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EMBEDDING THEOREMS FOR SUBSPACES

IN SPACES OF FAST DECAYING FUNCTIONS

I.Kh. MUSIN

Abstract. By means of the family M = {𝑀𝜈}∞𝜈=1 of separately radial convex functions
𝑀𝜈 : R𝑛 → R we define the space 𝐺𝑆(M) of type 𝑊𝑀 , which is a natural generalization of
the space 𝑊𝑀 introduced in works by B.L. Gurevich, I.M. Gelfand, and G.E. Shilov. By a
certain rule, each function 𝑀𝜈 is associated with a non–negative separately radial convex
function ℎ𝜈 in R𝑛. The properties of the functions ℎ𝜈 allows one to form, by the family
ℋ = {ℎ𝜈}∞𝜈=1, the space Sℋ, which is the inner inductive limit of countably–normed spaces
S(ℎ𝜈) of the functions 𝑓 ∈ 𝐶∞(R𝑛) with the finite norms

‖𝑓‖𝑚,𝜈 = sup
𝑥∈R𝑛,𝛽∈Z𝑛+,

𝛼∈Z𝑛+:‖𝛼‖⩽𝑚

‖𝑥𝛽(𝐷𝛼𝑓)(𝑥)‖
𝛽!𝑒−ℎ𝜈(𝛽)

, 𝑚 ∈ Z+.

We consider the problem on finding conditions onM, which ensure continuous embedding
of the spaces 𝐺𝑆(M) and Sℋ one to the other.
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1. Introduction

1.1. Aim of work. Let M = {𝑀𝜈}∞𝜈=1 be a family of separately radial convex functions
𝑀𝜈 : R𝑛 → R such that for each 𝜈 ∈ N

𝑗1) lim
𝑥→∞

𝑀𝜈(𝑥)

‖𝑥‖
= +∞;

𝑗2) lim
𝑥→∞

(𝑀𝜈(𝑥)−𝑀𝜈+1(𝑥)) = +∞.

For each 𝜈 ∈ N and 𝑚 ∈ Z+ we define the space

𝐺𝑆𝑚(𝑀𝜈) =

⎧⎨⎩𝑓 ∈ 𝐶𝑚(R𝑛) : 𝑞𝑚,𝜈(𝑓) = sup
𝑥∈R𝑛,
‖𝛼‖⩽𝑚

‖(𝐷𝛼𝑓)(𝑥)‖𝑒𝑀𝜈(𝑥) < ∞

⎫⎬⎭ .

We let

𝐺𝑆(𝑀𝜈) =
⋂︁

𝑚∈Z+

𝐺𝑆𝑚(𝑀𝜈).
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We equip 𝐺𝑆(𝑀𝜈) with the topology defined by the family of norms 𝑞𝑚,𝜈 (𝑚 ∈ Z+) and
introduce the space

𝐺𝑆(M) =
⋃︁
𝜈∈N

𝐺𝑆(𝑀𝜈).

Being equipped with usual summation and multiplication by the complex numbers, 𝐺𝑆(M) is
a linear space. In 𝐺𝑆(M) we define the topology of inner inductive limit of the spaces 𝐺𝑆(𝑀𝜈).
We note that the space 𝐺𝑆(M) is constructively more general that the space 𝑊𝑀 [1]–[5], and
the space of type 𝑊𝑀 from [6].
By the family M we form one more family of non–negative separately radial convex functions

ℎ𝜈 in R𝑛. First we recall that the Young — Fenchel transform 𝑔* of a function 𝑔 : R𝑛 →
[−∞,+∞] is the function 𝑔* : R𝑛 → [−∞,+∞] defined by the rule [7]

𝑔*(𝑥) = sup
𝑦∈R𝑛

(⟨𝑥, 𝑦⟩ − 𝑔(𝑦)).

