞ ̸∈ Ω, then

𝑀0(Ω) ⩽𝑀(Ω) ⩽𝑀0(Ω) +
1

2
.

2) If ∞ ∈ Ω, then
𝑀0(Ω) ⩽𝑀(Ω) ⩽ 2𝑀0(Ω) + 1,

where the constant 2 can not be replaced by 2− 𝜀 with any 𝜀 > 0.

In the proof of this theorem, namely, in the upper bounds for 𝑀(Ω) via 𝑀0(Ω), the identity
Λ(1) = 1/2 and the following formula by Ahlfors [2] were employed essentially:

𝑡 = 𝑡(𝑞) =
1

16𝑞

∞∏︁
𝑛=1

(︂
1− 𝑞2𝑛−1

1 + 𝑞2𝑛

)︂8

, 𝑞 = exp(−2𝜋Λ(𝑡)),

where Λ(𝑡) = mod(𝐺𝑡) > 0 is the modulus of the Teinchmüller annulus

𝐺𝑡 := C ∖ ([−1, 0] ∪ [𝑡,∞]) , 0 < 𝑡 <∞.

The uniform perfectness of boundary of domain is preserved under univalent conformal or
𝐾–quasiconformal transformations of domain since the condition 𝑀0(Ω) < ∞ is equivalent
to the condition 𝑀(Ω) < ∞, while the invariance of the condition 𝑀(Ω) < ∞ under the
aforementioned transformations is a classical fact. We also note that the absence of conformal
invariance of Euclidean conformal modulus 𝑀0(Ω) is compensated by the simplicity of its
calculation.

3. Main results

We begin with describing an interesting effect demonstrating the important difference of
the inequality (2.2) with the sharp constant 𝑐2(Ω) from the classical Poincaré — Friedrichs
inequality ∫︁∫︁

Ω

|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ⩾ 𝜆1(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1
0(Ω),

where the sharp constant 𝜆1(Ω) ∈ [0,∞) is the lowest eigenvalue of the Dirichlet problem for
the Laplace equation. It is well–known that for the domain Ω ⊂ C with a smooth boundary
the Poincaré — Friedrichs inequality becomes the identity∫︁∫︁

Ω

|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 = 𝜆1(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|2𝑑𝑥𝑑𝑦 <∞

for the extremal function 𝑢 ̸≡ 0 with the properties 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶(Ω), 𝑢(𝑧) = 0 for each
𝑧 ∈ 𝜕Ω, ∆𝑢(𝑧) + 𝜆1(Ω) 𝑢(𝑧) = 0 in the domain Ω.
By definition, the sharpness of the constant 𝑐2(Ω) ⩾ 0 in the inequality (2.2) implies that for

each 𝜀 > 0 we find a function 𝑢𝜀 ∈ 𝐶1
0(Ω) obeying the opposite inequality∫︁∫︁

Ω

|∇𝑢𝜀(𝑧)|2𝑑𝑥𝑑𝑦 < (𝑐2(Ω) + 𝜀)

∫︁∫︁
Ω

|𝑢𝜀(𝑧)|2

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦.

In particular, for simply–connected and doubly–connected domains the sharpness of the con-
stant 𝑐2(Ω) = 1 in the inequality (2.2) just means that the inequality∫︁∫︁

Ω

|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ⩾
∫︁∫︁
Ω

|𝑢(𝑧)|2

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1

0(Ω) (3.1)
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is true and for each 𝜀 > 0 there exists a function 𝑢𝜀 ∈ 𝐶1
0(Ω) such that∫︁∫︁

Ω

|∇𝑢𝜀(𝑧)|2𝑑𝑥𝑑𝑦 < (1 + 𝜀)

∫︁∫︁
Ω

|𝑢𝜀(𝑧)|2

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦.

For a simply–connected or doubly–connected domain Ω ⊂ C with a smooth boundary there
exists no extremal function with the properties 𝑢 ̸≡ 0, 𝑢 ∈ 𝐶1(Ω) ∩ 𝐶(Ω), 𝑢(𝑧) = 0 for each
𝑧 ∈ 𝜕Ω, and ∫︁∫︁

Ω

|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 =

∫︁∫︁
Ω

|𝑢(𝑧)|2

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦 <∞.

This fact is related with the presence of singular weight function 𝑅−2(𝑧,Ω). The absence of the
extremal function allows us to strengthen the inequality (3.1). Despite 𝑐2(Ω) = 1 for simply–
connected and doubly–connected domains Ω ⊂ C, in the right hand side of the inequality (3.1)
we can insert an additional positive term. Namely, we have the following theorem on improving
the inequality (3.1) for simply–connected and doubly–connected domains.

Theorem 3.1 ([15]). The following statements hold.

1) Let Ω ⊂ C be a simply–connected domain of hyperbolic type, 𝑔 be any of univalent confor-

mal mappings of Ω onto the half–plane {𝜁 ∈ C : Im 𝜁 > 0}. Then∫︁∫︁
Ω

|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ⩾
∫︁∫︁
Ω

|𝑢(𝑧)|2𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

+
1

4

∫︁∫︁
Ω

|𝑢(𝑧)|2
⃒⃒⃒⃒
𝑔′(𝑧)

𝑔(𝑧)

⃒⃒⃒⃒2
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1

0(Ω).

The constant 1/4 is sharp, that is, it maximal possible.

2) Let Ω ⊂ C be a doubly–connected domain of hyperbolic type, 𝑔 be any of univalent confor-

mal mappings of Ω onto the annulus {𝜁 ∈ C : 𝑞 < |𝜁| < 1}. Then∫︁∫︁
Ω

|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ⩾
∫︁∫︁
Ω

|𝑢(𝑧)|2𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

+
1/16

𝑀2(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|2
⃒⃒⃒⃒
𝑔′(𝑧)

𝑔(𝑧)

⃒⃒⃒⃒2
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1

0(Ω).

The constant 𝑀−2(Ω)/16 is sharp, that is, it is maximal possible.

An important ingredient of the proof of this theorem is the following double strengthening
of the Hardy inequality on finite segments.

Lemma 3.1 ([15]). Let 𝑣 : [0, 𝜋] → R be an absolutely continuous function obeying the

conditions

𝑣(0) = 𝑣(𝜋) = 0, 𝑣 ̸≡ 0, 𝑣′ ∈ 𝐿2(0, 𝜋).

Then
𝜋∫︁

0

𝑣′2(𝜃) 𝑑𝜃 >
1

4

𝜋∫︁
0

𝑣2(𝜃)

sin2 𝜃
𝑑𝜃 +

1

4

𝜋∫︁
0

𝑣2(𝜃) 𝑑𝜃.

The constants 1/4 is sharp in the sense that none of them can be replaced by (1 + 𝜀)/4 for any

𝜀 > 0.

