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OPERATOR ESTIMATES FOR

NON–PERIODIC PERFORATION ALONG BOUNDARY:

HOMOGENIZED DIRICHLET CONDITION

A.I. MUKHAMETRAKHIMOVA

Abstract. We consider a boundary value problem for a second–order elliptic equation with
variable coefficients in a multidimensional domain perforated by small cavities along the
boundary. We suppose that the sizes of all cavities are of the same order, and their shape
and distribution along the boundary can be arbitrary. The cavities are arbitrarily divided
into two sets. The Dirichlet condition is imposed on the boundaries of cavities in the first
set, and a nonlinear Robin boundary condition is imposed on the boundaries of cavities
in the second set. The Neumann condition is imposed on the boundary along which the
perforation is arranged. It is assumed that the cavities with the Dirichlet condition are not
too small and are located fairly closely. We shown that under such assumptions, the cavities
disappear under the homogenization, and the Dirichlet condition arises on the boundary.
Our main result is estimates for the difference between the solutions of the homogenized
and perturbed problems in the 𝑊 1

2 –norm uniformly in the 𝐿2–norm of the right hand side.
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1. Introduction

Boundary value problems in domains perforated along a surface were studied in many papers,
see, for example, [1]–[7]. The perforation was described by small cavities located along a given
manifold or along the boundary of domain. The sizes of the cavities and the distances between
them were governed by one or several small parameters. The studies were aimed on describing
the behavior of the solutions to problems as the small parameters tend to zero. The main
obtained results were the convergence of the solutions to considered problems in the norms of
spaces 𝐿2 or 𝑊 1

2 to the solutions of some homogenized problems for fixed right hand sides in
the equation and boundary conditions.
In one of interesting formulations of problems with the perforation along the boundary the

Dirichlet condition is imposed on the boundaries of cavities, and the Neumann condition on the
outer boundary. It is assumed that the cavities are large enough and locate quite frequently. In
this case, the condition on the outer boundary changes under the homogenization, namely, the
Dirichlet condition arises instead of the Neumann condition. Such problems were considered in
[8]–[15], where there was proved the convergence of solutions of perturbed problems to ones of
the homogenized in 𝑊 1

2 –norms for given right hand sides in the equation.
The aforementioned results on the convergence of solutions mean the presence of strong or

weak resolvent convergence. A stronger result is the proof of the norm resolvent convergence
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and the corresponding operator estimates. Operator estimates were first obtained for equations
with fast oscillating coefficients; the history of this issue is well presented in the surveys [16]
and [17]. These works stimulated similar studies for problems of boundary homogenization
theory, namely, problems with frequently changing boundary conditions, problems with a fast
oscillating boundary, problems with perforation along a given manifold, see [18]–[29]. We also
note the works [30]–[32], where operator estimates were obtained for problems with non–periodic
perforation over the entire domain.
In the present work, we consider a boundary value problem for a second–order elliptic equa-

tion with variable coefficients in a multidimensional domain perforated along the boundary. It
is assumed that the sizes of all cavities are of the same order, and their shape and distribution
along the boundary are arbitrary. The cavities are arbitrarily divided into two sets. The Dirich-
let condition is imposed on the boundaries of cavities in the first set, and a nonlinear Robin
boundary condition is imposed on the boundaries of cavities in the second set. The Neumann
condition is imposed on the boundary along which the perforation is arranged. Under the ho-
mogenization the cavities disappear and the condition on the outer boundary changes, instead
of the Neumann condition, the Dirichlet condition arises. The main result of the work is an
estimate of the difference between the solutions of the homogenized and perturbed problems in
the 𝑊 1

2 –norm uniformly in the 𝐿2–norm of the right hand side.

2. Formulation of problem and main results

Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be Cartesian coordinates in R𝑛, 𝑛 ⩾ 3, and Ω be an arbitrary
bounded or unbounded domain in R𝑛 with a boundary of the class 𝐶2. By 𝑆 we denote a
connected component of boundary Ω. Let 𝜀 be a small positive parameter, 𝜂 = 𝜂(𝜀) be some
function obeying the inequality 0 < 𝜂(𝜀) ⩽ 1.
In the domain Ω along 𝑆 we arbitrarily choose points 𝑀 𝜀

𝑘 , 𝑘 ∈ M𝜀, where M𝜀 is some at most
countable set of indices. We suppose that the chosen points obey the condition

dist(𝑀 𝜀
𝑘 , 𝑆) ⩽ 𝑅0𝜀,

where 𝑅0 is some positive constant independent of 𝑘 and 𝜀. We denote by 𝜔𝑘,𝜀, 𝑘 ∈ M𝜀 bounded
domains in R𝑛 with boundaries of the class 𝐶2 and we let

𝜔𝜀
𝑘 :=

{︀
𝑥 : (𝑥−𝑀 𝜀

𝑘)𝜀
−1𝜂−1(𝜀) ∈ 𝜔𝑘,𝜀

}︀
, 𝜃𝜀 :=

⋃︁
𝑘∈M𝜀

𝜔𝜀
𝑘, Ω𝜀 := Ω ∖ 𝜃𝜀.

