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HYPERCYCLIC AND CHAOTIC OPERATORS

IN SPACE OF FUNCTIONS ANALYTIC IN DOMAIN

A.I. RAKHIMOVA

Abstract. We consider the space 𝐻(Ω) of functions analytic in a simply connected domain
Ω in the complex plane equipped with the topology of uniform convergence on compact sets.
We study issues on hypercyclicity, chaoticity and frequently hypercyclic for some operators
in this space. We prove that a linear continuous operator in 𝐻(Ω), which commutes with
the differentiation operator, is hypercyclic. We also show that this operator is chaotic and
frequently hypercyclic in 𝐻(Ω).
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1. Introduction

1.1. Aim of work. A linear continuous operator 𝑇 : 𝑋 → 𝑋 in a topological space 𝑋 forms
a discrete dynamical system {𝑇 𝑛}𝑛∈N∪{0}. In order to describe the behavior of this system,
many characteristics for operators were introduced, like cyclicity, hypercyclicity, frequently hy-
percyclicity, chaoticity and many others. The problem on description of hypercyclic operators
in the space 𝐻(C) of functions analytic in the complex plane was considered by MacLane [1],
Birkhoff [2], Godefroy [3], Shapiro [4], Kim [5], [6] and others. Chaotic and frequently hyper-
cyclic operators in 𝐻(C) were studied in works by Grosse–Erdmann and Peris Manguillot [7],
Bayart and Matheron [8], Devaney [10] and others.
The foundations of the theory of chaotic operators are due to Devaney [10]. In [11], the au-

thors considered the Devaney chaoticity conditions and proved that the conditions of sensitive
dependence of operator on initial conditions follows from the topological transitivity and pres-
ence of a dense set of periodic points. Godefroy and Shapiro showed [3] that each convolution
operator, the characteristic function of which is non–constant, is chaotic in 𝐻(C).
The notion of frequently hypercyclic operator was introduced by Bayart and Grivaux in [12]

for the space 𝐻(C). In [13] Bonilla and Grosse–Erdmann provided examples of such operators
and vectors in 𝐻(C). In the books [7] and [8] the interested reader can find detailed information
on the dynamics of linear operators including chaotic and frequently hypercyclic ones. In [9], the
dynamics of linear operators in the Hardy spaces of functions analytic in a circle was studied.
The issues on hypercyclicity, chaoticity and frequently hypercyclicity of linear continuous

operators in the space of functions analytic in a simply connected domain in the complex plane
were not considered before. The present work is devoted to studying these issues.
Let Ω be an arbitrary simply connected domain in the plane C.We define 𝐻(Ω) as the space

of functions analytic in Ω and equip it with the topology of uniform convergence on the compact
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sets in Ω defined by the system of norms

𝑝𝑚(𝑓) = sup
𝑧∈𝐾𝑚

|𝑓(𝑧)|, 𝑚 = 1, 2, . . . ,

where 𝐾𝑚 are compact sets Ω with a non–empty interior such that 𝐾𝑚 ⊂ int𝐾𝑚+1, 𝑚 ∈ N,
and

∞⋃︀
𝑛=1

𝐾𝑚 = Ω. By the Riemann theorem, the system of polynomials is complete in 𝐻(Ω),

and hence, the space is separable. It is also metrizable. Then 𝐻(Ω) is a Fréchet space. We
note that it is invariant with respect to the differentiation and translation if

Ω = Ω𝜎 = {𝑧 ∈ C : | Im 𝑧| < 𝜎},

which is a horizontal strip in the plane C, where 𝜎 ∈ R, 𝜎 > 0.
The results of the paper are formulated in Theorems 2.1, 3.1 and 3.2. We prove that a

linear continuous operator 𝑇 in 𝐻(Ω), which commutes with the differentiation operator, is
hypercyclic (Theorem 2.1), chaotic (Theorem 3.1), and frequently hypercyclic (Theorem 3.2).

