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BOREL TRANSFORMS OF FUNCTIONS IN

PARAMETRIZED FAMILY OF HILBERT SPACES

K.P. ISAEV, R.S. YULMUKHAMETOV

Abstract. We consider Hilbert spaces of entire functions

𝑃𝛽(𝐷) =

⎧⎨⎩𝐹 ∈ 𝐻(C) : ‖𝐹‖2 :=
2𝜋∫︁
0

∞∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑑𝑟𝑑∆(𝜙)

𝐾(𝑟𝑒𝑖𝜙)𝑟2𝛽
< ∞

⎫⎬⎭ ,

where 𝐷 is a bounded convex domain on the complex plane,

𝐾(𝜆) = ‖𝑒𝜆𝑧‖2𝐿2(𝐷) =

∫︁
𝐷

|𝑒𝜆𝑧|2𝑑𝑚(𝑧), 𝜆 ∈ C,

ℎ(𝜙) = max
𝑧∈𝐷

Re 𝑧𝑒𝑖𝜙, 𝜙 ∈ [0; 2𝜋],

∆(𝜙) = ℎ(𝜙) +

𝜙∫︁
0

ℎ(𝜃)𝑑𝜃, 𝜙 ∈ [0; 2𝜋].

The interest to these spaces is motivated by the fact that 𝑃0(𝐷) is the space of Laplace
transforms of linear continuous functionals on the Bergman space 𝐵2(𝐷), while 𝑃 1

2
(𝐷) is the

space of Laplace transforms of linear continuous functionals on the Smirnov space 𝐸2(𝐷).
In the paper for the parameters 𝛽 ∈

(︀
−1

2 ;
3
2

)︀
we provide a complete description of the Borel

transforms of functions in spaces 𝑃𝛽(𝐷). In this way, the Bergman and Smirnov spaces are
embedded into a scale of Hilbert spaces and, in the authors’ opinion, this could allow to
apply the theory of Hilbert scales for studying the problems in these spaces.
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1. Introduction

Let 𝐷 be a bounded convex domain in the plane. The Bergman space 𝐵2(𝐷) and Smirnov
space 𝐸2(𝐷) are rather well studied because of their importance in problems of complex analysis.
We recall that 𝐵2(𝐷) = 𝐻(𝐷)∩𝐿2(𝐷), where 𝐻(𝐷) is the space of functions analytic in 𝐷 and
𝐿2(𝐷) is the space of square integrable functions. In particular, it was established in works [1],

[2] that the Laplace transform of linear continuous functionals ℒ : 𝑆 → ̂︀𝑆(𝜆) = 𝑆𝑧(𝑒
𝜆𝑧) makes

an isomorphism of the dual to 𝐸2(𝐷) space onto the space

̂︀𝐸2(𝐷) =

⎧⎨⎩𝐹 ∈ 𝐻(C) :

2𝜋∫︁
0

∞∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑑𝑟𝑑∆(𝜙)

𝐾1(𝑟𝑒𝑖𝜙)
< ∞

⎫⎬⎭ ,
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where ℎ(𝜙) is the support function of this domain, that is,

ℎ(𝜙) = max
𝑧∈𝐷

Re 𝑧𝑒𝑖𝜙, 𝜙 ∈ [0; 2𝜋],

∆(𝜙) = ℎ(𝜙) +

𝜙∫︁
ℎ(𝜃)𝑑𝜃, 𝜙 ∈ [0; 2𝜋],

𝐾1(𝜆) = ‖𝑒𝜆𝑧‖2𝐿2(𝜕𝐷) =

∫︁
𝐷

|𝑒𝜆𝑧|2𝑑𝑠(𝑧), 𝜆 ∈ C,

and 𝑑𝑠(𝑧) is the differential of the arc length of boundary 𝐷. It was shown in [3] that the
Laplace transform makes an isomorphism of the dual to 𝐵2(𝐷) space onto the space

̂︀𝐵2(𝐷) =

⎧⎨⎩𝐹 ∈ 𝐻(C) :

2𝜋∫︁
0

∞∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑑𝑟𝑑∆(𝜙)

𝐾(𝑟𝑒𝑖𝜙)
< ∞

⎫⎬⎭ ,

where

𝐾(𝜆) = ‖𝑒𝜆𝑧‖2𝐿2(𝐷) =

∫︁
𝐷

|𝑒𝜆𝑧|2𝑑𝑚(𝑧), 𝜆 ∈ C.

Taking into consideration that 𝐾1(𝜆) ∼= |𝜆|𝐾(𝜆), |𝜆| → ∞, for 𝛽 ∈ R, it is natural to consider
the spaces

𝑃𝛽(𝐷) =

⎧⎨⎩𝐹 ∈ 𝐻(C) : ‖𝐹‖2 :=
2𝜋∫︁
0

∞∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑑𝑟𝑑∆(𝜙)

𝐾(𝑟𝑒𝑖𝜙)𝑟2𝛽
< ∞

⎫⎬⎭ .

The spaces 𝑃𝛽(𝐷) form a continuous scale of Hilbert spaces and, as it has been said above,̂︀𝑃0(𝐷) is isomorphic to 𝐵2(𝐷) and ̂︀𝑃 1
2
(𝐷) is isomorphic to 𝐸2(𝐷). In this way, the Bergman

and Smirnov spaces are embedded into a scale of Hilbert spaces and, in the authors’ opinion,
this could allow to apply the theory of Hilbert scales for studying the problems in these spaces.
A function associated in the Borel sense with an entire function 𝐹 of exponential type 𝜎 is

the function

𝛾(𝑧) =
∞∑︁
𝑘=0

𝐹 (𝑘)(0)

𝑧𝑘+1
, |𝑧| > 𝜎.

Let 𝐻0(𝐷) be the space of functions analytic in C ∖𝐷 and vanishing at infinity. For 𝛼 > 0 we
let

𝐺𝛼(𝐷) =

⎧⎪⎨⎪⎩ℎ(𝜁) ∈ 𝐻0(C ∖𝐷) : ‖ℎ‖2 :=
∫︁
C∖𝐷

|ℎ′′(𝜁)|2dist2𝛼(𝐷, 𝜁)𝑑𝑚(𝜁) < ∞

⎫⎪⎬⎪⎭ .

In work we are going to prove the following theorem.

Theorem 1.1. Let 𝐹 be an entire function with an indicator diagram 𝐷, 𝛾 be the function

associated in the Borel sense with 𝐹 and 𝛽 ∈
(︀
−1

2
; 3
2

)︀
. For some constants 𝑐(𝛽,𝐷), 𝐶(𝛽,𝐷) > 0

depending on the domain 𝐷 and parameter 𝛽 the relation

𝑐(𝛽,𝐷)‖𝛾‖2𝐺𝛽+1 ⩽ ‖𝐹‖𝑃𝛽
=

∞∫︁
0

2𝜋∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2

𝐾(𝑟𝑒𝑖𝜙)𝑟2𝛽
𝑑∆(𝜙)𝑑𝑟 ⩽ 𝐶(𝛽,𝐷)‖𝛾‖2𝐺𝛽+1

holds.
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An interest to these spaces is motivated by the fact that the authors has a supported con-
jecture that the spaces 𝑃𝛽(𝐷) admit unconditional bases of reproducing kernels, see [4]–[8].
Hence, this could produce a scale of Hilbert spaces of functions analytic in the convex domain
𝐷 admitting unconditional bases of exponentials.
In first two sections we prove preliminary theorems. In the first section we estimate the

integral
∞∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑑𝑟
𝐾(𝑟𝑒𝑖𝜙)𝑟2𝛽

for 𝛽 > −1
2
, and in the second section we justify the localization of the norm in the spaces 𝐺𝛼.

2. Preliminary statements. Estimates of integral over radius

For a fixed 𝜙 ∈ [0; 2𝜋] by means of the mapping 𝑧 → 𝑤 = 𝑧𝑒𝑖𝜙 − ℎ(𝜙) we transform the
domain 𝐷 into the domain 𝐷𝜙, which is located in the left half–plane and touches the ordinate
axis. For 𝑡 < 0 by 𝑠(𝑡, 𝜙) we denote the area of intersection of the domain 𝐷𝜙 with the strip
{𝑧 = 𝑥+ 𝑖𝑦 : 𝑡 < 𝑥 < 0}.

Theorem 2.1. Let 𝐹 be an entire function obeying the condition: for some 𝛽 ∈
(︀
−1

2
; +∞

)︀
and 𝜙 ∈ [0; 2𝜋]

𝐼𝜙 =

∞∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2

𝐾(𝑟𝑒𝑖𝜙)𝑟2𝛽
𝑑𝑟 < ∞,

and 𝛾 is the Borel transform of the function 𝐹 . For some constants 𝑎(𝛽), 𝐴(𝛽) depending only

on the parameter 𝛽, see the remark in the end of the section, the estimates

𝑎(𝛽)𝐼𝜙 ⩽

∞∫︁
−∞

0∫︁
−∞

|𝛾′′(𝑒−𝑖𝜙(ℎ(𝜙)− (𝑥+ 𝑖𝑦))|2|𝑥|2𝛽+3

𝑠(𝑥, 𝜙)
𝑑𝑥𝑑𝑦 ⩽ 𝐴(𝛽)𝐼𝜙

hold.

