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RECONSTRUCTION OF POTENTIAL OF

DISCONTINUOUS STURM — LIOUVILLE OPERATOR

FROM SPECTRAL DATA

O. AKCAY

Abstract.We deal with the inverse spectral problem of the discontinuous Sturm — Liouville
operator. The aim is we to determine the potential 𝑞(𝑥) and the boundary constant ℎ by
a given spectral data. We provide the algorithm for reconstructing the potential 𝑞(𝑥) from
the spectral data.
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1. Introduction

This paper is devoted to the inverse spectral problem for the Sturm — Liouville equation with
a discontinuous coefficient subject to the discontinuity conditions (or transmission conditions)
at an interior point of the finite interval (0, 𝜋). Unlike other studies, the problem examined
in this paper includes both the discontinuous coefficient and the discontinuity condition inside
the finite interval. Namely, we consider the discontinuous Sturm — Liouville boundary value
problem

− 𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆2𝜇(𝑥)𝑦, 0 < 𝑥 < 𝜋, (1.1)

𝑦(𝑎+ 0) = 𝛽𝑦(𝑎− 0), 𝑦′(𝑎+ 0) = 𝛽−1𝑦′(𝑎− 0), (1.2)

𝑦′(0) = 𝑦′(𝜋) + ℎ𝑦(𝜋) = 0, (1.3)

where 𝑞(𝑥) ∈ 𝐿2(0, 𝜋) is a real–valued function, 𝛽 > 0 and ℎ are real constants, 𝜇(𝑥) is a
piecewise–constant function

𝜇(𝑥) =

{︃
1, 0 < 𝑥 < 𝑎,

𝛼2, 𝑎 < 𝑥 < 𝜋,

𝜆 is a spectral parameter. We assume that 𝑎 > 𝛼𝜋
𝛼+1

.
The Sturm — Liouville problems containing discontinuity conditions (see [1]–[6]) and Sturm —

Liouville problems involving discontinuous coefficients (see, for instance, [7]–[10]) were studied
as two separate problems. In this paper, we examine a new generalized problem by combining
these two different Sturm — Liouville problems. The direct spectral problem (i.e. the spectral
properties and the eigenfunction expansion) of Equation (1.1) with the discontinuity condition
(1.2) under the boundary condition 𝑦′(0) − ℎ1𝑦(0) = 𝑦′(𝜋) + ℎ2𝑦(𝜋) = 0 was studied in [11]
and the inverse problem was solved by means of the Weyl function [12]. Moreover, the inverse
problem of Equation (1.1) with (1.2) under the boundary condition 𝑦(0) = 𝑦(𝜋) = 0 according
to the spectral data and Weyl function were studied in [13].

O. Akcay, Reconstruction of the potential function of discontinuous Sturm — Liouville

operator from spectral data.

© Akcay O. 2024.

Submitted Febuary 7, 2024.

117



118 O. AKCAY

Discontinuous boundary value problems appear in many disciplines from mathematics to
engineering. Especially, since such problems are related to discontinuous material properties, it
is important and interesting to study the corresponding inverse problems, see [14]–[20] and the
reference therein.
In this paper, we pose the inverse problem as follows: to determine the potential function

𝑞(𝑥) and the boundary constant ℎ from the spectral data of the problem (1.1)–(1.3). For this
purpose, using the Gelfand — Levitan — Marchenko method, we construct the modified main
equation which is satisfied by the kernel of new integral representation. We provide this integral
representation in Section 2 and the kernel has a discontinuity along the line 𝑡 = −𝛼(𝑥− 𝑎) + 𝑎
for 𝑎 < 𝑥 < 𝜋. We prove the uniqueness theorem for the inverse problem and provide a
reconstruction algorithm of the potential function 𝑞(𝑥) from the spectral data.

2. Preliminaries

We denote by 𝑒(𝑥, 𝜆) the solution of Eequation (1.1) with discontinuity conditions (1.2) under
the initial conditions

𝑒(0, 𝜆) = 0, 𝑒′(0, 𝜆) = 𝑖𝜆.

As 𝑞(𝑥) ≡ 0 in Equation (1.1), the solution 𝑒0(𝑥, 𝜆) is

𝑒0(𝑥, 𝜆) =

{︃
𝑒𝑖𝜆𝑥, 0 < 𝑥 < 𝑎,

𝜅1𝑒
𝑖𝜆𝜗+(𝑥) + 𝜅2𝑒

𝑖𝜆𝜗−(𝑥), 𝑎 < 𝑥 < 𝜋,

with

𝜗±(𝑥) = ±𝛼(𝑥− 𝑎) + 𝑎, 𝜅1 =
1

2

(︂
𝛽 +

1

𝛼𝛽

)︂
, 𝜅2 =

1

2

(︂
𝛽 − 1

𝛼𝛽

)︂
.

