УДК 517.5

ОЦЕНКИ ЖЕСТКОСТИ КРУЧЕНИЯ ВЫПУКЛОЙ ОБЛАСТИ ЧЕРЕЗ НОВЫЕ ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Л.И. ГАФИЯТУЛЛИНА, Р.Г. САЛАХУДИНОВ

Аннотация. В статье введены новые геометрические характеристики выпуклой области с конечной длиной границы и приведен алгоритм их вычисления. Доказан ряд изопериметрических неравенств между новыми функционалами и известными интегральными характеристиками области. Отметим, что некоторые неравенства имеют широкий класс экстремальных областей. Рассмотрены приложения новых характеристик к задаче об оценке жесткости кручения выпуклой области.

Ключевые слова: выпуклая область, функция расстояния до границы области, жесткость кручения, изопериметрическое неравенство, экстремальная область.

Mathematics Subject Classification: 26A99, 26D99, 30C99

1. Введение

Пусть G — односвязная область на плоскости. Одной из ее важных характеристик является функционал

$$\mathbf{P}(G) := 2 \int_{G} \mathbf{u}(x, G) d\mathbf{A}, \tag{1.1}$$

где u(x,G) — функция напряжения, которая является решением краевой задачи

$$\begin{cases} \triangle u = -2, & x \in G, \\ u = 0, & x \in \partial G, \end{cases}$$

а через dA обозначен дифференциальный элемент площади. Хорошо известно, что такая функция напряжения существует и определяется единственным образом (см., например, [1], [2]).

Первые экспериментальные результаты вычисления с крутильными весами проделаны в 1784 г. Кулоном. Он обнаружил, что усилие, необходимое для скручивания однородного стержня прямо пропорционально его длине l, углу θ , на который необходимо скрутить, некоторой физической постоянной κ , зависящей от материала, из которого изготовлен стержень, а также некоторой характеристике P, зависящей только от формы сечения однородного стержня, таким образом

$$F = \kappa l \theta P$$
.

Величина P в дальнейшем была названа жесткостью кручения. Заметим, что P пропорциональна функционалу (1.1). Таким образом, функционал P(G) называется жесткостью

L.I. GAFIYATULLINA, R.G. SALAKHUDINOV, ESTIMATES FOR TORSIONAL RIGIDITY OF CONVEX DOMAIN VIA NEW GEOMETRIC CHARACTERISTICS.

[©] Гафиятуллина Л.И., Салахудинов Р.Г. 2024.

Поступила 15 августа 2023 г.

кручения области G. Хотя определение (1.1) не было известно Кулону, им была предложена формула

 $P = \frac{\pi r^4}{2}$

для вычисления жесткости кручения с круговым сечением, где r — радиус сечения. Хорошо известно, что именно благодаря формуле Кулона появилась константа «2» в определении (1.1). Оказалось, что функционал (1.1) является важной физической характеристикой области не только в теории кручения, но и в гидродинамике.

Одной из классических задач математической физики является вычисление $\mathbf{P}(G)$ для конкретных сечений, а также изучение ее свойств. Нахождение точных формул для вычисления жесткости кручения оказалось непростым делом [2], поэтому естественной является задача оценки жесткости кручения через более простые характеристики области. Это направление исследования оказалось тесно связано с изопериметрическими неравенствами математической физики. В этом направлении написаны сотни работ [3], среди которых можно отметить работы О. Коши, В. Сен-Венана, Г. Полиа, Г. Сегё, Е. Макаи, Л.Е. Пейна, Ф.Г. Авхадиева.

В 1951 году Полиа и Сегё [1] показали, что для любой выпуклой области справедливо неравенство

$$\frac{1}{2}\mathbf{A}(G)\boldsymbol{\rho}(G)^2 \le \mathbf{P}(G),\tag{1.2}$$

где $\rho(G)$ — радиус максимального круга, содержащегося в G и $\mathbf{A}(G)$ — площадь области G. Равенство в (1.2) достигается для круга.

Позднее Макаи [4] показал, что для любой выпуклой области

$$\mathbf{P}(G) < 4 \int_{G} \rho(x, G)^{2} dA, \tag{1.3}$$

где $\rho(x,G)$ — функция расстояния от точки x до границы области G. Константа 4 в неравенстве (1.3) является наилучшей из возможных, и достигается в пределе, например, на последовательности прямоугольников $Q_n = [0,1] \times [0,1/n]$, при $n \to +\infty$. Как следствие этого неравенства им была получена оценка

$$\mathbf{P}(G) < \frac{4}{3}\mathbf{A}(G)\boldsymbol{\rho}(G)^2,\tag{1.4}$$

Константа 4/3 является наилучшей из возможных и достигается также в пределе, когда область вырождается.

Ф. Г. Авхадиев во второй половине 90-х годов XX века определил интегральный геометрический функционал

$$\mathbf{I}_p(G) = \int_G \rho(x, G)^p dA, \qquad (1.5)$$

который называется евклидовым моментом области относительно границы порядка p. При p=2 функционал естественно назвать евклидовым моментом инерции области (см. [5]), а при p=1 — стационарным евклидовым моментом области. Авхадиев [5] показал важную роль евклидового момента инерции в теории кручения однородного стержня с односвязным сечением. А именно, Φ .Г. Авхадиев установил, что $\mathbf{P}(G)$ и $\mathbf{I}_2(G)$ эквивалентные величины в смысле Полиа и Сегё [1].

В данной работе будут введены новые легко вычислимые геометрические функционалы области и через них даны верхние границы жесткости кручения выпуклой области, а также новые нижние оценки $\mathbf{P}(G)$.

Основным методом исследования являются оценки функционалов области на множествах уровня функции области.

2. ФУНКЦИОНАЛЫ $\mathbf{K}(G)$ И $d(oldsymbol{
ho}(G))$ И ИХ СВОЙСТВА

Обозначим через

$$G(\mu) := \{ z \in G \mid \rho(z, G) \geqslant \mu \}, \quad \mathbf{a}(\mu) := \mathbf{A}(G(\mu)) := \int_{G(\mu)} \mathrm{d} \mathbf{A}$$

множество уровня функции расстояния $\rho(x,G)$ и площадь множества уровня $G(\mu)$, соответственно. Через $\mathbf{L}(G)$ обозначим длину границы области G. Пусть

$$\boldsymbol{l}(\mu,G) := \mathbf{L}(G(\mu)), \qquad \boldsymbol{l}(\boldsymbol{\rho}(G)) := \lim_{\mu \to \boldsymbol{\rho}(G)} \boldsymbol{l}(\mu,G). \tag{2.1}$$

Если рассматривается только одна область, то кратко будем функционал $\boldsymbol{l}(\mu,G)$ обозначать через $\boldsymbol{l}(\mu)$.