In the rest of the section we prove this theorem. The proof is mainly based on arguing in [3,
Sect. 1]. This is why we keep the corresponding notations. On the half–plane

𝑃𝜙 = {𝜁 : Re 𝜁𝑒𝑖𝜙 > ℎ(𝜙)}
the function 𝛾 is recovered by the formula

𝛾(𝜁) =

∞∫︁
0

𝐹 (𝑟𝑒𝑖𝜙)𝑒−𝜁𝑟𝑒𝑖𝜙𝑒𝑖𝜙𝑑𝑟.

We represent the points in this half–plane in the form 𝜁 = (ℎ(𝜙) − 𝜉)𝑒−𝑖𝜙, where 𝜉 ranges in
the left half–plane Re 𝜉 < 0. Then

𝛾′′(𝑒−𝑖𝜙(ℎ(𝜙)− 𝜉)) =

∞∫︁
0

(︀
𝐹 (𝑟𝑒𝑖𝜙)𝑟2𝑒3𝑖𝜙𝑒−ℎ(𝜙)𝑟

)︀
𝑒𝜉𝑟𝑑𝑟. (2.1)

We shall make use the following theorem proved in [9].

Theorem 2.2. Let 𝑣(𝑡) be a convex function defined on the interval 𝐼, and ̃︀𝑣 be the Young

conjugate function for 𝑣 ̃︀𝑣(𝑥) = sup
𝑡∈𝐼

(𝑥𝑡− 𝑣(𝑡)).
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We let

𝐽 = {𝑥 ∈ R : ̃︀𝑣(𝑥) < ∞},

𝐾0(𝑥) =

∫︁
𝐼

𝑒2𝑥𝑡−2𝑣(𝑡)𝑑𝑡, 𝑥 ∈ 𝐽.

Then for each function 𝑔 on 𝐼 with a finite integral

‖𝑔‖2 =
∫︁
𝐼

|𝑔(𝑡)|2𝑒−2𝑣(𝑡)𝑑𝑡,

the function ̂︀𝑔(𝑧) = ∫︁
𝐼

𝑔(𝑡)𝑒𝑧𝑡−2𝑣(𝑡)𝑑𝑡

satisfies the inequalities

𝑎‖𝑔‖2 ⩽
∞∫︁

−∞

∫︁
𝐽

̂︀𝑔(𝑥+ 𝑖𝑦)|2

𝐾0(𝑥)
𝑑̃︀𝑣′(𝑥)𝑑𝑦 ⩽ 𝐴‖𝑔‖2,

where 𝑎, 𝐴 > 0 are absolute constants independent of the function 𝑔 and the weight 𝑣.

Let

𝜂(𝑟) =
𝑒2ℎ(𝜙)𝑟

𝐾(𝑟𝑒𝑖𝜙)
, 𝑢(𝑟) =

1

2
ln

𝜂(𝑟)

𝑟4
, 𝑣(𝑟) = 𝑢(𝑟)− 𝛽 ln 𝑟.

By means of these functions we write the formula (2.1) as

𝛾′′(𝑒−𝑖𝜙(ℎ(𝜙)− 𝜉)) =

∞∫︁
0

𝐹 (𝑟𝑒𝑖𝜙)𝑒3𝑖𝜙𝑒ℎ(𝜙)𝑟

𝑟2+2𝛽𝐾(𝑟𝑒𝑖𝜙)
𝑒𝜉𝑟−2𝑣(𝑟)𝑑𝑟.

We apply Theorem 2.2 letting 𝐼 = (0;+∞),

𝑔(𝑟) =
𝐹 (𝑟𝑒𝑖𝜙)𝑒−3𝑖𝜙𝑒ℎ(𝜙)𝑟

𝑟2+2𝛽𝐾(𝑟𝑒𝑖𝜙)
,

and choosing 𝑣(𝑡) as the weight function. In order to do this, we need to make sure that function
𝑣(𝑡) is convex.

Lemma 2.1. The following statements are true.

1) The function 𝑣 is convex on 𝐼 = (0;+∞) and(︂
1

2
+ 𝛽

)︂
1

𝑟2
⩽ 𝑣′′(𝑟) ⩽ (2 + 𝛽)

1

𝑟2
, 𝑟 > 0;

2) If ̃︀𝑣(𝑥) = sup
𝑟>0

(𝑥𝑟 − 𝑣(𝑟)), 𝑥 ∈ 𝐽 = (−∞; 0),

is the function Young conjugate with the function 𝑣, then

(1 + 2𝛽)2

4(2 + 𝛽)

1

𝑥2
⩽ ̃︀𝑣′′(𝑥) ⩽ 2(2 + 𝛽)2

1 + 2𝛽

1

𝑥2
, 𝑥 < 0.

Proof. In the first assertion of [3, Lm. 1] the estimates

1

2

1

𝑟2
⩽ 𝑢′′(𝑟) ⩽

2

𝑟2
, 𝑟 > 0,
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were proved, and they imply the estimates of Assertion 1). Let us prove the second assertion.
It was shown in the proof of [3, Lm. 1, Eq. (5)] that

−2

𝑟
⩽ 𝑢′(𝑟) ⩽ − 1

2𝑟
, 𝑟 > 0.

Hence,

−(2 + 𝛽)
1

𝑟
⩽ 𝑣′(𝑟) ⩽ −

(︂
1

2
+ 𝛽

)︂
1

𝑟
. (2.2)

In the same proof the relations

𝑢(𝑟) → −∞,

⃒⃒⃒⃒
𝑢(𝑟)

ln 𝑟

⃒⃒⃒⃒
= 𝑂(1) as 𝑟 → +∞, lim

𝑟→0+
𝑢(𝑟) = +∞,

were also established and this is why the function ̃︀𝑣(𝑥) is defined on (−∞; 0) and

lim
𝑟→0+

(𝑥𝑟 − 𝑣(𝑟)) = lim
𝑟→+∞

(𝑥𝑟 − 𝑣(𝑟)) = −∞.

Thus, the supremum in the definition of the function ̃︀𝑣 is attained at a unique stationary point
𝑟 = 𝑟(𝑥) > 0 such that 𝑣′(𝑟) = 𝑥. By the estimates (2.2) we find

−
(︂
1

2
+ 𝛽

)︂
1

𝑥
⩽ 𝑟(𝑥) ⩽ −(2 + 𝛽)

1

𝑥
. (2.3)

By the definition of the function ̃︀𝑣(𝑥) we have the identitỹ︀𝑣(𝑥) ≡ 𝑥𝑟(𝑥)− 𝑣(𝑟(𝑥)), 𝑥 < 0,

or ̃︀𝑣(𝑣′(𝑟)) ≡ 𝑣′(𝑟)𝑟 − 𝑢(𝑟), 𝑟 > 0.

We differentiate twice the latter identitỹ︀𝑣′′(𝑣′(𝑟))𝑣′′(𝑟) ≡ 1, 𝑟 > 0.

In view of (2.3) and Assertion 1) we obtain

(1 + 2𝛽)2

4(2 + 𝛽)

1

𝑥2
⩽ ̃︀𝑣′′(𝑥) = 1

𝑣′′(𝑟(𝑥))
⩽

2(2 + 𝛽)2

1 + 2𝛽

1

𝑥2
, 𝑥 < 0.

The proof is complete.

We apply Theorem 2.2 to the function

𝑔(𝑟) =
𝐹 (𝑟𝑒𝑖𝜙)𝑒−3𝑖𝜙𝑒ℎ(𝜙)𝑟

𝑟2+2𝛽𝐾(𝑟𝑒𝑖𝜙)
.

This yields that the quantity

‖𝑔‖2 =
∞∫︁
0

|𝑔(𝑟)|2𝑒−2𝑣(𝑟)𝑑𝑟 =

∞∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑑𝑟
𝐾(𝑟𝑒𝑖𝜙)𝑟2𝛽

= 𝐼𝜙

is comparable with the integral
∞∫︁

−∞

0∫︁
−∞

|𝛾′′(𝑒−𝑖𝜙(ℎ(𝜙)− (𝑥+ 𝑖𝑦)))|2

𝐾0(𝑥, 𝜙)
𝑑̃︀𝑣′(𝑥)𝑑𝑦.

Estimating 𝑑̃︀𝑣′(𝑥) by Assertion 2) of Lemma 2.1, we obtain

(1 + 2𝛽)2

4(2 + 𝛽)
𝑎𝐼𝜙 ⩽

∞∫︁
−∞

0∫︁
−∞

|𝛾′′(𝑒−𝑖𝜙(ℎ(𝜙)− (𝑥+ 𝑖𝑦)))|2

𝐾0(𝑥, 𝜙)𝑥2
𝑑̃︀𝑣′(𝑥)𝑑𝑦 ⩽

2(2 + 𝛽)2

1 + 2𝛽
𝐴𝐼𝜙. (2.4)

To complete the proof of Theorem 2.1 we shall need one more lemma.
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Lemma 2.2. For all 𝜙 ∈ [0; 2𝜋], 𝛽 ∈ (−1
2
;∞) the relation

2−(2𝛽+5)𝑎0(𝛽)
𝑠(𝑡, 𝜙)

|𝑡|2𝛽+5
⩽ 𝐾0(𝑡, 𝜙) ⩽ 𝑎0(𝛽)

(︂
1 +

𝑎+(𝛽)

𝑎−(𝛽)

)︂
𝑠(𝑡, 𝜙)

|𝑡|2𝛽+5

holds, where

𝑎0(𝛽) =

∞∫︁
0

𝑡2𝛽+4𝑒−2𝑡𝑑𝑡, 𝑎−(𝛽) =

1∫︁
0

𝑡𝑑𝑡

(1 + 𝑡)2𝛽+5
, 𝑎+(𝛽) =

∞∫︁
1

𝑡𝑑𝑡

(1 + 𝑡)2𝛽+5
.