Theorem 2.1. [11] The solution 𝑒(𝑥, 𝜆) can be expressed by the integral representation:

𝑒(𝑥, 𝜆) = 𝑒0(𝑥, 𝜆) +

𝜎(𝑥)∫︁
−𝜎(𝑥)

𝑘(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡, (2.1)

where

𝜎(𝑥) =

{︃
𝑥, 0 < 𝑥 < 𝑎,

𝜗+(𝑥), 𝑎 < 𝑥 < 𝜋,

the kernel function 𝑘(𝑥, · ) belongs to 𝐿1(−𝜎(𝑥), 𝜎(𝑥)) for each fixed 𝑥 ∈ (0, 𝑎) ∪ (𝑎, 𝜋) and
satisfies the inequality

𝜎(𝑥)∫︁
−𝜎(𝑥)

|𝑘(𝑥, 𝑡)| 𝑑𝑡 ⩽ exp{𝑐𝑝(𝑥)} − 1

with

𝑝(𝑥) =

𝑥∫︁
0

(𝑥− 𝜉)|𝑞(𝜉)|𝑑𝜉, 𝑐 = (𝛼 + 4)|𝜅1|+ (𝛼 + 2)|𝜅2|.

We observe that the kernel 𝑘(𝑥, 𝑡) possesses the following properties:

𝑘(𝑥,−𝜎(𝑥)) = 0,
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𝑘(𝑥, 𝜎(𝑥)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2

𝑥∫︁
0

𝑞(𝜉) 𝑑𝜉, 0 < 𝑥 < 𝑎,

𝜅1

2

𝑥∫︁
0

1√︀
𝜇(𝜉)

𝑞(𝜉) 𝑑𝜉, 𝑎 < 𝑥 < 𝜋,

(2.2)

𝑘(𝑥, 𝜗−(𝑥) + 0)− 𝑘(𝑥, 𝜗−(𝑥)− 0) = −𝜅2

2

⎛⎝ 𝑎∫︁
0

𝑞(𝜉)𝑑𝜉 − 1

𝛼

𝑥∫︁
𝑎

𝑞(𝜉)𝑑𝜉

⎞⎠ , 𝑎 < 𝑥 < 𝜋.

We denote by 𝑐(𝑥, 𝜆) the solution of Equation (1.1) subject to the discontinuity conditions
(1.2) and the initial conditions

𝑐(0, 𝜆) = 1, 𝑐′(0, 𝜆) = 0.

The integral representation for the solution 𝑐(𝑥, 𝜆) implied by formula (2.1) reads as

𝑐(𝑥, 𝜆) = 𝑐0(𝑥, 𝜆) +

𝜎(𝑥)∫︁
0

𝑘(𝑥, 𝑡) cos𝜆𝑡 𝑑𝑡, (2.3)

where

𝑐0(𝑥, 𝜆) =

{︃
cos𝜆𝑥, 0 < 𝑥 < 𝑎,

𝜅1 cos𝜆𝜗
+(𝑥) + 𝜅2 cos𝜆𝜗

−(𝑥), 𝑎 < 𝑥 < 𝜋,

and 𝑘(𝑥, 𝑡) = 𝑘(𝑥,−𝑡) + 𝑘(𝑥, 𝑡). The latter equality yields

𝑘(𝑥, 𝜎(𝑥)) = 𝑘(𝑥, 𝜎(𝑥)). (2.4)

Let 𝜁(𝑥, 𝜆) be the solution of Equation (1.1) subject to (1.2) and the initial conditions

𝜁(𝜋, 𝜆) = −1, 𝜁 ′(𝜋, 𝜆) = ℎ.

The estimate

𝜁(𝑥, 𝜆) = 𝑂
(︁
𝑒| Im𝜆|(𝜗+(𝜋)−𝜗+(𝑥))

)︁
, |𝜆| → ∞,

holds. We define the characteristic function of the boundary value problem (1.1)–(1.3) as

𝜒(𝜆) = 𝑐′(𝜋, 𝜆) + ℎ𝑐(𝜋, 𝜆).