Будем называть выпуклую область G растяжением выпуклой области G_0 , если область G_0 можно получить из G путем вырезания прямоугольного фрагмента и соединения оставшихся частей параллельным переносом так, что $\rho(G_0) = \rho(G)$. С другой стороны, область G_0 естественно назвать сжатием G. Заметим, что не все области можно растянуть. Действительно, нетрудно видеть, что треугольник, правильный многоугольник с нечетным числом сторон являются примерами нерастяжимых областей. Если область G не растяжимая, то положим $G_0 \equiv G$. С другой стороны, если $\mathbf{l}(\rho(G)) \not\equiv 0$, то выпуклая область G растяжима и сжимаема (см. [6]). Например, растяжением круга является область типа Боннезена, состоящая из двух полукругов радиуса r и прямоугольника со сторонами d и 2r. Такие области образуют двухпараметрическое семейство выпуклых областей, зависящих от параметров d и r.

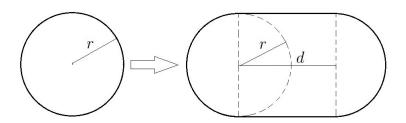


Рис. 1. Круг и его растяжение.

Как и в статье [7], будем обозначать через Γ подмножество выпуклых областей, содержащее описанные около некоторой окружности многоугольники, а также круговые многоугольники, получаемые из описанных многоугольников заменой некоторых сторон или их частей дугами вписанной в многоугольник окружности. Формирование множества Γ закончим добавлением областей, являющихся растяжением элементов из Γ . Несмотря на специфику построения областей из класса Γ будем в дальнейшем называть элементы из класса Γ кратко многоугольниками, хотя они образуют подкласс выпуклых круговых многоугольников.

Для областей D из Γ введем функционал

$$\mathbf{K}(D) := \sup_{\mu} \left(-\mathbf{l}'(\mu) \right), \tag{2.2}$$

где $\boldsymbol{l}'(\mu)$ — производная функции $\boldsymbol{l}(\mu)$. Известно (см., например, [8]), что для выпуклых многоугольных областей $\boldsymbol{l}(\mu)$ кусочно–линейная, убывающая и вогнутая, а для класса Γ функция $\boldsymbol{l}(\mu)$ линейная, тогда

$$\mathbf{K}(D) = -\lim_{\mu \to \boldsymbol{\rho}(D)} \boldsymbol{l}'(\mu).$$

Область D из множества Γ характеризуется набором параметров α_i , β_j , γ_l . При этом $\gamma_l = \pi$ для всех l и $\sum_{i=1}^n \alpha_i - \sum_{j=1}^m \beta_j = \pi(n-m-2)$. На рисунке 2 показана роль параметров α_i , β_j , γ_l для области из класса Γ .

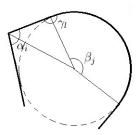


Рис. 2. Пример области из класса Г.

Тогда нетрудно, видеть, что

$$\mathbf{L}(D)\boldsymbol{\rho}(G) = 2\boldsymbol{\rho}(D)\sum_{i=1}^{n} \operatorname{ctg}(\alpha_{i}/2) + \boldsymbol{\rho}(D)\sum_{j=1}^{m} \beta_{j},$$

поэтому

$$\mathbf{K}(D) = 2\sum_{i=1}^{n} \operatorname{ctg}(\alpha_i/2) + \sum_{j=1}^{m} \beta_j.$$
 (2.3)

Так как $\alpha_i \in (0, \pi)$, то из (2.3) следует, что функционал $\mathbf{K}(G)$ принимает конечные значения и может неограниченно расти, если хотя бы один из углов $\alpha_i \to 0$. Это, например, видно в случае треугольника. Заметим, что значение функционала $\mathbf{K}(D)$ не зависит от углов γ_l .

Таким образом, для несжимаемой области $D \in \Gamma$ имеем:

$$\mathbf{K}(D) = \frac{\mathbf{L}(D)}{\boldsymbol{\rho}(D)}.$$

Если D — сжимаемая область из класса Γ , то, очевидно, получим

$$\mathbf{K}(D) = \frac{\mathbf{L}(D) - \boldsymbol{l}(\boldsymbol{\rho}(D))}{\boldsymbol{\rho}(D)}.$$
(2.4)

Нашей ближайшей целью является построение аналога функционала $\mathbf{K}(D)$ для произвольной выпуклой ограниченной области. С этой целью приведем пример области не принадлежащую классу Γ , являющейся, в некотором смысле, разочаровывающим. Пусть G — полукруг радиуса r (см. рис. 3). Для области G имеем: $\rho(G) = r/2$ и

$$\boldsymbol{l}(\mu) = 2\sqrt{r^2 - 2r\mu} + (r - \mu)\left(\pi - 2\arcsin\frac{\mu}{r - \mu}\right).$$

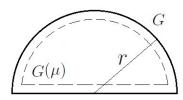


Рис. 3. Пример области, не принадлежащая классу Γ .

Отсюда нетрудно получить, что

$$\sup_{\mu} \left(-\boldsymbol{l}'(\mu) \right) = \lim_{\mu \to r/2} \left(-\boldsymbol{l}'(\mu) \right) = +\infty.$$

Этот простой пример показывает, что распространение определения (2.2) (или (2.3)) на более широкий подкласс выпуклых областей является затруднительным и не эффективным, так как для «хорошей» области — для полукруга, этот функционал не является конечной величиной. В действительности этот пример далеко не единственный. Несмотря на это, ниже будет приведен класс областей, для которых это возможно. В действительности пример полукруга является ключевым, и для корректного обобщения определения $\mathbf{K}(D)$ на произвольные выпуклые области необходим критерий конечности предела

$$\lim_{\mu \to \rho(G)} \left(-l'(\mu) \right). \tag{2.5}$$

Пусть G — произвольная выпуклая область. Сопоставим области G область $D \in \Gamma$, которая содержит область G, имеет тот же самый радиус максимального круга и наименьшую длину границы области.

В следующих утверждениях приведем алгоритм построения области D.

Лемма 2.1. Для любой области $G \in \Gamma$ и сектора $Sec(\beta)$ раствора β , с вершиной в центре максимального вписанного в область G круга, справедливы неравенства

$$\inf_{G \in \Gamma} \boldsymbol{L}(\partial G \cap \operatorname{Sec}(\beta)) \geqslant \beta \boldsymbol{\rho}(G), \qquad \inf_{G \in \Gamma} \mathbf{A}(G \cap \operatorname{Sec}(\beta)) \geqslant \frac{\beta \boldsymbol{\rho}(G)^2}{2},$$

где ∂G — граница области G.

