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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO
OUTER ZAREMBA PROBLEM FOR ELLIPTIC EQUATIONS
WITH MEASURE-VALUED POTENTIAL

F.Kh. MUKMINOYV, O.S. STEKHUN

Abstract. In the exterior of a ball in the space R™ we consider the Zaremba and Neumann
problems for quasilinear second order elliptic problems with a measure—valued potential.
We proved the existence and uniqueness of entropy solution to the Zaremba and Neumann
problems.
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1. INTRODUCTION

Let Q = {z € R": |z| > ro} be the exterior of a ball, n > 2, I' C 9 be a closed subspace
of the boundary, which can also be empty. In the present paper we study the existence of the
entropy solution to the outer Zaremba problem for the equation

—div(a(z,u, Vu)) + bo(z,u, Vu) + by (z,u)p = f, f € Li(2),

where 1 is a non-—negative Radon measure. On I' we impose the Dirichlet condition: u(z) =0
for z € T'. On the remaining part of the boundary 0Q2 \ T" we impose the Neumann condition:
a(x,u, Vu)-x = 0 for z € 9Q\T'. For empty I we have the Neumann problem. The uniqueness
of the entropy solution is proved under additional assumptions.

The notion of the entropy solution of Dirichlet problem was proposed in [I]. In this work, in
a domain Q C R", n > 2 (not necessarily bounded), the elliptic equation with L;—date

—div(a(z, Vu)) = f(z,u), sup |f(xz,u)| € L110c(2), ¢ >0,
lu|<e

is considered. On the function a certain conditions of boundedness, monotonicity and coercivity
are imposed. There were proved the existence and uniqueness of the entropy solution to the
Dirichlet problem.

After this work, the study of entropic solutions became the research aim of many foreign and
Russian mathematicians since the end of the last century.

Our study was motivated by the recent work [2]. In this work, the problem in the bounded
domain

—Au+pglu) =0, ulon =0

was considered. Under certain restrictions for the function g, the Radon measure o and a non-
negative measure y in the Morrey class, the existence and uniqueness of a very weak solution
to the problem were established.

Note that few works were devoted to entropy solutions to the Dirichlet problem in an un-
bounded domain. Entropy solutions to the Zaremba or Neumann problem in an unbounded
domain have not been considered yet.
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In [3] for the equation
—div(a(z, Vu)) + ag(xz,u) = o
with the Radon measure o the existence and uniqueness of the renormalized solution to the
Dirichlet problem for an arbitrary domain 2. From our point of view, one of the conditions of
this work
ao(x,s)s = c|sf?, s €R, (1.1)

can be weakened.
In [4] there was established the equivalence of entropy and renormalized solutions to nonlinear
elliptic problem in Musielak — Orlicz spaces. In [5] the Dirichlet problem

—div a(x,u, Vu) + M(z,u)/u+ b(z,u, Vu) =0, u| =0,

o0

was considered in an unbounded domain, where the functions a, b had a growth determined

by the generalized N—function M (z,u), while the bounded Radon measure o has a special

form. The inequality b(x,u, Vu)u > 0 was supposed. The existence of the entropy problem

was problem. It is important that the result was established without Ay—conditions on M, M.
In the work [6], the problem with the Fourier boundary condition

b(u) —div(a(z,u, Vu)) = f, z€Q; (a(z,u,Vu),n)+Iu=yg, x¢€0Q,

was considered in an unbounded domain ). The function a(z, u,y) was supposed to be Lipshitz
in u. The operator div(a(x,u, Vu)), in particular, can be p(u)-Laplcian. The existence and
uniqueness of the entropy solution to the problem were proved. The uniqueness was proved
under the apriori assumption that the entropy solution obeys the Lipshitz condition.

In the work [7], in the hyperbolic space, the Dirichlet problem for a nonlinear second order
elliptic equation with a singular measure-valued potential was considered. The restrictions for
the structure of equation were formulated in terms of a generalized N—function. The existence
of the entropy solution to the problem was proved. A more detailed survey of works on entropy
and renormalized solutions can be found in [5].

As it is known, the space C§°(R™) can be completed both by the norm

< / \vu\de)’l’

and by the norm ([(|ul” +[Vu[’)dx)? , and in the second case a narrower space W (R") C
H;(Rn) arises. Usually, for instance, in the works [3], [5], one goes in the second way. While
considering the problems in an unbounded domain, this produces too strict requirements of
form or similar. In this paper, the space #,(Q) of the first type is used.

The results of the present work are also true for some regions, which are not exterior to a
ball. But then we would have to formulate requirements on the set I' depending on the shape
of the domain. And this is a separate problem that we do not consider here.

RS

2. FORMULATION OF PROBLEM AND MAIN RESULTS

It is well-known that the space L,(Q2) with p > 1 is separable and reflexive. In what follows
the number p € (1,n) is supposed to be fixed.
Let Dr(£2) be the set of restrictions on 2 of the functions from D(R™) vanishing in the vicinity

of T.
We define the space H;(Q) as the completion of space Dr(2) by the norm

[ullpr = [IVulllz,@ = llullv.

For the brevity, we denote this space by V. The dual space for V with the induced norm is
denoted by V*. The actions of functionals [ on elements in V' is denoted by angle brackets (I, v).
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We consider the operator
Bu = by(z,u, Vu) + by (x,u)u,

where p is a non—negative Radon measure. For u,v € Dr(Q2) the operator Bu acts by the rule

(Bu,v) = /bo(x,u, Vu)vdx—l—/bl(x,u)vdu.
Q Q

The well-definiteness of this formula under some conditions for the functions by, b; is established
in what follows.
The results are established for the equation

—div(a(z,u, Vu)) + Bu= f, fe Li(). (2.1)

We prove the existence of an entropy solution to the Zaremba and Neumann problem for this
equation. Under additional restrictions we establish the uniqueness of solution.

Let 1 be a Radon measure with a finite total variation and a support located in a bounded
domain Q C R". We suppose that the measure is continued by zero outside (). We recall that
p belongs to the Morrey class M (Q), s > 1 if for each ball centered at x the inequality

B@h = [ dal<a 0, 10, v
By (x)

holds. In other notation, u € M_»_(Q) for 6 € [0,n],  =n(1 —1/s) if

/ dlp| < crf.