This function is entire in 𝜆, and hence, it has an at most countable set of zeros {𝜆𝑗} , and
the numbers

{︀
𝜆2
𝑗

}︀
are the eigenvalues of the problem (1.1)–(1.3). The functions 𝑐(𝑥, 𝜆𝑗) and

𝜁(𝑥, 𝜆𝑗) are eigenfunctions and

𝜁(𝑥, 𝜆𝑗) = 𝜌𝑗𝑐(𝑥, 𝜆𝑗), 𝜌𝑗 ̸= 0. (2.5)

We denote the norming constants of the problem (1.1)–(1.3) by

𝛾𝑗 :=

𝜋∫︁
0

𝑐2(𝑥, 𝜆𝑗)𝜇(𝑥) 𝑑𝑥.

The relation and estimate

𝜒̇(𝜆𝑗) = 2𝜆𝑗𝛾𝑗𝜌𝑗, 𝜒̇(𝜆) =
𝑑

𝑑𝜆
𝜒(𝜆), (2.6)

𝜒(𝜆) = 𝜆𝜔(𝜆) +𝑂
(︁
𝑒| Im𝜆|𝜗+(𝜋)

)︁
, |𝜆| → ∞, (2.7)

where
𝜔(𝜆) = 𝛼

(︀
−𝜅1 sin𝜆𝜗

+(𝜋) + 𝜅2 sin𝜆𝜗
−(𝜋)

)︀
.
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The zeros of this function are

𝜆̃𝑗 =
𝑗𝜋

𝜗+(𝜋)
+ 𝑑𝑗, sup

𝑗
|𝑑𝑗| = 𝑑 < ∞.

Theorem 2.2. [11] The boundary value problem (1.1)–(1.3) has a countable set of
eigenvalues

{︀
𝜆2
𝑗

}︀
𝑗⩾0

,

𝜆𝑗 = 𝜆̃𝑗 +
𝑝𝑗

𝜆̃𝑗

+
𝑡𝑗
𝑗
, {𝑝𝑗} ∈ ℓ∞, {𝑡𝑗} ∈ ℓ2.

Definition 2.1. The numbers
{︀
𝜆2
𝑗 , 𝛾𝑗

}︀
𝑗⩾0

are called the spectral data of the boundary value

problem (1.1)–(1.3).

Theorem 2.3. [11] The system of eigenfunctions {𝑐(𝑥, 𝜆𝑗)}𝑗⩾0 of boundary value problem

(1.1)–(1.3) is complete in 𝐿2(0, 𝜋;𝜇). The function 𝑓(𝑥) ∈ 𝐴𝐶[0, 𝑎] ∩ 𝐴𝐶[𝑎, 𝜋] satisfying the
discontinuity condition (1.2) and the boundary conditions (1.3) can be expanded into a uniformly
convergent series over the eigenfunctions of the problem (1.1)—(1.3)

𝑓(𝑥) =
∞∑︁
𝑗=0

𝑠𝑗𝑐(𝑥, 𝜆𝑗), 𝑠𝑗 =
1

𝛾𝑗

𝜋∫︁
0

𝑐(𝑥, 𝜆𝑗)𝑓(𝑥)𝜇(𝑥) 𝑑𝑥. (2.8)

For 𝑓(𝑥) ∈ 𝐿2(0, 𝜋;𝜇), the series (2.8) converges in 𝐿2(0, 𝜋;𝜇) and Parseval’s identity holds:

𝜋∫︁
0

|𝑓(𝑥)|2𝜇(𝑥) 𝑑𝑥 =
∞∑︁
𝑗=0

𝛾𝑗|𝑠𝑗|2.

3. Main results

Consider the function

𝑓(𝑥, 𝑡) = 𝜇(𝑡)
∞∑︁
𝑗=0

(︃
𝑐0(𝑥, 𝜆𝑗)𝑐0(𝑡, 𝜆𝑗)

𝛾𝑗
− 𝑐0(𝑥, 𝜆̃𝑗)𝑐0(𝑡, 𝜆̃𝑗)

𝛾0
𝑗

)︃
, (3.1)

where the numbers 𝛾0
𝑗 are the norming constants of the problem (1.1)–(1.3) for 𝑞(𝑥) ≡ 0.