It will be convenient to employ the following notation: if 𝑢 is a function on a set 𝑋 ⊂ R𝑛

containing (0,∞)𝑛, then 𝑢[𝑒](𝑥) := 𝑢(𝑒𝑥1 , . . . , 𝑒𝑥𝑛) for 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛. Now for each
𝜈 ∈ N we define the functions 𝑢𝜈 on R𝑛

+ and ℎ𝜈 on R𝑛 be letting

𝑢𝜈(𝑡) = sup
𝑦∈R𝑛

+

(⟨𝑡, 𝑦⟩ −𝑀*
𝜈 [𝑒](𝑦)), 𝑡 ∈ R𝑛

+,

ℎ𝜈(𝑡) = 𝑢𝜈(‖𝑡1‖, . . . , ‖𝑡𝑛‖)− 𝑢𝜈(0), 𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛.

Due to Condition 𝑗1) the functions 𝑢𝜈 and ℎ𝜈 take finite values on R𝑛 and

lim
𝑥→∞

ℎ𝜈(𝑥)

‖𝑥‖
= +∞,

while Conditions 𝑗1) and 𝑗2) yield

lim
𝑦→+∞

(𝑀*
𝜈+1[𝑒](𝑦)−𝑀*

𝜈 [𝑒](𝑦)) = +∞,

and in it turn, this implies

lim
𝑥→∞

(ℎ𝜈(𝑥)− ℎ𝜈+1(𝑥)) = +∞.

It is easy to verify that for each 𝑄 > 0 there exists a number 𝐶𝑄 > 0 such that

ℎ𝜈(𝑥) ⩽
∑︁

1⩽𝑗⩽𝑛:𝑥𝑗 ̸=0

𝑥𝑗 ln
𝑥𝑗

𝑄
+ 𝐶𝑄, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0,∞)𝑛.

Moreover, since the function 𝑢𝜈 is convex and non–decreasing in each variable in R𝑛
+, the

function ℎ𝜈 is convex in R𝑛, see, for instance, [8, Lm. 4]. It is obvious that ℎ𝜈 ∈ 𝐶(R𝑛). We
form the family ℋ = {ℎ𝜈}∞𝜈=1.
By the family ℋ we define the space Sℋ as the inner inductive limit of countably–normed

spaces S(ℎ𝜈), each being the projective limit of the spaces

𝒮𝑚(ℎ𝜈) =

⎧⎪⎨⎪⎩𝑓 ∈ 𝐶𝑚(R𝑛) : ‖𝑓‖𝑚,𝜈 = sup
𝑥∈R𝑛,𝛽∈Z𝑛+,

𝛼∈Z𝑛+:‖𝛼‖⩽𝑚

‖𝑥𝛽(𝐷𝛼𝑓)(𝑥)‖
𝛽!𝑒−ℎ𝜈(𝛽)

< ∞

⎫⎪⎬⎪⎭ , 𝑚 ∈ Z+.

The spaces of form Sℋ were considered in the work [9].
The aim of this note is to find conditions for M, which ensure continuous embedding of the

spaces 𝐺𝑆(M) and Sℋ one to the other. The study of this problem can be interesting for the
embedding theory of spaces of differentiable functions.
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1.2. Results. In the second section, by using auxiliary statements from the first section, we
prove the following two results.

Theorem 1.1. The space 𝐺𝑆(M) is continuously embedded into Sℋ.

Theorem 1.2. Let the functions in the family M be such that for each 𝜈 ∈ N
1) for some 𝑎𝜈 > 0

𝑀*
𝜈+1(𝑥)−𝑀*

𝜈 (𝑥) ⩾
𝑛∑︁

𝑗=1

ln𝑥𝑗 − 𝑎𝜈 , 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [1,∞)𝑛;

2) for some 𝑏𝜈 > 0

𝑀𝜈(𝑥)−𝑀𝜈+1(𝑥) ⩾
𝑛∑︁

𝑗=1

‖𝑥𝑗‖ − 𝑏𝜈 , 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛.