1.2. Main definitions. Let 𝑋 be a topological vector space over the field C. An orbit of an
element 𝑥 of an operator 𝑇 : 𝑋 → 𝑋 is the set

Orb(𝑇, 𝑥) =
{︀
𝑇 𝑛𝑥

}︀∞
𝑛=0

,

see [7, Def. 1.2], [8, Introduction, Def. 0.1]. An element 𝑥 ∈ 𝑋 is called the periodic point of
the operator 𝑇 if there exists a number 𝑛 ∈ N such that 𝑇 𝑛𝑥 = 𝑥 ([7, Def. 1.23], [8, Def. 6.5]).
We denote by span𝐸 the linear span of a set 𝐸 in a topological vector space.
Linear continuous operator 𝑇 : 𝑋 → 𝑋 is called hypercyclic ([7, Def. 2.15], [8, Introduction,

Def. 0.2]) in the space 𝑋 if there exists an element 𝑥 ∈ 𝑋, the orbit of which is dense in 𝑋.
The element 𝑥 ∈ 𝑋 is a hypercyclic vector of the operator 𝑇 in 𝑋.
A continuous operator 𝑇 : 𝑋 −→ 𝑋 in a topological vector space 𝑋 is called topologically

transitive if for all non–empty open sets 𝐴, 𝐵 ⊂ 𝑋 there exists a number 𝑛 ∈ N such that
𝑇 𝑛(𝐴) ∩𝐵 ̸= ∅ [7, Def. 1.11], [8, Def. 1.2].
An operator Φ : 𝑌 → 𝑌 in a metric space (𝑌, 𝑑) is called chaotic if the following Devaney

conditions are satisfied [10, Def. 8.5]:

(A) The operator Φ possesses a sensitive dependence on the initial conditions: there exists
𝛿 > 0 such that for each element 𝑥 ∈ 𝑌 and each its neighbourhood 𝑈 there exist a point
𝑦 ∈ 𝑈 and a number 𝑛 ∈ N such that 𝑑(Φ𝑛𝑥,Φ𝑛𝑦) > 𝛿;

(B) The operator Φ is topologically transitive;
(C) The set of periodic points of the operator Φ is a dense subset in the space 𝑌.

The lower density [7, Def. 9.1], [8, Sect. 6.3.1, Def. 0.2] of a set 𝐴 ⊂ N is defined by the
formula

dens𝐴 = lim inf
𝑁→∞

#{𝑛 ∈ 𝐴 : 𝑛 ⩽ 𝑁}
𝑁

.

Let 𝑋 be a topological vector space. A linear continuous operator 𝑇 : 𝑋 → 𝑋 is called a
frequently hypercyclic operator [7, Def. 9.2], [8, Def. 6.16] if there exists an element 𝑥 ∈ 𝑋
such that for each non–empty open subset 𝑈 ⊂ 𝑋 the condition

dens
{︀
𝑛 ∈ N : 𝑇 𝑛𝑥 ∈ 𝑈

}︀
> 0

holds. An element 𝑥 ∈ 𝑋 is a frequently hypercyclic vector of the operator 𝑇 in 𝑋.We note that
the class of frequently hypercyclic operators is contained in the set of hypercyclic operators [7,
Def. 9.2], [8, Def. 6.16].
In what follows we shall need the following theorems.
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Theorem 1.1 (Godefroy–Shapiro theorem [3, Cor. 1.3]). Let 𝑇 : 𝑋 → 𝑋 be a linear con-

tinuous operator in a separable Frechét space 𝑋, the subspaces

𝑋0 = span{𝑥 ∈ 𝑋 : 𝑇𝑥 = 𝜆𝑥, 𝜆 ∈ C : |𝜆| < 1}
and

𝑌0 = span{𝑥 ∈ 𝑋 : 𝑇𝑥 = 𝜆𝑥, 𝜆 ∈ C : |𝜆| > 1}
are dense in 𝑋. Then 𝑇 is a hypercyclic operator.

The following facts were proved in [7] and [11].