Under the assumptions of Lemma 3.1 the results by Hardy give only the inequality [16]
𝜋∫︁

0

𝑣′2(𝜃) 𝑑𝜃 >
1

4

𝜋∫︁
0

𝑣2(𝜃)

min{𝜃2, (𝜋 − 𝜃)2}
𝑑𝜃,

where
1

min{𝜃2, (𝜋 − 𝜃)2}
<

1

sin2 𝜃
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for all 𝜃 ∈ (0, 𝜋) due to the known properties of the sine.
For comparison we provide the following analogue of Lemma 3.1.

Lemma 3.2 ([17]). Let 𝑣 : [0, 𝜋] → R be an absolutely continuous function obeying the

conditions

𝑣(0) = 𝑣(𝜋) = 0, 𝑣 ̸≡ 0, 𝑣′ ∈ 𝐿2(0, 𝜋).

Then
𝜋∫︁

0

𝑣′2(𝜃) 𝑑𝜃 >
1

4

𝜋∫︁
0

𝑣2(𝜃)

min{𝜃2, (𝜋 − 𝜃)2}
𝑑𝜃 +

4𝜆20
𝜋2

𝜋∫︁
0

𝑣2(𝜃) 𝑑𝜃,

where 𝜆0 ≈ 0.940 is the Lambda constant defined as the first positive root of the equation

𝐽0(𝑥) + 2𝑥𝐽 ′
0(𝑥) = 0 for the Bessel function of zero order. The constants 1/4 and 4𝜆20/𝜋

2 are

sharp.

As it is known, the hyperbolic radius for the annulus 𝐴(𝑞, 0, 1) = {𝑧 ∈ C : 𝑞 < |𝑧| < 1} for
𝑞 ∈ (0, 1) is expressed by the following formula

𝑅(𝑧, 𝐴(𝑞, 0, 1)) =
2|𝑧| ln 1

𝑞

𝜋
sin

𝜋 ln |𝑧|
ln 𝑞

.

Let 𝐶 = 𝜋/ ln(1/𝑞) and 0 < 𝑞 < 𝑟 < 1. Replacing 𝜃 = −𝐶 ln 𝑟 in the integrals of Lemma 3.1,
we get a statement, which is a base for the proof Theorem 3.1 for doubly–connected domains.

Lemma 3.3 ([15]). Let 𝑞 ∈ (0, 1). For each absolutely continuous function 𝑣 : [𝑞, 1] → R

obeying the conditions

𝑣(𝑞) = 𝑣(1) = 0, 𝑣 ̸≡ 0, 𝑣′ ∈ 𝐿2(𝑞, 1),

the inequality
1∫︁

𝑞

𝑣′2(𝑟) 𝑟𝑑𝑟 >

1∫︁
𝑞

𝑣2(𝑟)

𝜌2(𝑥)
𝑟𝑑𝑟 +

𝜋2

4 ln2 𝑞

1∫︁
𝑞

𝑣2(𝑟)

𝑟
𝑑𝑟

holds, where

𝜌(𝑟) =
2𝑟 ln 𝑞

𝜋
sin

𝜋 ln 𝑟

ln 𝑞
.

The constant 𝜋2/4 is sharp.

We note that by applying Lemmas 3.1, 3.2 and 3.3 we obtain several inequalities similar to
ones provided in Theorem 3.1, see [17]–[19].
In what folows we consider the inequalities involving the conformally invariant integrals of

form ∫︁∫︁
Ω

|∇𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦,

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦,

∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝

𝑅2−2𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦.

First of all we consider the 𝐿𝑝–version of the inequality (2.2)∫︁∫︁
Ω

|∇𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾ 𝑐𝑝(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1

0(Ω), (3.2)

where 𝑝 ∈ [1,∞) is a fixed parameter. The constant 𝑐𝑝(Ω) ∈ [0,∞) in (3.2) is supposed to be
the maximal possible.
We shall need the next lemma proved in [20].
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Lemma 3.4. Let 1 ⩽ 𝑝 ⩽ 𝑞 <∞. Then

𝑝 (𝑐𝑝(Ω))
1
𝑝 ⩽ 𝑞 (𝑐𝑞(Ω))

1
𝑞

for each domain Ω ⊂ C of hyperbolic type. In particular, 𝑐1(Ω) ⩽ 2
√︀
𝑐2(Ω).

Theorem 3.2. Let 𝑝 ∈ [1,∞) and Ω ⊂ C be a domain of hyperbolic type. Then the following

statements are true:

1) If Ω is simply–connected or doubly–connect domain, then 𝑐𝑝(Ω) = 2𝑝/𝑝𝑝.
2) If Ω is a finitely–connected domain having at least three boundary components, then

𝑐𝑝(Ω) > 0 if and only if at least one of these components is a continuum.

3) Let Ω be a finitely–connected or infinitely–connected domain, the boundary of which is a

uniformly perfect set and has at least three component. Then

𝑐𝑝(Ω) ⩾
1

𝑝𝑝 𝜎𝑝(Ω)
> 0,

where

𝜎(Ω) := 𝜋𝑀0(Ω) +
Γ4
(︀
1
4

)︀
4𝜋2

in the case ∞ ̸∈ Ω and

𝜎(Ω) := 2𝜋𝑀0(Ω) + 𝜋 +
Γ4
(︀
1
4

)︀
4𝜋2

in the case ∞ ∈ Ω, where Γ is the Euler Gamma function, 𝑀0(Ω) is the Euclidean maximal

modulus.

Statements 1 and 3 of this theorem were proved in our paper [15], while Assertion 2 is new
and requires the proof. The proof consists of two statements.

Proposition 3.1. Let 𝑚 ⩾ 3 be a natural number. Suppose that Ω ⊂ C is 𝑚–connected

domain, 𝛾1, 𝛾2, . . ., 𝛾𝑚 are its boundary components, 𝛾𝑚 is the continuum. Then 𝑐𝑝(Ω) > 0 for

each 𝑝 ∈ [1,∞).

Proof. In view of Lemma 3.4 it is sufficient to show that 𝑐1(Ω) > 0. Without loss of generality
we can suppose that Ω ⊂ C is a bounded circular domain, each boundary component of which is
either a circumference or an isolated point. Suppose that the domain Ω lies in a circle bounded
by the circumference 𝛾𝑚 ⊂ 𝜕Ω. We consider two–connected domains Ω1, Ω2, . . ., Ω𝑚−1, such
that

Ω ⊂ Ω𝑘, 𝜕Ω𝑘 = 𝛾𝑘 ∪ 𝛾𝑚, 𝑘 = 1, 2, . . . ,𝑚− 1, Ω =
𝑚−1⋂︁
𝑘=1

Ω𝑘.

In view of the local behavior of the hyperbolic radii near the boundary we conclude that there
exist positive constants 𝜎1(Ω) and 𝜎2(Ω) such that

𝜎1(Ω)

𝑅(𝑧,Ω)
⩽

𝑚−1∑︁
𝑘=1

1

𝑅(𝑧,Ω𝑘)
⩽

𝑚− 1

𝑅(𝑧,Ω)
, ∀𝑧 ∈ Ω,

𝜎2(Ω)

𝑅2(𝑧,Ω)
⩽

𝑚−1∑︁
𝑘=1

1

𝑅2(𝑧,Ω𝑘)
⩽

𝑚− 1

𝑅2(𝑧,Ω)
, ∀𝑧 ∈ Ω.