Доказательство этого утверждения является следствием определения класса Γ . Таким образом, лемма 2.1 утверждает, что наименьшая длина и площадь области $G \in \Gamma$ будут у области, граница которой содержит дугу сектора раствора β .

Лемма 2.2. Пусть G- выпуклая область конечной площади и $\boldsymbol{l}(\boldsymbol{\rho}(G))=0$. Тогда существует область $D\in\Gamma$ такая, что

$$\boldsymbol{L}(D) := \min \{ \boldsymbol{L}(Q) : Q \supset G, \boldsymbol{\rho}(Q) = \boldsymbol{\rho}(G), Q \in \Gamma \}.$$

При этом:

- 1) если часть границы G совпадает c дугой сектора максимального вписанного круга, то эта дуга целиком принадлежит D;
- 2) если граница G строго содержит дугу сектора максимальной вписанной окружности, то часть границы D будет образована касательными к области G. Причем, часть области D будет содержать часть области G и рассматриваемый сектор (см. рис. 4).

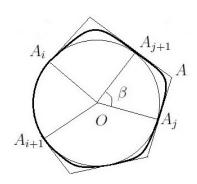


Рис. 4. Выпуклая область у которой $l(\rho(G)) = 0$.

Доказательство. Пусть G — выпуклая область. Рассмотрим максимальную окружность в G и множество точек касания вписанной окружности и границы области G. Проведем во всех таких точках касательные к области G, исключая касательные, проведенные во внутренних точках дуг вписанной окружности, являющиеся граничными для области G, если такая дуга или дуги существуют. Отметим, что на концах этих дуг существуют касательные к области G, так как в противном случае дуга не является дугой вписанного круга в G, либо не выполняется условие выпуклости.

Поэтому проведенные касательные и дуги вписанной окружности образуют многоугольник из класса Г. Покажем, что построенную область можно взять в качестве области D.

Обозначим через $S(OA_iA_{i+1})$ круговой сектор раствора $\beta < \pi$, $G(OA_iA_{i+1})$ криволинейный сектор раствора $\beta < \pi$, где A_i , A_{i+1} соседние точки касания вписанной окружности и границы области G. Сначала рассмотрим случай, когда $S(OA_iA_{i+1}) = G(OA_iA_{i+1})$. Тогда согласно лемме 2.1 дуга окружности A_iA_{i+1} будет «оптимальной», т.е. эта дуга будет частью границы искомого многоугольника D (см. рис. 4).

Пусть $S(OA_jA_{j+1})\subset G(OA_jA_{j+1})$, но эти секторы не совпадают. В рамках введенных ограничений невозможно уменьшить длину построенного многоугольника D: ломаную A_jAA_{j+1} (см. рис. 4) нельзя заменить дугой A_jA_{i+1} , вписанной окружности, поскольку тогда $G\not\subset D$, либо произвольным отрезком, соединяющим стороны ломаной A_jAA_{j+1} , поскольку тогда построенная область не будет многоугольником из Γ .

Таким образом, построение границы области D будет состоять из углов типа A_iAA_{i+1} и дуг вписанной окружности, являющиеся оптимальными. Это завершает построение области D и доказательство леммы 2.2.

В следующей лемме рассмотрим оставшиеся варианты построения области D.

Лемма 2.3. Пусть G — выпуклая область конечной площади. Тогда существует многоугольник $D \in \Gamma$ такой, что

$$L(D) := \min\{L(Q) : Q \supset G, \rho(Q) = \rho(G), Q \in \Gamma\}.$$

Доказательство. Приведем алгоритм построения области D с минимальной длиной границы для выпуклой области G, основанный на расположении различных касательных, проведенных в точках касания максимальной вписанной окружности и границы области G.

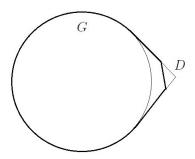


Рис. 5. Выпуклая область с единственной окружностью

Пусть G — выпуклая область. Впишем в G максимальную окружность или дуги окружности. Рассмотрим касательные прямые только на концах дуг общих для окружности и границы G, если такие дуги присутствуют, а также в остальных точках касания вписанной окружности и границы G, не связанные с дугами.

Далее, построение области D разбиваем на два случая:

1) когда среди множества касательных нет параллельных либо имеется более одной пары параллельных касательных и $l(\rho(G)) = 0$;

2) когда среди касательных найдется одна пара параллельных касательных и $\boldsymbol{l}(\boldsymbol{\rho}(G)) = 0$ либо таких пар параллельных касательных более одной и $\boldsymbol{l}(\boldsymbol{\rho}(G)) \neq 0$. В первом случае, очевидно, что вписанная окружность единственная (см. рис. 5, 6).

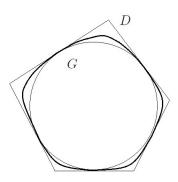


Рис. 6. Выпуклая область с единственной окружностью

Тогда касательные и дуги окружности из G(D) образуют область из класса Γ . Согласно леммам 2.1 и 2.2 построенная область и является областью D.

Более интересен второй случай. Пусть среди проведенных касательных имеются параллельные. Тогда вписанная окружность может быть единственной (полукруг, эллипс), либо их бесконечно много (любая сжимаемая область).

Предположим, что G — сжимаемая (см. рис. 7), т.е. $\mathbf{l}(\boldsymbol{\rho}(G)) \neq 0$. Параллельно множеству $G(\boldsymbol{\rho}(G))$, являющейся отрезком, проводим касательные к области G, получим полосу содержащую G. Далее построим прямоугольник P, содержащий G так, чтобы все его стороны касались границы области G, либо прямоугольник имел общие точки с G. Причем две построенные стороны прямоугольника могут быть как касательными к области G, так и не касательными (см. рис. 7). В полученный прямоугольник P вписываем область типа Боннезена B (см. [9]).

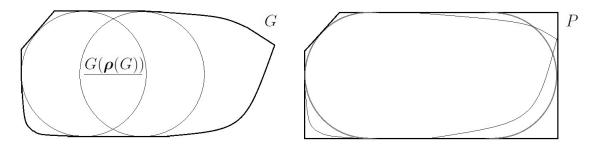


Рис. 7. Построение области D из класса Γ

Далее проводим касательные к области G через общие точки границы G и границы B, а также, если граница области G содержит дугу границы B, то через точки на концах дуг. Если на границе P имеются крайние точки выпуклой области G (см. [13, стр. 14]), то через эти точки также проводим касательные к B (на рис. 8 этой ситуации соответствует касательная, проходящая через точки A_i , A_{i-1}). Отметим, что эта касательная прямая не будет являться касательной к границе G. Проведенные касательные, стороны P и дуги границы области B образуют некоторый многоугольник $D' \in \Gamma$, содержащий G (см. рис. 7), т.к. B является растяжением круга.