Proof. We represent the domain 𝐷𝜙 as

𝐷𝜙 = {𝑧 = 𝑥+ 𝑖𝑦 : 𝑓1(𝑥) < 𝑦 < 𝑓2(𝑥), 𝑅𝜙 < 𝑥 < 0}.

Then 𝑓(𝑥) = 𝑓1(𝑥)− 𝑓2(𝑥) is a non–negative concave function on [−𝑅𝜙; 0] and 𝑡 < 0

𝐾0(𝑡, 𝜙) =

∞∫︁
0

𝑒2𝑡𝑟−2𝑣(𝑟)𝑑𝑟 =

∞∫︁
0

𝑒2𝑟𝑡
𝑟2𝛽+4𝑑𝑟

𝜂(𝑟)
=

∞∫︁
0

𝑒2𝑥𝑟𝑟2𝛽+4𝐾(𝑟𝑒𝑖𝜙)𝑒−2𝑟ℎ(𝜙)𝑑𝑟

=

∞∫︁
0

𝑒2𝑟𝑡𝑟2𝛽+4

⎛⎜⎝∫︁
𝐷𝜙

𝑒2𝑟𝑥𝑑𝑥𝑑𝑦

⎞⎟⎠ 𝑑𝑟 =

∫︁
𝐷𝜙

⎛⎝ ∞∫︁
0

𝑒2𝑟(𝑥+𝑡)𝑟2𝛽+4𝑑𝑟

⎞⎠ 𝑑𝑥𝑑𝑦.

Hence,

𝐾0(𝑡, 𝜙) = 𝑎0(𝛽)

∫︁
𝐷𝜙

𝑑𝑥𝑑𝑦

|𝑥+ 𝑡|2𝛽+5
,

where

𝑎0(𝛽) =

∞∫︁
0

𝑒−2𝜏𝜏 2𝛽+4𝑑𝜏.

1. Let 𝑡 ⩽ −𝐷𝜙, then on the integration interval we have |𝑡| ⩽ |𝑡+ 𝑥| ⩽ 2|𝑡|, and this is why

𝑎0(𝛽)2
−(2𝛽+5)

𝑡2𝛽+5
|𝐷𝜙| ⩽ 𝐾0(𝑡, 𝜙) ⩽

𝑎0(𝛽)

𝑡2𝛽+5
|𝐷𝜙|,

where |𝐷𝜙| is the area of the domain 𝐷𝜙. The statement of the lemma is true since in this case
𝑠(𝑡, 𝜙) = |𝐷𝜙|.
2. Let 0 ⩾ 𝑡 > −𝐷𝜙 and 𝑝 = 𝑓(𝑡). The concavity of the function 𝑓 yields

𝑓(𝑥) ⩽
𝑝

𝑡
𝑥, −𝑅𝜙 ⩽ 𝑥 ⩽ 𝑡, 𝑓(𝑥) ⩾

𝑝

𝑡
𝑥, 𝑡 ⩽ 𝑥 ⩽ 0,

and hence,

𝑡∫︁
−𝑅𝜙

𝑓(𝑥)𝑑𝑥

|𝑡+ 𝑥|2𝛽+5
⩽

𝑝

|𝑡|

∞∫︁
|𝑡|

𝑟𝑑𝑟

(𝑟 + |𝑡|)2𝛽+5
=

𝑎+(𝛽)𝑝

|𝑡|2𝛽+4
, 𝑎+(𝛽) =

∞∫︁
1

𝜏𝑑𝜏

(1 + 𝜏)2𝛽+5
,

0∫︁
𝑡

𝑓(𝑥)𝑑𝑥

|𝑡+ 𝑥|2𝛽+5
⩾

𝑝

|𝑡|

|𝑡|∫︁
0

𝑟𝑑𝑟

(𝑟 + |𝑡|)2𝛽+5
=

𝑎−(𝛽)𝑝

|𝑡|2𝛽+4
, 𝑎−(𝛽) =

1∫︁
0

𝜏𝑑𝜏

(1 + 𝜏)2𝛽+5
,
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and therefore,

𝐾0(𝑡, 𝜙) = 𝑎0(𝛽)

0∫︁
−𝑅𝜙

𝑓(𝑥)𝑑𝑥

|𝑡+ 𝑥|2𝛽+5
⩽ 𝑎0(𝛽)

(︂
1 +

𝑎+(𝛽)

𝑎−(𝛽)

)︂ 0∫︁
𝑡

𝑓(𝑥)𝑑𝑥

|𝑥+ 𝑡|2𝛽+5

⩽ 𝑎0(𝛽)

(︂
1 +

𝑎+(𝛽)

𝑎−(𝛽)

)︂
1

|𝑡|2𝛽+5

0∫︁
𝑡

𝑓(𝑥)𝑑𝑥 = 𝑎0(𝛽)

(︂
1 +

𝑎+(𝛽)

𝑎−(𝛽)

)︂
𝑠(𝑡, 𝜙)

|𝑡|2𝛽+5
.

The lower bound

𝐾0(𝑡, 𝜙) ⩾ 𝑎0(𝛽)

0∫︁
𝑡

𝑓(𝑥)𝑑𝑥

|𝑡+ 𝑥|2𝛽+5
⩾

2−(2𝛽+5)𝑎0(𝛽)

|𝑡|2𝛽+5

0∫︁
𝑡

𝑓(𝑥)𝑑𝑥 =
2−(2𝛽+5)𝑎0(𝛽)

|𝑡|2𝛽+5
𝑠(𝑡, 𝜙)

is obvious. The proof is complete.

Now, to complete the proof of Theorem 2.1, it is sufficient to substitute the estimates of
Lemma 2.2 into the relation (2.4). The proof of Theorem 2.1 is complete.

Remark 2.1. As the constants in Theorem 2.1 we can take

𝑎(𝛽) = 𝑎𝑎0(𝛽)2
−(2𝛽+5) (1 + 2𝛽)2

4(2 + 𝛽)
, 𝐴(𝛽) = 𝐴𝑎0(𝛽)

2(2 + 𝛽)2

(1 + 2𝛽)

(︂
1 +

𝑎+(𝛽)

𝑎−(𝛽)

)︂
,

where 𝑎0(𝛽), 𝑎±(𝛽) are defined in Lemma 2.2 and 𝑎, 𝐴 are absolute constants from Theorem 2.2.

3. Preliminary statements. Localization of norm in 𝐺𝛼

The main theorem of this section allows us to localize the integrals over C∖𝐷 to the integrals
over the set Ω ∖𝐷, where Ω is an arbitrary neighbourhood of 𝐷.
By 𝐵(𝑧, 𝜀) we denote the circle centered at the point 𝑧 with the radius 𝜀; if 𝑧 = 0, we do not

indicate this. We let 𝐷(𝜀) = 𝐷 +𝐵(𝜀) and

𝑅(𝐷) = inf{𝑅 > 0 : 𝐷 ⊂ 𝐵(𝑅)}.

Theorem 3.1. Let 𝛾 ∈ 𝐺𝛼 and 𝛼 ∈ [0; 3
2
). Then for each 𝜀 ∈ (0;𝑅(𝐷))∫︁

C∖𝐷

|𝛾′′(𝜁)|2dist2𝛼(𝜁) 𝑑𝑚(𝜁) ⩽ (1 +𝐵0(𝛼))(1 +𝐵(𝛼,𝐷))

∫︁
𝐷(𝜀)∖𝐷

|𝛾′′(𝜁)|2dist2𝛼(𝜁) 𝑑𝑚(𝜁),

and ∫︁
C∖𝐷

|𝛾′′(𝜁)|2dist2𝛼+1(𝜁) 𝑑𝑚(𝜁)

⩽ (1 + 5𝑅(𝐷)𝐵1(𝛼))(1 + 5𝑅𝑅(𝐷)𝐵(𝛼,𝐷))

∫︁
𝐷(𝜀)∖𝐷

|𝛾′′(𝜁)|2dist2𝛼(𝜁) 𝑑𝑚(𝜁),

where

𝐵0(𝛼) = 42𝛼(4(2−𝛼) − 1)−1, 𝐵1(𝛼) = 42𝛼(2(3−2𝛼) − 1)−1,

𝐵(𝛼,𝐷) = 256
(20𝑅)2𝛼(|𝜕𝐷|+ 𝜋𝜀)2

𝜋2𝜀2(𝛼+1)
.

If 𝛼 ∈ [3
2
; 5
2
), then the same estimates hold under the additional condition

lim
|𝑧|→∞

|𝑧||𝛾(𝑧)| = 0
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with the constants 𝐵0, 𝐵1 replaced by

𝐵′
0(𝛼) = 42𝛼(2(3−𝛼) − 1)−1, 𝐵′

1(𝛼) = 42𝛼(2(5−2𝛼) − 1)−1.