Due to the double–connectedness of the domain Ω𝑘 and Assertion 1 of the theorem we have
𝑐1(Ω𝑘) = 2 for all 𝑘 = 1, 2, . . . ,𝑚 − 1. This is why for each function 𝑢 ∈ 𝐶1

0(Ω) continued by
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zero to the set C ∖ Ω we have

(𝑚− 1)

∫︁∫︁
Ω

|∇𝑢(𝑧)|
𝑅(𝑧,Ω)

𝑑𝑥𝑑𝑦 ⩾
𝑚−1∑︁
𝑘=1

∫︁∫︁
Ω𝑘

|∇𝑢(𝑧)|
𝑅(𝑧,Ω𝑘)

𝑑𝑥𝑑𝑦

⩾ 2
𝑚−1∑︁
𝑘=1

∫︁∫︁
Ω𝑘

|𝑢(𝑧)|
𝑅2(𝑧,Ω𝑘)

𝑑𝑥𝑑𝑦 ⩾ 2𝜎2(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|
𝑅2(𝑧,Ω)

𝑑𝑥𝑑𝑦.

Therefore,

𝑐1(Ω) ⩾
2𝜎2(Ω)

𝑚− 1
> 0,

and this completes the proof.

Proposition 3.2. Let 𝑚 ⩾ 3 be a natural number. Suppose that Ω ⊂ C is an 𝑚–connected

domain each boundary component of which contains just a single point. Then 𝑐𝑝(Ω) = 0 for

each 𝑝 ∈ [1,∞).

Proof. By Lemma 3.4 it is sufficient to show that the 𝑐𝑝(Ω) = 0 for each 𝑝 ∈ (2,∞). This is
why we suppose that 𝑝 > 2.
We shall employ the Bernoulli function, namely, a convex function 𝑔 : [0,∞) → [0,∞) defined

by the identities 𝑔(𝜀) = 𝜀𝜀 as 𝜀 ∈ (0,∞) and 𝑔(0) = lim
𝜀→0+

𝜀𝜀 = 1. We have

𝑔(0) = 𝑔(1) = 1, min
𝜀∈[0,∞)

𝑔(𝜀) = 𝑔

(︂
1

𝑒

)︂
=

1

𝑒
1
𝑒

> 0.

Without loss of generality we can suppose that ∞ ∈ Ω and the boundary of the domain reads
as 𝜕Ω = {𝑧1, 𝑧2, . . . , 𝑧𝑚} ⊂ C. It is obvious that Ω = C ∖ {𝑧1, 𝑧2, . . . , 𝑧𝑚}.
We shall also need the small parameter 𝜀 such that

0 < 𝜀 < 𝜀0 :=
1

2
min
𝑘 ̸=𝑗

|𝑧𝑘 − 𝑧𝑗|.

We introduce the notation

𝑆𝑘(𝜀) = {𝑧 ∈ C : |𝑧 − 𝑧𝑘| ⩽ 𝜀}, Ω(𝜀) = C ∖
𝑚⋃︁
𝑘=1

𝑆𝑘(𝜀).

We are going to show that there exists a family of real–valued functions 𝑢𝜀 ∈ 𝐶1
0(Ω) such

that 𝑢𝜀 ̸≡ 0 and

lim
𝜀→0+

∫︀∫︀
Ω

𝑅𝑝−2(𝑧,Ω) |∇𝑢𝜀(𝑧)|𝑝𝑑𝑥𝑑𝑦∫︀∫︀
Ω

𝑅−2(𝑧,Ω) |𝑢𝜀(𝑧)|𝑝𝑑𝑥𝑑𝑦
= 0

for each fixed 𝑝 ∈ (2,∞). This implies the identity 𝑐𝑝(Ω) = 0 for each 𝑝 ∈ (2,∞).
We first consider continuous piecewise–smooth positive in the domain functions 𝑈𝜀 defined

by the identities

𝑈𝜀(𝑧) ≡ 𝜀𝜀, 𝑧 ∈ Ω(𝜀); 𝑈𝜀(𝑧) = |𝑧 − 𝑧𝑘|𝜀, 𝑧 ∈ 𝑆𝑘(𝜀), 𝑘 = 1, 2, . . . ,𝑚.

We construct the functions 𝑢𝜀 ∈ 𝐶1
0(Ω) letting 𝑢𝜀(𝑧) ≡ 𝑈𝜀(𝑧) in the domain Ω(𝜀). For each

𝑧 ∈ 𝑆𝑘(𝜀) below we define the values 𝑢𝜀(𝑧) to satisfy the inequality

|∇𝑢𝜀(𝑧)| ⩽ 2|∇𝑈𝜀(𝑧)|.
For each 𝑧 ∈ 𝑆𝑘(𝜀) we have

|∇𝑈𝜀(𝑧)| = 𝜙𝜀(𝑟) := 𝜀𝑟𝜀−1,

where 𝑟 = |𝑧 − 𝑧𝑘| ∈ [0, 𝜀].
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Let 𝛿 ∈ (0, 𝜀/4). We define a function 𝜙𝛿,𝜀 : [0, 𝜀] → [0,∞) by the identities

𝜙𝛿,𝜀(𝑟) = 0 for 𝑟 ∈ [0, 𝛿] and 𝑟 ∈ [𝜀− 𝛿, 𝜀],

𝜙𝛿,𝜀(𝑟) =
(𝑟 − 𝛿)𝜙𝜀(2𝛿)

𝛿
for 𝑟 ∈ (𝛿, 2𝛿],

𝜙𝛿,𝜀(𝑟) =
(𝜀− 𝛿 − 𝑟)𝜙𝜀(𝜀− 2𝛿)

𝛿
for 𝑟 ∈ (𝜀− 2𝛿, 𝜀− 𝛿],

𝜙𝛿,𝜀(𝑟) = 𝜙𝜀(𝑟) for ∈ (2𝛿, 𝜀− 2𝛿).

It is easy to see that 𝜙𝛿,𝜀(𝑟) ⩽ 𝜙𝜀(𝑟) for each 𝑟 ∈ [0, 𝜀] and the compact support 𝜙𝛿,𝜀 is located
inside the interval (0, 𝜀). Let

𝜓𝛿,𝜀(𝑟) :=

𝑟∫︁
0

𝜙𝛿,𝜀(𝑡)𝑑𝑡, 𝑟 ∈ [0, 𝜀].