B (x)

It is easy to see that the Dirac delta function ¢ belongs to the class M (Q). Due to the Holder
inequality, the functions in L4(Q) define a measure from the class M(Q). If

feLn{z'=...=a"=0}), 2/=(0,...,0,25 . 2",
then for du = f(z)dz’ we have

1-1/q

[ @i <, [ w| <o
Br(xo) Br(zo)N{zl=...=2k=0}

and this function also defines some measure from the Morrey class with the support on the
plane of dimension n — k.
We introduce the notation B, = {x € Q: |z| <7}, r > ro.

We suppose that there exists a number s > npfzfn such that

we Mz(%8,) forall r > . (2.2)

Let Q@ C R™ be a bounded domain § = n(l —1/35). Given ¢ < ne—fp, for a non-negative
measure p € Mz(Q) the compact embedding

W, (Q) = Lyu(@Q) (2:3)

is known. In particular, the elements in the space WI}(Q) are p—measurable functions. This
is a particular case of a more general statement |2, Prop. 2.5]. In the case of the Lebesgue
measure, the embedding

W, (Q) = Ly, (Q)

np

is compact for gy < n’ip



56 F.Kh. MUKMINOV, O0.5. STEKHUN

The vector field a(z,u, Vu) in (2.1) satisfies the boundedness condition

/ 1 1
e, r)l” < g(r)(Gl) +oP), TR yERNsER Lo =1 (24
for x € Q with an increasing function ¢(s), s > 0, and a function G € L,(£2), the coercivity

condition

G(JI,T’, y) Y > CO|y|p - G(I)> re IR'; Co > 07 (25)
and the monotonicity condition
(a(z,r,y) —alz,r,2)(y—2) >0, y#z yzeR", reR, ze. (2.6)

Moreover, let a Caratheodory function by and a u—Caratheodory function b; satisfy the inequal-
ities

|bo(z, s,y)| < g(r)(é’o(x) +ylP), Is| <7, x| <r; forall r>0, (2.7)
b1(z, s)| < g(r)Gi(z), |s|<r, |z|<r, forall r>0, (2.8)

where éo € LLlOC(Rn), él € LLHJOC(Rn);
bo(x,r,y)r 20, by(xz,r)r >0, forall reR. (2.9)

We define the function
k. for r>k,

Te(r)y=<r for |r] <k,
—k for r< —k.

By 7,'(2) we denote the set of measurable functions u : @ — R such that T} (u) € V for each
k> 0.

Definition 2.1. The entropy solution to the Zaremba problem for Equation (2.1)) is a func-
tion u € T, () such that for all k >0, £ € Dp(Q) the inequality

/(a(x, u, Vu)VTi(u— &) — fTi(u—&))dx + (Bu, Tp(u — &)) <0, (2.10)
Q
1s well-defined and true, that is, all its terms are finite.

One of the main results of work is the following theorem.

Theorem 2.1. Let the conditions (2.2)—(2.9) be satisfied, then there exists an entropy solu-
tion to the Zaremba problem for Equation ({2.1)).

The uniqueness of the entropy solution is established under additional restrictions. Let the
Caratheodory function by and pu—Caratheodory function by satisfies the inequalities

bo(z,8)| < Go(x), |s| <1, ze; (2.11)

by(z,8)| < Gi(x), |s| <1, ze; (2.12)
where Gy € Li(R"), G, € Ly ,(R™). In the next theorem the condition (2.4) is employed with
g(r)=C > 0.

Theorem 2.2. Let a = a(x,y) and the functions bj(x,s), i = 0,1, increase in s and the

inequalities (2.11), (2.12)) hold. Let uy, us be entropy solutions to the Zaremba problem for
FEquation (2.1). If the conditions (2.2)—(2.6)), (2.9)) are satisfied, then u; = us.

We note that we do not know works, in which the uniqueness of the entropy solution is
proved for the Dirichlet or Neumann problem for an elliptic equation in an unbounded domain,
in which the flow a explicitly depends on the sought function w.
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3. TECHNICAL LEMMAS

Lemma 3.1. Let v’ > 0, j € IN, be measurable non-negative functions in the domain Q (not
necessarily bounded) such that

v v oae in Q, j— oo,

and the integrals

/vj(x)dx ~ /v(x)dm, j — oo,
Q Q

converge. Then ‘
v — v strongly in L1(Q), j — oo.

Proof. The identity

/ v/ (z) — v(z)|dr = /(vj(ac) —ov(z))dx + 2 / (v(x) — v’ (z))dx

Q Q z€Q:v(x)>vi (x)
is obvious. The latter integral tends to the zero by the Lebesgue theorem. The proof is
complete. [
Lemma 3.2. There ezists a non-negative increasing function h(r) such that the inequality
HUHW;(‘BT) < h(m)|ully, 7r>ro, forall uev, (3.1)
holds.

Proof. 1t is sufficient to establish the inequality for u € Dr(€2). The inequality

IVul|pm, < ullv (3.2)

is obvious. This is why the embedding
1
V= W, (B,)
is continuous and the inequality (3.1)) holds. Indeed, if the operator of this embedding is not
bounded on Dr(f2), then there existsa sequence of smooth functions v* such that
¥ lwpcsr) = Ellv*lv-

Multiplying this inequality by an appropriate factor, we reduce it to the form

1> k|[v*|v, (3.3)
where [[0*[ly1(,) = 1. By (3.3) we have

|lv¥ |l — 0.
By the Kondrashov theorem, v* converges strongly in L,(8,.). In view of (3.2)), we establish the
convergence v* — C' # 0 in the space W (%B,). We can also suppose that v* — C' = C(r) almost
everywhere in B,.. In order to obtain a contradiction, we consider a sequence 0% = v*¢(|x| —ry),
where ((t) = min(1, max(0,¢)). Since supp®® C 2, by Nirenberg — Gagliardo — Sobolev
inequalities

- . . n
1512, @ < alp, W) IV 1y " = ——. (3.4)
n—p

We have the inequality
5", ) = 10y (8,\2,00) = |C mes™ (B, \ By 1),

On the other hand, the convergence |[v*||r (s,) — 1 implies the convergence [v*[? — |C¥ in
L(B,), see Lemma [3.1] and hence

IVl < 10"V (2] = r0)llz, 0,00 + V0 |z, 0) = [Clon(p,n).
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Two latter inequalities contradicts (3.4) for large &k and r. The proof is complete. O

We note that the functions u € C§°(£2) satisfy the Nirenberg — Gagliardo — Sobolev inequal-

ity
[ullL,. ) < az2(p, n)||VullL,@)- (3.5)

Indeed, the inequality (3.1)) allows to construct the continuation to a function u € W, .(R"),
which coincides with « in €2, and to apply the usual Nirenberg — Gagliardo — Sobolev inequality
in R™.