Then the space Sℋ is continuously embedded into 𝐺𝑆(M).

Thus, under the assumptions of Theorem 1.2 the spaces Sℋ and 𝐺𝑆(M) coincide.

Remark 1.1. The most essential part of Theorem 4 in [8] corresponds to a particular case
of Theorem 1.2 when the functions in the family M = {𝑀𝜈}∞𝜈=1 satisfy the condition: for each
𝜈 ∈ N there exists a number 𝐶𝜈 > 0 such that

𝑀𝜈+1(2𝑥) ⩽ 𝑀𝜈(𝑥) + 𝐶𝜈 , 𝑥 ∈ R𝑛, 𝜈 ∈ N.

A condition of such kind is typical for all earlier studied spaces of type 𝑊𝑀 . It is also easy to
show that in this case for some 𝐾𝜈 > 0

ℎ𝜈(𝑥)− ℎ𝜈+1(𝑥) ⩾ ln 2
𝑛∑︁

𝑗=1

𝑥𝑗 −𝐾𝜈 , 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛
+,

ℎ𝜈+1(𝑥+ 𝑦) ⩽ ℎ𝜈(𝑥) + ℎ𝜈(𝑦) +𝐾𝜈 , 𝑥, 𝑦 ∈ R𝑛
+.

1.3. Notation. R𝑛
+ := [0,∞)𝑛. For 𝑡 ⩾ 0 we let 𝑡+ = max(𝑡, 1).

For 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ R𝑛, 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛
+ we let

⟨𝑥, 𝑦⟩ = 𝑥1𝑦1 + · · ·+ 𝑥𝑛𝑦𝑛,

‖𝑥‖ is the Euclidean norm 𝑥,

‖𝛼‖ = 𝛼1 + . . .+ 𝛼𝑛, 𝛼! = 𝛼1! · · ·𝛼𝑛!, 𝑥𝛼 = 𝑥𝛼1
1 · · ·𝑥𝛼𝑛

𝑛 .

By 𝑈(R𝑛) we denote the set of all separately radial convex functions 𝑢 : R𝑛 → R such that

lim
𝑥→∞

𝑢(𝑥)

‖𝑥‖
= +∞.

2. Auxiliary results

In the proofs of Theorems 1.1 and 1.2 we shall need the following statements.

Proposition 2.1. Let 𝑔 = (𝑔1, . . . , 𝑔𝑛) be a vector function in R𝑛 with convex components
𝑔𝑗 : R

𝑛 → [0,∞) and a function 𝑓 : R𝑛 → R be such that 𝑓|[0,∞)𝑛 is convex and non–decreasing
in each variable. Then 𝑓 ∘ 𝑔 is convex in R𝑛.

The proof can be found in [8].
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Proposition 2.2. Let 𝑢 ∈ 𝑈(R𝑛). Then

(𝑢[𝑒])*(𝑥) + (𝑢*[𝑒])*(𝑥) =
∑︁

1⩽𝑗⩽𝑛:
𝑥𝑗 ̸=0

(𝑥𝑗 ln𝑥𝑗 − 𝑥𝑗), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0,∞)𝑛 ∖ {0};

(𝑢[𝑒])*(0) + (𝑢*[𝑒])*(0) = 0.

For the functions 𝑢 ∈ 𝑈(R𝑛) ∩ 𝐶2(R𝑛) this proposition was proved in [8], while the general
case was proved in [10].

Proposition 2.3. Suppose that for some 𝑎𝜈 > 0 (𝑣 ∈ N)

𝑀*
𝜈+1(𝑥)−𝑀*

𝜈 (𝑥) ⩾
𝑛∑︁

𝑗=1

ln𝑥𝑗 − 𝑎𝜈 , 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [1,∞)𝑛.