In the rest of the section we prove this theorem. The proof consists of two steps. At the first
step (Lemma 3.1) we estimate the integral of |𝛾′′(𝜁)| over the exterior of the circle 𝐵(4𝑅(𝐷))
by the integral over the set 𝐵(4𝑅(𝐷)) ∖𝐷. Then (Lemma 3.2) the integral over 𝐵(4𝑅(𝐷)) ∖𝐷
is estimated from above by the integral over 𝐷(𝜀) ∖𝐷.
The number 𝑅(𝐷) is briefly denoted by 𝑅.

Lemma 3.1. Let 𝛾 ∈ 𝐺𝛼 and 𝛼 ∈ [0; 3
2
). The relations∫︁

|𝜁|⩾4𝑅

|𝛾′′(𝜁)|2dist2𝛼(𝜁) 𝑑𝑚(𝜁) ⩽ 𝐵0(𝛼)

∫︁
𝐵(4𝑅)∖𝐷

|𝛾′′(𝜁)|2dist2𝛼(𝜁) 𝑑𝑚(𝜁)

hold and ∫︁
C∖𝐷

|𝛾′′(𝜁)|2dist2𝛼+1(𝜁) 𝑑𝑚(𝜁) ⩽ 5𝑅𝐵1(𝛼)

∫︁
𝐷(𝜀)∖𝐷

|𝛾′′(𝜁)|2dist2𝛼(𝜁) 𝑑𝑚(𝜁).

If 𝛼 ∈ [3
2
; 5
2
), then the same estimates hold under the additional condition

lim
|𝑧|→∞

|𝑧||𝛾(𝑧)| = 0

with 𝐵0, 𝐵1 replaced by 𝐵′
0, 𝐵

′
1.

Proof. We represent the function 𝛾(𝜁) as the Laurent series

𝛾(𝜁) =
∞∑︁
𝑘=0

𝛾𝑘
𝜁𝑘+1

, |𝜁| > 𝑅.

By the assumptions, this series and

𝛾′′(𝜁) =
∞∑︁
𝑘=0

(𝑘 + 2)(𝑘 + 1)𝛾𝑘
𝜁𝑘+3

=
∞∑︁
𝑘=0

𝛾′′
𝑘

𝜁𝑘+3
, |𝜁| > 𝑅,

converge uniformly on the set C ∖𝐵(2𝑅).
We take a number 𝑡 ∈ [0; 2). For 𝜁, |𝜁| ⩾ 4𝑅, we have

dist(𝜁) ⩽ |𝜁|+𝑅 < 2|𝜁|,

and this is why ∫︁
|𝜁|⩾4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁) ⩽ 22𝑡
∫︁

|𝜁|⩾4𝑅

|𝛾′′(𝜁)|2|𝜁|2𝑡 𝑑𝑚(𝜁).

Passing to the polar coordinates in the above integral and taking into consideration the orthog-
onality of the system 𝑒𝑖𝑘𝜙 with respect to the measure 𝑑𝜙 over [0; 2𝜋], we obtain∫︁

|𝜁|⩾4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁) ⩽ 22𝑡+1𝜋

∞∫︁
4𝑅

∞∑︁
𝑘=0

|𝛾′′
𝑘 |2𝑟2𝑡+1 𝑑𝑟

𝑟2(𝑘+3)

= 22𝑡+1𝜋

∞∑︁
𝑘=0

|𝛾′′
𝑘 |2

2(𝑘 + 2− 𝑡)(4𝑅)2(𝑘+2−𝑡)
.

(3.1)
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Again by means of the Laurent series, using the estimates dist(𝜁) ⩾ 1
2
|𝜁| for |𝜁| ⩾ 2𝑅, we

estimate from below the integral over the annulus 𝐵(4𝑅) ∖𝐵(2𝑅)∫︁
2𝑅⩽|𝜁|<4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁) ⩾ 2−2𝑡

∫︁
2𝑅⩽|𝜁|<4𝑅

|𝛾′′(𝜁)|2|𝜁|2𝑡 𝑑𝑚(𝜁)

= 2−2𝑡+1𝜋
∞∑︁
𝑘=0

|𝛾′′
𝑘 |2

2(𝑘 + 2− 𝑡)(4𝑅)2(𝑘+2−𝑡)
(22(𝑘+2−𝑡) − 1),

(3.2)

hence,∫︁
2𝑅⩽|𝜁|<4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁) ⩾ 2−2𝑡+1
(︀
22(2−𝑡) − 1

)︀
𝜋

∞∑︁
𝑘=0

|𝛾′′
𝑘 |2

2(𝑘 + 2− 𝑡)(4𝑅)2(𝑘+2−𝑡)
. (3.3)

By (3.1) this implies the estimate∫︁
|𝜁|⩾4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁) ⩽ 24𝑡
(︀
22(2−𝑡) − 1

)︀−1
∫︁

2𝑅⩽|𝜁|<4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁).

Letting 𝑡 = 𝛼 < 3
2
, we obtain the first estimate in the first part of the lemma, while letting

𝑡 = 𝛼+ 1
2
< 2 and employing the estimate dist(𝜁) ⩽ 5𝑅 for |𝜁| ⩽ 4𝑅, we get the second estimate

in the first part of the lemma.
If lim|𝑧|→∞ |𝑧||𝛾(𝑧)| = 0, then 𝛾′′

𝑘 = 0 and the summation in the relations (3.1), (3.2) is made
over 𝑘 ⩾ 1, respectively, instead of the estimate (3.3) we obtain the relation∫︁

2𝑅⩽|𝜁|<4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁) ⩾ 2−2𝑡+1
(︀
22(3−𝑡) − 1

)︀
𝜋

∞∑︁
𝑘=1

|𝛾′′
𝑘 |2

2(𝑘 + 2− 𝑡)(4𝑅)2(𝑘+2−𝑡)
,

which is true for all 𝑡 ∈ [0; 3). By the relation (3.1), in which 𝛾′′
0 = 0, we find∫︁

|𝜁|⩾4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁) ⩽ 24𝑡
(︀
22(3−𝑡) − 1

)︀−1
∫︁

2𝑅⩽|𝜁|<4𝑅

|𝛾′′(𝜁)|2dist2𝑡(𝜁) 𝑑𝑚(𝜁).

Letting 𝑡 = 𝛼, we obtain the first estimate in the second part of the lemma, while the second
estimate can be obtained by letting 𝑡 = 𝛼+ 1

2
and using the estimate dist(𝜁) ⩽ 5𝑅 for |𝜁| ⩽ 4𝑅.

The proof is complete.

Lemma 3.2. If 𝛾 ∈ 𝐺𝛼, 𝛼 > 0, then∫︁
𝐵(4𝑅)∖𝐷(𝜀)

|𝛾′′(𝜁)|2dist2𝛼(𝜁) 𝑑𝑚(𝜁) ⩽ 256
(20𝑅)2𝛼(|𝜕𝐷|+ 𝜋𝜀)2

𝜋2𝜀2(𝛼+1)

∫︁
𝐷(𝜀)∖𝐷

|𝛾′′(𝜁)|2dist2𝛼(𝜁) 𝑑𝑚(𝜁).

Proof. Let 𝜁 /∈ 𝐷(𝜀). Since

dist(𝜁,𝐷) ⩽ dist(𝜁,𝐷(𝜀)) + 𝜀, |𝜕𝐷(𝜀)| = |𝜕𝐷|+ 2𝜋𝜀,

and by the Cauchy formula we have the upper bound

|𝛾′′(𝜁)| ⩽ 1

2𝜋

⃒⃒⃒⃒
⃒⃒⃒ ∫︁
𝜕𝐷(𝜀/2)

𝛾′′(𝑧) 𝑑𝑧

𝑧 − 𝜁

⃒⃒⃒⃒
⃒⃒⃒ ⩽ |𝜕𝐷(𝜀/2)|

2𝜋 dist(𝜁,𝐷(𝜀/2))
max

𝑧∈𝜕𝐷(𝜀/2)
|𝛾′′(𝑧)|

⩽
|𝜕𝐷|+ 𝜋𝜀

2𝜋(dist(𝜁,𝐷)− 𝜀/2)
max

𝑧∈𝜕𝐷(𝜀/2)
|𝛾′′(𝑧)|.
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It is obvious that for 𝜁 /∈ 𝐷(𝜀) the inequality dist(𝜁,𝐷) ⩾ 𝜀 holds and 𝑥
𝑥− 𝜀

2
⩽ 2 for 𝑥 ⩾ 𝜀.

Moreover, dist(𝜁) ⩽ 5𝑅 for 𝜁 ∈ 𝐵(4𝑅), hence, for 𝜁 ∈ 𝐵(4𝑅) ∖𝐷(𝜀),

|𝛾′′(𝜁)|2dist2𝛼(𝜁) ⩽ 52𝛼𝑅2(𝛼−1)(|𝜕𝐷|+ 𝜋𝜀)2

𝜋2
max

𝑧∈𝜕𝐷(𝜀/2)
|𝛾′′(𝑧)|2. (3.4)

If 𝑧 ∈ 𝜕𝐷(𝜀/2), then the circle 𝐵(𝑧, 𝜀/4) is located in the domain 𝐷(3𝜀/4) ∖𝐷. Moreover, if
𝑤 ∈ 𝜕𝐵(𝑧, 𝜀

4
), then dist(𝑤) ⩾ 𝜀

4
. Using the subharmonicity of the function |𝛾′′(𝑧)|2, we get the

upper bound

|𝛾′′(𝑧)|2 ⩽ 16

𝜋𝜀2

∫︁
𝐵(𝑧,𝜀/4)

|𝛾′′(𝑤)|2 𝑑𝑚(𝑤)

⩽
16

𝜋𝜀2
( sup
𝐵(𝑧,𝜀/4)

dist−2𝛼(𝑤))

∫︁
𝐵(𝑧,𝜀/4)

|𝛾′′(𝑤)|2dist2𝛼(𝑤) 𝑑𝑚(𝑤)

⩽
42(𝛼+1)

𝜋𝜀2(𝛼+1)

∫︁
𝐷(𝜀)∖𝐷

|𝛾′′(𝑤)|2dist2𝛼(𝑤) 𝑑𝑚(𝑤).