The authors thank V.E. Bobkov, who pointed out the work [§], the results of which imply
the statement of Lemma [3.2] But we preferred to give a simple proof for this lemma.

Lemma 3.3. Let a measurable function u(x) be defined in Q. The set {k : mes{z € Q :
lu(z)| = k} > 0} is finite or countable.

Proof. Let N be an arbitrary natural number. We choose numbers k; such that
Ique%um@n:@}>%.
These sets are disjoint and this is why
mes{z € B, : |u(z)| =k} +mes{x € B, : |u(x)] =k} +... < mesB,.
Therefore, there are at most /N mes*B, such sets. Then the set
{k :mes{z € B, : |u(z)| =k} >0}
is finite or countable. This easily implies the statement of the lemma. The proofis complete. [
We shall the values of k, for which
mes{z € Q: |u(z)|=k}=0

regular. Let k be a regular value and v/ (z) — u(z) almost everywhere in Q. Then

(v ()| < k) = x(Ju(z)] < k) ae. in Q. (3.6)

Indeed, if |u(x)| < k, then |u/(z)| < k for large j. This implies the convergence for a chosen z.
If |u(x)| > k, then |u?(z)| > k for large j. This implies the convergence also for such .

Lemma 3.4. Let a function v be such that Ty,(v) € V' for all k > ko and the inequality
ITe ()l < Ck

holds. Then
4

mes{xEQ:\v[}k}éW,

k> ko. (3.7)

Proof. Using the inequality (3.5]), we establish

175 (0)llp.2 < Cp, )| T3 (v) -
For k; € (0, k] the inequalities

i T (v)|P" dx X . .
{ze:|v|>k1} < C(p7 n)p Tk(”)”?/ C ke

k{)* N k{)*
are obvious. Letting k1 = k, we get (3.7). The proof is complete. O]
Lemma 3.5. Let () C Q, the sequence {v™}nen be bounded in L,(Q), v € L,(Q), and

v = v ae in @, m— oo.

mes{z € Q:|v| >k} <

Then

m

o™ = v weakly in  L,(Q), m — oo.
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For a bounded domain @@ C R™ the proof was given [L0], for an arbitrary domain @ C ) the
proof is similar.

In what follows, to avoid bulky notations, instead of statements like “it is possible to select
a subsequence from the sequence u™, which converges almost everywhere in {2 as m — oc0” we
shall simply write “the sequence v contains a subsequence converging almost everywhere in
2 as m — o0”. We shall also employ the phrase “weakly converges over some subsequence”
omitting the index of the subsequence.

Lemma 3.6. Let v/, j € N, v by functions in L,(Q) such that
v s v oae in Q, j— oo
WP < H € Li(Q), jEN,

then ‘
v — v strongly in L,(Q), j — oo.

This lemma is implied by the Lebesgue theorem.

Lemma 3.7. Let a sequence {v’};en be bounded in L, (Q). Then there exists a subsequence
such that
v/ = v wedkly in Ly(Q), j— oo.
If W, j € N, h are functions in L,(Q) such that

k! — h  strongly in  L,(Q), j— oo,

/Ujhjdx%/vhda:, J — o0.
Q Q

The proof of this lemma is simple and we omit it. In what follows we shall employ the Vitali
lemma, see [I1, Ch. TI, Sect. 6, Thm. 15].

Lemma 3.8. Let v/, j € N, v be measurable functions in a bounded domain Q such that

then

vV v ae in Q, J— o0,

and the integrals

[ @iz, e
Q

be uniformly absolutely continuous. Then
v = v strongly in Li(Q), j — oo.

Lemma 3.9. Let H — H in L1(Q) as j — oco. Let v/, j € IN, be measurable functions in a
bounded domain Q) such that

v v oae in Q, j— oo
/| <H7, jEN,
then ‘
v = v strongly in L1(Q), j — oo.

This lemma can be easily derived from the Vitali lemma.
The next statement is usually called Levi theorem.

Lemma 3.10. Let (S, ,u) be a space with a positive measure, {f,} be a non—decreasing
sequence of non—negative measurable not necessarily integrable functions. Then

i [ fulw)du = [ sup f o)

n—o0

S S
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The proof was given in [I1, Ch. III, Sect. 6, Cor. 17].

Lemma 3.11. Let in Q the conditions (2.4)—(2.6) hold and for k > 0 and some sequence
w? €'V the conditions

Vuw! —=Vw in L,(Q), j— oo,

w = w ae in Q, j— oo,

lim [ (a(z, Ti(w?), Vu’) — a(z, T (w?), Vw)) - V(w’ —w))dz =0, for all R > Ry.

Jj—o0
Br
be satisfied. Then on some subsequence
Vuw! = Vw ae in Q, j— o0, (3.8)

Vuw! — Vw strongly in  Lpiec(Q), 7 — oo,
a(z, Ti(w’), Vu') - Vu! — a(@, Ti(w), Vw) - Vw in - Lijoe(Q), j — oo

A similar statement in a more general formulation was proved in [9, Lm. 4.10].