Then

ℎ𝜈+1(𝑥+ 𝑦) ⩽ ℎ𝜈(𝑥) + 𝑐𝜈 , 𝑥 ∈ R𝑛
+, 𝑦 ∈ [0, 1])𝑛, (2.1)

where 𝑐𝜈 = 𝑢𝜈(0)− 𝑢𝜈+1(0) + 𝑎𝜈.

Proof. Let 𝑥 ∈ R𝑛
+, 𝑦 ∈ [0, 1])𝑛. Then

𝑢𝜈+1(𝑥+ 𝑦) = sup
𝑡∈R𝑛

+

(⟨𝑥+ 𝑦, 𝑡⟩ −𝑀*
𝜈+1[𝑒](𝑡))

= sup
𝑡∈R𝑛

+

(⟨𝑥, 𝑡⟩ − (𝑀*
𝜈+1[𝑒](𝑡)−𝑀*

𝜈 [𝑒](𝑡)) + ⟨𝑦, 𝑡⟩ −𝑀*
𝜈 [𝑒](𝑡))

⩽ sup
𝑡∈R𝑛

+

(⟨𝑥, 𝑡⟩ −𝑀*
𝜈 [𝑒](𝑡)) + 𝑎𝜈 = 𝑢𝜈(𝑥) + 𝑎𝜈 .

This implies the inequality (2.1).

Proposition 2.4. Suppose that for each 𝜈 ∈ N for some 𝑏𝜈 > 0

𝑀𝜈(𝑥)−𝑀𝜈+1(𝑥) ⩾
𝑛∑︁

𝑗=1

‖𝑥𝑗‖ − 𝑏𝜈 , 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛.

Then for all 𝑡 ∈ R𝑛
+

(𝑀*
𝜈+1[𝑒])

*(𝑡) ⩽ ℎ𝜈(𝑡) + 𝑑𝜈 , 𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛
+, (2.2)

where 𝑑𝜈 = 𝑢𝜈(0) + 𝑏𝜈.

Proof. Using the separate radiality of the functions 𝑀𝜈 and the assumptions, we have

𝑀*
𝜈+1(𝑥) ⩾ 𝑀*

𝜈 (𝑥+ 𝑦)− 𝑏𝜈 , 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛
+, 𝑦 ∈ [0, 1]𝑛.

Then for all 𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛
+

(𝑀*
𝜈+1[𝑒])

*(𝑡) =max( sup
𝑦∈R𝑛

+

(⟨𝑡, 𝑦⟩ −𝑀*
𝜈+1[𝑒])(𝑦)), sup

𝑦∈R𝑛∖R𝑛
+

(⟨𝑡, 𝑦⟩ −𝑀*
𝜈+1[𝑒](𝑦)))

⩽max( sup
𝑦∈R𝑛

+

(⟨𝑡, 𝑦⟩ −𝑀*
𝜈+1[𝑒])(𝑦)), sup

𝑦∈R𝑛
+

(⟨𝑡, 𝑦⟩ −𝑀*
𝜈 [𝑒])(𝑦) + 𝑏𝜈)

⩽ sup
𝑦∈R𝑛

+

(⟨𝑡, 𝑦⟩ −𝑀*
𝜈 [𝑒])(𝑦)) + 𝑏𝜈 = 𝑢𝜈(𝑡) + 𝑏𝜈 = ℎ𝜈(𝑡) + 𝑑𝜈 .

The proof is complete.
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3. Proof of Theorem 1.1

Let 𝑓 ∈ 𝐺𝑆(M). Then 𝑓 ∈ 𝐺𝑆(𝑀𝜈) for some 𝜈 ∈ N. Let 𝑚 ∈ Z+ and 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛

be an arbitrary point with non–zero coordinates. Then for 𝛼 ∈ Z𝑛
+ with ‖𝛼‖ ⩽ 𝑚 we have

‖(𝐷𝛼𝑓)(𝑥)‖ ⩽ 𝑞𝑚,𝜈(𝑓)𝑒
−𝑀𝜈 [𝑒](ln ‖𝑥1‖,...,ln ‖𝑥𝑛‖).