We substitute this estimate into (3.4) and integrate over 𝐵(4𝑅) ∖ 𝐷(𝜀) and this completes
the proof.

The estimates in Theorem 3.1 are implied by the relations in Lemmas 3.1, 3.2. The proof of
Theorem 3.1 is complete.

4. Proof of main theorem

It is sufficient to prove the main theorem for the domains not containing straight segments
and right angles on the boundary. This implies by the fact that the constants 𝑐(𝛽,𝐷), 𝐶(𝛽,𝐷)
are continuously (rationally) depend on 𝐷. Indeed, suppose that the theorem is true with
additional mentioned conditions on the domain.
We take an arbitrary 𝜀 > 0. In the set 𝐷(𝜀) we inscribe the convex polygon, which involves

𝐷. Then we replace each side of this polygon by an arc of a sufficiently large circumference
so that the obtained domain 𝐷′ remains convex and is contained in the domain 𝐷(2𝜀). The
boundary 𝐷′ contains no straight segments, but it contains the angles. In order to get rid of
them, we pass to the domain 𝐷′ +𝐵(0, 𝜀). In this way we obtain a domain without angles and
segments on the boundary, which contains 𝐷 and is contained in 𝐷(3𝜀).
Since 𝑃𝛽(𝐷) ⊂ 𝑃𝛽(𝐷(𝜀)), then for the functions 𝐹 ∈ 𝑃𝛽(𝐷) we can apply the main theorem

in the spaces 𝑃𝛽(𝐷(𝜀)) and then we pass to the limit as 𝜀 → 0.
For further purporses we need some geometric objects. By 𝑠(𝑥, 𝜙) we denote the area of the

part of the domain

𝐷𝜙 = {𝑤 = 𝑥+ 𝑖𝑦 : 𝑓1(𝑥) < 𝑦 < 𝑓2(𝑥), −𝑅𝜙 < 𝑥 < 0}

cut out by the straight line Re𝑤 = 𝑥. The domain 𝐷𝜙 is obtained from the domain 𝐷 under
the mapping 𝑤 = 𝑧𝑒𝑖𝜙 − ℎ(𝜙). Thus, 𝑅𝜙 is the distance between the support lines 𝐿(𝜙) and
𝐿(𝜙 + 𝜋). By 𝑙(𝑥, 𝜙) we denote the length of the part of the boundary 𝐷𝜙 cut out by the
straight line, while by 𝑢(𝑥, 𝜙) we denote the length of the chord cut out by the domain 𝐷𝜙 on
this straight line. We let

𝜎(𝐷) = inf
𝜙∈[0;2𝜋]

𝑅𝜙.

It is clear that 𝜎(𝐷) is the smallest width of the domain.
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By Theorem 2.1 the norm ‖𝐹‖ of the entire function 𝐹 defined in the main theorem is
equivalent to the triple integral

2𝜋∫︁
0

∞∫︁
−∞

0∫︁
−∞

|𝛾′′(𝑒−𝑖𝜙(ℎ(𝜙)− (𝑥+ 𝑖𝑦)))|2|𝑥|2𝛽+3

𝑠(𝑥, 𝜙)
𝑑𝑥𝑑𝑦𝑑∆(𝜙).

In this integral we make the change of the variables

𝜁 = 𝑒−𝑖𝜙(ℎ(𝜙)− 𝑥− 𝑖𝑦), 𝜃 = 𝜙.

Let us describe the geometric meaning of new and old variables. In what follows by 𝑙(𝜙) we
denote the directed straight line {𝑡𝑒𝑖𝜙, −∞ < 𝑡 < ∞}. On the boundary of domain 𝐷 we
choose the counterclockwise direction. In this way all tangent lines to the boundary get a
direction. By 𝐿(𝜙) we denote the tangent line parallel and co–directed with the line 𝑙(𝜋

2
− 𝜙).

If 𝑡𝑒−𝑖𝜙 is the intersection point of the lines 𝐿(𝜙) and 𝑙(−𝜙), it is easy to verify that ℎ(𝜙) = 𝑡.
If the variables 𝜙 ∈ [0; 2𝜋), 𝑥 < 0, 𝑦, are given, then 𝜁 is the point in the plane, which in the
coordinate system formed by the straight lines 𝑙(−𝜙) (abscissa axis) and 𝑙(𝜋

2
− 𝜙) (ordinate

axis) has the coordinates (ℎ(𝜙)−𝑥;−𝑦). At the same time the condition 𝑥 < 0 means that the
support line 𝐿(𝜙) separates the point 𝜁 from the domain 𝐷.
Let us find the range of the variables 𝜃 and 𝜁. The point 𝜁 obviously lies outside 𝐷. For a

fixed 𝜁 ∈ C ∖𝐷 the angle 𝜃 should be so that the support line 𝐿(𝜃) separates the point 𝜁 from
the domain 𝐷. We draw two tangent lines at the point 𝜁 to the boundary of domain 𝐷. Let
them be co–directed with the straight lines 𝑙(𝜙1) and 𝑙(𝜙2), and 0 ⩽ 𝜙1 ⩽ 𝜙2. Then the angle
𝜃 ranges from 𝜙−(𝜁) =

𝜋
2
− 𝜙2 to 𝜙+(𝜁) =

𝜋
2
− 𝜙1. The Jacobian of passage from the variables

𝜙, 𝑥, 𝑦 to the variables𝜁, 𝜃 is identically equal to 1 and 𝑥 = ℎ(𝜃)− Re 𝜁𝑒𝑖𝜃.
Thus,

2𝜋∫︁
0

∞∫︁
−∞

0∫︁
−∞

|𝛾′′(𝑒−𝑖𝜙(ℎ(𝜙)− 𝜉))|2|𝑥|2𝛽+3

𝑠(𝑥, 𝜙)
𝑑𝑥𝑑𝑦𝑑∆(𝜙)

=

∫︁
C∖𝐷

|𝛾′′(𝜁)|2

⎛⎜⎝ 𝜙+(𝜁)∫︁
𝜙−(𝜁)

(Re 𝜁𝑒𝑖𝜃 − ℎ(𝜃))2𝛽+3

𝑠(ℎ(𝜃)− Re 𝜁𝑒𝑖𝜃, 𝜃)
𝑑∆(𝜃)

⎞⎟⎠ 𝑑𝑚(𝜁).

The internal integral in the right hand side is denoted by 𝑝(𝜁). Thus, we have proved the
following statement.

Theorem 4.1. Let 𝐹 = 𝐵(𝛾) be an entire function satisfying the condition

‖𝐹‖2 =
2𝜋∫︁
0

∞∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2

𝐾(𝑟𝑒𝑖𝜙)𝑟2𝛽
𝑑𝑟𝑑∆(𝜙) < ∞

and

𝑝(𝜁) =

𝜙+(𝜁)∫︁
𝜙−(𝜁)

(Re 𝜁𝑒𝑖𝜃 − ℎ(𝜃))2𝛽+3

𝑠(ℎ(𝜃)− Re 𝜁𝑒𝑖𝜃, 𝜃)
𝑑∆(𝜃).

Then

𝑎(𝛽)‖𝐹‖2 ⩽
∫︁
C∖𝐷

|𝛾′′(𝜁)|2𝑝(𝜁) 𝑑𝑚(𝜁) ⩽ 𝐴(𝛽)‖𝐹‖2,

where the constants 𝑎(𝛽), 𝐴(𝛽) depend only on the parameter 𝛽, see Remark 2.1.
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Lemma 4.1. Let

𝑝0(𝜁) =

𝜙+(𝜁)∫︁
𝜙−(𝜁)

(Re 𝜁𝑒𝑖𝜃 − ℎ(𝜃))2𝛽+2

𝑢(ℎ(𝜃)− Re 𝜁𝑒𝑖𝜃, 𝜃)
𝑑∆(𝜃).

Then

1. For the points 𝜁 such that dist(𝜁) ⩽ 𝜎(𝐷)/2,

2

3
𝑝0(𝜁) ⩽ 𝑝(𝜁) ⩽ 2𝑝0(𝜁).

2. If dist(𝜁) > 𝜎(𝐷)/2, we denote by 𝐼0 the part of the interval (𝜙−(𝜁); 𝜙+(𝜁)), on which the

condition

Re 𝜁𝑒𝑖𝜙 − ℎ(𝜙) ⩾
𝜎(𝐷)

2
is satisfied, and let 𝐼 be the remaining part of this interval. Then

𝑝(𝜁) ⩽
4 diam2(𝐷)|𝜕𝐷|

𝜎2(𝐷)|𝐷|
dist2𝛽+3(𝜁) + 2

∫︁
𝐼

(Re 𝜁𝑒𝑖𝜃 − ℎ(𝜃))2𝛽+2

𝑢(ℎ(𝜃)− Re 𝜁𝑒𝑖𝜃, 𝜃)
𝑑∆(𝜃).