4. WEAK SOLUTION TO APPROXIMATION PROBLEM

By (2.4) the vector field a™(x,r,y) = a(z, T,,(r),y) defines the operator
AV XV V-
It acts by the formula
<g(u,v),w> = /am($,u, V) - Vwdz, u,v,w € V.
Q

We let
f" (@) = To(f (@) X (),
(2) 1, if z€%B,,
m\XT) = .
X 0, if z¢°%B,,
bgl(xara y) = TM(bO(ma Ty y))Xm(x)7 brln(xvr) = Tm(b1<x7r))Xm($)'
It is obvious that as r € R, y € R",
‘bgl(x??ﬁa y)’ < me(l'), ’bgn(xﬂa)‘ g me(:C)a VIS Q
Moreover, applying (2.9), we find
bo'(z,ryy)r 20, b (z,r)r >0, z€Q, rek. (4.1)
Using the inequality (3.1)), it is easy to show that f™ € V*,
fm—f in L1(Q), m — oo,
and at the same time
@) < f@)], (@) <mxm(z), z€Q, mel. (4.2)
The operator B,, : V — V* acts by the formula

(Bnu,v) = /bg‘(m,u, Vu)vdr + /b’f‘(m,u)vd,u = (Ko(u),v) + (Ki(u),v).
Q Q
The convergence of the second integrals is ensured by the embedding ({2.3) and the inequality
(3.1). Using (4.1)), it is easy to establish the non—negativity of the operator B,,:

(Bru,u) >0, ueDQ).
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We consider the equation
—diva™(z,u,Vu) + Bypu = f"(z), z€Q, meN, (4.3)

with the function a™(x,r,y) = a(x, T,,(r), y).
The weak solution to the Zaremba problem for Equation (4.3 is a function ™ € V obeying
the integral identity

/ a(z, Ty (™), V™) - Vodz + (Bpu™, v} = (F7. ) (4.4)

for each function v € Dr(Q2). It is easy to prove that the relation holds also for all v € V.
While proving the existence of a weak solution ™ to the Zaremba problem, we shall omit the
superscript m.

We shall seek a weak solution u™ € V to the Zaremba problem for Equation by the
Galerkin method.

Let a sequence of functions w; € Dp(§2) be orthonormalized and has a dense linear span in

N
Ly(€2). We seek approximations for a solution to the problem as u” = 21 hyw;. We fix N. We
‘7:

let h = (hy, ho, ..., hy) € RY and define the functions Py(h), k = 1,2,..., N, by the formulas

Py(h) = /am(x,uN,VuN) - Vwpdr + (Buu™  wy) — (f™ wy).
Q

The vector hV is determined by the system of equations P,(h™) =0, k=1,2,..., N.
Let us prove the solvability of equations for the vector h". We introduce the notation

P(MY) = (P(hY), Py(hY), ..., Py(hY)).
Using the condition ([2.5]), the non—negativity of the operator B, and the inequalities (3.1)),
(M) < Cm)l[u [lps,,

we have
(P(h™), ) / ™ (0, V) - ViV de + (B, u) — (70
Q
> [(@lVuP = Gla)ds + (B ) = (7 ) (15)
9)
> /CO|VUN|pdx — C’(m)HuN|]p7gm - (.
Q
Thus, for p > 1 by (4.5)) we get the inequality
(P(h),h) >0

for large |h|. By [I2, Ch. 1, Lm. 4.3|), there exists a vector h" such that P,(h") = 0,
k=1,2,...N. Using (4.5) and the identity (P(h"),h"") = 0, we obtain the inequality

/|wNypdx < Cy + Callu™ s,
Q

In view of (3.1]) this implies the uniform estimate
[y = [V o < Cs, YN =12,
Similarly, using (4.5) and the non—negativity of B,, we establish that
(Bpu, u™)y < Cy, forall N=1,2....
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Then we can choose a subsequence N, so that
u™ —u weaklyin V and weakly in W) (B,), r>ro.
Using inequalities of form (3.1)) and the Rellich — Kondrashov theorem, we obtain
™ — u strongly in Ly 0e(Q).
This is why, choosing an appropriate subsequence, we can suppose that
uM — u ae. in Q.
By the sequence a™(x,u”, Vu) is bounded in the space (L, (Q2))" and

ja™ (2, u™, V)" < g(m)(G(2) + [Vul’) € Li(Q).

Hence, by Lemma we have a strong convergence in L,/ ()
a™(z,u"™, Vu) = a™(z,u, Vu), N — oo. (4.6)

Moreover, by Lemma in the sequence a™(x,u”, Vu®) we can choose a weakly converging
subsequence. We shall omit the indices of the subsequence

a™(z,u’™, Vul) =k weakly in (L, ()" (4.7)

Since |Ko(u™)| = 05" (z, u, Vul¥)| < m, the sequence Ky(u”) is bounded in the space L, (2B,,).
Omitting the indices of subsequence, we can suppose that the sequence Ky(u") weakly converges
to ko in the space L, (B,,) C V*. Similarly, the sequence K;(u”) weakly converges to k; in the
space Ly ,(B,,) C V*.

Passing to the limit as N — oo in the identities Py(h") = 0, we arrive at the relation

//i : chkdx + <I€0 + kl,wk> = <fm,wk>. (48)
Q

Multiplying by hlY, we easily get the identity

/K'VUNdCL’—l— (ko + by, u) = (™, u™).
Q
Passing to the limit as N — oo, we find

//{ -Vudz + (ko + ki, u) = (f™, u). (4.9)
Q

Passing to the limit in the identity (P(h"),h") =0 (@3] and using Lemma [3.7] we get the
relation

A}im a™(x,u™, Vu) - Vul¥dz + (ko + ki, u) = (f™, u). (4.10)
—00
0
It follows from (4.9) and (4.10) that
I&im a™(z,u™, Vu) - VuNdr = //{ - Vudz. (4.11)
—00
Q Q

Now we are going to prove that Vu® — Vu a.e. The weak convergence of the sequence u”
in the space V and the strong convergence (4.6)) imply

Nlim a™(z,u™, Vu) - (Vu" — Vu)dr = 0. (4.12)
—00
Q
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Let
Hy =(a"(z,u™,Vu") — a™(z,u", Vu))(Vu" — Vu)
N v, Nyo, N N o, N N N (4.13)
=a"(z,u", Vu" )Vu" —a™(z,u”,Vu")Vu —a™(x,u”, Vu)(Vu" — Vu).
It follows from (2.6) that Hy > 0. By (4.7) we ge the identity
Nlim /am(x,uN,VuN)Vudx = /K;Vudx. (4.14)
—00
Q Q

Passing to the limit and using (4.11)—(4.14)), we arrive at the relation
lim H NdZL' = 07

N—oo
Q

which in other notation
ANz,ry, 2) = (a(z,r,y) —alz,r,2) - (y—2), y,z€R", rekR,
is written as
lim [ Az, Tp,(u™), V¥, Vu)dz = 0.