Remark 3.1. The integral representation (2.3) can be written as

𝑐(𝑥, 𝜆) = 𝑐0(𝑥, 𝜆) +

𝑥∫︁
0

ℎ(𝑥, 𝑡)𝑐0(𝑡, 𝜆) 𝑑𝑡, (3.2)

where

ℎ(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑘(𝑥, 𝑡), 0 < 𝑡 < 𝑥 < 𝑎, 0 < 𝑡 < 𝜗−(𝑥), 𝑎 < 𝑥 < 𝜋,

𝑘(𝑥, 𝑡)− 𝜅2

𝜅1

𝑘(𝑥, 2𝑎− 𝑡), 𝜗−(𝑥) < 𝑡 < 𝑎 < 𝑥 < 𝜋,

𝛼

𝜅1

𝑘(𝑥, 𝜗+(𝑡)), 𝑎 < 𝑡 < 𝑥 < 𝜋.

(3.3)

To justify this formula, we take into consideration the relation

cos𝜆𝑡 =

⎧⎨⎩
𝑐0(𝑥, 𝜆), 0 < 𝑥 < 𝑎,

1

𝜅1

𝑐0

(︂
𝑡− 𝑎

𝛼
+ 𝑎, 𝜆

)︂
− 𝜅2

𝜅1

𝑐0(2𝑎− 𝑡, 𝜆), 𝑎 < 𝑥 < 𝜋.
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Resolving the Volterra equation (3.2) with respect to 𝑐0(𝑥, 𝜆), we have

𝑐0(𝑥, 𝜆) = 𝑐(𝑥, 𝜆) +

𝑥∫︁
0

ℎ̃(𝑥, 𝑡)𝑐(𝑡, 𝜆) 𝑑𝑡. (3.4)

Theorem 3.1. For each fixed 𝑥 ∈ (0, 𝜋], the kernel 𝑘(𝑥, 𝑡) satisfies the linear integral
equation

𝑓(𝑥, 𝑡) + ℎ(𝑥, 𝑡) +

𝑥∫︁
0

ℎ(𝑥, 𝜉)𝑓(𝜉, 𝑡)𝑑𝜉 = 0, 𝑡 < 𝑥. (3.5)

This equation is called the Gelfand — Levitan — Marchenko type equation (or modified main
equation) of the boundary value problem (1.1)–(1.3).

Доказательство. Using the formulas (3.2) and (3.4), we write

Φ𝑛(𝑥, 𝑡) = 𝜑𝑛1(𝑥, 𝑡) + 𝜑𝑛2(𝑥, 𝑡) + 𝜑𝑛3(𝑥, 𝑡) + 𝜑𝑛4(𝑥, 𝑡), (3.6)

where

Φ𝑛(𝑥, 𝑡) =
𝑛∑︁

𝑗=0

(︃
𝑐(𝑥, 𝜆𝑗)𝑐(𝑡, 𝜆𝑗)

𝛾𝑗
− 𝑐0(𝑥, 𝜆̃𝑗)𝑐0(𝑡, 𝜆̃𝑗)

𝛾0
𝑗

)︃
,

𝜑𝑛1(𝑥, 𝑡) =
𝑛∑︁

𝑗=0

(︃
𝑐0(𝑥, 𝜆𝑗)𝑐0(𝑡, 𝜆𝑗)

𝛾𝑗
− 𝑐0(𝑥, 𝜆̃𝑗)𝑐0(𝑡, 𝜆̃𝑗)

𝛾0
𝑗

)︃
,

𝜑𝑛2(𝑥, 𝑡) =

𝑥∫︁
0

ℎ(𝑥, 𝜉)
𝑛∑︁

𝑗=0

(︃
𝑐0(𝜉, 𝜆𝑗)𝑐0(𝑡, 𝜆𝑗)

𝛾𝑗
− 𝑐0(𝜉, 𝜆̃𝑗)𝑐0(𝑡, 𝜆̃𝑗)

𝛾0
𝑗

)︃
𝑑𝜉,

𝜑𝑛3(𝑥, 𝑡) =

𝑥∫︁
0

ℎ(𝑥, 𝜉)
𝑛∑︁

𝑗=0

𝑐0(𝜉, 𝜆̃𝑗)𝑐0(𝑡, 𝜆̃𝑗)

𝛾0
𝑗

𝑑𝜉,

𝜑𝑛4(𝑥, 𝑡) = −
𝑡∫︁

0

ℎ̃(𝑡, 𝜉)
𝑛∑︁

𝑗=0

𝑐(𝑥, 𝜆𝑗)𝑐(𝜉, 𝜆𝑗)

𝛾𝑗
𝑑𝜉.