We partition the cavities 𝜃𝜀 into two subsets

𝜃𝜀 = 𝜃𝜀D ∪ 𝜃𝜀R, 𝜃𝜀♮ =
⋃︁

𝑘∈M𝜀
♮

𝜔𝜀
𝑘, ♮ ∈ {D,R},

where M𝜀
D ∩M𝜀

R = ∅, M𝜀
D ∪M𝜀

R = M𝜀.
Let 𝐴𝑖𝑗 = 𝐴𝑖𝑗(𝑥), 𝐴𝑖 = 𝐴𝑖(𝑥), 𝐴0 = 𝐴0(𝑥) be functions defined on Ω and obeying the

conditions

𝐴𝑖𝑗 ∈ 𝑊 1
∞(Ω), 𝐴𝑗, 𝐴0 ∈ 𝐿∞(Ω), 𝐴𝑖𝑗 = 𝐴𝑗𝑖, 𝑖, 𝑗 = 1, . . . , 𝑛,

𝑛∑︁
𝑖,𝑗=1

𝐴𝑖𝑗(𝑥)𝑧𝑖𝑧𝑗 ⩾ 𝑐0|𝑧|2, 𝑥 ∈ Ω, 𝑧 = (𝑧1 . . . , 𝑧𝑛) ∈ C𝑛,

where 𝑐0 is some positive constant independent of 𝑥 and 𝑧. We suppose that the functions 𝐴𝑖𝑗

are real–valued, while the functions 𝐴𝑗, 𝐴0 are complex–valued. By 𝑎 = 𝑎(𝑥, 𝑢) we denote a
complex–valued function defined for 𝑢 ∈ C and 𝑥 ∈ Σ, where Σ := {𝑥 : dist(𝑥, 𝑆) ⩽ 𝜏0}, 𝜏0 > 0
is some fixed number. We suppose that the function 𝑎 is piecewise continuous in (𝑥, 𝑢) ∈ Σ×C
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and satisfies the conditions

|𝑎(𝑥, 𝑢1)− 𝑎(𝑥, 𝑢2)| ⩽ 𝑎0|𝑢1 − 𝑢2|, 𝑎(𝑥, 0) = 0, (2.1)

where 𝑎0 is some constant independent of 𝑥 ∈ Σ and 𝑢1, 𝑢2 ∈ C.
We consider the boundary value problem(︃

−
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

𝐴𝑖𝑗
𝜕

𝜕𝑥𝑗

+
𝑛∑︁

𝑗=1

𝐴𝑗
𝜕

𝜕𝑥𝑗

+ 𝐴0 − 𝜆

)︃
𝑢𝜀 = 𝑓 in Ω𝜀,

𝑢𝜀 = 0 on 𝜕Ω ∖ 𝑆, 𝑢𝜀 = 0 on 𝜕𝜃𝜀D,

𝜕𝑢𝜀

𝜕n
+ 𝑎( · , 𝑢𝜀) = 0 on 𝜕𝜃𝜀R,

𝜕𝑢𝜀

𝜕n
= 0 on 𝑆

(2.2)

where 𝑓 is an arbitrary function in 𝐿2(Ω), 𝜆 is a real number. The conormal derivative is
defined by the formula

𝜕

𝜕n
=

𝑛∑︁
𝑖,𝑗=1

𝐴𝑖𝑗𝜈𝑖
𝜕

𝜕𝑥𝑗

,

𝜈𝑖 is the 𝑖th component of the unit normal 𝜈 to 𝜕𝜃𝜀 ∪ 𝑆 directed outside the domain Ω𝜀.
The aim of the work is to study the asymptotic behavior of solution to problem (2.2) as

𝜀 → 0.
To formulate main results, we need auxiliary notation and assumption. By 𝜏 we denote the

distance from a point to 𝑆 measured along the normal, while by 𝑠 we denote local variables on
𝑆. We make the following assumptions on 𝑆 and cavities 𝜃𝜀.

A1. The variables (𝜏, 𝑠) are well–defined at least on the set Σ. On the same set the Jacobians of
the passage from the variables 𝑥 and the variables (𝜏, 𝑠) and back as well as the derivatives
of 𝑥 in (𝜏, 𝑠) and the derivatives of (𝜏, 𝑠) in 𝑥 up to the second order are uniformly bounded.

Let 𝐵𝑟(𝑀) be an open ball in R𝑛 of a radius 𝑟 centered at a point 𝑀.

A2. There exist points 𝑀𝑘,𝜀 ∈ 𝜔𝑘,𝜀, 𝑘 ∈ M𝜀, and numbers 0 < 𝑅1 < 𝑅2, 𝑏 > 1, independent of
𝜀 such that for sufficiently small 𝜀 the relations

𝐵𝑅1(𝑀𝑘,𝜀) ⊂ 𝜔𝑘,𝜀 ⊂ 𝐵𝑅2(0), 𝐵𝑏𝑅2𝜀(𝑀
𝜀
𝑘) ⊂ Ω, 𝑘 ∈ M𝜀,

𝐵𝑏𝑅2𝜀(𝑀
𝜀
𝑘) ∩𝐵𝑏𝑅2𝜀(𝑀

𝜀
𝑖 ) = ∅, 𝑖, 𝑘 ∈ M𝜀, 𝑖 ̸= 𝑘,

hold. For all 𝑘 and 𝜀 the sets 𝐵𝑅2(0) ∖ 𝜔𝑘,𝜀 are connected.