N—oo
Q

Applying Lemma we obtain the convergence Vu" — Vu almost everywhere in 2. Then
k= a"(x,u, Vu), ko = by (z, u, Vu), ki = bi(x,u),

by (4.8) we easily find that the function u is a weak solution to the approximated Zaremba
problem.

5. EXISTENCE OF SOLUTION
In (4.4) we let v = Ty, (u™) = T (u™ — Tp,(w™)). Taking into consideration (4.1), we have

a™(x,u™, Vu™)Vudr + k / |6 (x, u™, Vu™)|dx

{Q:h<|u™|<k+h} {Q:|um|>k+h}
+k / |6 (2, u™)|dp + / b (z,u™, Vu™)u™ (1 — h/|uy|)dz (5.1)
{Q:|u™|=k+h} {Q:h<|u™|<k+h}
[ e /hau<k [ e
{Qh<|um|<k+h} {Q:jum|=h}

Applying (£.2), (2.3), by (5.1) we get
(@™ (x,u™, Vu™) - Vu" + G(z))dx + k / b6 (z, u™, Vu™)|dx

{Q:h<|u™|<k+h} {Q:|u™|>k+h}

(5.2)
sho [ s [ G416 e,
{Q:|um|>k+h} {Q:|um|=h}
Letting A = 0 in (5.2) and using the inequality (2.5), we obtain
co|Vu™|Pdx + k / b6 (z, u™, Vu™)|dx
{Q:|um|<k} {Q:|um |2k} (5 3)

vk [ preamlan< (ke D0, me.

{Q:um |2k}
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By (5.3) we get the estimate

/ |Vu™|Pde = / VT (u™)[Pdx < ¢y 'Ci(k+1), m €.
0

{:|um| <k}
Then Tj(u™) € V and for each k > 1
The reflexivity of the space V allows us to select a weakly converging in V' subsequence
Tp(u™) = v, €V, m — oo. (5.5)
The inequality (5.4) allows us to apply Lemma , which yields the estimate
" C
mes{z € Q: [u™(x)| = k} < praE—t m>k>1. (5.6)
Then, choosing sufficiently large k, we obtain
(If] +1G)dx < e(k), m >k, (5.7)

{Q:|um|>k}
where (k) — 0 as k — oo. We are going to to establish the convergence over a subsequence
u™ —u ae. and p—ae in Q, m— 0. (5.8)

The sequence T (u™) is bounded in the space V and by (B.1]) is bounded in the space W, (Bg).
By the Kondrashov theorem, we can select a converging subsequence T(u™) — v in L,(Bp)
as m — oo. This implies the convergence Ti(u™) — U5 almost everywhere in Br. By (5.5) we
have the identity vy = v, almost everywhere in Bx. Then by diagonal process in R € IN we
establish a convergence over some subsequence Ti(u"™) — v, almost everywhere in 2. By @) we
denote the set of points in 2, at which the sequence u™(z) has a finite limit. We denote this
limit by u(z). For x € @ the identities

vs(z) = lim Ty (u™(z)) = T limu™(z) = Ts(u)
hold. If for some x we have lim |Ts(u™(x))| < s, then
lm T (u™ () = vs(x) = limu™(z),

that is, € @. Then for almost each x ¢ @) we have lim |T(u™(z))| = s for all s > 0. In
particular, lim | Ty, 5 (u™(x))| = s+h. Then |[u™(z)| > s for large m, therefore, lim |u™(x)| = co.
By (5.6), the measure of the set of such points in the ball B g is equal to zero. We then conclude
that the difference 2\ @ has a zero measure and the convergence (5.8)) for the Lebesgue measure
is established. Then vs(z) = Ti(u) for almost each x € .

We also note the convergence Ty(u™) — vy in L, ,(Br) implied by (2.3) and (3.1). Then

Ts(u™) — v p—almost everywhere in By (over some subsequence). By the diagonal process in
R € IN we establish the convergence over some subsequence

To(u™) = Ts(u), m — oo, (5.9)

p—almost everywhere in €2, and also ([5.8]).
The relation (5.5) can be rewritten as

VTi(u™) = VT (u) in  L,(2), m — oo. (5.10)
In what follows we shall establish the strong convergence
VT (u™) = VTi(u) in Ly(Q), m— . (5.11)

By (5.4)), (2.4]) for each k > 1 we have the estimate
lla(x, Tp(u™), VT (u™))||ya < Cs(k), m e N. (5.12)
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Then we can select a weakly converging subsequence
a(z, Tp(u™), VI (u™)) = ar weakly in Ly (Q), m — oc.
Let k>0, h>k+1,
2" =Tp(u™) — Tp(u), m e N.
g(k)

o
Ve(r) = @i(r) = vle(r)| = 7/8, reR.
This implies the inequalities
7/8 < p(2™) < max ¢Yp(r) =C(k), meNN.

We let o (r) = rexp(vy?r?), where v = It is obvious that

In view of (5.8)), 2™ — 0 almost everywhere in Q and p—a.e. This is why
pr(2™) =0, @p(2") = @r(0) =1, ¥(z™) = ¥(0) =1, m — oo,
almost everywhere in (2 and p—a.e. The inequalities
oe(z™)] < wi(2k), 1< ¢(2™) < ¢(2k), meN,
are obvious.

We let n(r) = ((h — 7+ 1).
For the brevity of writing we shall employ the notation

dv =np-a(lz))dz,  mpli(x) = ma(W™]),  Oa-1(@) = g (ul).
The convergences imply the convergence
Ny — Nh—1 a.e. in Q, m — oo.
Choosing ¢y (2™)ng—1(|z|)n;", as the test function in (4.4)), we obtain

/ o, Th(u™), VT (™)) V (ou ™1 )t
Br

4 / B (™ VU™ s o (2
Br

4 / b7 (s 0™ (™ Ve
Br

— /fmgpk(zm)nzl_ldx =Lh+L+I3+1,=0, mZ=>h.
Br

5.1. Estimates for integrals I, — I;. In view of the inequalities
Mt (™) [BY (2, u™)] < g(h)Gi(z), = € B,
implied by (2.8]), by the Lebesgue theorem and (5.14]), we have

L] < / (™) g () (2)dps = &1 (m).
Br

Hereinafter

nll_rgo gi(m) = 0.