Let 𝑔(𝑥) ∈ 𝐴𝐶[0, 𝑎] ∩ 𝐴𝐶[𝑎, 𝜋]. In view of Theorem 2.3 and the formula (3.1) we obtain

lim
𝑛→∞

max
0⩽𝑥⩽𝜋

⃒⃒⃒⃒
⃒⃒

𝜋∫︁
0

𝑔(𝑡)Φ𝑛(𝑥, 𝑡)𝜇(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ = lim

𝑛→∞
max
0⩽𝑥⩽𝜋

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑗=0

𝑠𝑗𝑐(𝑥, 𝜆𝑗)−
𝑛∑︁

𝑗=0

𝑠0𝑗𝑐0(𝑥, 𝜆̃𝑗)

⃒⃒⃒⃒
⃒

⩽ lim
𝑛→∞

max
0⩽𝑥⩽𝜋

⃒⃒⃒⃒
⃒𝑔(𝑥)−

𝑛∑︁
𝑗=0

𝑠𝑗𝑐(𝑥, 𝜆𝑗)

⃒⃒⃒⃒
⃒

+ lim
𝑛→∞

max
0⩽𝑥⩽𝜋

⃒⃒⃒⃒
⃒𝑔(𝑥)−

𝑛∑︁
𝑗=0

𝑠0𝑗𝑐0(𝑥, 𝜆̃𝑗)

⃒⃒⃒⃒
⃒ = 0,

(3.7)

lim
𝑛→∞

𝜋∫︁
0

𝑔(𝑡)𝜑𝑛1(𝑥, 𝑡)𝜇(𝑡) 𝑑𝑡 =

𝜋∫︁
0

𝑔(𝑡)𝑓(𝑥, 𝑡) 𝑑𝑡, (3.8)

lim
𝑛→∞

𝜋∫︁
0

𝑔(𝑡)𝜑𝑛2(𝑥, 𝑡)𝜇(𝑡) 𝑑𝑡 =

𝜋∫︁
0

𝑔(𝑡)

⎛⎝ 𝑥∫︁
0

ℎ(𝑥, 𝜉)𝑓(𝜉, 𝑡)𝑑𝜉

⎞⎠ 𝑑𝑡, (3.9)
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lim
𝑛→∞

𝜋∫︁
0

𝑔(𝑡)𝜑𝑛3(𝑥, 𝑡)𝜇(𝑡) 𝑑𝑡 =

𝑥∫︁
0

ℎ(𝑥, 𝜉)𝑔(𝜉)𝑑𝜉, (3.10)

lim
𝑛→∞

𝜋∫︁
0

𝑔(𝑡)𝜑𝑛4(𝑥, 𝑡)𝜇(𝑡) 𝑑𝑡 = − 1

𝜇(𝜉)

𝜋∫︁
𝜉

𝑔(𝑡)ℎ̃(𝑡, 𝜉)𝜇(𝑡) 𝑑𝑡. (3.11)

Substituting the relations (3.7)–(3.11) into the equality (3.6), we find

𝜋∫︁
0

𝑔(𝑡)𝑓(𝑥, 𝑡) 𝑑𝑡+

𝜋∫︁
0

𝑔(𝑡)

⎛⎝ 𝑥∫︁
0

ℎ(𝑥, 𝜉)𝑓(𝜉, 𝑡)𝑑𝜉

⎞⎠ 𝑑𝑡

+

𝑥∫︁
0

ℎ(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉 − 1

𝜇(𝑥)

𝜋∫︁
𝑥

𝑔(𝑡)ℎ̃(𝑡, 𝑥)𝜇(𝑡) 𝑑𝑡 = 0.

Since ℎ(𝑥, 𝑡) = ℎ̃(𝑥, 𝑡) = 0 for 𝑥 < 𝑡, for an arbitrarily chosen function 𝑔(𝑥) we get

𝑓(𝑥, 𝑡) +

𝑥∫︁
0

ℎ(𝑥, 𝜉)𝑓(𝜉, 𝑡)𝑑𝜉 + ℎ(𝑥, 𝑡)− 𝜇(𝑡)

𝜇(𝑥)
ℎ̃(𝑡, 𝑥) = 0.

Consequently, for 𝑡 < 𝑥, we obtain the Gelfand — Levitan — Marchenko type equation (3.5).

Theorem 3.2. The Gelfand — Levitan — Marchenko type equation (3.5) has a unique
solution ℎ(𝑥, · ) ∈ 𝐿2(0, 𝑥;𝜇) for each fixed 𝑥 ∈ (0, 𝜋].