Let 𝜌 be the distance from a point to the boundary 𝜕𝜔𝑘,𝜀 measured along the outward normal.

A3. There exist fixed constants 𝜌0 > 0 and local variables 𝜍 on 𝜕𝜔𝑘,𝜀 such that the variables
(𝜌, 𝜍) are well–defined at least on the sets

{𝑥 : dist(𝑥, 𝜕𝜔𝑘,𝜀) ⩽ 𝜌0} ∖ 𝜔𝑘,𝜀 ⊆ 𝐵𝑏*𝑅2(0), 𝑏* :=
𝑏+ 1

2
,

simultaneously for all 𝑘 ∈ M𝜀 and on these sets the Jacobians of the passage from the
variables 𝑥 and the variables (𝜌, 𝜍) and back as well as the derivatives of 𝑥 in (𝜌, 𝜍) and
the derivatives of (𝜌, 𝜍) in 𝑥 up to the second order are uniformly bounded.

A4. There exist numbers 𝑅3 > 𝑏𝑅2, 0 < 𝑅4 < 𝑅5, 𝑅3 < 𝑅5 such that

𝜃𝜀 ⊂ Ξ𝜀 ⊂
⋃︁

𝑘∈M𝜀
D

𝐵𝑅3𝜀(𝑀
𝜀
𝑘) ⊂ Ω𝜀, Ξ𝜀 := {𝑥 : 𝑅4𝜀 < 𝜏 < 𝑅5𝜀}.

By 𝑊̊ 1
2 (Ω

𝜀, 𝜕𝜃𝜀D ∪ 𝜕Ω ∖ 𝑆) we denote the subspace of the functions in 𝑊 1
2 (Ω) vanishing on

𝜕Ω∖𝑆 and 𝜕𝜃𝜀D. A solution to boundary value problem (2.2) is understood in the general sense.
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Namely, a solution to boundary value problem (2.2) is a function 𝑢𝜀 ∈ 𝑊 1
2 (Ω

𝜀) satisfying the
integral identity

h𝑎(𝑢𝜀, 𝑣)− 𝜆(𝑢𝜀, 𝑣)𝐿2(Ω𝜀) = (𝑓, 𝑣)𝐿2(Ω𝜀)

for all 𝑣 ∈ 𝑊̊ 1
2 (Ω

𝜀, 𝜕𝜃𝜀D ∪ 𝜕Ω ∖ 𝑆), where
h𝑎(𝑢𝜀, 𝑣) := h0(𝑢𝜀, 𝑣) + (𝑎( · , 𝑢𝜀), 𝑣)𝐿2(𝜕𝜃𝜀R),

h0(𝑢𝜀, 𝑣) :=
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝑖𝑗

𝜕𝑢𝜀

𝜕𝑥𝑗

,
𝜕𝑣

𝜕𝑥𝑖

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝐴𝑗

𝜕𝑢𝜀

𝜕𝑥𝑗

, 𝑣

)︂
𝐿2(Ω𝜀)

+ (𝐴0𝑢𝜀, 𝑣)𝐿2(Ω𝜀).

The integral over the boundary 𝜕𝜃𝜀R is treated in the sense of the traces. In what follows we
shall show that the trace of the function 𝑎( · , 𝑢𝜀) on 𝜕𝜃𝜀R is well–defined, see Lemma 3.8.
We suppose that 𝜀 and 𝜂 are related by the convergence

𝜀

𝜂𝑛−2(𝜀)
→ +0, 𝜀 → +0. (2.3)

We consider one more boundary value problem(︃
−

𝑛∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

𝐴𝑖𝑗
𝜕

𝜕𝑥𝑗

+
𝑛∑︁

𝑗=1

𝐴𝑗
𝜕

𝜕𝑥𝑗

+ 𝐴0 − 𝜆

)︃
𝑢0 = 𝑓 in Ω, 𝑢0 = 0 on 𝜕Ω. (2.4)

This problem is homogenized for the problem (2.2) under Assumption A4 and the condition
(2.3). Its solution is also treated in the generalized sense. A generalized solution to the problem

(2.4) is a function 𝑢0 ∈ 𝑊̊ 1
2 (Ω, 𝜕Ω) obeying the integral identity

h0(𝑢0, 𝑣)− 𝜆(𝑢0, 𝑣)𝐿2(Ω) = (𝑓, 𝑣)𝐿2(Ω)

for all 𝑣 ∈ 𝑊̊ 1
2 (Ω, 𝜕Ω).

The main result of this work is the following theorem.

Theorem 2.1. Let Assumptions A1, A2, A3, A4 and the condition (2.3) be satisfied. Then
there exists 𝜆0 independent of 𝜀, 𝜂 and 𝑓 such that for 𝜆 < 𝜆0 the problems (2.2), (2.4) are
uniquely solvable for all 𝑓 ∈ 𝐿2(Ω) and the inequality

‖𝑢𝜀 − 𝑢0‖𝑊 1
2 (Ω

𝜀) ⩽ 𝐶

(︂
𝜀

𝜂𝑛−2(𝜀)

)︂ 1
2

‖𝑓‖𝐿2(Ω) (2.5)

holds, which 𝐶 is a constant independent of 𝜀, 𝜂 and 𝑓 but depending on 𝜆.