For a fixed 𝜀 ∈ (0, 1) the integral

𝜓𝛿,𝜀(𝜀) =

𝜀∫︁
0

𝜙𝛿,𝜀(𝑡)𝑑𝑡

is a continuous decreasing function of the parameter 𝛿 ∈ (0, 𝜀/4). Since

lim
𝛿→ 𝜀

4

𝜓𝛿,𝜀(𝜀) =
𝜀1+𝜀

21+𝜀
, lim

𝛿→0
𝜓𝛿,𝜀(𝜀) = 𝜀𝜀,

we have
𝜀1+𝜀

21+𝜀
< 𝜓𝛿,𝜀(𝜀) < 𝜀𝜀

for each 𝛿 ∈ (0, 𝜀/4). Therefore, for each 𝜀 ∈ (0, 1) there exists a number 𝛿 = 𝛿(𝜀) ∈ (0, 𝜀/4)
such that 2𝜓𝛿,𝜀(𝜀) = 𝜀𝜀.
We let

𝜓𝜀(𝑟) := 2𝜓𝛿(𝜀),𝜀(𝑟), 𝑟 ∈ [0, 𝜀], 𝑢𝜀(𝑧) = 𝜓𝜀(|𝑧 − 𝑧𝑘|), 𝑧 ∈ 𝑆𝑘(𝜀), 𝑘 = 1, 2, . . . ,𝑚.

Thus, for each 𝜀 ∈ (0, 1) a real–valued function 𝑢𝜀 ∈ 𝐶1
0(Ω) is well–defined. In what follows we

shall employ the following properties of this function:

𝑢𝜀(𝑧) = 𝜀𝜀, |∇𝑢𝜀(𝑧)| = 0 for all 𝑧 ∈ Ω(𝜀),

|∇𝑢𝜀(𝑧)| ⩽ 2|∇𝑈𝜀(𝑧)| = 2𝜀|𝑧 − 𝑧𝑘|𝜀−1 for all 𝑧 ∈ 𝑆𝑘(𝜀), 𝑘 = 1, 2, . . . ,𝑚.

Let 𝜀 ∈ (0,min{𝜀0, 1/𝑒}). Let us estimate the integrals

𝑋𝑝𝜀(Ω) :=

∫︁∫︁
Ω

𝑅−2(𝑧,Ω) |𝑢𝜀(𝑧)|𝑝𝑑𝑥𝑑𝑦, 𝑌𝑝𝜀(Ω) :=

∫︁∫︁
Ω

𝑅𝑝−2(𝑧,Ω) |∇𝑢𝜀(𝑧)|𝑝𝑑𝑥𝑑𝑦.

Taking into account the identity 𝑢𝜀(𝑧) = 𝜀𝜀 for all 𝑧 ∈ Ω(𝜀) and the identity 𝜀𝜀 ⩾ 𝑒
1
𝑒 , we get

𝑋𝑝𝜀(Ω) ⩾ 𝜀𝑝𝜀
∫︁∫︁
Ω(𝜀)

𝑅−2(𝑧,Ω) 𝑑𝑥𝑑𝑦 ⩾
1

𝑒
𝑝
𝑒

∫︁∫︁
Ω( 1

𝑒
)

𝑅−2(𝑧,Ω) 𝑑𝑥𝑑𝑦 > 0 ∀𝜀 ∈ (0,min{𝜀0, 1/𝑒}).

We have |∇𝑢𝜀(𝑧)| = 0 for all 𝑧 ∈ Ω(𝜀). Moreover,

|∇𝑢𝜀(𝑧)| ⩽ 2|∇𝑈𝜀(𝑧)| = 2𝜀|𝑧 − 𝑧𝑘|𝜀−1

for all 𝑧 ∈ 𝑆𝑘(𝜀) and

𝑅(𝑧,Ω) ≍ |𝑧 − 𝑧𝑘| ln
1

|𝑧 − 𝑧𝑘|
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in a sufficiently small neighbourhood of the point 𝑧𝑘, 𝑘 = 1, 2, . . . ,𝑚. This is why for each fixed
𝑝 ∈ (2,∞) and sufficiently small 𝜀 > 0

𝑌𝑝𝜀(Ω) ⩽ 2
𝑚∑︁
𝑘=1

∫︁∫︁
𝑆𝑘(𝜀)

𝑅𝑝−2(𝑧,Ω) |∇𝑈𝜀(𝑧)|𝑝𝑑𝑥𝑑𝑦 = 2
𝑚∑︁
𝑘=1

∫︁∫︁
𝑆𝑘(𝜀)

𝑅𝑝−2(𝑧,Ω)
(︀
𝜀|𝑧 − 𝑧𝑘|𝜀−1

)︀𝑝
𝑑𝑥𝑑𝑦

≍ 4𝑚𝜋 𝜀𝑝
𝜀∫︁

0

𝑟𝑝𝜀−𝑝

(︂
𝑟 ln

1

𝑟

)︂𝑝−2

𝑟𝑑𝑟 = 4𝑚𝜋 𝜀𝑝
𝜀∫︁

0

𝑟2𝜀−1

(︂
𝑟𝜀 ln

1

𝑟

)︂𝑝−2

𝑑𝑟 =: 𝑍𝑝𝜀.

For 𝑟 ∈ (0, 𝜀) and 𝑝 ∈ (2,∞) we have(︂
𝑟𝜀 ln

1

𝑟

)︂𝑝−2

⩽
1

𝑒𝑝−2𝜀𝑝−2
,

and this is why

𝑍𝑝𝜀 ⩽
4𝑚𝜋 𝜀2

𝑒𝑝−2

𝜀∫︁
0

𝑟2𝜀−1𝑑𝑟 =
2𝑚𝜋 𝜀1+2𝜀

𝑒𝑝−2
= 𝑂(𝜀), 𝜀→ 0.

Thus, we arrive at the identities

lim
𝜀→0+

𝑌𝑝𝜀(Ω) = lim
𝜀→0+

𝑍𝑝𝜀 = 0.

We hence obtain

lim
𝜀→0+

𝑌𝑝𝜀(Ω)

𝑋𝑝𝜀(Ω)
= 0,

and this implies the identity 𝑐𝑝(Ω) = 0. This completes the proof of Proposition 3.2 and
Assertion 2 of Theorem 3.2.

In contrast to 𝑀(Ω), the Euclidean maximal modulus 𝑀0(Ω) can be calculated for a series
of domains. Knowing 𝑀0(Ω), we can apply Assertion 3 of Theorem 3.2 and obtain explicit
lower bounds for the constant 𝑐𝑝(Ω). We provide only one example of applying Assertion 3 of
Theorem 3.2 to a multiply–connected domain, the boundary of which consists of uncountably
many components.

Example 1. Let K be the classical Cantor set on the segment [0, 1]. We consider the domain

C ∖K1, where K1 is the Cantor stakewall defined by the formula

K1 = {𝑥+ 𝑖𝑦 ∈ C : 𝑥 ∈ K, |𝑦| ⩽ 1}.
Then 𝑀0(C ∖K1) = 0. Therefore, applying Theorem 3.2, for each 𝑝 ∈ [1,∞) we obtain

𝑐𝑝(C ∖K1) ⩾ 𝑝−𝑝

(︃
𝜋 +

Γ4
(︀
1
4

)︀
4𝜋2

)︃−𝑝

> 0.