Proof. 1. We observe that by the definition of the function ℎ(𝜙)

Re 𝜁𝑒𝑖𝜙 − ℎ(𝜙) = min
𝑧∈𝐷

(Re 𝜁𝑒𝑖𝜙 − Re 𝑧𝑒𝑖𝜙) ⩽ min
𝑧∈𝐷

|𝜁 − 𝑧| = dist(𝜁), (4.1)

and this is why for the points 𝜁 with the condition dist(𝜁) < 𝜎(𝐷)/2 for all 𝜙 ∈ (𝜙−(𝜁); 𝜙+(𝜁))
the quantities 𝑠(ℎ(𝜙)− Re 𝜁𝑒𝑖𝜙, 𝜙) can be estimated by means of Assertion 1) in [3, Stat. 2],
which immediately implies the estimates in the first part of the lemma.
2. If the interval 𝐼0 is non–empty, then for 𝜃 ∈ 𝐼0 we apply the latter estimate in [3, Stat. 2]:

𝑠(ℎ(𝜃)− Re 𝜁𝑒𝑖𝜃, 𝜃) ⩾
𝜎2(𝐷)|𝐷|
4 diam2(𝐷)

.

In view of (4.1) and the geometric meaning of the function ∆(𝜃) we get Assertion 2 of the
lemma. The proof is complete.

Let us describe the integral in the definition of the function 𝑝0(𝜁) in geometric terms. The
integration interval (𝜙−(𝜁);𝜙+(𝜁)) consists of the angles 𝜙 such that Re 𝜁𝑒𝑖𝜙 − ℎ(𝜙) ⩾ 0. In
other words, these are the directions 𝜙 for which the support line 𝐿(𝜙) separates the point 𝜁
from the domain 𝐷. In this case, the quantity Re 𝜁𝑒𝑖𝜙 − ℎ(𝜙) is the distance from the point
𝜁 to the support line 𝐿(𝜙). If we translate this support line parallel to itself by a distance
Re 𝜁𝑒𝑖𝜙 − ℎ(𝜙), then on the resulting line the region 𝐷 will cut off a chord the length of which
we have denoted by 𝑢(ℎ(𝜙)−Re 𝜁𝑒𝑖𝜙, 𝜙). Finally, the geometric meaning of the function ∆(𝜙)
is that the difference ∆(𝜙1) −∆(𝜙2) for 𝜙1 ⩾ 𝜙2 is equal to the length of arc of boundary 𝐷
from the point of tangency of support line 𝐿(𝜙1) to the point of tangency of support line 𝐿(𝜙2).
The above description is not related with the coordinate system. In what follows we choose

the coordinate system with the origin at a fixed point 𝜁 and we partially describe the domain 𝐷
as the overgraph of some convex function 𝑓 . We are going to write the integral in the definition
of the function 𝑝0(𝜁) in terms of the function 𝑓 .
As the origin we choose the point 𝜁. There exists a unique point 𝑧0 on the boundary 𝐷 such

that
dist(𝜁) = inf

𝑧∈𝜕𝐷
|𝑧 − 𝜁| = |𝑧0 − 𝜁|.

We direct the ordinate system from the point 𝜁 to the point 𝑧0. In this coordinate system
the domain 𝐷 is a part of the overgraph of some convex function 𝑓(𝑥) defined on the interval
(𝑋1;𝑋2), where

𝑋1 = ℎ(𝜋), 𝑋2 = ℎ(0).
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The angles ranges in the new coordinate system. The slopes to the abscissa axis of two tangent
lines to domain 𝐷 passing through the origin are denoted by 𝜙1 and 𝜙2, and 𝜙1 ⩽ 𝜙2. Then
the integral in the definition of 𝑝0 is calculated from 𝜙− = 𝜋

2
−𝜙2 to 𝜙+ = 𝜋

2
−𝜙1. The distance

from the point 𝜁 to the domain 𝐷 in this coordinate system is expressed as 𝑓(0) or −ℎ(𝜋/2).
We suppose that the boundary of domain 𝐷 contains no angles and straight segments, see

the remark in the beginning of the section. For the function 𝑓 this means that the derivative
𝑓 ′ is strictly increasing continuous function.
If the variable 𝜃 ranges from 𝜙− to 𝜙+, then the quantity 𝜋

2
− 𝜃 monotonically varies from 𝜙2

to 𝜙1, that is, from the slope of tangent line to the graph of function 𝑓 at the point 𝑋1 to the
slope of tangent line at the point 𝑋2. Therefore, once we define the point 𝑥(𝜃) by the identity

𝑓 ′(𝑥(𝜃)) = tan
(︁𝜋
2
− 𝜃

)︁
= cot(𝜃), (4.2)

the point 𝑥(𝜃) varies monotonically from 𝑋1 to 𝑋2 and the point (𝑥(𝜃); 𝑓(𝑥(𝜃))) is the support
point of the support line 𝐿(𝜃). By the aforementioned geometric meaning of the function ∆(𝜃)
we obtain

𝑑∆(𝜃) = 𝑑

⎛⎝ 𝑥(𝜃)∫︁ √︀
1 + 𝑓 ′(𝑠)2 𝑑𝑠

⎞⎠ =
√︀

1 + 𝑓 ′(𝑥(𝜃))2 𝑑𝑥(𝜃) =
1

| sin 𝜃|
𝑑𝑥(𝜃).

Thus, for the function 𝑝0 we have the following representation

𝑝0(𝜁) =

𝜙+∫︁
𝜙−

|ℎ(𝜃)|2𝛽+2

𝑢(ℎ(𝜃), 𝜃)

1

| sin 𝜃|
𝑑𝑥(𝜃), (4.3)

where the quantities in the integral in the right hand side are expressed in the coordinate system
associated with the point 𝜁.
In what follows we need to estimate the function 𝑢(ℎ(𝜃), 𝜃) in terms of the function 𝑓 . In

order to do this, we introduce the following functions. We take an arbitrary point 𝑥0 ∈ [𝑋1; 𝑋2]
and a positive number 𝛿. We let

𝜌+(𝑓, 𝑥0, 𝛿) = sup

⎧⎨⎩𝜌 : 𝜌 ⩽ 𝑋2 − 𝑥0,

𝜌∫︁
0

(𝑓 ′(𝑥0 + 𝑦)− 𝑓 ′(𝑥0)) 𝑑𝑦 ⩽ 𝛿

⎫⎬⎭ ,

𝜌−(𝑓, 𝑥0, 𝛿) = sup

⎧⎨⎩𝜌 : 𝜌 ⩽ 𝑥0 −𝑋1,

𝜌∫︁
0

(𝑓 ′(𝑥0)− 𝑓 ′(𝑥0 − 𝑦)) 𝑑𝑦 ⩽ 𝛿

⎫⎬⎭ ,

̃︀𝜌(𝑓, 𝑥0, 𝛿) = 𝜌−(𝑓, 𝑥0, 𝛿) + 𝜌+(𝑓, 𝑥0, 𝛿).

Let

𝑔(𝑡) = sup
𝑥∈[𝑋1;𝑋2]

(𝑥𝑡− 𝑓(𝑡)

be the Young conjugate to the function 𝑓 . If 𝑇1 = 𝑓 ′(𝑋1), 𝑇2 = 𝑓 ′(𝑋2), then the supremum in
the definition of 𝑔 is attained at a unique stationary point 𝑥 = 𝑥(𝑡) determined by the condition
𝑓 ′(𝑥) = 𝑡, that is,

𝑔(𝑡) ≡ 𝑥(𝑡)𝑡− 𝑓(𝑥(𝑡)), 𝑡 ∈ [𝑇1;𝑇2].

Differentiating this identity, we get

𝑔′(𝑡) ≡ 𝑥(𝑡) or 𝑔′(𝑓 ′(𝑥)) ≡ 𝑥.

Letting 𝑥 = 𝑥(𝜃), by (4.2) we have

𝑥(𝜃) = 𝑔′(cot(𝜃)). (4.4)
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For each positive number 𝛿 we define a quantity 𝜌 = 𝜌(𝑔, 𝑡0, 𝛿) by the condition

𝜌 = sup

⎧⎨⎩𝑠 > 0 :

𝑠∫︁
−𝑠

|𝑔′(𝑡0 + 𝑡)− 𝑔′(𝑡0)| 𝑑𝑡 ⩽ 𝛿

⎫⎬⎭ .

By Lemma 4.1, representations (4.3), (4.4) and [3, Lms. 3, 4] we obtain the following
statement.