Let us briefly discuss the problem and results. The equation in the problem (2.2) is a general
second order linear elliptic equation with variable coefficients. The perforation is made along
the connected component 𝑆 of the boundary, this component is to be regular enough. A rigorous
notion of the regularity is given by Assumption A1.
The perforation along 𝑆 is made by cavities of arbitrary shapes, their distribution is also

arbitrary. This is why this perforation is of a general form and is essentially non–periodic. The
requirements for the shapes and the distribution are formulated in Assumptions A2 and A3.
Assumption A2 means that the cavities are of approximately same size and are located inside
the domain Ω. Assumption A3 states certain uniform regularity of the shapes of cavities,
namely, it excludes increasing in 𝑘 oscillations of their boundaries.
On the boundaries of the cavities we impose the Dirichlet condition or nonlinear Robin

boundary condition. The choice of a particular boundary condition for each cavity is arbitrary.
The only requirement is the validity of Assumption A4, which means that the cavities with the
Dirichlet condition are to be located rather frequently.
The main feature of the problem is that on the boundary 𝑆 we impose the Neumann con-

dition. Then under the condition (2.3), it turns out that the homogenized problem for (2.2)
is the problem (2.4) with the Dirichlet condition on the boundary 𝑆 instead of the Neumann
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condition. This is a known phenomenon, which was earlier found in the works [8]–[15], where
the perforation was periodic or locally periodic. In this work we show that this phenomenon is
preserved also in the case of a non–periodic perforation with the conditions of different types
on different cavities. At the same time we succeed to strengthen essential the result on the
convergence by proving the uniform in the right hand side 𝑓 convergence and establishing the
operator estimate (2.5).

3. Auxiliary statement

In the present section we provide lemmas, which will be employed in the proof of Theorem 2.1.
The first lemma was proved in [30], see Lemma 3.2 in the cited paper.

Lemma 3.1. Let Assumption A2 be satisfied. Then for all functions

𝑢 ∈ 𝑊̊ 1
2 (𝐵𝑏*𝑅2(0) ∖ 𝜔𝑘,𝜂, 𝜕𝐵𝑏*𝑅2(0))

the estimate
‖𝑢‖𝐿2(𝐵𝑏*𝑅2

(0)∖𝜔𝑘,𝜂) ⩽ 𝐶‖∇𝑢‖𝐿2(𝐵𝑏*𝑅2
(0)∖𝜔𝑘,𝜂),

holds, where 𝐶 is some fixed constant independent of 𝑢, 𝑘, 𝜂 and the shapes of cavities 𝜔𝑘,𝜂.

Lemma 3.2. Under Assumptions A2, A3, for all 𝑘 ∈ M𝜀
R and all

𝑢 ∈ 𝑊̊ 1
2

(︀
𝐵𝑏*𝑅2(0) ∖ 𝜔𝑘,𝜂, 𝜕𝐵𝑏*𝑅2(0)

)︀
the estimate

‖𝑢‖2𝐿2(𝜕𝜔𝑘,𝜂)
⩽ 𝐶‖∇𝑢‖2𝐿2(𝐵𝑏*𝑅2

(0)∖𝜔𝑘,𝜂)

holds, where 𝐶 is a positive constant independent of the parameters 𝑘, 𝜀, 𝜂 and function 𝑢.

The proof of this was given in the work [28], see Lemma 3.2 in the cited work.
We denote 𝑏† := (3𝑏+ 1)/4.

Lemma 3.3. Under Assumptions A2, A3, for all 𝑘 ∈ M𝜀
R and all 𝑢 ∈ 𝑊 1

2

(︀
𝐵𝑏𝑅2𝜀(𝑀

𝜀
𝑘) ∖ 𝜔𝜀

𝑘

)︀
the estimate

‖𝑢‖2𝐿2(𝜕𝜔𝜀
𝑘)
⩽ 𝐶

(︁
𝜀𝜂‖∇𝑢‖2𝐿2(𝐵𝑏𝑅2𝜀

(𝑀𝜀
𝑘)∖𝜔

𝜀
𝑘)
+ 𝜀−1𝜂𝑛−1‖𝑢‖2𝐿2(𝐵𝑏𝑅2𝜀

(𝑀𝜀
𝑘)∖𝐵𝑏†𝑅2𝜀

(𝑀𝜀
𝑘))

)︁
holds, where 𝐶 is a positive constant independent of the parameters 𝑘, 𝜀, 𝜂 and function 𝑢.

This lemma was proved in work [28], see Lemma 3.3 in the cited work.

Lemma 3.4. Under Assumptions A1, A2, A3, for each function 𝑢 ∈ 𝑊̊ 1
2 (Ω

𝜀, 𝜕𝜃𝜀D) the esti-
mate

‖𝑢‖2𝐿2(𝜕𝜃𝜀R) ⩽ (𝐶𝜀𝜂 + 𝛿𝜂𝑛−1)‖∇𝑢‖2𝐿2(Ω𝜀) + 𝐶(𝛿)𝜂𝑛−1‖𝑢‖2𝐿2(Ω𝜀)

holds, where 𝛿 > 0 is an arbitrary constant, while the constants 𝐶 and 𝐶(𝛿) are independent of
the parameters 𝜀, 𝜂, function 𝑢, as well as of the shapes and distribution of cavities 𝜔𝜀

𝑘, 𝑘 ∈ M𝜀.