Similarly, since f € L1(2), we obtain

1< [ 17 lds = 2a(m).
Br

65

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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It is obvious that z™u™ > 0 as |[u™] = k, @r(z™)u™ > 0, and this is why, in view of (4.1]), we
have

bo'(z, u™, Vu™)prp(z™) =20 as  |[u™| > k.
Using this fact and applying (2.8]), we estimate the integrals

< / 6 (™, V™) i (=)

{Bp:lum|<k}
< g(k)/ (VTP + Gola)) loel=")dv. m € N.
BRr
Using (2.5), we find
k -
1 <28 [ (aGito) +6(0)) lon(mlar
(IZ; (5.19)
+ gc— / a(z, Tp(u™), VT (™) V T (1™ o1 (™) dv = Iy + Ins.
0 By
In view of we get
k ~
Iy = @ / (coGo(x) n G(m)) o (™) dv = e3(m). (5.20)
0
Br

Since pr(z™)u™ > 0 as |[u™| > h — 1 > k, we have @i (z")|u™| = |@r(z")|u™. Using this
identity, we estimate the integrals
Iy = — / (ale, Th (™), VT (™)) - Vum ) or (=™ )dv
{Br:h—1<|um|<h}
=— / (a(z,u™, Vu™) - Vu™ + G(x))|ex(z™)|dv
{Br:h—1<|um|<h}
[ c@laema
{Br:h—1<|u™|<h}
Using (5:2), (59, (5-19), we find
|[12‘ § €(h), m 2 h, (521)

where e(h) — 0 as h — 0.
Then, using (5.12) and the inequality |Vng_i(|z])| < 1, we obtain the estimate for the
integrals

Ls = / (aar, Th(u™), VT (™) V- (] s ([ o (™)
{%B p:fum|<h}

[ L13] < C7(h) [0k (z")lp2 = €5(m).
It is easy to establish the identity [y = I1; + [15 + [13, where

(5.22)

I = /a(fcaTh(um),VTh(um)) (V2" )i ([u™ ) (2™ dv.
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Now, using the estimates for integrals (5.17)—(5.22), by (5.16]) we get the inequalities
Is =l —lop= (L1 +12) — Lo — iz —Ipo— I
<—(]3+I4)+54(m)+8(h):55(m)—|—5(h), m}h

(5.23)

5.2. Representation for I;. After elementary transformations, we write the identities

Is = / a(z, Tp(u™), VTL(u™)) - VT (u™) e, (z™)dv
Br
- / o, To(u™), VT (u™)) - VT (u) gl (2" dv

Br

9k

- / o, To(u™), VT (™)) - VT (™) oi (™)

Br

- / ale, Th(a™), VT (™)) - V() g ("1
Br
=151 + I50 + I53.

The identity

I =I5 — %“) / o, To(u™), V(™)) VT () o (™) dv
+ / (a(x,Tk(um), VT(u™)) —npqya(z, Tp(u™), VTh(um))) VT (u)p)(z™)dv

=I5y +Isa +Is5, m=h

is obvious.

5.3. Estimates for integrals I54, I5;5. Applying (5.14)), (5.15), Lemma with
H = |VTi(u)er(2k))7,
we obtain
VT (u)|ee(z™)] = 0 strongly in  L,(2), m — oo.

Hence, in view of the convergence (5.13]), we establish

154 = a(m)



68 F.Kh. MUKMINOV, O0.5. STEKHUN

In the integral I5; the integrand F vanishes for |u™| < k, and this is why F' = Fx{|u™| > k}.
Applying (5.14), (5.15), Lemma we obtain
VT (u)x{|u™| > k}pp(z™) = VT (u)x{|u| > k} =0 strongly in L,(Br), m — occ.

Then in view of the convergence (5.13)), we get

.[55 = €(m)
By (5.23), since 5 is independent of h, we find
151 < eﬁ(m). (524)

We are going to estimate the integral

Is = / (a(z, T (u™), VT (u™)) — a(x, Ty(u™), VTi(u)))
A(VT(u™) — VTi(u)p(z™)dv

= / a(z, Te(u™), VIL(u™)) (VT (u™) — VTi () )b (2™)dv (5.25)

_ / o, To(u™), V() (VT (u™) — V() i (™) = sy — Iy,
Q
By we have the estimates

ja(z, T(u™), V()P < g(k)(IVTi(w) P + G(2)) € Li(Q), m € N.
Then, by the almost everywhere convergence (5.8) and Lemma, we get the convergence
a(z, Tp(u™), VI (u)p(z2™) = a(z, Tk (u), VI (u)) strongly in Ly (), m — oo.

Applying (5.10) and Lemma we find

Isy =e(m), me.

Using (5:24), (5:23), we find

This is why

I6 < &?7(m).

I; = / (a(z, Tr,(u™), VT (u™)) — a(x, Tp(u™), VTg(u))) (VTe(u™) — VTi(u))dv

We denote
¢ (x) = M, Ti,(w!), VT (v!), VT (v)), z€Q, jeN. (5.26)
Using the notation ([5.26)), we have

0< [ ¢"(x)dv = I; < e(m).
9)
By Lemma[3.11applied to w? = Ty(w?), w = Ty (u), in view of (5.9), we have the convergences
and
a(x, Ti(u™), VT, (u™)VTi(u™) = a(x, Ti(u), VT(u))VTi(u) in Lie(Q). (5.27)
By (.9),