Theorem 1.2 ([11, Thm. 1]). If an operator 𝑇 : 𝑋 → 𝑋 in a metric space 𝑋 is topologically

transitive and the set of its periodic points is everywhere dense in 𝑋, then the operator 𝑇 has

sensitive dependence on initial conditions.

Theorem 1.3 (Birkhoff transitivity theorem [7, Thm. 2.19]). If 𝑋 is a Frechét space, then

for a linear continuous operator 𝑇 : 𝑋 → 𝑋 the topological transitivity and hypercyclicity are

equivalent.

By Theorem 1.2, Condition (A) follows from Conditions (B) and (C), this is why we do
not need to verify the proof of the chaoticity. It follows from Theorem 1.3 that to ensure the
hypercyclicity for an operator the Frechét space, it is sufficient to verify the density of the set
of its periodic points. We note the set of periodic points is a linear subspace.

Theorem 1.4 ([7, Thm. 2.33]). Let 𝑇 be a linear operator in a complex vector space 𝑋.
Then the set of periodic points of the operator reads as

Per(𝑇 ) = span
{︀
𝑥 ∈ 𝑋 : ∃𝛼 ∈ Q : 𝑇𝑥 = 𝑒𝛼𝜋𝑖𝑥

}︀
.

Let 𝑇 be an operator in a complex topological vector Frechét space 𝑋 and T be the unit
circumference. A set of functions 𝐸𝑗 : T → 𝐻(Ω), 𝑗 ∈ 𝐽, is called a spanning eigenvector field
associated with the unimodular eigenvalues if 𝐸𝑗(𝑤) ∈ ker(𝑇 −𝑤𝐼) for all 𝑤 ∈ T, 𝑗 ∈ 𝐽 and the
set span

{︀
𝐸𝑗(𝑤)

}︀
𝑤∈T,𝑗∈𝐽 is dense 𝑋. A vector field is called continuous or 𝐶2–smooth if each

function 𝐸𝑗, 𝑗 ∈ 𝐽, is respectively continuous or twice differentiable in 𝑤 on T ([7, Def. 9.21]).

Theorem 1.5 ([7, Thm. 9.22]). Let 𝑇 be an operator in a complex separable Frechét space

𝑋. Then the following statements are true:

a) If the operator 𝑇 has spanning continuous eigenvector field associated to unimodular eigen-

values, then it is chaotic;

b) If the operator 𝑇 has a spanning 𝐶2–eigenvector field associated to unimodular eigenvalues,

then it is frequently hypercyclic.

We shall also use the following theorem.

Theorem 1.6 ([7, Lm. 2.34]). Let Λ ⊂ C a set with an accumulation point. Then the set

span
{︀
𝑒𝜆𝑧, 𝑧 ∈ Ω

}︀
𝜆∈Λ

is dense in 𝐻(Ω).

2. Hypercyclic operators

For operators commuting with the differentiation the following statement is true.

Theorem 2.1. Let a linear continuous operator 𝑇 in the space 𝐻(Ω) commutes with the

differentiation operator and is not a multiple of the identity mapping. Then 𝑇 is a hypercyclic

operator in 𝐻(Ω).
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Proof. For each 𝜆 ∈ C the Taylor series

𝑒𝜆𝑧 =
+∞∑︁
𝑛=0

𝜆𝑛

𝑛!
𝑧𝑛

converges uniformly on compact sets in the plane, and it hence converges in the topology of
the space 𝐻(Ω). The function 𝑇 (𝑧, 𝜆) = 𝑇𝑧(𝑒

𝜆𝑧) can be represented as a pointwise converging
in 𝜆 series

𝑇 (𝑧, 𝜆) =
+∞∑︁
𝑛=0

𝑇 (𝑧𝑛)

𝑛!
𝜆𝑛, 𝜆 ∈ C.