We return back to the constant ℎ(Ω) ∈ (0,∞], the smallest quantity in the linear hyperbolic
isoperimetric inequality of form

𝐴(𝐺𝑚) ⩽ ℎ(Ω)𝐿(𝜕𝐺𝑚), ∀𝐺𝑚 ⋐ Ω.

By Theorem 2.2 and Assertion 2 of Theorem 3.2 we obtain one more statement.

Corollary 3.1. If Ω is a finitely–connected domain having at least three boundary compo-

nents, then ℎ(Ω) <∞ if and only if at least one of the boundary components of this domain is

the continuum.

We give two simple corollaries.
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Corollary 3.2. Let 𝑝 ∈ [1,∞) and let Ω ⊂ C be a domain of hyperbolic type. Then the

uniform perfectness of the boundary of domain is a sufficient but not necessary condition for

𝑐𝑝(Ω) > 0.

Corollary 3.3. Suppose that 𝑝 ∈ [1,∞) and 𝑚 is a natural number, 𝑚 ⩾ 3. If Ω ⊂ C is a

bounded domain having 𝑚 boundary components, then 𝑐𝑝(Ω) > 0.

We note that by Assertion 1 of Theorem 3.2 for each simply–connected or doubly–connected
domain Ω ⊂ C of hyperbolic type and for all 𝜀 > 0 and 𝑝 ∈ [1,∞) there exists a function
𝑢𝑝,𝜀 ∈ 𝐶1

0(Ω) such that∫︁∫︁
Ω

|∇𝑢𝑝,𝜀(𝑧)|𝑝𝑑𝑥𝑑𝑦 < (1 + 𝜀)
2𝑝

𝑝𝑝

∫︁∫︁
Ω

|𝑢𝑝,𝜀(𝑧)|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦.

There is the following generalization of Theorem 3.1 proved by Nasibullin [21]. We give this
statement with a simpler proof.

Theorem 3.3 ([21]). Suppose that 𝑝 ∈ [2,∞).

1) Let Ω ⊂ C be a simply–connected domain of hyperbolic type, the function 𝑔 be any of

univalent conformal mappings of Ω onto the half–plane {𝜁 ∈ C : Im 𝜁 > 0}. Then∫︁∫︁
Ω

|∇𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾

2𝑝

𝑝𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

+
2𝑝−3

𝑝𝑝−1

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝
⃒⃒⃒⃒
𝑔′(𝑧)

𝑔(𝑧)

⃒⃒⃒⃒2
𝑑𝑥𝑑𝑦

for each function 𝑢 ∈ 𝐶1
0(Ω).

2) Let Ω ⊂ C be a two–connected domain of hyperbolic type, 𝑔 be any of univalent conformal

mappings of Ω onto the annulus {𝜁 ∈ C : 𝑞 < |𝜁| < 1}. Then∫︁∫︁
Ω

|∇𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾

2𝑝

𝑝𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

+

(︀
2
𝑝

)︀𝑝−1

16𝑀2(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝
⃒⃒⃒⃒
𝑔′(𝑧)

𝑔(𝑧)

⃒⃒⃒⃒2
𝑑𝑥𝑑𝑦

for each function 𝑢 ∈ 𝐶1
0(Ω).

Proof. For 𝑝 = 2 this theorem coincides with Theorem 3.1, and this is why we suppose that
𝑝 ∈ (2,∞). We are going to show that for 𝑝 > 2, the inequalities in Theorem 3.3 can be
obtained from the corresponding inequalities of Theorem 3.1 by means of some transformations
of functions and additional estimates.
Let us prove the first statement of the theorem. Suppose that 𝑝 > 2, Ω ⊂ C is a simply–

connected domain of hyperbolic type, 𝑔 is any of univalent conformal mappings of Ω onto the
half–plane {𝜁 ∈ C : Im 𝜁 > 0}.
We take an arbitrary real–valued function 𝑢 ∈ 𝐶1

0(Ω). Then the function 𝑣 := |𝑢| 𝑝2 also
belongs to the family 𝐶1

0(Ω) since 𝑝 > 2. We apply the first inequality of Theorem 3.1 to the
function 𝑣 and in view of the identities

𝑣2(𝑧) = |𝑢(𝑧)|𝑝, |∇𝑣(𝑧)|2 =
(︁𝑝
2

)︁2
|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2,

we obtain∫︁∫︁
Ω

(︁𝑝
2

)︁2
|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ⩾

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

+
1

4

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝
⃒⃒⃒⃒
𝑔′(𝑧)

𝑔(𝑧)

⃒⃒⃒⃒2
𝑑𝑥𝑑𝑦.

Let us estimate from above the integral in left hand side of this inequality. In order to do this,
we let
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𝑎 =
𝑝2|∇𝑢(𝑧)|2

22𝑅
2(2−𝑝)

𝑝 (𝑧,Ω)
, 𝑏 =

|𝑢(𝑧)|𝑝−2

𝑅
2(2−𝑝)

𝑝 (𝑧,Ω)
, 𝑧 ∈ Ω,

and apply the Young inequality

𝑎𝑏 ⩽
2

𝑝
𝑎

𝑝
2 +

(︂
1− 2

𝑝

)︂
𝑏

𝑝
𝑝−2 .

By direct calculations we get the inequality

𝑝𝑝−1

2𝑝−1

∫︁∫︁
Ω

|∇𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 +

(︂
1− 2

𝑝

)︂∫︁∫︁
Ω

|𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

⩾
∫︁∫︁
Ω

|𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

+
1

4

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝
⃒⃒⃒⃒
𝑔′(𝑧)

𝑔(𝑧)

⃒⃒⃒⃒2
𝑑𝑥𝑑𝑦,

and this yields

𝑝𝑝−1

2𝑝−1

∫︁∫︁
Ω

|∇𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾

2

𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

+
1

4

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝
⃒⃒⃒⃒
𝑔′(𝑧)

𝑔(𝑧)

⃒⃒⃒⃒2
𝑑𝑥𝑑𝑦.

It is easy to see that this inequality is equivalent to the inequality in Assertion 1.
It is clear that the inequality in Assertion 2 can be proved in the same way. This completes

the proof.

We consider the following conformally invariant inequality for real–valued functions 𝑢 : Ω →
R: ⎛⎝∫︁∫︁

Ω

|∇𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2−𝑝(𝑧,Ω)

⎞⎠ 1
𝑝

⩾ 𝑐𝑝,𝑞(Ω)

⎛⎝∫︁∫︁
Ω

|𝑢(𝑧)|𝑞𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

⎞⎠ 1
𝑞

∀𝑢 ∈ 𝐶1
0(Ω),

where the constant 𝑐𝑝,𝑞(Ω) ∈ [0,∞) is regarded to be sharp, that is, the maximal possible.
Moreover, we define the quantity ℎ𝑝,𝑞(Ω) by the identity

ℎ𝑝,𝑞(Ω) = sup
𝐺

⎛⎝∫︁∫︁
𝐺

𝑅−2(𝑧,Ω)𝑑𝑥𝑑𝑦

⎞⎠ 1
𝑞
− 1

𝑝
+1⎛⎝∫︁

𝜕𝐺

𝑅−1(𝑧,Ω)|𝑑𝑧|

⎞⎠−1

,

where the supremum is taken over all the domains 𝐺 with piecewise–smooth boundaries such
that 𝐺 ⊂ Ω.