Lemma 4.2. For points 𝜁 such that dist(𝜁) ⩽ 𝜎(𝐷)/2, the inequalities

𝑝(𝜁) ⩾
2

9

𝜙+∫︁
𝜙−

|ℎ(𝜃)|2𝛽+1| sin 𝜃|𝜌
(︂
𝑔, cot 𝜃,

|ℎ(𝜃)|
| sin 𝜃|

)︂
𝑑𝑔′(cot 𝜃),

𝑝(𝜁) ⩽
48 diam4(𝐷)

|𝐷|2

𝜙+∫︁
𝜙−

|ℎ(𝜃)|2𝛽+1| sin 𝜃|𝜌
(︂
𝑔, cot 𝜃,

|ℎ(𝜃)|
| sin 𝜃|

)︂
𝑑𝑔′(cot 𝜃)

hold. If

dist(𝜁) > 𝜎(𝐷)/2,

then by 𝐼0 we denote a part of the interval (𝜙−; 𝜙+), on which the condition

−ℎ(𝜃) >
𝜎(𝐷)

2
is satisfied, while 𝐼 is the remaining part of this interval. Then

𝑝(𝜁) ⩽
4 diam2(𝐷)|𝜕𝐷|

𝜎2(𝐷)|𝐷|
dist2𝛽+3(𝜁)

+
48 diam4(𝐷)

|𝐷|2

∫︁
𝐼

|ℎ(𝜃)|2𝛽+1| sin 𝜃|𝜌
(︂
𝑔, cot 𝜃,

|ℎ(𝜃)|
| sin 𝜃|

)︂
𝑑𝑔′(cot 𝜃).

In the integrals we make the change of variables 𝜃 = 𝜋
2
− 𝜙 and we let

𝑝1(𝜁) =

𝜃+∫︁
𝜃−

⃒⃒⃒
ℎ
(︁𝜋
2
− 𝜙

)︁⃒⃒⃒2𝛽+1

| cos𝜙|𝜌
(︂
𝑔, tan𝜙,

|ℎ(𝜋
2
− 𝜙)|

cos𝜙

)︂
𝑑𝑔′(tan𝜙), (4.5)

where 𝜃± = 𝜋
2
−𝜙 are the slopes to the abscissa axis of tangent line to the graph of the function

𝑓(𝑥) passing through the origin. In this coordinate system the distance dist(𝜁) is equal to
−ℎ(𝜋

2
). We denote this distance by 𝑑.

We determine the point 𝑥 = 𝑥(𝜙) ∈ [𝑋1; 𝑋2] by the condition

𝑓 ′(𝑥(𝜙)) = tan𝜙.

Then 𝑥(𝜙) is a point, at which the supremum sup𝑥(𝑥𝑡 − 𝑓(𝑥)) is attained for 𝑡 = tan𝜙, and
hence,

𝑔(tan𝜙) = tan𝜙 · 𝑥(𝜙)− 𝑓(𝑥(𝜙)). (4.6)

On the other hand, the support line 𝐿(𝜙) to the domain 𝐷 is tangent to the function 𝑓(𝑥) at
the point 𝑥(𝜙), while −ℎ(𝜋

2
− 𝜙) is the distance from this tangent line to the origin. It is easy

to see that the number −ℎ(𝜋
2
−𝜙)/ cos𝜙 is equal to the ordinate of the intersection of support

line with the ordinate axis. The equation of tangent line at the point 𝑥(𝜙) reads as

𝑦 = (𝑥− 𝑥(𝜙)) tan𝜙+ 𝑓(𝑥(𝜙)),

and this is why
−ℎ(𝜋

2
− 𝜙)

cos𝜙
= 𝑓(𝑥(𝜙))− 𝑥(𝜙) tan𝜙.
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In view of (4.6) we obtain

−ℎ(𝜋
2
− 𝜙)

cos𝜙
= −𝑔(tan𝜙).

Thus, as 𝜙 grows monotonically from 0 to 𝜃+ or decreases from 0 to 𝜃−, the value −𝑔(tan𝜙)
monotonically decreases from 𝑑 to 0. We let 𝜙0 = 0 and defined the angles 𝜙𝑛 by the conditions

−ℎ(𝜋
2
− 𝜙𝑛)

cos𝜙𝑛

=
𝑑

2|𝑛|

or, what is the same, by the identities −𝑔(tan𝜙𝑛) = 2−|𝑛|𝑑.
The entire integration interval is partitioned into the intervals (𝜙𝑛; 𝜙𝑛+1], 𝑛 ∈ Z, and the

integral in (4.5) can be represented as a sum of the integrals over these intervals. We note that
the quantity 𝜌(𝑔, 𝑡, 𝛿) is non–decreasing in the variable 𝛿 and this is why for 𝜙 ∈ (𝜙𝑛; 𝜙𝑛+1] we
have

𝜌(𝑔, tan𝜙, 2−𝑛−1𝑑) ⩽ 𝜌

(︂
𝑔, tan𝜙,

−ℎ(𝜋
2
− 𝜙)

cos𝜙

)︂
⩽ 𝜌(𝑔, tan𝜙, 2−𝑛𝑑), 𝑛 ⩾ 0,

𝜌(𝑔, tan𝜙, 2−|𝑛|𝑑) ⩽ 𝜌

(︂
𝑔, tan𝜙,

−ℎ(𝜋
2
− 𝜙)

cos𝜙

)︂
⩽ 𝜌(𝑔, tan𝜙, 2−|𝑛|+1𝑑), 𝑛 < 0.

Thus, after the change of variables 𝑡 = tan𝜙 we obtain

𝑝1(𝜁) ⩽
∞∑︁
𝑛=0

(︂
𝑑

2𝑛

)︂2𝛽+1
tan𝜙𝑛+1∫︁
tan𝜙𝑛

𝜌

(︂
𝑔, 𝑡,

𝑑

2𝑛

)︂
𝑑𝑔′(𝑡)

+
−∞∑︁
𝑛=−1

(︂
𝑑

2|𝑛|−1

)︂2𝛽+1
tan𝜙𝑛+1∫︁
tan𝜙𝑛

𝜌

(︂
𝑔, 𝑡,

𝑑

2|𝑛|−1

)︂
𝑑𝑔′(𝑡),

(4.7)

𝑝1(𝜁) ⩾

(︂
𝑑

2

)︂2𝛽+1
tan𝜙1∫︁

tan𝜙−1

1

(1 + 𝑡2)𝛽+1
𝜌

(︂
𝑔, 𝑡,

𝑑

2

)︂
𝑑𝑔′(𝑡). (4.8)

We proceed to upper bounds for 𝑝1(𝜁). We let

𝑡𝑛 =
tan𝜙𝑛 + tan𝜙𝑛+1

2
.

Then for 𝑛 ⩾ 0 we obviously have

𝑔(𝑡𝑛) ⩾ 𝑔(tan𝜙𝑛) = − 𝑑

2𝑛
,

while for 𝑛 < 0 we have

𝑔(𝑡𝑛) ⩾ 𝑔(tan𝜙𝑛+1) = − 𝑑

2|𝑛|−1
.

This is why

𝑔(tan𝜙𝑛) + 𝑔(tan𝜙𝑛+1)− 2𝑔(𝑡𝑛) ⩽ − 𝑑

2𝑛+1
− 𝑑

2𝑛
+

2𝑑

2𝑛
=

𝑑

2𝑛+1
<

𝑑

2𝑛
, 𝑛 ⩾ 0,

𝑔(tan𝜙𝑛) + 𝑔(tan𝜙𝑛+1)− 2𝑔(𝑡𝑛) ⩽
𝑑

2|𝑛|
<

𝑑

2|𝑛|−1
, 𝑛 ⩽ 0.
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We compare these estimates with the definition of the quantity 𝜌(𝑔, 𝑡, 𝛿) and we see that

tan𝜙𝑛+1 − 𝑡𝑛 = 𝑡𝑛 − tan𝜙𝑛 < 𝜌

(︂
𝑔, 𝑡𝑛,

𝑑

2𝑛

)︂
, 𝑛 ⩾ 0,

tan𝜙𝑛+1 − 𝑡𝑛 = 𝑡𝑛 − tan𝜙𝑛 < 𝜌

(︂
𝑔, 𝑡𝑛,

𝑑

2|𝑛|−1

)︂
, 𝑛 < 0.

We introduce the notation

𝜌𝑛 = 𝜌

(︂
𝑔, 𝑡𝑛,

𝑑

2𝑛

)︂
, 𝑛 ⩾ 0, 𝜌𝑛 = 𝜌

(︂
𝑔, 𝑡𝑛,

𝑑

2|𝑛|−1

)︂
, 𝑛 < 0.

The relation (4.7) gives the estimate

𝑝1(𝜁) ⩽
∞∑︁
0

(︂
𝑑

2𝑛

)︂2𝛽+1
𝑡𝑛+𝜌𝑛∫︁

𝑡𝑛−𝜌𝑛

𝜌

(︂
𝑔, 𝑡,

𝑑

2𝑛

)︂
𝑑𝑔′(𝑡) +

−∞∑︁
−1

(︂
𝑑

2|𝑛|−1

)︂2𝛽+1
𝑡𝑛+𝜌𝑛∫︁

𝑡𝑛−𝜌𝑛

𝜌

(︂
𝑔, 𝑡,

𝑑

2|𝑛|−1

)︂
𝑑𝑔′(𝑡).

By [3, Lm. 5, Assrt. 3] we obtain

𝑝1(𝜁) ⩽
∞∑︁
0

4𝑑

2𝑛

(︂
𝑑

2𝑛

)︂2𝛽+1

+
−∞∑︁
−1

4𝑑

2|𝑛|−1

(︂
𝑑

2|𝑛|−1

)︂2𝛽+1

= 2
4𝛽+2

4𝛽+1 − 1
dist2𝛽+2(𝜁).