Since the function 𝑀𝜈 [𝑒] with finite values in R𝑛 is convex on R𝑛, we have 𝑀𝜈 [𝑒] = ((𝑀𝜈 [𝑒])
*)*.

This is why the previous inequality implies

‖(𝐷𝛼𝑓)(𝑥)‖ ⩽ 𝑞𝑚,𝜈(𝑓)𝑒
−

𝑛∑︀
𝑗=1

𝑡𝑗 ln ‖𝑥𝑗‖+(𝑀𝜈 [𝑒])*(𝑡)

, 𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛
+.

By Proposition 2.2 this implies that for all 𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛
+

‖(𝐷𝛼𝑓)(𝑥)‖ ⩽ 𝑞𝑚,𝜈(𝑓)𝑒
−

𝑛∑︀
𝑗=1

𝑡𝑗 ln ‖𝑥𝑗‖+
∑︀

1⩽𝑗⩽𝑛:𝑡𝑗 ̸=0
(𝑡𝑗 ln 𝑡𝑗−𝑡𝑗)−(𝑀*

𝜈 [𝑒])
*(𝑡)

. (3.1)

Since for 𝑡 ∈ R𝑛
+

(𝑀*
𝜈 [𝑒])

*(𝑡) ⩾ sup
𝑦∈R𝑛

+

(⟨𝑡, 𝑦⟩ −𝑀*
𝜈 [𝑒])(𝑦)) = 𝑢𝜈(𝑡) = ℎ𝜈(𝑡) + 𝑢𝜈(0),

continuing estimating in (3.1), we obtain that for all 𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛
+

‖(𝐷𝛼𝑓)(𝑥)‖ ⩽ 𝑒−𝑢𝜈(0)𝑞𝑚,𝜈(𝑓)𝑒
−

𝑛∑︀
𝑗=1

𝑡𝑗 ln ‖𝑥𝑗‖+
∑︀

1⩽𝑗⩽𝑛:𝑡𝑗 ̸=0

(𝑡𝑗 ln 𝑡𝑗−𝑡𝑗)−ℎ𝜈(𝑡)

.

In particular, for all 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ Z𝑛
+

‖𝑥𝛽(𝐷𝛼𝑓)(𝑥)‖ ⩽ 𝑒−𝑢𝜈(0)𝑞𝑚,𝜈(𝑓)𝑒
−ℎ𝜈(𝛽)

∏︁
1⩽𝑗⩽𝑛:𝛽𝑗 ̸=0

𝛽
𝛽𝑗

𝑗

𝑒𝛽𝑗
.

This inequality is obviously true for each 𝑥 ∈ R𝑛. This implies that for all 𝑥 ∈ R𝑛, 𝛼 ∈ Z𝑛
+

with ‖𝛼‖ ⩽ 𝑚 and 𝛽 ∈ Z𝑛
+

‖𝑥𝛽(𝐷𝛼𝑓)(𝑥)‖ ⩽ 𝑒−𝑢𝜈(0)𝑞𝑚,𝜈(𝑓)𝛽!𝑒
−ℎ𝜈(𝛽).

Therefore,
‖𝑓‖𝑚,𝜈 ⩽ 𝑒−𝑢𝜈(0)𝑞𝑚,𝜈(𝑓).

Since 𝑚 ∈ Z+ was arbitrary, we have 𝑓 ∈ S(ℎ𝜈). Hence, 𝑓 ∈ Sℋ. The latter inequality also
implies the continuity of embedding of the space 𝐺𝑆(M) into the space Sℋ.

4. Proof of Theorem 1.2

Let 𝑓 ∈ Sℋ. Then 𝑓 ∈ S(ℎ𝜈) for some 𝜈 ∈ N. Let 𝑚 ∈ Z+ be arbitrary. Then for all 𝛼 ∈ Z𝑛
+

with ‖𝛼‖ ⩽ 𝑚, 𝛽 ∈ Z𝑛
+ and 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 with non–zero coordinates

‖(𝐷𝛼𝑓)(𝑥)‖ ⩽
‖𝑓‖𝑚,𝜈𝛽!𝑒

−ℎ𝜈(𝛽)

𝑛∏︀
𝑗=1

‖𝑥𝑗‖𝛽𝑗

.