This lemma was proved in work [28], see Lemma 3.4 in the cited work.

Lemma 3.5. Under Assumption A1 for each function 𝑢 ∈ 𝑊 2
2 (Ω) and |𝜏 | ⩽ 𝜏0

3
the estimate

|𝑢|2 ⩽ 𝐶𝜏 2‖𝑢‖2𝑊 2
2 (−

𝜏0
2
,
𝜏0
2
), |∇𝑢|2 ⩽ 𝐶‖∇𝑢‖2𝑊 1

2 (−
𝜏0
2
,
𝜏0
2
)

holds.

This lemma can be proved similarly to Lemma 4.1 in [27].

Lemma 3.6. Under Assumptions A2, A4, for each point 𝑥 in Ξ𝜀 the total number of balls
𝐵𝑅5𝜀(𝑀

𝜀
𝑘), 𝑅5 := 𝑅3 + (𝑏+1)𝑅2, containing this point, does not exceed some absolute constant

independent of the point 𝑥 and parameter 𝜀.
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This lemma was proved in work [28], see Lemma 4.2 in the cited work.
Let Π𝜀 := {𝑥 : 0 < 𝜏 < 2𝑅6𝜀}, where 𝑅6 > 0 is some constant.

Lemma 3.7. Under Assumptions A1, A2, A4 for each function 𝑢 ∈ 𝑊̊ 1
2 (Ω

𝜀, 𝜕Ω ∖ 𝑆 ∪ 𝜃𝜀D)
the estimate

‖𝑢‖2𝐿2(Π𝜀) ⩽ 𝐶𝜀2𝜂−𝑛+2‖∇𝑢‖2𝐿2(Ω𝜀)

holds, where 𝐶 is a constant independent of the function 𝑢, parameters 𝜀 and 𝜂, the shapes and
location of cavities 𝜔𝜀

𝑘, 𝑘 ∈ M𝜀.

Proof. Throughout the proof by 𝐶 we denote various inessential constants independent of 𝑢,
𝜀, 𝜂, the shapes and distribution of cavities 𝜔𝜀

𝑘. We continue the function 𝑢 be zero inside the
cavities 𝜃𝜀D. By M𝜀

𝑘 we denote the set of indices 𝑗 ∈ M𝜀
R such that

𝐵𝑅3𝜀(𝑀
𝜀
𝑘) ∩𝐵𝑅2(𝑀

𝜀
𝑗 ) ̸= ∅.

It was shown in [30, Sect. 3.2] that under Assumotions A1 and A2 the function 𝑢 can be
continued inside the cavities 𝜃𝜀R and the estimates

‖𝑢‖2𝐿2(𝜔𝑘,𝜀)
⩽ 𝐶‖𝑢‖2𝐿2(𝐵𝑅3𝜀𝜂

(𝑀𝜀
𝑘)∖𝜔𝑘,𝜀)

, ‖∇𝑢‖2𝐿2(𝜔𝑘,𝜀)
⩽ 𝐶‖∇𝑢‖2𝐿2(𝐵𝑅3𝜀𝜂

(𝑀𝜀
𝑘)∖𝜔𝑘,𝜀)

hold, where 𝐶 is some constant independent of 𝑢, 𝜀, 𝜂 and 𝑘.
According to Assumption A4, the balls 𝐵𝑅3𝜀(𝑀𝑘), 𝑘 ∈ M𝜀

D cover the layer Ξ𝜀. By Lemma 3.6,
each point of the layer Ξ𝜀 is contained in finitely many sets 𝐵𝑅3𝜀(𝑀𝑘) and their total number is
bounded by some absolute constant uniformly in 𝜀, 𝜂 and the points in the layer. We also note
that the dilatation of the introduced set by 𝜀−1 with respect to the points 𝑀 𝜀

𝑘 gives the ball
𝐵𝑅3(0). Then by means of the change of variables corresponding to such dilatation we obtain
the estimate

‖𝑢‖2𝐿2(𝐵𝑅3𝜀𝜂
(𝑀𝑘))

⩽ 𝐶𝜀2𝜂−𝑛+2‖∇𝑣‖2𝐿2(𝐵𝑅3𝜀𝜂
(𝑀𝑘))

.

Summing up the obtained inequalities over all 𝑘 ∈ M𝜀
D and taking into consideration the

aforementioned properties of the covering of layer Ξ𝜀 by the sets 𝐵𝑅3𝜀𝜂(𝑀𝑘), 𝑘 ∈ M𝜀
D, we arrive

at the estimate

‖𝑢‖2𝐿2(Ξ𝜀∖𝜃𝜀) ⩽ 𝐶𝜀2𝜂−𝑛+2‖∇𝑢‖2𝐿2(Ω𝜀). (3.1)

Let 𝜒 = 𝜒(𝑡) be an infinitely differentiable cut off function, which is equal to one for 𝑡 < 𝑅7

and vanishes for 𝑡 > 𝑅5, where 𝑅7 is some constant, and 𝑅4 < 𝑅7 < 𝑅5. The identity

𝑢(𝑥) =

𝜏∫︁
𝑅7𝜀

𝜕

𝜕𝑡
𝑢(𝑡, 𝑠)𝜒

(︂
𝑡

𝜀

)︂
𝑑𝑡

holds. By the Cauchy — Schwarz inequality this identity implies

|𝑢(𝑥)|2 ⩽ 𝐶

⎛⎝𝜀−1

𝑅5𝜀∫︁
𝑅7𝜀

|𝑢(𝜏, 𝑠)|2 𝑑𝜏 + 𝜀

𝑅6𝜀∫︁
0

⃒⃒⃒⃒
𝜕𝑢

𝜕𝜏
(𝜏, 𝑠)

⃒⃒⃒⃒2
𝑑𝑡

⎞⎠ .