By the Abel theorem, this power series converges uniformly on the compact sets in the plane,
and this is why 𝑇𝑧(𝑒

𝜆𝑧) is an entire function in the variable 𝜆.
Since 𝑇 commutes with 𝐷, the identity

𝑇 ′
𝑧(𝑒

𝜆𝑧) =
𝑑

𝑑𝑧
𝑇𝑧(𝑒

𝜆𝑧) = 𝑇𝑧
𝑑

𝑑𝑧
(𝑒𝜆𝑧) = 𝜆𝑇𝑧(𝑒

𝜆𝑧), 𝑧 ∈ Ω,

holds for each 𝜆 ∈ C. A solution to the differential equation 𝑇 ′
𝑧(𝑒

𝜆𝑧) = 𝜆𝑇𝑧(𝑒
𝜆𝑧) reads as

𝑇𝑧(𝑒
𝜆𝑧) = 𝑎𝑇 (𝜆)𝑒

𝜆𝑧, 𝑧 ∈ Ω, 𝜆 ∈ C.

Since the function 𝑇𝑧(𝑒
𝜆𝑧) is entire in 𝜆, the same is true for 𝑎𝑇 (𝜆). We note that 𝑎𝑇 (𝜆) is

not identically constant: if 𝑎𝑇 (𝜆) ≡ 𝑐, where 𝑐 = 𝑐𝑜𝑛𝑠𝑡, then 𝑇𝑧(𝑒
𝜆𝑧) = 𝑐𝑒𝜆𝑧, and since the

system of exponentials is complete 𝐻(Ω), we obtain 𝑇𝑓 = 𝑐𝑓, 𝑓 ∈ 𝐻(Ω). This contradicts the
assumptions of the theorem.
We consider the sets

𝑊1 =
{︀
𝜆 ∈ C : |𝑎𝑇 (𝜆)| < 1

}︀
, 𝑊2 =

{︀
𝜆 ∈ C : |𝑎𝑇 (𝜆)| > 1

}︀
.

They are open and non–empty: if 𝑊2 = ∅, then 𝑎𝑇 (𝜆) is bounded and hence constant, and if
𝑊1 = ∅, then 𝑎−1

𝑇 (𝜆) is bounded. We let

𝑋0 = span{𝑒𝜆𝑧}𝑧∈𝑊1 , 𝑌0 = span{𝑒𝜆𝑧}𝑧∈𝑊2 .

The sets 𝑋0 and 𝑌0 are dense in 𝐻(Ω). Thus, by Theorem 1.1, the operator 𝑇 is hypercyclic in
𝐻(Ω).

The operators from Corollaries 2.1–2.4 are linear continuous ones and commutes with the
differentiation operator. This is why they obey the assumptions of Theorem 2.1.

Corollary 2.1. Let a polynomial 𝑃 (𝑧) =
𝑚∑︀
𝑛=0

𝑎𝑛𝑧
𝑛, where 𝑚 ∈ N and 𝑎𝑛 ∈ C, 𝑛 ∈ (0;𝑚), is

not constant. Then the operator 𝑇 =
𝑚∑︀
𝑛=0

𝑎𝑛𝐷
𝑛 is hypercyclic in 𝐻(Ω).

We let Ω𝜎 = {𝑧 ∈ C : | Im 𝑧| < 𝜎}, where 𝜎 ∈ R, 𝜎 > 0.

Corollary 2.2. Given numbers 𝑚 ∈ N and 𝑎𝑗 ∈ R, 𝑐𝑗 ∈ C, 𝑗 ∈ (1;𝑚), if the operator

𝑇𝑓(𝑧) =
𝑚∑︁
𝑗=1

𝑐𝑗𝑓(𝑧 + 𝑎𝑗)

is not a multiple of the identity, then it is hypercyclic in 𝐻(Ω𝜎).
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Corollary 2.3. Let 𝑁 ∈ N and 𝑚 ∈ N. If for given numbers 𝑐𝑗𝑘 ∈ C and points 𝑎𝑘 ∈ R,
𝑗 = 0, 1, . . . , 𝑁, 𝑘 = 1, 2, . . . ,𝑚, the operator

𝑇𝑓(𝑧) =
𝑁∑︁
𝑗=0

𝑚∑︁
𝑘=1

𝑐𝑗𝑘(𝐷
𝑗𝑓)(𝑧 + 𝑎𝑘),

acting in 𝐻(Ω𝜎) and not being a multiple of the identity mapping, is hypercyclic in 𝐻(Ω𝜎).