Поскольку требуется найти многоугольник с наименьшей длиной границы, то D' необходимо оптимизировать. Прежде всего заметим, что прямолинейные стороны области B будут частью области D. Действительно, эти стороны или их части не могут быть заменены дугами вписанной окружности, так как в противном случае нарушается выпуклость

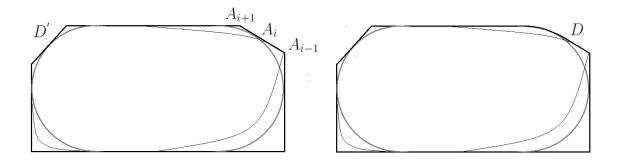


Рис. 8. Построение области D из класса Γ

многоугольника, следовательно получаем область не из класса Γ (см. рис. 8). Аналогично, замена части сторон на отрезки меньшей длины, например, касательные к G, приводит также к области не из множества Γ . Далее, рассмотрим множество общих точек границы области B и D'. Обозначим эти точки через A_i . Если границы B и D' имеют общие отрезки прямых или общие дуги, то среди этих точек рассмотрим только точки, совпадающие с концами отрезков или дуг. Для каждой пары соседних точек применим леммы 2.1 и 2.2 и заменим части границ многоугольника D' на дуги или стороны меньшей длины (рис. 8). Это завершает построение области $D \in \Gamma$ для случая сжимаемой области.

В случае, когда среди рассматриваемых касательных, проведенных к несжимаемой области G, имеется одна пара параллельных, построение области D проводится аналогично предыдущему случаю.

Построение области $D \in \Gamma$ закончено. Лемма доказана.

Пусть G — произвольная выпуклая область. Пусть D — область, соответствующая G. Определим новый функционал:

$$\mathbf{K}(G) := \mathbf{K}(D). \tag{2.6}$$

Как будет видно ниже, одного функционала $\mathbf{K}(G)$ для получения оценок жесткости кручения недостаточно. Определим еще один функционал:

$$d(\rho(G)) := l(\rho(D)). \tag{2.7}$$

Из определения следует, что для любой выпуклой области G

$$d(\rho(G)) \geqslant l(\rho(G)). \tag{2.8}$$

Этот функционал, в отличие от $l(\boldsymbol{\rho}(G))$, более точно показывает, насколько область G растянута. Например, для эллипса с полуосями a и b, величина $\boldsymbol{d}(\boldsymbol{\rho}(G)) = 4(a-b)$, а $l(\boldsymbol{\rho}(G)) = 0$. Это соответствует нашему восприятию эллипса как растянутой области.

Приведем еще один пример применения лемм 2.1, 2.2, 2.3 для нахождения области D с минимальной длиной границы для выпуклой области G. Рассмотрим полукруг G радиуса r (см. рис. 9). Для построения области $D \in \Gamma$ опишем вокруг полукруга прямоугольник. Применяя лемму 2.3, заменим части сторон прямоугольника дугой вписанной в G окружности. Получаем в качестве области D прямоугольник с двумя срезанными дугой максимальной вписанной окружности углами. У полукруга $\boldsymbol{l}(\boldsymbol{\rho}(G)) = 0$, $\boldsymbol{d}(\boldsymbol{\rho}(G)) = 2r$, $\boldsymbol{K}(G) = \boldsymbol{K}(D) = 4 + \pi$.

Теорема 2.1. Пусть G - выпуклая ограниченная область. Тогда,

$$\lim_{\mu \to \boldsymbol{\rho}(G)} \left(-\boldsymbol{l}'(\mu) \right) = +\infty$$

тогда и только тогда, когда $G \notin \Gamma$ и $d(\rho(G)) > 0$.

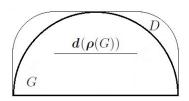


Рис. 9. Пример области D.

Доказательство. Достаточность. Пусть $G \not\in \Gamma$ и $d(\rho(G)) > 0$. Тогда имеются две параллельные отрезку $D(\rho(G))$ (множество $G(\rho(G))$) возможно является точкой) касательные к области G в точках касания области G и максимальной вписанной окружности. Обозначим через H круговую лунку. Отметим, ввиду выпуклости области G, точек касания вписанной окружности и границы области G либо ровно две, либо их бесконечное число. В первом случае можно взять симметричную круговую лунку. Во втором случае — лунку, ограниченную хордой. В виду того, что при значениях μ , близких $\rho(G)$, множество $G(\mu)$ содержит круговую лунку $H(\mu)$ (см. рис. 10), получим

$$\boldsymbol{l}(\mu, G) \geqslant \boldsymbol{l}(\mu, H).$$

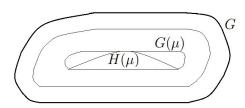


Рис. 10. Выпуклая область, содержащая круговую лунку

При этом справедливо следующее неравенство

$$l(\mu, G) - l(\rho(G)) \geqslant l(\mu, H) - l(\rho(G)).$$

Поделим последнее неравенство на $\mu - \rho(G)$, когда $0 \leqslant \mu \leqslant \rho(G)$. Умножая на (-1), получим

$$-\frac{\boldsymbol{l}(\mu,G)-\boldsymbol{l}(\boldsymbol{\rho}(G))}{\mu-\boldsymbol{\rho}(G)}\geqslant -\frac{\boldsymbol{l}(\mu,H)-\boldsymbol{l}(\boldsymbol{\rho}(G))}{\mu-\boldsymbol{\rho}(G)}.$$

Перейдя к пределу при $\mu \to \rho(G)$, нетрудно видеть

$$\lim_{\mu \to \rho(G)} \left(-\boldsymbol{l}'(\mu,G) \right) \geqslant \lim_{\mu \to \rho(G)} \left(-\boldsymbol{l}'(\mu,H) \right).$$

Из рассмотренного выше примера следует, что

$$\lim_{\mu \to \rho(G)} \left(- \boldsymbol{l}'(\mu, H) \right) = + \infty.$$

Таким образом, достаточность доказана.

Необходимость. Пусть G – выпуклая область и $G \notin \Gamma$ такая, что

$$\lim_{\mu \to \boldsymbol{\rho}(G)} \left(-\boldsymbol{l}'(\mu) \right) = +\infty.$$

Если допустить, что $d(\rho(G)) = 0$, то и $l(\rho(G)) = 0$. Кроме того, по лемме 2.3 найдется область $D \in \Gamma$ такая, что $D \supset G$, $\rho(D) = \rho(G)$, $l(\mu, D) \geqslant l(\mu, G)$. Следовательно,

$$\lim_{\mu \to \rho(G)} \left(-\boldsymbol{l}'(\mu, D) \right) \geqslant \lim_{\mu \to \rho(G)} \left(-\boldsymbol{l}'(\mu, G) \right).$$

Тогда из последней оценки $\mathbf{K}(D) = +\infty$, а по определению функционал $\mathbf{K}(D)$, для любой выпуклой области из класса Γ , принимает конечное значение. Получилось противоречие, завершающее доказательство теоремы 2.1.