Integrating this estimate over Π𝜀 and taking into consideration the inequality (3.1), we complete
the proof.

Lemma 3.8. For an arbitrary function 𝑢 ∈ 𝑊̊ 1
2 (Ω, 𝜕Ω ∖𝑆) the function 𝑎(𝑥, 𝑢(𝑥)) possesses

a trace on 𝜃𝜀, which is an element of 𝐿2(𝜕𝜃
𝜀).

Proof. Since 𝑢 ∈ 𝑊 1
2 (Ω), there exists a sequence of functions 𝑢𝑛 ∈ 𝐶∞(Ω), 𝑛 = 1, 2, 3 . . ., which

converges to the function 𝑢 in 𝑊 1
2 (Ω)–norm. The estimate

‖𝑢𝑛 − 𝑢𝑚‖𝐿2(𝑆) ⩽ 𝐶‖𝑢𝑛 − 𝑢𝑚‖𝑊 1
2 (Ω) (3.2)
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holds, where the constant 𝐶 is independent of 𝑛 and 𝑚. The condition (2.1) implies the
inequalities

|𝑎(𝑥, 𝑢𝑛)| ⩽ 𝐶|𝑢𝑛|, |𝑎(𝑥, 𝑢𝑛)− 𝑎(𝑥, 𝑢𝑚)|2 ⩽ 𝐶|𝑢𝑛 − 𝑢𝑚|2, (3.3)

where a constant 𝐶 is independent of 𝑛 and 𝑚. Since the function 𝑢𝑛 is integrable on 𝑆, the
first inequality in (3.3) and piecewise continuity of 𝑎(𝑥, 𝑢)) implies that the function 𝑎(𝑥, 𝑢𝑛(𝑥))
is also integrable and belongs to 𝐿2(𝑆). Integrating the second estimate in (3.3) over 𝑆 and
taking into consideration the inequality (3.2), we get

‖𝑎( · , 𝑢𝑛)− 𝑎( · , 𝑢𝑚)‖2𝐿2(𝑆)
⩽ 𝐶‖𝑢𝑛 − 𝑢𝑚‖2𝑊 1

2 (Ω),

where a constant 𝐶 is independent of 𝑛 and 𝑚. The right hand side of the latter inequality
tends to zero. This means that the sequence 𝑎(𝑥, 𝑢𝑛(𝑥)) is fundamental in 𝐿2(𝑆). Since the
space 𝐿2(𝑆) is complete, the sequence 𝑎(𝑥, 𝑢𝑛(𝑥)) converges to some limit in 𝐿2(𝑆).
In a standard way, see [33, Sect. 5, Subsect. 1], we show that this limit is independent on

the choice of the sequence 𝑢𝑛 and exactly this limit is called the trace of the function 𝑎(𝑥, 𝑢(𝑥))
on 𝑆. The proof is complete.

4. Convergence of solutions

In this section we prove Theorem 2.1.

Lemma 4.1. There exists 𝜆0 such that for 𝜆 < 𝜆0 the problem (2.2) possess a unique solution
𝑢𝜀 ∈ 𝑊 1

2 (Ω
𝜀) for all 𝜀 and 𝑓 ∈ 𝐿2(Ω).

The proof of this lemma is similar to that of [28, Lm. 5.1], [29, Lm. 9].

Lemma 4.2. The estimate

‖𝑢0‖𝑊 2
2 (Ω) ⩽ 𝐶‖𝑓‖𝐿2(Ω) (4.1)

holds, where 𝐶 is a constant independent of 𝑓 .

Proof. The problem (2.4) is uniquely solvable in 𝑊̊ 1
2 (Ω, 𝜕Ω ∖ 𝑆) for an arbitrary right hand 𝑓

of the equation, and the equation is linear. This is why the estimate

‖𝑢0‖𝑊 1
2 (Ω) ⩽ 𝐶‖𝑓‖𝐿2(Ω)

holds, where 𝐶 is a constant independent of 𝑓 . Using standard theorems on smoothness im-
proving of solutions to elliptic boundary value problems, we obtain the estimate (4.1). The
proof is complete.

Let 𝜒1 = 𝜒1(𝑡) be an infinitely differentiable cut off function, which is equal to one for 𝑡 < 1
and vanishes for 𝑡 > 2. We consider the function 𝑣𝜀 = 𝑢𝜀 − (1− 𝜒𝜀)𝑢0, where 𝜒𝜀 is defined as

𝜒𝜀(𝑥) =

{︃
𝜒1

(︁
|𝜏 |
𝑅6𝜀

)︁
for 𝑥 ∈ Σ,

0 for 𝑥 ∈ Ω ∖ Σ.