Corollary 2.4. The operator 𝑀𝐹 [𝑓 ](𝑧) = ⟨𝐹𝑤, 𝑓(𝑧+𝑤)⟩, where 𝐹 ∈ 𝐻*(Ω𝜎), the support of

which lies in the real axis, is hypercyclic in 𝐻(Ω𝜎), see [14, Thm. 17.3].

Let us provide an example of a non–hypercyclic operator.

Example 2.1. Let 𝜆 ∈ R ∖ {0} and 𝑏 ∈ R be fixed number. Then the operator

𝑇𝑓(𝑧) = 𝑓 ′(𝜆𝑧 + 𝑏)

is not hypercyclic in 𝐻(Ω𝜎) once |𝜆| < 1.

Proof. The operator 𝑇 is obviously linear and continuous in 𝐻(Ω𝜎). We consider an arbitrary
function 𝑓 ∈ 𝐻(Ω𝜎). The 𝑛–multiple action of the operator 𝑇 𝑛 on the function 𝑓 reads as

𝑇 𝑛𝑓(𝑧) = 𝜆
𝑛(𝑛−1)

2 𝑓 (𝑛)

(︂
𝜆𝑛𝑧 + 𝑏

(︂
1− 𝜆𝑛

1− 𝜆

)︂)︂
.

We take an arbitrary compact set 𝐾 ⊂ Ω𝜎. It is obvious that

sup
𝑧∈𝐾

⃒⃒⃒⃒
𝜆𝑛𝑧 + 𝑏

(︂
1− 𝜆𝑛

1− 𝜆

)︂
− 𝑏

1− 𝜆

⃒⃒⃒⃒
−−−→
𝑛→∞

0,

and hence, for some 𝑁 ∈ N,⃒⃒⃒⃒
𝜆𝑛𝑧 + 𝑏

(︂
1− 𝜆𝑛

1− 𝜆

)︂
− 𝑏

1− 𝜆

⃒⃒⃒⃒
<
𝜎

4
, 𝑧 ∈ 𝐾,

for 𝑛 ⩾ 𝑁. We let

𝑧𝑛 = 𝜆𝑛𝑧 + 𝑏

(︂
1− 𝜆𝑛

1− 𝜆

)︂
.

For 𝑛 ⩾ 𝑁 by the Cauchy integral formula we have

𝑓 (𝑛)(𝑧𝑛) =
𝑛!

2𝜋𝑖

∫︁
|𝜉− 𝑏

1−𝜆
|=𝜎

2

𝑓(𝜉)𝑑𝜉

(𝜉 − 𝑧𝑛)
𝑛+1 ,

and hence,

|𝑓 (𝑛)(𝑧𝑛)| ⩽
22𝑛+1𝑛!

𝜎𝑛+1
max

|𝜉− 𝑏
1−𝜆

|⩽𝜎
2

|𝑓(𝜉)| := 𝐶0

(︂
4

𝜎

)︂𝑛

𝑛!,

where

𝐶0 =
2

𝜎
max

|𝜉− 𝑏
1−𝜆

|⩽𝜎
2

|𝑓(𝜉)|.

Then, for 𝑛 ⩾ 𝑁, 𝑧 ∈ 𝐾,

|𝑇 𝑛𝑓(𝑧)| = |𝜆|
𝑛(𝑛−1)

2 |𝑓 (𝑛)(𝑧𝑛)| ⩽ 𝐶0

(︂
4

𝜎

)︂𝑛

𝑛!|𝜆|
𝑛(𝑛−1)

2 ,

that is,

max
𝑧∈𝐾

|𝑇 𝑛𝑓(𝑧)| −−−→
𝑛→∞

0.
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Since 𝐾 is an arbitrary compact set, we have 𝑇 𝑛𝑓(𝑧) → 0 as 𝑛 → ∞ in the topology of the
space 𝐻(Ω𝜎). In particular, the set {𝑇 𝑛𝑓}𝑛∈N is bounded in the space 𝐻(Ω𝜎) and can not be
everywhere dense. The proof is complete.