Taking into consideration that

𝑗! ⩽ 𝑒
√︀

2𝜋(𝑗 + 1)
(𝑗+)𝑗

𝑒𝑗

for each 𝑗 ∈ Z+, we then find

‖(𝐷𝛼𝑓)(𝑥)‖ ⩽ (𝑒
√
2𝜋)𝑛‖𝑓‖𝑚,𝜈𝑒

−ℎ𝜈(𝛽)

𝑛∏︁
𝑗=1

(𝛽+
𝑗 )

𝛽𝑗

(𝑒‖𝑥𝑗‖)𝛽𝑗
. (4.1)
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Let us estimate from above the quantity

𝑒−ℎ𝜈(𝛽)

𝑛∏︁
𝑗=1

(𝛽+
𝑗 )

𝛽𝑗

(𝑒‖𝑥𝑗‖)𝛽𝑗
.

For 𝛽 ∈ Z𝑛
+ we let

Ω𝛽 = {𝑡 = (𝑡1, . . . , 𝑡𝑛) ∈ R𝑛 : 𝛽𝑗 ⩽ 𝑡𝑗 < 𝛽𝑗 + 1 (𝑗 = 1, . . . , 𝑛)}.
Using the non–decreasing of ℎ𝜈 in each variable in R𝑛

+ and Proposition 2.3, for 𝜇 =
(𝜇1, . . . , 𝜇𝑛) ∈ (0,∞)𝑛 and 𝑡 ∈ Ω𝛽 we have

𝑒−ℎ𝜈(𝛽)

𝑛∏︁
𝑗=1

(𝛽+
𝑗 )

𝛽𝑗

𝜇
𝛽𝑗

𝑗

⩽ 𝑒−ℎ𝜈+1(𝑡)+𝑐𝜈

𝑛∏︁
𝑗=1

𝜇+
𝑗 (𝑡𝑗 + 1)𝑡𝑗

𝜇
𝑡𝑗
𝑗

.

Therefore,

inf
𝛽∈Z𝑛

+

𝑒−ℎ𝜈(𝛽)

𝑛∏︁
𝑗=1

(𝛽+
𝑗 )

𝛽𝑗

𝜇
𝛽𝑗

𝑗

⩽ 𝑒𝑐𝜈𝑒
inf

𝑡=(𝑡1,...,𝑡𝑛)∈R𝑛
+

(
𝑛∑︀

𝑗=1
(ln𝜇+

𝑗 +𝑡𝑗 ln(𝑡𝑗+1)−𝑡𝑗 ln𝜇𝑗)−ℎ𝜈+1(𝑡))

,

Using then Proposition 2.4, we get

inf
𝛽∈Z𝑛

+

𝑒−ℎ𝜈(𝛽)

𝑛∏︁
𝑗=1

(𝛽+
𝑗 )

𝛽𝑗

𝜇
𝛽𝑗

𝑗

⩽ 𝐾1𝑒
inf

𝑡=(𝑡1,...,𝑡𝑛)∈R𝑛
+

(
𝑛∑︀

𝑗=1
(ln𝜇+

𝑗 +𝑡𝑗 ln(𝑡𝑗+1)−𝑡𝑗 ln𝜇𝑗)−(𝑀*
𝜈+2[𝑒])

*(𝑡))

,

where 𝐾1 = 𝑒𝑎𝜈+𝑑𝜈+1 . By Proposition 2.2 this yields

inf
𝛽∈Z𝑛

+

𝑒−ℎ𝜈(𝛽)

𝑛∏︁
𝑗=1

(𝛽+
𝑗 )

𝛽𝑗

𝜇
𝛽𝑗

𝑗

⩽ 𝐾1𝑒
𝑛𝑒

inf
𝑡=(𝑡1,...,𝑡𝑛)∈R𝑛

+

(
𝑛∑︀

𝑗=1
ln𝜇+

𝑗 −
𝑛∑︀

𝑗=1
𝑡𝑗 ln

𝜇𝑗
𝑒
+(𝑀𝜈+2[𝑒])*(𝑡))

.