Theorem 3.4. Suppose that 𝑝 ∈ [1, 2), 𝑞 ∈ [𝑝, 2𝑝/(2− 𝑝)] and Ω ⊂ C is a simply–connected

domain of hyperbolic type. Let 𝜇 : [1, 2] → (0,∞) be a function defined by the identity

𝜇(𝜆) =
(𝜆− 1)𝜆−1(2− 𝜆)1−

𝜆
2

2𝜆
𝜆
2 𝜋𝜆−1

, 1 < 𝜆 < 2,

with a continuous continuation to the boundary points

𝜇(1) := lim
𝜆→1+

𝜇(𝜆) =
1

2
, 𝜇(2) := lim

𝜆→2−
𝜇(𝜆) =

1

4𝜋
.

If 𝑝 = 1 and 𝑞 ∈ [1, 2], then

𝑐1,𝑞(Ω) ⩾
𝑞−

1
𝑞

(𝜇(𝑞))𝑞
.
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If 𝑝 ∈ (1, 2) and 𝑞 ∈ [𝑝, 2𝑝/(2− 𝑝)], then

𝑐𝑝,𝑞(Ω) ⩾
𝑞

1
𝑝
− 1

𝑞
−1(︁

𝜇
(︁

𝑝𝑞
𝑝−𝑞+𝑝𝑞

)︁)︁ 𝑝𝑞
𝑝−𝑞+𝑝𝑞

(︂
𝑝(𝑞 − 1)

𝑞(𝑝− 1)

)︂ 𝑝−1
𝑝

.

Proof. The inequality ℎ𝑝,𝑞(Ω) < ∞ is ensured for simply–connected domains Ω ⊂ C of hy-
perbolic type due to (1.4) and restrictions for the parameters 𝑝 and 𝑞. Indeed, it is easy to
show that for each 𝜆 ∈ [1, 2] the hyperbolic isoperimetric inequality (1.4) implies the estimate
𝐴(𝐺𝑚) ⩽ 𝜇(𝜆)𝐿𝜆(𝜕𝐺𝑚). Therefore,

ℎ𝑝,𝑞(Ω) ⩽ (𝜇(𝜆(𝑝, 𝑞))𝜆(𝑝,𝑞), 𝜆(𝑝, 𝑞) =
𝑝𝑞

𝑝− 𝑞 + 𝑝𝑞
∈ [1, 2].

On the other hand, in the paper [20] the following estimates were proved:

𝑐1,𝑞(Ω) ⩾
𝑞−

1
𝑞

ℎ1,𝑞(Ω)
if 𝑞 ∈ [1, 2],

𝑐𝑝,𝑞(Ω) ⩾
𝑞

1
𝑝
− 1

𝑞
−1

ℎ𝑝,𝑞(Ω)

(︂
𝑝(𝑞 − 1)

𝑞(𝑝− 1)

)︂ 𝑝−1
𝑝

if 𝑝 ∈ (1, 2), 𝑞 ∈
[︂
𝑝,

2𝑝

2− 𝑝

]︂
.

Combining these estimates with the inequality ℎ𝑝,𝑞(Ω) ⩽ (𝜇(𝜆(𝑝, 𝑞))𝜆(𝑝,𝑞), we complete the
proof.

Using the Keobe theorem on 1/4, that is, the pointwise inequality

1

4
𝑅(𝑧,Ω) ⩽ dist(𝑧, 𝜕Ω),

which is valid for simply–connected domains Ω ⊂ C of hyperbolic type, by Theorem 3.4 with
𝑝 = 1, 𝑞 = 2 we obtain the next corollary.

Corollary 3.4. Let Ω ⊂ C be a simply–connected domain, Ω ̸= C. Then∫︁∫︁
Ω

|∇𝑢(𝑧)| 𝑑𝑥 𝑑𝑦
dist(𝑧, 𝜕Ω)

⩾

⎛⎝𝜋
8

∫︁∫︁
Ω

|𝑢(𝑧)|2 𝑑𝑥 𝑑𝑦
dist2(𝑧, 𝜕Ω)

⎞⎠ 1
2

(𝑧 = 𝑥+ 𝑖𝑦).

for each real–valued function 𝑢 ∈ 𝐶1
0(Ω).

Now we consider integral inequalities related with the Laplacian. Namely, we consider con-
formally invariant inequalities involving the Laplacian of a function 𝑢 ∈ 𝐶2

0(Ω) and its gradient∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝

𝑅2−2𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾ 𝑐*𝑝(Ω)

∫︁∫︁
Ω

|∇𝑢(𝑧)|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶2

0(Ω),∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝

𝑅2−2𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾ 𝑐**𝑝 (Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶2

0(Ω),

where 𝑝 ∈ [1,∞) is a fixed parameter. The constants 𝑐*𝑝(Ω), 𝑐
**
𝑝 (Ω) in these inequalities are

supposed to be sharp, that is, maximal possible. In [18], [19] we proved the following theorem.

Theorem 3.5. Suppose that Ω ⊂ C is a domain of hyperbolic type. If Ω is a simply–

connected or doubly–connected domain, then 𝑐*2(Ω) = 𝑐**2 (Ω) = 1. If Ω is a multiply–connected

domain with a uniformly perfect boundary, then 𝑐*2(Ω) > 0 and 𝑐**2 (Ω) > 0. For each domain of

hyperbolic type the inequalities

𝑐*2(Ω) ⩾ 𝑐2(Ω), 𝑐**2 (Ω) ⩾ 𝑐2(Ω)𝑐
*
2(Ω)

hold.
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Moreover, it was proved in [18] that

𝑐**𝑝 (Ω) ⩾ 4𝑝(𝑝− 1)𝑝𝑝−2𝑝𝑐𝑝2(Ω)

for 𝑝 ∈ [2,∞). This estimate is presented in the next theorem.

Theorem 3.6. Suppose that 𝑝 ∈ [2,∞) and Ω ⊂ C is a domain of hyperbolic type. If

𝑐2(Ω) > 0, then the conformally invariant inequality∫︁∫︁
Ω

𝑅2𝑝−2(𝑧,Ω)|∆𝑢(𝑧)|𝑝𝑑𝑥 𝑑𝑦 ⩾
4𝑝(𝑝− 1)𝑝 𝑐𝑝2(Ω)

𝑝2𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝𝑑𝑥 𝑑𝑦
𝑅2(𝑧,Ω)

∀𝑢 ∈ 𝐶2
0(Ω)

holds.

Theorem 3.2 and 3.6 imply the following corollary.