This function belongs to the space 𝑊 1
2 (Ω

𝜀, 𝜕𝜃𝜀D ∪ 𝜕Ω ∖ 𝑆) and the identity

𝑣𝜀 = 𝑢𝜀 on 𝜕𝜃𝜀 (4.2)

holds.
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We write the integral identity for the problem (2.2) with the test function 𝑣𝜀
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝑖𝑗

𝜕𝑢𝜀

𝜕𝑥𝑗

,
𝜕𝑣𝜀
𝜕𝑥𝑖

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝐴𝑗

𝜕𝑢𝜀

𝜕𝑥𝑗

, 𝑣𝜀

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝑢𝜀, 𝐴𝑗

𝜕𝑣𝜀
𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+ (𝐴0𝑢𝜀, 𝑣𝜀)𝐿2(Ω𝜀)

− 𝜆(𝑢𝜀, 𝑣𝜀)𝐿2(Ω𝜀) + (𝑎(·, 𝑢𝜀), 𝑣𝜀)𝐿2(𝜕𝜃𝜀R) = (𝑓, 𝑣𝜀)𝐿2(Ω𝜀).

(4.3)

It follows from the identity (4.2) that the boundary term in the left hand side of the above
identity can be rewritten as

(𝑎(·, 𝑢𝜀), 𝑣𝜀)𝐿2(𝜕𝜃𝜀R) = (𝑎(·, 𝑣𝜀), 𝑣𝜀)𝐿2(𝜕𝜃𝜀R).

We continue the function (1− 𝜒𝜀)𝑣𝜀 by zero inside the set 𝜃𝜀. We write the integral identity

for the problem (2.4) taking (1 − 𝜒𝜀)𝑣𝜀 ∈ 𝑊 1
2 (Ω, 𝜕Ω ∖ 𝑆) as the test function. As a result, we

obtain
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝑖𝑗

𝜕(1− 𝜒𝜀)𝑢0

𝜕𝑥𝑗

,
𝜕𝑣𝜀
𝜕𝑥𝑖

)︂
𝐿2(Ω)

+
𝑛∑︁

𝑗=1

(︂
𝐴𝑗

𝜕(1− 𝜒𝜀)𝑢0

𝜕𝑥𝑗

, 𝑣𝜀

)︂
𝐿2(Ω)

+
𝑛∑︁

𝑗=1

(︂
(1− 𝜒𝜀)𝑢0, 𝐴𝑗

𝜕𝑣𝜀
𝜕𝑥𝑗

)︂
𝐿2(Ω)

+ (𝐴0𝑢0(1− 𝜒𝜀), 𝑣𝜀)𝐿2(Ω)

+ 𝜆(𝑢0(1− 𝜒𝜀), 𝑣𝜀)𝐿2(Ω) = (𝑓(1− 𝜒𝜀), 𝑣𝜀)𝐿2(Ω) −𝐾𝜀,

(4.4)

where we have denoted

𝐾𝜀 :=−
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝑖𝑗

𝜕𝑢0

𝜕𝑥𝑗

𝜕𝜒𝜀

𝜕𝑥𝑖

, 𝑣𝜀

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝑖𝑗𝑢0

𝜕𝜒𝜀

𝜕𝑥𝑗

,
𝜕𝑣𝜀
𝜕𝑥𝑖

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝐴𝑗𝑢0

𝜕𝜒𝜀

𝜕𝑥𝑗

, 𝑣𝜀

)︂
𝐿2(Ω𝜀)

−
𝑛∑︁

𝑗=1

(︂
𝑢0

𝜕𝜒𝜀

𝜕𝑥𝑗

, 𝐴𝑗𝑣𝜀

)︂
𝐿2(Ω𝜀)

.

We calculate the difference of (4.3) and (4.4)
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝑖𝑗

𝜕𝑣𝜀
𝜕𝑥𝑗

,
𝜕𝑣𝜀
𝜕𝑥𝑖

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝐴𝑗

𝜕𝑣𝜀
𝜕𝑥𝑗

, 𝑣𝜀

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝑣𝜀, 𝐴𝑗

𝜕𝑣𝜀
𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+ (𝐴0𝑣𝜀, 𝑣𝜀)𝐿2(Ω𝜀)

+ (𝑎(·, 𝑣𝜀), 𝑣𝜀)𝐿2(𝜕𝜃𝜀R) + 𝜆(𝑣𝜀, 𝑣𝜀)𝐿2(Ω𝜀) = (𝜒𝜀𝑓, 𝑣𝜀)𝐿2(Ω𝜀) +𝐾𝜀.