3. Chaotic and frequently hypercyclic operators

For the operator commuting with the differentiation the following statements on the chaotic-
ity and frequently hypercyclicity are true.

Theorem 3.1. Let a linear continuous operator 𝑇 in the space 𝐻(Ω) commutes with the

differentiation operator and is not a multiple of the identity mapping. Then 𝑇 is a chaotic

operator.

Proof. Let us verify the definition of the chaoticity. It was shown in Theorem 2.1 that 𝑇 is a
hypercyclic operator in the Frechét space 𝐻(Ω). Due to Theorems 1.2 and 1.3 it remains to
show that 𝑇 has a dense set of periodic points in 𝐻(Ω).
In the proof of Theorem 2.1 we have obtained that the action of the operator 𝑇 on the

exponentials is given by the formula

𝑇 (𝑒𝜆𝑧) = 𝑎𝑇 (𝜆)𝑒
𝜆𝑧,

where 𝑎𝑇 (𝜆) is a non–constant entire function, 𝜆 ∈ C, 𝑧 ∈ Ω. We denote 𝜙(𝜆) = 𝑎𝑇 (𝜆).
Due to Theorem 1.4, the set of periodic points of the operator 𝑇 is defined as

𝑉 = span
{︁
𝑓 ∈ 𝐻(Ω) : ∃𝛼 ∈ Q : 𝑇𝑓(𝑧) = 𝑒𝛼𝜋𝑖𝑓(𝑧)

}︁
.

Then the set of the eigenvalues associated with the functions in 𝑉 is

𝑊 =
{︁
𝜆 ∈ C : ∃𝛼 ∈ Q : 𝜙(𝜆) = 𝑒𝛼𝜋𝑖

}︁
.

Since 𝜙(𝜆) is a non–constant entire function, it takes all values except, possibly, a single one.
Hence, its image 𝜙(C) intersects the unit circumference in T. Since a non–constant holomorphic
function 𝜙(𝜆) is an open mapping, then infinitely many points 𝜆 = 𝜙−1(𝑒𝛼𝜋𝑖), where 𝛼 ∈ Q,
lie in some compact set in C. This gives that 𝑊 has a limiting point. By Theorem 1.6,
𝑉 = span{𝑒𝜆𝑧}𝜆∈𝑊 is dense in 𝐻(Ω). Therefore, the operator 𝑇 is chaotic in 𝐻(Ω).

Theorem 3.2. Let a linear continuous operator 𝑇 in the space 𝐻(Ω) commute with the

differentiation operator and is not a multiple of the identity mapping. Then 𝑇 is a frequently

hypercyclic operator.

Proof. The proof ifs based on Theorem 1.5. It was shown in Theorem 2.1 that 𝑇 is a hypercyclic
operator in the Frechét space𝐻(Ω). In its proof we have obtained that the action of the operator
𝑇 on the exponentials is

𝑇 (𝑒𝜆𝑧) = 𝑎𝑇 (𝜆)𝑒
𝜆𝑧,

where 𝑎𝑇 (𝜆) is a non–constant entire function, 𝜆 ∈ C, 𝑧 ∈ Ω. We denote 𝜙(𝜆) = 𝑎𝑇 (𝜆). The
previous equation shows that the numbers 𝜙(𝜆) are among the eigenvalues of the operator 𝑇,
and the exponentials 𝑒𝜆𝑧 are the eigenfunctions.
Since 𝜙 is a non–constant entire function, by the Picard theorem the set 𝜙(C) contains the