Taking into consideration that the function (𝑀𝜈+2[𝑒])
* takes finite values on [0,∞)𝑛 and

(𝑀𝜈+2[𝑒])
*(𝑥) = +∞ for 𝑥 /∈ [0,∞)𝑛, the above inequality can be rewritten as

inf
𝛽∈Z𝑛

+

𝑒−ℎ𝜈(𝛽)

𝑛∏︁
𝑗=1

(𝛽+
𝑗 )

𝛽𝑗

𝜇
𝛽𝑗

𝑗

⩽ 𝐾1𝑒
𝑛𝑒

− sup
𝑡∈R𝑛

(
𝑛∑︀

𝑗=1
𝑡𝑗 ln

𝜇𝑗
𝑒
−(𝑀𝜈+2[𝑒])*(𝑡))+

𝑛∑︀
𝑗=1

ln𝜇+
𝑗

.

We note that by Proposition 2.1 the function 𝑀𝜈+2[𝑒] takes finite values in R𝑛 and is convex
in R𝑛. Therefore, 𝑀𝜈+2[𝑒] is continuous in R

𝑛 [7, Cor. 10.1.1]. Using then the formula for the
inverse Young — Fenchel transform [7, Thm. 12.2], we get

sup
𝑡∈R𝑛

(
𝑛∑︁

𝑗=1

𝑡𝑗 ln
𝜇𝑗

𝑒
− (𝑀𝜈+2[𝑒])

*(𝑡)) = 𝑀𝜈+2

(︁𝜇1

𝑒
, . . . ,

𝜇𝑛

𝑒

)︁
.

Thus,

inf
𝛽∈Z𝑛

+

𝑒−ℎ𝜈(𝛽)

𝑛∏︁
𝑗=1

(𝛽+
𝑗 )

𝛽𝑗

𝜇
𝛽𝑗

𝑗

⩽ 𝐾1𝑒
𝑛𝑒

−𝑀𝜈+2(𝜇1
𝑒
,...,𝜇𝑛

𝑒 )+
𝑛∑︀

𝑗=1
ln𝜇+

𝑗

.

By (4.1) this implies

‖(𝐷𝛼𝑓)(𝑥)‖ ⩽ 𝐾12
𝑛(𝑒

√
2𝜋)𝑛𝑒𝑛‖𝑓‖𝑚,𝜈𝑒

−𝑀𝜈+2(𝑥)+
𝑛∑︀

𝑗=1
ln(1+‖𝑥𝑗‖)

.

Using the second assumption of Theorem 1.2, we find that for some 𝐾2 > 0, which depends on
𝜈 and 𝑛, for all 𝑥 ∈ R𝑛 with non–zero coordinates and for all 𝛼 ∈ Z𝑛

+ with ‖𝛼‖ ⩽ 𝑚

‖(𝐷𝛼𝑓)(𝑥)‖ ⩽ 𝐾2‖𝑓‖𝑚,𝜈𝑒
−𝑀𝜈+3(𝑥).
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This inequality is obviously true for all 𝑥 ∈ R𝑛. Thus, 𝑓 ∈ 𝐺𝑆(𝑀𝜈+3) and

𝑞𝑚,𝜈+3(𝑓) ⩽ 𝐾2‖𝑓‖𝑚,𝜈 , 𝑓 ∈ S(ℎ𝜈).

Hence, 𝑓 ∈ 𝐺𝑆(M) and the embedding mapping is continuous.
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