(4.5)

Similarly to [28, Ineq. (2.7)] we get the estimate
𝑛∑︁

𝑖,𝑗=1

(︂
𝐴𝑖𝑗

𝜕𝑣𝜀
𝜕𝑥𝑗

,
𝜕𝑣𝜀
𝜕𝑥𝑖

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝐴𝑗

𝜕𝑣𝜀
𝜕𝑥𝑗

, 𝑣𝜀

)︂
𝐿2(Ω𝜀)

+
𝑛∑︁

𝑗=1

(︂
𝑣𝜀, 𝐴𝑗

𝜕𝑣𝜀
𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

+ (𝐴0𝑣𝜀, 𝑣𝜀)𝐿2(Ω𝜀)

+ (𝑎(·, 𝑣𝜀), 𝑣𝜀)𝐿2(𝜕𝜃𝜀R) + 𝜆(𝑣𝜀, 𝑣𝜀)𝐿2(Ω𝜀) ⩾ 𝐶‖𝑣𝜀‖2𝑊 1
2 (Ω

𝜀),

(4.6)

where 𝐶 is a constant independent of 𝑣𝜀.
Our further aim is to estimate the right hand side of the identity (4.5). All further calculation

follow the scheme of the proof of Theorem 2.1 in [28]. We reproduce the main milestones of
these calculations.
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Applying Lemma 3.7, we estimate the first term in the right hand side of the identity (4.5)

|(𝜒𝜀
1𝑓, 𝑣𝜀)𝐿2(Ω𝜀)| ⩽ 𝐶

𝜀

𝜂
𝑛−2
2

‖𝑓‖𝐿2(Ω)‖𝑣𝜀‖𝑊 1
2 (Ω

𝜀). (4.7)

Lemmas 3.5, 3.7 and inequalities (4.1) imply the estimates⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖,𝑗=1

(︂
𝐴𝑖𝑗

𝜕𝑢0

𝜕𝑥𝑗

𝜕𝜒𝜀
1

𝜕𝑥𝑗

, 𝑣𝜀

)︂
𝐿2(Ω𝜀)

⃒⃒⃒⃒
⃒ ⩽ 𝐶

𝜀
1
2

𝜂
𝑛−2
2

‖𝑓‖𝐿2(Ω)‖𝑣𝜀‖𝑊 1
2 (Ω

𝜀). (4.8)⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖,𝑗=1

(︂
𝐴𝑖𝑗𝑢0

𝜕𝜒𝜀
1

𝜕𝑥𝑖

,
𝜕𝑣𝜀
𝜕𝑥𝑗

)︂
𝐿2(Ω𝜀)

⃒⃒⃒⃒
⃒ ⩽ 𝐶𝜀

1
2‖𝑓‖𝐿2(Ω)‖𝑣𝜀‖𝑊 1

2 (Ω
𝜀), (4.9)⃒⃒⃒⃒

⃒
𝑛∑︁

𝑗=1

(︂
𝐴𝑗𝑢0

𝜕𝜒𝜀
1

𝜕𝑥𝑗

, 𝑣𝜀

)︂
𝐿2(Ω𝜀)

−
𝑛∑︁

𝑗=1

(︂
𝑢0

𝜕𝜒𝜀
1

𝜕𝑥𝑗

, 𝐴𝑗𝑣𝜀

)︂
𝐿2(Ω𝜀)

⃒⃒⃒⃒
⃒

⩽ 𝐶
𝜀

3
2

𝜂
𝑛−2
2

‖𝑓‖𝐿2(Ω)‖𝑣𝜀‖𝑊 1
2 (Ω

𝜀).

(4.10)

Using inequalities (4.6), (4.7), (4.8), (4.9) and (4.10), we obtain the estimate for 𝑣𝜀

‖𝑣𝜀‖𝑊 1
2 (Ω

𝜀) ⩽ 𝐶

(︂
𝜀

𝜂𝑛−2

)︂ 1
2

‖𝑓‖𝐿2(Ω). (4.11)

Now we are going to estimate the norm of the difference 𝑢𝜀−𝑢0. We represent this difference
as

𝑢𝜀 − 𝑢0 = 𝑢𝜀 − (1− 𝜒𝜀)𝑢0 + 𝑢0𝜒
𝜀 = 𝑣𝜀 + 𝑢0𝜒

𝜀.

Lemma 3.5 and the inequality (4.1) imply the estimate for 𝑢0𝜒
𝜀
1

‖𝑢0𝜒
𝜀
1‖𝐿2(Ω𝜀) ⩽ 𝐶𝜀

3
2‖𝑓‖𝐿2(Ω). (4.12)

In the same way we get the estimate for ∇(𝑢0𝜒
𝜀)

‖∇𝑢0𝜒
𝜀‖𝐿2(Ω𝜀) ⩽ 𝐶(‖∇𝑢0‖𝐿2(Ω𝜀) + 𝜀−1‖𝑢0‖𝐿2(Ω𝜀)) ⩽ 𝐶𝜀

1
2‖𝑓‖𝐿2(Ω). (4.13)

Using inequalities (4.11), (4.12) and (4.13), we get the estimate (2.5). The proof of Theorem 2.1
is complete.
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2. M. Lobo, O.A. Oleinik, M.E. Pérez, T.A. Shaposhnikova. On homogenizations of solutions of

boundary value problems in domains, perforated along manifolds // Ann. Sc. Norm. Super. Pisa,
Cl. Sci. 25:3–4, 611–629 (1997).

3. M. Lobo, M.E. Perez, V.V. Sukharev, T.A. Shaposhnikova. Averaging of boundary–value problem
in domain perforated along (𝑛 − 1)–dimensional manifold with nonlinear third type boundary

conditions on the boundary of cavities // Dokl. Akad. Nauk 436:2, 163–167 (2011). [Dokl. Math.
83:1, 34–38 (2011).]
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