Доказательство. We are going to prove that the homogenous equation

𝑢(𝑡) +

𝑥∫︁
0

𝑓(𝑠, 𝑡)𝑢(𝑠)𝑑𝑠 = 0 (3.12)

has only trivial solution 𝑢(𝑡) = 0. Let 𝑢(𝑡) be a solution of Equation (3.12) and 𝑢(𝑡) = 0 for
𝑡 ∈ (𝑥, 𝜋). Then

𝑥∫︁
0

𝑢2(𝑡)𝜇(𝑡) 𝑑𝑡+

𝑥∫︁
0

𝑥∫︁
0

𝑓(𝑠, 𝑡)𝑢(𝑠)𝑢(𝑡)𝜇(𝑡)𝑑𝑠𝑑𝑡 = 0

and using the relation (3.1), we can write

𝑥∫︁
0

𝑢2(𝑡)𝜇(𝑡) 𝑑𝑡+
∞∑︁
𝑗=0

1

𝛾𝑗

⎛⎝ 𝑥∫︁
0

𝑐0(𝑡, 𝜆𝑗)𝑔(𝑡)𝜇(𝑡) 𝑑𝑡

⎞⎠2

−
∞∑︁
𝑗=0

1

𝛾0
𝑗

⎛⎝ 𝑥∫︁
0

𝑐0(𝑡, 𝜆̃𝑗)𝑔(𝑡)𝜇(𝑡) 𝑑𝑡

⎞⎠2

= 0.

By the Parseval’s identity

𝑥∫︁
0

𝑢2(𝑡)𝜇(𝑡) 𝑑𝑡 =
∞∑︁
𝑗=0

1

𝛾0
𝑗

⎛⎝ 𝑥∫︁
0

𝑐0(𝑡, 𝜆̃𝑗)𝑢(𝑡)𝜇(𝑡) 𝑑𝑡

⎞⎠2

,

we obtain
∞∑︁
𝑗=0

1

𝛾𝑗

⎛⎝ 𝑥∫︁
0

𝑐0(𝑡, 𝜆𝑗)𝑢(𝑡)𝜇(𝑡) 𝑑𝑡

⎞⎠2

= 0,

where 𝛾𝑗 > 0 and the system {𝑐0(𝑡, 𝜆𝑗)}𝑗⩾0 is complete in 𝐿2(0, 𝜋;𝜇). This yields 𝑢(𝑡) = 0.



RECONSTRUCTION OF POTENTIAL FOR DISCONTINUOUS STURM — LIOUVILLE OPERATOR 123

Now we consider a boundary value problem similar to the problem (1.1)–(1.3) but with

different coefficients 𝑞(𝑥) and ℎ̂. Note that all expressions containing this notation (such as
𝑞(𝑥)) belong to the new problem.

Theorem 3.3. The boundary value problem (1.1)–(1.3) is uniquely determined by the
spectral data

{︀
𝜆2
𝑗 , 𝛾𝑗

}︀
𝑗⩾0

.

Доказательство. Assume that 𝜆𝑗 = 𝜆̂𝑗 and 𝛾𝑗 = 𝛾𝑗 for 𝑗 ⩾ 0. We are going to show that

𝑞(𝑥) = 𝑞(𝑥) almost everywhere on (0, 𝜋) and ℎ = ℎ̂. The expression for the function 𝑓(𝑥, 𝑡)

and formula (3.1) imply 𝑓(𝑥, 𝑡) = 𝑓(𝑥, 𝑡). Then it follows from the main equation (3.5) that

ℎ(𝑥, 𝑡) = ℎ̂(𝑥, 𝑡). Taking into consideration the relation

𝑘(𝑥, 𝑥) =
1

2

𝑥∫︁
0

𝑞(𝜉) 𝑑𝜉 (3.13)

implied by the formulas (2.2), (2.4) and (3.3), we see that 𝑞(𝑥) = 𝑞(𝑥) almost everywhere on

(0, 𝜋). It follows from the relations (2.7) and (2.6) that 𝜒̇(𝜆𝑗) ≡ ˙̂𝜒(𝜆𝑗) and 𝜌𝑗 = 𝜌𝑗, respectively.

Moreover, using the relation (2.5), we get ℎ = ℎ̂.

Algorithm 3.1. The potential function 𝑞(𝑥) is constructed by the spectral data
{︀
𝜆2
𝑗 , 𝛾𝑗

}︀
𝑗⩾0

as follows:

∙ using the spectral data in the formula (3.1), construct the function 𝑓(𝑥, 𝑡),
∙ solving the main equation (3.5), find ℎ(𝑥, 𝑡),
∙ calculate the potential 𝑞(𝑥) by the relation (3.13).
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