VTp(u™) = VT (u) ae. in Q, m— . (5.28)
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Let us prove that for all s > 0, R > 0,
bo'(z, Ts(u™), VTg(u™)) = bo(z, Ts(u), VIs(u)) in Li(Bgr), m — oo. (5.29)
It follows from , that the convergence
bo(x, Ts(u™), VTs(u™)) = bo(x, Ts(u), VIs(u)) ae. in Q, m — oo,
holds. By the condition (2.7
05 (, Tu(u™), VTy(w))] < g(r)(Go() + [VTo(w™)]) € Li(Br),

where can take r = s + R. This is why (5.29)) is a corollary of Lemma and the conver-
gence (5.11). In the same way we prove the convergence

bi'(x, Ts(u™)) — by(z, Ts(u)) in Ly ,(Bgr), m— . (5.30)
In order to prove (2.10)), we take the test function v = Ty(u™ —¢), & € Dr(R2), in the identity
(4.4) and we obtain
/a(x,Tm(um), Vu™) - VT (u™ — &)dx

. (5.31)
+ / (b (z,u™, Vu™) — f™) Tp(u™ — &)dx + /b;”(x,um)Tk(um —&)dp = 0.
Q Q
We let M =k + [|€]|oo. If |u™| = M, then

u™ = & = [u™] = |[€llec =

this is why
{Q:]u™ =€ <k} C{Q: |u"| < M},

and therefore,

I = [ a(z, T,,(u™), Vu™) - VI (u™ — &)dx

a(x, Typ(u™), VIn(u™) VT (u™ — €)dx

SR b* SR

(e, Tre(u™), VTaa(u™) (VIaa(u™) = VE)Xqorun—eiciydz, m > M.

We let
= [ (el T, V() V(™) + Gl))da
{Q:|um —g] <k}
> / (a(, Taa (™), VTag (™)) V Taa (w™) + G(x))dz.

{Q:|um—¢|<k,|z|<R}

For regular values k the convergence ({3.6) of characteristic functions

X{Q:um—¢|<k} = X{Qu—t|<k} a-e. £, m — oo,
By the convergence (5.27), Lemma and Fatou lemma we have

lim inf 17" > / (o, Tag (), Vg (1)) VTax(w) + G(z))dz, forall R > 0.

m—00
{Q:|u—¢&|<k,|z|<R}
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Then, in view of the non—negativity integrals,

m—ro0

liminf 17" > / (a(z, Tm(u), VIm(u))VIv(w) + G(x))dx.
{Qfu—¢|<k}

This is why the convergence ((5.13)) implies the inequality

liminf 1™ > / a(z, Tv(u), VIv(uw)) - (VTm(u) — VE)dz

m—00
{Q:|u—¢|<k}

= /a(x,u,Vu) - VT(u = §)de = Cr.
Q

Using Lemma [3.9] and passing to the limit as m — oo, we get

J = fTe(u™ = §)de — | fTi(u—&)dx = Cy,. (5.32)
/ /

We introduce the notation

5= [ VT - e+ [ W) Tl — €

Q Q

and by (5.31]) we obtain

Cr —|—1%n]f11%ior<1)f(]§1 < Cy,.
Let
w™=u" = ¢, w=1u—2E¢, supp& C By, [ >y,
ls={reB: [u™(zx)| <s}, s=>M, B, ={reB,: |ux)| < s}
We choose the numbers s so that mes{z € B, : |u(z)| = s} = 0. Then, in view of and
the inequality u™ ()T (u™ — &) > 0 for |[u™(z)| > M (or for |z| > ly), we have

= [ W e [0 T
o\By” Q\B]",

+/bg“(x,um,Vum)Tk(wm)dx—i-/b’ln(x,um)Tk(wm)d,u
B B

2/bgl(x,Ts(um),Vum)Tk(wm)dx—l—/b?(m,Ts(um))Tk(wm)du:Jz’Z.
B B

,S

Applying (5.29)), (5.30)), we pass to the limit as m — oo and we obtain

/bl(x,Ts(u))Tk(u—f))du—i-/bo(x,Ts(u),Vu)Tk(u—ﬁ)dx:nii_rgo{]ﬁf;gliminfjg‘.

m—r00

l,s %l,s

Since by (2.9)

/ bo(x, Ts(u), Vu)Ti(u — €)dx = / |bo(x, Ts(w), Vu) Ty (u)|dz,

%l,s\%lo,s %Z,S\%lo,s
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by Levi theorem we can pass to the limit as [ — oo. Letting Q, = {z € Q : |u(x)| < s} and
passing to the limit as [ — oo, we have

/bl(x, w) Ty (u — &)du + / bo(x,u, Vu)T(u — &)dr < liminf JJ".

M—00
Qs Qs

Since by ,
/ b (i, ) T — €)dp = / by (2, 0) Tt — )]s,

Q:s\Qur Q:s\ Qs
we can pass to the limit as s — oo. As a result we obtain

/bl(x, w) T (u — &)dp + /bg(:r, u, Vu)T(u — &)dzr < liminf J3".

m—0o0
Q Q
Combining (531)(5:32), we obtain [2.10).

6. UNIQUENESS

Lemma 6.1. Let u be an entropy solution to the Zaremba problem for Equation (| and
the assumptions of Theorem are satisfied. Then by(z,u) € L1(2), by(z,u) € Ll,u(Q) and
for k > 1 the inequalities

/ VT (u)Pde < Ck (6.1)

hold.
Proof. We write the inequality (2.10)) for £ =0

/ (a(, V) - VTk(u) — FTk(w))dz + (Bu, Ty(w)) < 0.

Q
The condition (2.5 implies the inequality
/a(x,Vu) VTi(u /CO|VTk — G(x))dz.
Q Q

Thus,

/(CQ|VTk(U)|p + bo(z, w) T (u))dx + /bl(:r;,u)Tk(u)dp, < /(G + fTi(u))dr < co.