Let 𝐼 ′ = {𝜋
2
− 𝜃, 𝜃 ∈ 𝐼}, where the interval 𝐼 ⊂ (𝜙−;𝜙+) was defined in Lemma 4.2. Then

𝐼 ′ ⊂ (𝜃−; 𝜃+) and∫︁
𝐼

|ℎ(𝜃)|2𝛽+1| sin 𝜃|𝜌
(︂
𝑔, cot 𝜃,

|ℎ(𝜃)|
| sin 𝜃|

)︂
𝑑𝑔′(cot 𝜃)

=

∫︁
𝐼′

⃒⃒⃒
ℎ
(︁𝜋
2
− 𝜙

)︁⃒⃒⃒2𝛽+1

| cos𝜙|𝜌
(︂
𝑔, tan𝜙,

|ℎ(𝜋
2
− 𝜙)|

| cos𝜙|

)︂
𝑑𝑔′(tan𝜙)

⩽ 𝑝1(𝜁) ⩽ 2
4𝛽+2

4𝛽+1 − 1
dist2𝛽+2(𝜁).

We substitute two latter estimates into the upper bounds in Lemma 4.2 and we obtain upper
bounds for the function 𝑝(𝜁): if dist(𝜁) ⩽ 𝜎(𝐷)

2
, then

𝑝(𝜁) ⩽
48 diam4(𝐷)

|𝐷|2
𝑝1(𝜁) ⩽

6 · 4𝛽+4 diam4(𝐷)

(4𝛽+1 − 1)|𝐷|2
dist2𝛽+2(𝜁), (4.9)

and if dist(𝜁) > 𝜎(𝐷)
2

, then

𝑝(𝜁) ⩽
4 diam2(𝐷)|𝜕𝐷|

𝜎2(𝐷)|𝐷|
dist2𝛽+3(𝜁) +

6 · 4𝛽+4 diam4(𝐷)

(4𝛽+1 − 1)|𝐷|2
dist2𝛽+2(𝜁). (4.10)

Now, on the base of the relation (4.8), we proceed to the lower bounds for the function 𝑝1(𝜁)
and, respectively, for the function 𝑝(𝜁). Without loss of generality we suppose that

min(− tan𝜙−1, tan𝜙1) = tan𝜙1.

To shorten the writing, we introduce the notation 𝜌 = 𝜌(𝑔, 0, 𝑑
2
). By the definition of the

quantity 𝜌(𝑔, 0, 𝑑
2
) we have

𝑔(𝜌) + 𝑔(−𝜌)− 2𝑔(0) =
𝑑

2
,

on the other hand,

𝑔(0) = max
𝑋1⩽𝑥⩽𝑋2

(−𝑓(𝑥)) = − min
𝑋1⩽𝑥⩽𝑋2

𝑓(𝑥) = −𝑓(0) = −𝑑.
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This is the identity

𝑔(𝜌) + 𝑔(−𝜌) = −3

2
𝑑

should hold. By the definition of the angles 𝜙±1 we have

𝑔(tan𝜙1) + 𝑔(− tan𝜙1) = −𝑑

2
+ 𝑔(− tan𝜙1) ⩾ −𝑑

2
+ 𝑔(0) = −3

2
𝑑.

Therefore,

tan𝜙1 ⩾ 𝜌 = 𝜌

(︂
𝑔, 0,

𝑑

2

)︂
.

By (4.8) this implies

𝑝1(𝜁) ⩾

(︂
𝑑

2

)︂2𝛽+1
tan𝜙1∫︁

− tan𝜙1

1

(1 + 𝑡2)𝛽+1
𝜌

(︂
𝑔, 𝑡,

𝑑

2

)︂
𝑑𝑔′(𝑡)

⩾

(︂
𝑑

2

)︂2𝛽+1
1

(1 + tan2 𝜙1)𝛽+1

𝜌∫︁
−𝜌

𝜌

(︂
𝑔, 𝑡,

𝑑

2

)︂
𝑑𝑔′(𝑡).

Now we can employ [3, Stat. 3]) to estimate tan𝜙1 from above and [3, Lm. 5, Assrt. 3] to
estimate from below the integral

𝑝1(𝜁) ⩾

(︂
𝑑

2

)︂2𝛽+2 (︂
1 +

25 diam2(𝐷)

4𝜎2(𝐷)

)︂−(𝛽+1)

= 4−(𝛽+1)

(︂
1 +

25 diam2(𝐷)

4𝜎2(𝐷)

)︂−(𝛽+1)

dist2𝛽+2(𝜁).

This estimate and the relations (4.9), (4.10) allows us to derive the following statement by
Lemma 4.2.

Lemma 4.3. For the points 𝜁 such that dist(𝜁) ⩽ 𝜎(𝐷)/2 the inequalities

𝑚(𝛽,𝐷)dist2𝛽+2(𝜁) ⩽ 𝑝(𝜁) ⩽ 𝑀(𝛽,𝐷)dist2𝛽+2(𝜁)

hold and for the points 𝜁 such that

dist(𝜁) > 𝜎(𝐷)/2,

we have

𝑝(𝜁) ⩽ 𝑀0(𝛽,𝐷)dist2𝛽+3(𝜁) +𝑀(𝛽,𝐷)dist2𝛽+2(𝜁),

where

𝑚(𝛽,𝐷) =
2

9
· 4−(𝛽+1)

(︂
1 +

25 diam2(𝐷)

4𝜎2(𝐷)

)︂−(𝛽+1)

,

𝑀(𝛽,𝐷) =
6 · 4𝛽+4 diam4 (𝐷)

(4𝛽+1 − 1)|𝐷|2
,

𝑀0(𝛽,𝐷) =
4 diam2(𝐷)|𝜕𝐷|

𝜎2(𝐷)|𝐷|
,

𝜎(𝐷) is the smallest width of the domain 𝐷 in the directions, dist(𝜁) is the distance from the

point 𝜁 to the domain 𝐷, |𝐷| is the area of 𝐷, |𝜕𝐷| is the length of boundary of 𝐷 and finally

diam(𝐷) is the diameter of 𝐷.
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To complete the proof of the main theorem it remains to collect all proven estimates.

1. Let 𝛽 ∈ (−1
2
; 1
2
).

1.1. We are going to prove the lower bound in the main theorem. By Theorem 4.1 and
Lemma 4.3

‖𝐹‖2 ⩾ 1

𝐴(𝛽)

∫︁
C∖𝐷

|𝛾′′(𝜁)|2𝑝(𝜁) 𝑑𝑚(𝜁) ⩾
𝑚(𝛽,𝐷)

𝐴(𝛽)

∫︁
𝐷(𝜎(𝐷)/2)∖𝐷

|𝛾′′(𝜁)|2dist2(𝛽+1) 𝑑𝑚(𝜁),

and then we apply Assertion 1 of Theorem 3.1 with

𝜀 =
𝜎(𝐷)

2
, 𝛼 = 𝛽 + 1 ∈ [0;

3

2
)

and this gives

‖𝐹‖2𝑃𝛽
⩾

𝑚(𝛽,𝐷)

𝐴(𝛽)
(1 +𝐵0(𝛽,𝐷))−1(1 +𝐵(𝛽,𝐷))−1

∫︁
C∖𝐷

|𝛾′′(𝜁)|2dist2(𝛽+1) 𝑑𝑚(𝜁).

Thus, the left inequality in the main theorem is proved with the constant

𝑐(𝛽,𝐷) =
𝑚(𝛽,𝐷)

𝐴(𝛽)
(1 +𝐵0(𝛽,𝐷))−1(1 +𝐵(𝛽,𝐷))−1.

1.2. To prove the upper bound, we apply Theorem 4.1

‖𝐹‖2𝑃𝛽
⩽

1

𝑎(𝛽)

∫︁
C∖𝐷

|𝛾′′(𝜁)|2𝑝(𝜁) 𝑑𝑚(𝜁).

We apply the second estimate from Lemma 4.3

‖𝐹‖2𝑃𝛽
⩽
𝑀(𝛽,𝐷)

𝑎(𝛽)

∫︁
C∖𝐷

|𝛾′′(𝜁)|2dist2(𝛽+1)(𝜁) 𝑑𝑚(𝜁)

+
𝑀0(𝛽,𝐷)

𝑎(𝛽)

∫︁
C∖𝐷(𝜎(𝐷)/2)

|𝛾′′(𝜁)|2dist2𝛽+3(𝜁) 𝑑𝑚(𝜁).

We estimate the second integral by the second inequality in Assertion 1 of Theorem 3.1 with
𝛼 = 𝛽 + 1 ∈ [0; 3

2
). The right inequality in the main theorem in this case is proved with the

constant

𝐶(𝛽,𝐷) =
𝑀(𝛽,𝐷)

𝑎(𝛽)
+

𝑀0(𝛽,𝐷)

𝑎(𝛽)
(1 + 5𝑅𝐵0(𝛽 + 1, 𝐷))(1 +𝐵(𝛽 + 1, 𝐷))−1.

2. Let 𝛽 ∈ [1
2
; 3
2
). If 𝐹 ∈ 𝑃𝛽(𝐷), then it follows from the definition of ‖𝐹‖ with 𝛽 ⩾ 1

2
that

𝐹 (0) = lim
|𝑧|→∞

|𝑧||𝛾(𝑧)| = 0

and this is why we can employ Assertion 2 of Theorem 3.1. As a result, the estimates in the
main theorem are proved with the same constants as in the case 𝛽 < 1

2
with the constant

𝐵0(𝛽 + 1, 𝐷) replaced by 𝐵′
0(𝛽 + 1, 𝐷).
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