Corollary 3.5. Suppose that 𝑝 ∈ [2,∞) and Ω ⊂ C is a domain of hyperbolic type . Then

𝑐**𝑝 (Ω) > 0 under one of the following two conditions:

1) The domain Ω is finitely–connected and at least one of the boundary components of this

domain is continuum.

2) The domain Ω is multi–connected and has a uniformly perfect boundary.

Let us mention some unsolved problems.
The next two statements are likely true: for each domain Ω ⊂ C of hyperbolic type the

inequalities 𝑐*2(Ω) ⩽ 1 and 𝑐**2 (Ω) ⩽ 1 are true. At present, the author does not know the proof
of these inequalities.
For 𝑝 ∈ [1, 2) the properties of the constants 𝑐*𝑝(Ω), 𝑐

**
𝑝 (Ω) are not known. We have not

succeeded to find appropriate methods and all interesting questions on the properties of the
constants 𝑐*𝑝(Ω), 𝑐

**
𝑝 (Ω) for the cases 𝑝 ∈ [1, 2) remain open.

4. Universal inequalities

An integral inequality in a domain Ω ⊂ C of hyperbolic type is called universal if three
conditions are satisfied:

1) the inequality is true for smooth functions compactly supported in each domain of hyper-
bolic type;

2) the inequality is invariant with respect to linear conformal transformations of the domain,
that is, to the transformations of form 𝑤 = 𝑎𝑧 + 𝑏, where 𝑎 ̸= 0;

3) the inequality involves no undefined constants.

Two universal inequalities are given in the next theorem.

Theorem 4.1 ([15]). For each domain Ω ⊂ C of hyperbolic type the followings statements

are true.

1) Let 𝑠 ∈ (2,∞), 𝑝 ∈ [2,∞). Then∫︁∫︁
Ω

|∇𝑢(𝑧)|𝑝

𝑅𝑠−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾

4𝑝(𝑠− 2)
𝑝
2

𝑝𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝

𝑅𝑠(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1

0(Ω).

For 𝑝 = 2 and each 𝑠 ∈ (3,∞) the constant 4𝑝(𝑠−2)
𝑝
2 /𝑝𝑝 i sharp for each finitely–connected

domain Ω ⊂ C with a smooth boundary.

2) Let 1 ⩽ 𝑝 <∞, then∫︁∫︁
Ω

|(∇𝑢(𝑧),∇𝑅(𝑧,Ω))|𝑝

𝑅2−𝑝(𝑧,Ω)
𝑑𝑥𝑑𝑦 ⩾

4𝑝

𝑝𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1

0(Ω),
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where (∇𝑢,∇𝑅) is the scalar product of gradients.

Assertion 2 of this theorem with 𝑝 = 1 and the estimate [22]

|∇𝑅(𝑧,Ω)| ⩽ 2𝑅(𝑧,Ω)

dist(𝑧, 𝜕Ω)

give the next corollary.

Corollary 4.1 ([15]). Let Ω ⊂ C be a domain of hyperbolic type. Then the universal in-

equality ∫︁∫︁
Ω

|∇𝑢(𝑧)|
dist(𝑧, 𝜕Ω)

𝑑𝑥𝑑𝑦 ⩾ 2

∫︁∫︁
Ω

|𝑢(𝑧)|
𝑅2(𝑧,Ω)

𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1
0(Ω)

is true.

For simply–connected and doubly–connected domains we have 𝑐1(Ω) = 2 and the latter
inequality is also implied by Assertion 1 of Theorem 3.2.
In our recent paper [23] we have constructed several universal conformally invariant integral

inequalities. One of them reads∫︁∫︁
Ω

|∆𝑢(𝑧)| 𝑑𝑥𝑑𝑦 ⩾
2

𝜋

∫︁∫︁
Ω

|∇𝑢(𝑧)|2

1 + |𝑢(𝑧)|2
𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶2

0(Ω), (4.1)

where 𝑢 is a real–valued function. As a corollary of (4.1) we obtain the following statement for
smooth compactly supported functions 𝑢 : Ω → R.

Proposition 4.1. Let Ω ⊂ C be a domain of hyperbolic type. Then the following conformally

invariant inequalities hold:∫︁∫︁
Ω

|∆(sinh 𝑢(𝑧))| 𝑑𝑥𝑑𝑦 ⩾
2

𝜋

∫︁∫︁
Ω

|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶2
0(Ω), (4.2)

and ∫︁∫︁
Ω

|∆(sinh𝑢(𝑧))| 𝑑𝑥𝑑𝑦 ⩾
2 𝑐2(Ω)

𝜋

∫︁∫︁
Ω

|𝑢(𝑧)|2

𝑅2(𝑧,Ω)
𝑑𝑥𝑑𝑦, ∀𝑢 ∈ 𝐶2

0(Ω), (4.3)

where sinh is the hyperbolic sine, 𝑧 = 𝑥+ 𝑖𝑦, 𝑢 is a real–valued function.

Proof. For a real–valued function 𝑢 ∈ 𝐶2
0(Ω) the function sinh𝑢 is also real–valued and belongs

to the family 𝐶2
0(Ω). Substituting sinh𝑢(𝑧) instead of 𝑢(𝑧) into the inequality (4.1), we obtain

(4.2).
Applying the inequality (2.2) to estimate from below the Dirichlet integral

∫︀∫︀
Ω

|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦

in the inequality (4.2), we arrive at the inequality (4.3), and this completes the proof.

It is clear that the inequality (4.3) implies meaningful inequalities in the domains, for which the
lower bounds of the constant 𝑐2(Ω) are known. We recall that 𝑐2(Ω) = 1 for simply–connected
and two–connected domains Ω ⊂ C of hyperbolic type and

𝑐2(Ω) ⩾

(︃
2𝜋𝑀0(Ω) +

Γ4
(︀
1
4

)︀
2𝜋2

)︃−2

for domains Ω ⊂ C with uniformly perfect boundaries.
Now we are going to prove a universal inequality relative to the linear hyperbolic isoperimetric

inequality.
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Theorem 4.2. Let Ω ⊂ C be a domain of hyperbolic type. Then for each finitely–connected

domain 𝐺 with a piecewise–smooth boundary compactly embedded into the domain Ω the in-

equality ∫︁∫︁
𝐺

𝑑𝑥𝑑𝑦

𝑅2(𝑧,Ω)
⩽

1

2

∫︁
𝜕𝐺

|𝑑𝑧|
dist(𝑧, 𝜕Ω)

(4.4)

is true.

Proof. We apply the Green formula∫︁∫︁
𝐺

(𝑢(𝑧)∆𝑣(𝑧) + (∇𝑢(𝑧),∇𝑣(𝑧))) 𝑑𝑥𝑑𝑦 =

∫︁
𝜕𝐺

𝑢(𝑧)
𝜕𝑣(𝑧)

𝜕𝑛
|𝑑𝑧|

in the domain 𝐺 to the pair of functions

𝑢(𝑧) ≡ 1, 𝑣(𝑧) ≡ −1

4
ln𝑅(𝑧,Ω).