Следствием теоремы 2.1 и определения (2.7) является разбиение выпуклых областей на два класса. Первый подкласс состоит из областей G, для которых $d(\rho(G)) > 0$, а второй — для которых $d(\rho(G)) = 0$. Второй подкласс представляет собой области, близкие к кругу. Отметим, что класс областей, близких к кругу, подробно выделялся и изучался в монографии Полиа и Сегё (см. [1, Гл. 6]). Таким образом, в классе областей с $d(\rho(G)) = 0$, мы можем определять функционал K(G) по формуле (2.2), но изучение этого случая остается за рамками данной статьи. Заметим, что лемма 2.2 имеет отношение к классу выпуклых областей с $d(\rho(G)) = 0$, а лемма 2.3 относится к случаю $d(\rho(G)) > 0$.

Перечислим некоторые основные свойства введенного функционала $\mathbf{K}(G)$:

1. Пусть G_1 и G_2 — подобные выпуклые области, тогда $\mathbf{K}(G_1) = \mathbf{K}(G_2)$.

Для областей из класса Γ площадь области и длина границы области зависят только от величины углов, а свойство преобразования подобия сохраняет величины углов между кривыми, откуда немедленно вытекает данное свойство. В частности, из этого свойства следует, что функционал $\mathbf{K}(G)$ не является монотонным как функция области. Например, для областей, изображенных на рис. $\mathbf{11}\ D_1 \subset D_2 \subset D_3$, но

$$\mathbf{K}(D_1) = \mathbf{K}(D_3) = 2\pi \leqslant \mathbf{K}(D_2) = 8.$$

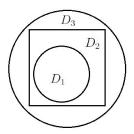


Рис. 11. Примеры областей из класса Г

- 2. Пусть G сжимаемая выпуклая область и G_0 сжатие G, тогда $\mathbf{K}(G) = \mathbf{K}(G_0)$. Утверждение следует непосредственно из определения $\mathbf{K}(G)$.
 - 3. Для любой области $D \in \Gamma$ справедливо следующее равенство:

$$\mathbf{l}(\mu) = \mathbf{K}(D)(\boldsymbol{\rho}(D) - \mu) + \mathbf{l}(\boldsymbol{\rho}(D)), \qquad 0 \leqslant \mu \leqslant \boldsymbol{\rho}(D).$$

Рассмотрим следующее равенство

$$\boldsymbol{l}(\mu) = -\int_{\mu}^{\boldsymbol{\rho}(D)} \boldsymbol{l}'(t) dt + \boldsymbol{l}(\boldsymbol{\rho}(D)). \tag{2.9}$$

Утверждение 3 получается применением равенства

$$-\mathbf{l}'(t) = 2\sum_{i=1}^{n} \operatorname{ctg}(\alpha_i/2) + \sum_{j=1}^{m} \beta_j,$$

справедливого для $D \in \Gamma$, и интегрированием (2.9).

4. Если G — выпуклая область и D — минимальная область из Γ : $\rho(D) = \rho(G)$ и $G \subset D$, тогда

$$l(\mu, G) \leqslant \mathbf{K}(G)(\boldsymbol{\rho}(G) - \mu) + \boldsymbol{d}(\boldsymbol{\rho}(G)). \tag{2.10}$$

Равенство в неравенстве достигается для областей из класса Γ для любого $\mu \in [0, \boldsymbol{\rho}(G)]$. Поскольку $G(\mu) \subset D(\mu)$, $(0 \le \mu \le \boldsymbol{\rho}(G))$, поэтому $\boldsymbol{l}(\mu, G) \le \boldsymbol{l}(\mu, D)$ и с учетом свойства 3 получаем:

$$l(\mu, G) \leq K(D)(\rho(D) - \mu) + l(\rho(D)) = K(G)(\rho(G) - \mu) + d(\rho(G)).$$

В частности справедливо следующее неравенство

$$\mathbf{L}(G) \leqslant \mathbf{K}(G)\boldsymbol{\rho}(G) + \boldsymbol{d}(\boldsymbol{\rho}(G)). \tag{2.11}$$

В таблице 1 приведены приближенные значения отношения левой и правой частей неравенства (2.11) на примере эллипса. Из таблицы 1 видно, что эти значения лежат между числами, близкими к 1. Следствием этого примера является невозможность замены $d(\rho(G))$ на $l(\rho(G))$ в (2.10).

Эллипс с полуосями а, b	L(G)
a/b = 1	$\frac{\mathbf{K}(G)\boldsymbol{\rho}(G) + \boldsymbol{d}(\boldsymbol{\rho}(G))}{1}$
a/b = 6/5	0.977779
a/b = 4/3	0.967349
a/b = 3/2	0.95769
a/b = 7/4	0.948036
a/b = 2	0.942164
a/b = 3	0.935708
a/b = 4	0.938395
a/b = 7	0.951491
a/b = 12	0.965792
a/b = 100	0.994597
$a/b \to \infty$	1

Таблица 1: Иллюстрация неравенства (2.11) на примере эллипса.

В качестве замечания к этому свойству отметим, что существуют выпуклые области, множества уровня которых, начиная с некоторого μ , являются областями из класса Γ . Нетрудно привести пример таких областей. Рассмотрим трапецию, одна сторона которой не касается вписанной окружности. Пусть b — это точка пересечения биссектрис, ближайшая к границе области. Тогда для любого $\mu \in [0, \rho(b, G)]$ множеством уровня является трапеция $G(\mu)$, подобная G, при $\mu \in [\rho(b, G), \rho(G)]$ множеством уровня трапеции будет треугольник, т.е. область из класса Γ (см. рис. 12).

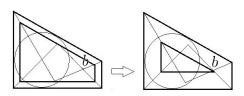


Рис. 12. Построение области $G(\mu)$

5. Среди всех n-угольников D_n , описанных около данной окружности, наименьшее значение $\mathbf{K}(D_n)$ имеет правильный n-угольник D_n' , т.е.

$$\mathbf{K}(D_n) \geqslant \mathbf{K}(D_n').$$

Утверждение следует из свойства 1 и из экстремальных свойств правильных многоугольников [13].

$$\mathbf{K}(D_n) = \frac{\mathbf{L}(D_n)}{\boldsymbol{\rho}(D_n)} \geqslant \frac{\mathbf{L}(D_n')}{\boldsymbol{\rho}(D_n')} = \mathbf{K}(D_n').$$

6. Если D_1 и D_2 несжимаемые области из класса Γ , причем $\rho(D_1) = \rho(D_2)$ и $D_1 \subset D_2$, то $\mathbf{K}(D_1) < \mathbf{K}(D_2)$.