entire unit circumference except for, possibly, a single point. We take a point 𝑤 ∈ T so that
𝜙(𝑧) = 𝑤 and the derivative 𝜙′(𝑧) is non–zero, 𝜙′(𝑧) ̸= 0. In this case the function 𝜙 maps

some open neighbourhood ̃︀𝑈 of the point 𝑧 conformally into some open neighbourhood 𝑈 of
the point 𝑤.
Let 𝜓 = 𝜙−1 : 𝑈 → ̃︀𝑈 be an inverse mapping, it is holomorphic in 𝑈. We fix some non–

trivial closed arc on the unit circumference 𝛾 ⊂ 𝑈, which contains a point 𝑤. We choose a
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𝐶2–smooth function 𝑓 : T → C such that 𝑓(𝑤) ̸= 0 and 𝑓 ≡ 0 outside 𝛾. We define a function
𝐸 : T → 𝐻(Ω) as 𝐸(𝜆) = 𝑓(𝜆)𝑒𝜓(𝜆)𝑧. Since the set 𝑉 = {𝜓(𝜆), 𝜆 ∈ 𝛾, 𝑓(𝜆) ̸= 0} obviously
has limiting points, by Theorem 1.6 the set span

{︀
𝑓(𝜆)𝑒𝜓(𝜆)𝑧, 𝜓(𝜆) ∈ 𝑉 } is dense in 𝐻(Ω). It is

obvious that the set of a single function 𝐸 forms a spanning eigenvector field associated with
the unimodular eigenvalues. Now Theorem 3.2 follows from Theorem 1.5.

Since the operators in Corollaries 3.1–3.4 are linear continuous ones in 𝐻(Ω) and commute
with the differentiation operator, they obey Theorems 3.1 and 3.2.

Corollary 3.1. Let the polynomial

𝑃 (𝑧) =
𝑚∑︁
𝑛=0

𝑎𝑛𝑧
𝑛,

where 𝑚 ∈ N and 𝑎𝑛 ∈ C, 𝑛 ∈ (0;𝑚), be non–constant. Then the operator

𝑇 =
𝑚∑︁
𝑛=0

𝑎𝑛𝐷
𝑛

is chaotic and frequently hypercyclic in 𝐻(Ω).

We let Ω𝜎 = {𝑧 ∈ C : | Im 𝑧| < 𝜎}, where 𝜎 ∈ R, 𝜎 > 0.

Corollary 3.2. Given numbers 𝑚 ∈ N, 𝑎𝑗 ∈ R, 𝑐𝑗 ∈ C, 𝑗 ∈ (1;𝑚), if the operator

𝑇𝑓(𝑧) =
𝑚∑︁
𝑗=1

𝑐𝑗𝑓(𝑧 + 𝑎𝑗)

is not a multiple of the identity mapping, then it is chaotic and frequently hypercyclic in 𝐻(Ω𝜎).

Corollary 3.3. Let 𝑁 ∈ N and 𝑚 ∈ N. If for given numbers 𝑐𝑗𝑘 ∈ C and points 𝑎𝑘 ∈ R,
𝑗 = 0, 1, . . . , 𝑁, 𝑘 = 1, 2, . . . ,𝑚, the operator

𝑇𝑓(𝑧) =
𝑁∑︁
𝑗=0

𝑚∑︁
𝑘=1

𝑐𝑗𝑘(𝐷
𝑗𝑓)(𝑧 + 𝑎𝑘),

acting in 𝐻(Ω𝜎) and being not a multiple of the identity mapping, is chaotic and frequently

hypercyclic in 𝐻(Ω𝜎).

Corollary 3.4. The operator 𝑀𝐹 [𝑓 ](𝑧) = ⟨𝐹𝑤, 𝑓(𝑧+𝑤)⟩, where 𝐹 ∈ 𝐻*(Ω𝜎), the support of

which is located in the real axis, is chaotic and frequently hypercyclic in 𝐻(Ω𝜎), see [14, Thm.
17.3].
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