Q Q Q
In view of (2.9)), this implies the inequalities (6.1)) and
/\bo(m,u)lx(\u] > 1)dx + / b1 (2, w)|x(Ju| > 1)dp < oo. (6.2)

The conditions (2.11]), (2.12)) imply the inequality

[ ot wlxtlul < Do+ [ byt wl(lul < D < [ (Gole) + Gl < .
Q Q Q
combining which with (6.2)), we obtain the first statement of the lemma. The proof is complete.
O

Lemma 6.2. Let u be an entropy solution to the Zaremba problem for Equation (2.1) and
the assumptions of Theorem be satisfied. Then (2.10) holds for £ € V N Loo(2).
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Proof. Let £ € V, ||€]|oo < Co. Then there exists a sequence v; € Dp(Q) such that |||/, < Co,
Vv, = VEin L,(€2). At the same time v; — £ in L, 10.(£2) and a.e. in Q. By (2.3), we have the
convergences v; — & in Lgioc,(€2) and p—a.e. in Q. We have

Te(u—v;) = Ti(u—§) a.e. and p—a.e.
Then,
[VT(u = v)| < |VTk(w)] + [Vl
where K = k + Cjy. It is easy to establish that
VTi(u—wv;) = VI (u—§) weakly in  L,(Q).
Using the definition of the entropy solution, we write the inequality
/a(x, Vu)VTi(u —v;)dz + /bo(x, u)Ti(u — v;)dx
Q

+ [ bi(z, u)Ti(u —v;)dp < /ka(u — v;)dz.

Q

{O\{O

The first of the integrals reads as

/a(x, VTx(u)VTi(u —v;)dz,
0
and, in view of (2.4), a(z, VIx(u)) € L,(€2). This is why the passage to the limit as i — oo

is possible in this integral. The passage to the limit in the remaining integrals can be made by
the Lebesgue theorem by using Lemma [6.1] The proof is complete. O]

The proof of Theorem is based on an approach from the work [I].
Using the definition of entropy solution, we write the inequality (2.10)) for u; with & = T}, (uz)

/a(m, Vup)VTi(uy — Tp(ug))dx +/bo(x,u1)Tk(u1 — Th(ug))dx

“ “ (6.3)
+ /bl(m,ul)Tk(ul — Th(ug))dp < /ka(ul — Ty (ug))dx.

Applying it in the case u; = uy = u, we find

/a(x, Vu)VTi(u — Th(u))dz + / bo(x,u)Ti(u — Th(u))dx
Q Q

+/b1(:v,u)Tk(u—Th(u))dM</ka(u—Th(u))dx.

Q Q

Using (2.5) and (2.9), it is easy to obtain the inequality

|Vu|Pde < / (G + |f|k)dx = e(h), (6.4)

{Q: h<|u|<h+k} {Q: |u|=h}

where £(h) — 0 as h — oo (by Lemma [3.4)).
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Summing the inequality (6.3) with the similar one for us, we obtain the relation
a(x, Vuy)VTi(u; — Ty (ug))dx
{lur =T (u2)|<k}
+ a(x, Vug)VTi(ug — Ty (uy))dx
{lug =T} (u1)|<k}

+ /(bo(x,ul)Tk(ul — Th(UQ)) + bo(%, uz)Tk(UQ — Th(ul)))d:c

+ /(bl(x )T (uy — Th(ug)) + by (2, ug) T (ug — Th(uq)))du

/f Th(ur — Th(us)) + Th(uz — Th(ur)))dz.
Q

73

(6.5)

We denote by I' the sum of the two integrals in (6.5), and I% I3, I* are other integrals
respectively. We have I' 4 1?2 + I3 < I*. In order to pass to the limit as h — oo, we split each

of the integrals into several parts. We let
={reQ: |ug —us| <k, |u1| <h, |ug| <h}.
The sum of the two integrals from over this set can be written as
Iy = /(a(x, Vuy) — a(x, Vug))V(uy — ug)dz > 0.
Ao
For the integral over the set
A ={x € Q: |ug —us| <k, |us| = h}

we have

/a(x, Vuy) - V(uy — Th(ug))de = /a(:r, Vuy) - Vuypde > — / G(z)dx = —e(h).

Al Al {luz|>h}

For the remaining set
Ay ={x € Q: |ug —u| <k, |us| = h, |uz| < h}

we have the inequality

/a(x, Vup)V(uy — Tp(uz))de > — /(G(:p) + a(x, Vuy)Vuadz.

A2 A2

It is clear that

la(z, Vur)Vus|| £, (ay) < la(Vui)||z,, <o <vim |Vl o —k<jusj<ny = €1(R).

The latter identity is implied by (6.4) and (2.4).

Making similar calculations for the second integral in (6.5)) and summing the obtained results

we find that I > Iy — ey(h).
We consider the integral I* in the formula (6.5). This integral over the set

By(h) ={x € Q: |u1| < h, |ua| < h}
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gives the quantity

JO = / (bl(x,ul) — bl(ZE,UQ))Tk(Ul — Ug)d/i 2 0.
Bo(h)

The integral I over the set
By ={x€Q: |w| > h},

with the vanishing measure, as h — oo gives the quantity, which can be estimated as

PARS k/(!bl(%ulﬂ + b1 (7, u2))|)dp < e3(h).

By

The integral J, over the remaining set can be estimated in a similar way |J3| < g4(h). As a
result we have the inequality

P> / (b1 (2, 1) — by (2, 1)) (a1 — un)dps — e5(h).
Bo(h)

Similarly,

2> / (bo(, 1) — bo(, ua)) Te(ur — wp)da — g(h),  I' < ex(h).
Bo(h)

Summing the above obtained inequalities and omitting some negative terms, we find

/ (o, 1) — bo(, ua)) Te(ur — ws)da < es(h).
Bo(h)

Using the increasing of the function by in the second variable, Lemma [3.10 and passing to the
limit at h — oo in this inequality, we obtain

/(bo(x, u1) — bo(z, ug))Tx(ur — ug)dx < 0.
Q

We then conclude that u; = us almost everywhere in 2.

7. SOME EXAMPLES

We provide examples of the functions by, by, obeying the needed conditions. Let n = 4, p = 3.
The measure p coincides the Lebesgue measure concentrated on the part of the plane

{r € Q:xy=0,29 = 0}.

It is easy to see that this measure belongs to the Morrey class My (2). Let g(r), 7 > 0, be an
arbitrary increasing function. We let

bo(x, ) = Go(x)g([rl)r/Irl,  bi(z,r) = Gi(z)g([r])r/Irl,

where Gy € Li(2), Gy € L1,(Q2), and the function G, is equal to zero outside the support of

the function . It is easy to see that the conditions (2.7)—(2.12), except for (2.10)), are satisfied.
For the existence theorem the function

bo(z,7,y) = de)g(!ﬂ)ﬁ

is also appropriate.
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