Действительно, поскольку $D_1 \in \Gamma$ и $D_2 \in \Gamma$, то

$$\mathbf{K}(D_1) = \frac{\mathbf{L}(D_1)}{\boldsymbol{\rho}(D_1)} = \frac{\mathbf{L}(D_1)}{\boldsymbol{\rho}(D_2)} < \frac{\mathbf{L}(D_2)}{\boldsymbol{\rho}(D_2)} = \mathbf{K}(D_2).$$

Из свойства 6 вытекает утверждение, что если D_n и D_{n+1} — описанные около данной окружности n– и (n+1)–угольники, такие, что $D_{n+1} \subset D_n$, то наименьшее значение $\mathbf{K}(D_n)$ имеет многоугольник с наибольшим числом сторон n:

$$\mathbf{K}(D_{n+1}) \leqslant \mathbf{K}(D_n).$$

Поскольку значения функционала $\mathbf{K}(D)$ для растяжения области из класса Γ и его сжатия равны, то отсюда следует, что свойство 6 не выполняется для областей, являющихся растяжениями элементов из класса Γ . Например, на рисунке 13 изображены области такие, что $D_1 \subset D_2 \subset D_3$, но $\mathbf{K}(D_1) = \mathbf{K}(D_3) \leqslant \mathbf{K}(D_2)$.

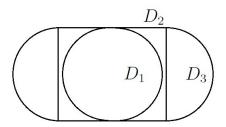


Рис. 13. Примеры областей из класса Г

Лемма 2.4. Пусть G_1 и G_2 — выпуклые области такие, что $G_1 \subset G_2$, $\rho(G_1) = \rho(G_2)$ и $\boldsymbol{l}(\rho(G_1)) = \boldsymbol{l}(\rho(G_2)) = 0$. Пусть n_1 , n_2 — количество точек касания максимальной вписанной окружности и границы области G_1 и G_2 , соответственно. Тогда если $n_1 \geqslant n_2 > 2$, то

$$\mathbf{K}(G_1) \leqslant \mathbf{K}(G_2).$$

Доказательство. Пусть $G_1 \subset G_2$, $\rho(G_1) = \rho(G_2)$ и $n_1 = n_2 > 2$, тогда максимальные вписанные окружности в G_1 и G_2 единственные и они совпадают. Также будут совпадать точки касания N_1, N_2, N_3 максимальной вписанной окружности и границы областей G_1 и G_2 . Следовательно, при сопоставлении областям G_1 и G_2 области из класса Γ с минимальной длиной границы, мы получим один и тот же многоугольник (см. рис. 14).

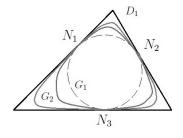


Рис. 14. Область из класса Г

Поэтому $\mathbf{K}(G_1) = \mathbf{K}(G_2)$.

Пусть $G_1 \subset G_2$, $\rho(G_1) = \rho(G_2)$ и $n_1 > n_2 > 2$, тогда максимальные вписанные окружности в G_1 и G_2 единственные и они совпадают. Для иллюстрации этого случая мы представили отдельно рисунки областей для G_1 и G_2 , в действительности, общий случай получается наложением рисунков так, что все точки касания максимальной вписанной окружности и границы области G_2 будут совпадать с точками касания максимальной вписанной окружности и границы области G_1 , но G_1 имеет и другие точки касания (см. рис. 15).

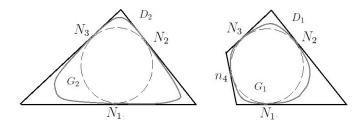


Рис. 15. Область из класса Г

При сопоставлении областям G_1 и G_2 области из класса Γ с минимальной длиной границы получим, что многоугольник D_1 , соответствующий G_1 , и многоугольник D_2 , соответствующий G_2 , будут описаны около одной и той же окружности. Поскольку у D_1 число сторон больше, чем у многоугольника D_2 , то из свойства 6 получаем, что $\mathbf{K}(G_1) < \mathbf{K}(G_2)$. Это завершает доказательство леммы.

Теорема 2.2. Пусть G - выпуклая область, тогда функционал

$$s_{l}(\mu) = \frac{l(\mu) - l(\rho(G))}{\rho(G) - \mu}$$

возрастает на отрезке $[0; \boldsymbol{\rho}(G)]$.

Заметим, что функция $s_l(\mu)$ почти всюду дифференцируема и

$$s'_{l}(\mu) = \frac{l'(\mu)(\rho(G) - \mu) + l(\mu) - l(\rho(G))}{(\rho(G) - \mu)^{2}}.$$

С другой стороны, $l(\mu)$ — выпуклая вверх функция. Следовательно, почти всюду $l'(\mu)$ монотонно убывает. Тогда, воспользовавшись равенством (2.9), верное для всех выпуклых областей, получаем утверждение леммы.

Из теоремы 2.2 следует неравенство

$$s_l(\mu) \geqslant 0$$
,

эквивалентное неравенству

$$l(\mu) \geqslant \frac{\mathbf{L}(G)}{\rho(G)} (\rho(G) - \mu) + \mu \frac{l(\rho(G))}{\rho(G)}, \qquad 0 \leqslant \mu \leqslant \rho(G).$$
 (2.12)

Заметим, что неравенство (2.12) легко доказать без применения теоремы 2.2. Как отметили выше $l(\mu)$ выпукла вверх, функционал в правой части (2.12) является линейной и совпадает с $l(\mu)$ на концах отрезка $[0, \rho(G)]$.

В таблице 2 приведены примеры вычисления значения функционалов $\mathbf{K}(G)$ и $d(\boldsymbol{\rho}(G))$ для областей рассмотренных в классической монографии Полиа и Сегё.

Область	$\mathbf{K}(G)$	$d(\rho(G))$
Круг радиуса а	2π	0
Эллипс с полуосями а и в	2π	4(a-b)
Квадрат со стороной а	8	0
Прямоугольник со сторонами a, b ,	8	2(a-b)
$a \geqslant b$		
Полукруг радиуса а	$4+\pi$	2a
Сектор радиуса a , раствора $\gamma =$	$2\left(\operatorname{ctg}\frac{\gamma}{2} + 2\operatorname{ctg}\frac{\pi-\gamma}{2}\right)$	0
$2\pi\lambda,\ 0\leqslant\lambda\leqslant\frac{1}{2}$		
Равносторонний треугольник со	$6\sqrt{3}$	0
стороной а		
Треугольник с углами 45°, 45°, 90°	11.6569	0
Треугольник с углами 30°, 60°, 90°	12.9282	0

Таблица 2: Значения функционалов $\mathbf{K}(G)$ и $d(\boldsymbol{\rho}(G))$.