Using the formula (1.1) for the Gaussian curvature for 𝑘 = −4, we obtain∫︁∫︁
𝐺

𝑑𝑥𝑑𝑦

𝑅2(𝑧,Ω)
=

1

4

∫︁
𝜕𝐺

𝜕 ln𝑅(𝑧,Ω)

𝜕𝑛
|𝑑𝑧|.

This implies the inequality (4.4). Indeed, we have⃒⃒⃒⃒
𝜕 ln𝑅(𝑧,Ω)

𝜕𝑛

⃒⃒⃒⃒
⩽

|∇𝑅(𝑧,Ω)|
𝑅(𝑧,Ω)

.

Then we apply the estimate [22]

|∇𝑅(𝑧,Ω)| ⩽ 2
𝑅(𝑧,Ω)

dist(𝑧, 𝜕Ω)
, 𝑧 ∈ Ω,

and this completes the proof.

In what follows we use the number

𝑐0 :=
Γ4
(︀
1
4

)︀
4𝜋2

≈ 4.38.

Using Proposition 2.2 and Theorem 4.2, we prove the next proposition.

Proposition 4.2. Let Ω ⊂ C be a domain of hyperbolic type equipped with the Poincaré

metric of curvature 𝑘 = −4 and having a uniformly perfect boundary. Let ℎ(Ω) be the constant

in the linear hyperbolic isoperimetric inequality in Ω. Then

1

2
⩽ ℎ(Ω) ⩽ 𝜋𝑀(Ω) + 𝑐0, (4.5)

where 𝑀(Ω) is the conformal maximal modulus of the domain Ω.
If ∞ ̸∈ Ω, then the specified estimates

1

2
⩽ ℎ(Ω) ⩽ 𝜋𝑀0(Ω) + 𝑐0 (4.6)

hold, where 𝑀0(Ω) is the Euclidean maximal modulus of the domain Ω.

Proof. As it was shown in Proposition 2.2, the inequality ℎ(Ω) ⩾ 1/2 holds for each domain of
hyperbolic type. This is why we are going to prove only the upper bounds for ℎ(Ω).
Since the domain has a uniformly perfect boundary, the maximal moduluses 𝑀0(Ω) and

𝑀(Ω) are finite quantities. Let Ω ⊂ C, that is, ∞ ̸∈ Ω. Then the inequality

𝑅(𝑧,Ω)

dist(𝑧, 𝜕Ω)
⩽ 2𝜋𝑀0(Ω) + 2𝑐0, ∀𝑧 ∈ Ω, (4.7)
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holds. This inequality was justified in the work by Avkhadiev andWirths [3]. It is a specification
of estimates by Beardon and Pommerenke [24].
By (4.4) and (4.7) for each simply–connected domain 𝐺 with a piecewise smooth boundary

compactly supported into the domain Ω the inequality∫︁∫︁
𝐺

𝑑𝑥𝑑𝑦

𝑅2(𝑧,Ω)
⩽ (𝜋𝑀0(Ω) + 𝑐0)

∫︁
𝜕𝐺

|𝑑𝑧|
𝑅(𝑧,Ω)

holds true.
Since the number ℎ(Ω) is expressed by the formula (2.1) as the best possible constant in the

linear hyperbolic isoperimetric inequality for the domain Ω, the latter inequality implies the
right estimate in (4.6) and also in (4.5) in the case ∞ ̸∈ Ω.
Suppose that ∞ ∈ Ω. We take one of points 𝑧0 ∈ (𝜕Ω) ∩ C and consider the domain

Ω0 =

{︂
𝜁 ∈ C : 𝜁 =

1

𝑧 − 𝑧0
, 𝑧 ∈ Ω

}︂
⊂ C.

By (4.6) we have
1

2
⩽ ℎ(Ω0) ⩽ 𝜋𝑀0(Ω0) + 𝑐0 ⩽ 𝜋𝑀(Ω0) + 𝑐0.

This implies the inequality (4.5) for the case ∞ ∈ Ω, since by the conformal invariance of the
quantities ℎ(Ω) and 𝑀(Ω) the identities ℎ(Ω0) = ℎ(Ω) and 𝑀(Ω0) = 𝑀(Ω) are true. This
completes the proof.

By Theorem 2.4 we have the estimate 𝑀(Ω) ⩽ 2𝑀0(Ω) + 1. Using this estimate and the
inequality (4.5) for the domain Ω ⊂ C, we obtain the following corollary.

Corollary 4.2. Let Ω ⊂ C be a domain of hyperbolic type equipped with the Poincaré metric

of curvature 𝑘 = −4 and having a uniformly perfect boundary. Then

1

2
⩽ ℎ(Ω) ⩽ 2𝜋𝑀0(Ω) + 𝜋 + 𝑐0,

where 𝑀0(Ω) is the Euclidean maximal modulus of the domain Ω.

We attract the attention of the reader to the fact that the inequality (4.7) is not true for all
points in the domain Ω containing the infinity. Indeed, if Ω has a uniformly perfect boundary
and ∞ ∈ Ω, then 𝑀0(Ω) <∞ and, at the same time,

lim
𝑧→∞

𝑅(𝑧,Ω)

dist(𝑧, 𝜕Ω)
= ∞.

Therefore, the inequalty (4.7) fails for the points 𝑧 ∈ Ω close enough to the infinity.
In conclusion we provide an example of explicit estimate for 𝑀(Ω) and ℎ(Ω) for a particular

multi–connected domain, the boundary of which consists of uncountably many components.

Example 2. Let

𝑆 = {𝑥+ 𝑖𝑦 ∈ C : 0 < 𝑥 < 1,−∞ < 𝑦 <∞}
be a strip and K1 be the Cantor stakewall defined by the formula

K1 = {𝑥+ 𝑖𝑦 ∈ C : 𝑥 ∈ K, |𝑦| ⩽ 1},
where K is the classical Cantor set located in the segment [0, 1].
We consider the domain Ω = 𝑆 ∖ K1 ⊂ C. It is easy to show that 𝑀(𝑆 ∖ K1) > 0 and

𝑀0(𝑆 ∖K1) = 0. Therefore, applying Theorem 2.4 and Proposition 4.2, we obtain

0 < 𝑀(𝑆 ∖K1) ⩽
1

2
,

1

2
⩽ ℎ(𝑆 ∖K1) ⩽ 𝑐0 ≈ 4.38.

The exact values of the constants 𝑀(𝑆 ∖K1) and ℎ(𝑆 ∖K1) are unknown.



INTEGRAL INEQUALITIES 21

BIBLIOGRAPHY

1. G.M. Goluzin. Geometric theory of functions of a complex variable. Nauka, Moscow (1966). [Amer.
Math. Soc., Providence, R. I. (1969).]

2. L.V. Ahlfors. Conformal invariants. Topics in Geometric Function Theory. McGraw–Hill Book
Company, New-York (1973).

3. F.G. Avkhadiev, K.–J. Wirths. Schwarz — Pick type inequalities. Birkhäuser, Basel (2009).
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