3. ФОРМУЛИРОВКИ ОСНОВНЫХ РЕЗУЛЬТАТОВ

В основе дальнейших оценок для жесткости кручения лежит следующая

Теорема 3.1. Пусть G — выпуклая область на плоскости конечной площади. Тогда при p>1 справедливо неравенство

$$\mathbf{L}(G)(p+2) + \boldsymbol{l}(\boldsymbol{\rho}(G))(p+1) \leqslant \frac{(p+1)(p+2)\mathbf{I}_p(G)}{\boldsymbol{\rho}(G)^{p+1}} \leqslant \mathbf{K}(G)\boldsymbol{\rho}(G) + (p+2)\boldsymbol{d}(\boldsymbol{\rho}(G)).$$

Знак равенства в неравенствах достигается тогда и только тогда, когда $G\in \Gamma.$

Важную роль при построении новых оценок для жесткости кручения будут играть функции [11]

$$\mathbf{f}_p(\mu) := \mathbf{I}_p(G(\mu)),\tag{3.1}$$

где $0 \leqslant \mu \leqslant \rho(G)$, p — вещественный параметр, для которых справедливо представление

$$\mathbf{f}_p(\mu) = \int_{\mu}^{\rho(G)} (s - \mu)^p l(s) \mathrm{d}s, \tag{3.2}$$

для p > -1.

Теорема 3.1 является следствием теоремы о двусторонних оценках $\mathbf{f}_p(\mu)$.

Теорема 3.2. Пусть G-выпуклая ограниченная область. Тогда при $p\geqslant 0$ справедливы неравенства

$$\mathbf{f}_{p}(\mu) \geqslant \frac{\boldsymbol{\rho}(G)^{p+1}}{(p+1)(p+2)} \left(\mathbf{L}(G) + \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))((p+1)\boldsymbol{\rho}(G) + \mu)}{(\boldsymbol{\rho}(G) - \mu)} \right) \left(1 - \frac{\mu}{\boldsymbol{\rho}(G)} \right)^{p+2}, \tag{3.3}$$

$$\mathbf{f}_{p}(\mu) \leqslant \frac{\boldsymbol{\rho}(G)^{p+2}}{p+1} \left(\frac{\mathbf{K}(G)}{p+2} + \frac{\boldsymbol{d}(\boldsymbol{\rho}(G))}{\boldsymbol{\rho}(G) - \mu} \right) \left(1 - \frac{\mu}{\boldsymbol{\rho}(G)} \right)^{p+2}. \tag{3.4}$$

Для любого $\mu \in [0, \boldsymbol{\rho}(G)]$ знак равенства в неравенствах достигается для областей из класса Γ .

Отметим два следствия теоремы 3.2

Следствие 3.1. Пусть G — выпуклая область, c конечным евклидовым моментом порядка $p \geqslant 1$. Тогда справедливы неравенства

$$\mathbf{f}_{p}'(\mu) \leqslant -\frac{1}{p+1} \left(\frac{\mathbf{L}(G)}{\boldsymbol{\rho}(G)} + \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))(p\boldsymbol{\rho}(G) + \mu)}{\boldsymbol{\rho}(G)(\boldsymbol{\rho}(G) - \mu)} \right) (\boldsymbol{\rho}(G) - \mu)^{p+1}, \tag{3.5}$$

$$\mathbf{f}_{p}'(\mu) \geqslant -\frac{1}{p+1} \left(\mathbf{K}(G) + \frac{(p+1)\boldsymbol{d}(\boldsymbol{\rho}(G))}{\boldsymbol{\rho}(G) - \mu} \right) (\boldsymbol{\rho}(G) - \mu)^{p+1}.$$
(3.6)

Следствие 3.2. Пусть G — выпуклая область, c конечным евклидовым моментом порядка $p \geqslant 2$. Тогда справедливы неравенства

$$\mathbf{f}_{p}''(\mu) \geqslant \left(\frac{\mathbf{L}(G)}{\boldsymbol{\rho}(G)} + \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))((p-1)\boldsymbol{\rho}(G) + \mu)}{\boldsymbol{\rho}(G)(\boldsymbol{\rho}(G) - \mu)}\right) (\boldsymbol{\rho}(G) - \mu)^{p}, \tag{3.7}$$

$$\mathbf{f}_{p}''(\mu) \leqslant \left(\mathbf{K}(G) + \frac{p\mathbf{d}(\boldsymbol{\rho}(G))}{\boldsymbol{\rho}(G) - \mu}\right) (\boldsymbol{\rho}(G) - \mu)^{p}. \tag{3.8}$$

Из неравенства (3.5) заключаем, что функционал $\mathbf{f}_p(\mu)$ монотонно убывает на $[0, \boldsymbol{\rho}(G)]$, а из (3.8) получаем, что $\mathbf{f}_p(\mu)$ выпукла вниз на $[0, \boldsymbol{\rho}(G)]$.

На основании функционала

$$\mathbf{H}(G;p) := \frac{(p+1)(p+2)}{\rho(G)^{p+1}} \left(\mathbf{I}_p(G) - \frac{\mathbf{l}(\rho(G))\rho(G)^{p+1}}{p+1} \right), \qquad p > -1,$$

введенного в [7], рассмотрим следующий функционал области:

$$\mathbf{H}_p(\mu) := \frac{1}{\boldsymbol{\rho}(G(\mu))^{p+2}} \left(\mathbf{f}_p(\mu) - \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))(\boldsymbol{\rho}(G) - \mu)^{p+1}}{p+1} \right), \tag{3.9}$$

где $0 \leqslant \mu \leqslant \boldsymbol{\rho}(G)$.

Теперь сформулируем теоремы, дающие оценки снизу и сверху для жесткости кручения выпуклой области.

Теорема 3.3. Пусть G — выпуклая область на плоскости конечной площади. Тогда справедливо неравенство

$$\mathbf{P}(G) \leqslant \frac{2\boldsymbol{\rho}(G)^3}{3} \left(\mathbf{K}(G)\boldsymbol{\rho}(G) + 2\boldsymbol{d}(\boldsymbol{\rho}(G)) - \pi\boldsymbol{\rho}(G) \right). \tag{3.10}$$

Равенство достигается в пределе, например, на последовательности прямоугольников $Q_n = [0,1] \times [0,1/n], \ npu \ n \to +\infty.$

Из таблицы 3 видно, что неравенство Макаи (1.3) дает более точную оценку для жесткости кручения чем (3.10). Преимущество полученного неравенства (3.10) для жесткости кручения состоит в том, что $\mathbf{P}(G)$ оценивается через легко вычислимые геометрические характеристики области G.

Or	$3\mathbf{P}(G)$	$\mathbf{P}(G)$
Область	$\frac{1}{2\boldsymbol{\rho}(G)^3 \left(2\boldsymbol{d}(\boldsymbol{\rho}(G)) + \mathbf{K}(G)\boldsymbol{\rho}(G) - \pi\boldsymbol{\rho}(G)\right)}$	$\overline{4\mathrm{I}_2(G)}$
Круг радиуса r	0,75	0,75
Эллипс, $a/b = 6/5$	0.703834	0.767925
Эллипс, $a/b = 4/3$	0.692329	0.787693
Эллипс, $a/b = 3/2$	0.685232	0.812711
Эллипс, $a/b = 7/4$	0.68005	0.845916
Эллипс, $a/b=2$	0.676727	0.87273
Эллипс, $a/b=3$	0.664704	0.934614
Эллипс, $a/b=7$	0.6447	0.974535
Эллипс, $a/b = 12$	0.61617	0.995411
Эллипс, $a/b = 100$	0.592589	0.99993
Эллипс, $a/b \to \infty$	0.58905	1
Квадрат со стороной <i>а</i>	0.694435	0.843462
Прямоугольник, $a/b=2$	0.853665	0.914729
Прямоугольник, $a/b = 3$	0.908926	0.947939
Прямоугольник, $a/b = 4$	0.934152	0.962788
Прямоугольник, $a/b = 5$	0.948443	0.971053
Прямоугольник, $a/b = 6$	0.957634	0.976324
Прямоугольник, $a/b = 7$	0.964041	0.97996
Прямоугольник, $a/b = 8$	0.968776	0.982637
Прямоугольник, $a/b = 10$	0.975277	0.986291
Прямоугольник, $a/b = 12$	0.979537	0.98867
Прямоугольник, $a/b = 100$	0.997616	0.998692
Прямоугольник, $a/b = \infty$	1	1
Полукруг радиуса а	0.595121	0.885363
Сектор радиуса r , раствора $\gamma = 2\pi\lambda$, $\lambda = 1/12$	0.596293	0.91068
Сектор r , угол $\gamma=2\pi\lambda,\ \lambda=1/10$	0.602724	0.900422
Сектор r , угол $\gamma = 2\pi\lambda$, $\lambda = 1/8$	0.603784	0.888036
Сектор r , угол $\gamma=2\pi\lambda,\lambda=1/6$	0.584973	0.873561
Сектор r , угол $\gamma = 2\pi\lambda$, $\lambda = 1/4$	0.492653	0.860148
Сектор r , угол $\gamma = 2\pi\lambda$, $\lambda = 1/3$	0.360299	0.859949
Сектор r , угол $\gamma=2\pi\lambda,\ \lambda=5/12$	0.200915	0.868803
Узкий сектор $r=1,\ \gamma=2\pi\lambda\to 0$	0.5	1
Равносторонний треугольник, сторона <i>a</i>	0.644978	0.900001
Треугольник с углами 45°, 45°, 90°	0.624461	0.912417
Треугольник с углами 30°, 60°, 90°	0.608295	0.920522
Правильный шестиугольник	0.729602	0.797505

Таблица 3: Иллюстрация теоремы 3.3 в сравнении с неравенством Макаи (1.3).

Из неравенства Полиа-Сегё (1.2) легко получить оценку жесткости кручения через длину границы области

$$\mathbf{P}(G) \geqslant \frac{\mathbf{A}(G)\boldsymbol{\rho}(G)^2}{2} \geqslant \frac{\boldsymbol{\rho}(G)^3}{4} \left(\mathbf{L}(G) + \boldsymbol{l}(\boldsymbol{\rho}(G)) \right),$$

равенства в которых достигаются, например, для круга.

Теорема 3.4. Пусть G — выпуклая область на плоскости конечной площади. Тогда для q>0 справедливо неравенство

$$\mathbf{P}(G) \geqslant \frac{\boldsymbol{\rho}(G)^3}{2(2+q)} \left(\mathbf{L}(G) + \boldsymbol{l}(\boldsymbol{\rho}(G))(q+1) + \pi q \boldsymbol{\rho}(G) \right). \tag{3.11}$$

 $\Pi pu \ q = 0$ равенство в (3.11) достигается для круга.

Результаты, полученные нами в теоремах 3.3 и 3.4, интересны в том отношении, что жесткость кручения выпуклой области G оценивается через более легко вычислимые геометрические характеристики области G.

4. Доказательства основных результатов

Доказательство теоремы 3.2. Получим оценку снизу для $\mathbf{f}_p(\mu)$. Для этого применим равенство (3.2) и неравенство (2.12) и проинтегрируем его. Тогда имеем

$$\mathbf{f}_{p}(\mu) = \int_{\mu}^{\boldsymbol{\rho}(G)} (s-\mu)^{p} l(s) ds \geqslant \int_{\mu}^{\boldsymbol{\rho}(G)} (s-\mu)^{p} \left(\frac{\mathbf{L}(G)}{\boldsymbol{\rho}(G)} (\boldsymbol{\rho}(G) - s) + s \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))}{\boldsymbol{\rho}(G)} \right) ds$$
$$= \frac{\boldsymbol{\rho}(G)^{p+2}}{(p+1)(p+2)} \left(1 - \frac{\mu}{\boldsymbol{\rho}(G)} \right)^{p+2} \left(\frac{\mathbf{L}(G)}{\boldsymbol{\rho}(G)} + \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))((p+1)\boldsymbol{\rho}(G) + \mu)}{\boldsymbol{\rho}(G)(\boldsymbol{\rho}(G) - \mu)} \right).$$

Теперь докажем оценку сверху. Для этого установим, что функционал $\mathbf{H}_p(\mu)$ монотонно возрастает при $p \geqslant 0$, для произвольной выпуклой области с ограниченным евклидовым моментом порядка p.

Как известно из [7], имеет место следующее неравенство

$$(p+1)(p+2)\mathbf{H}_{n}(\mu) \geqslant p(p+1)\mathbf{H}_{n-1}(\mu).$$

Применяя последнюю оценку на множествах уровня $G(\mu)$ и учитывая свойства функции $\mathbf{f}_p(\mu)$ (3.1), получим следующее неравенство

$$\frac{p+2}{(\boldsymbol{\rho}(G)-\mu)}\left(\mathbf{f}_p(\mu)-\frac{\boldsymbol{l}(\boldsymbol{\rho}(G(\mu)))(\boldsymbol{\rho}(G)-\mu)^{p+1}}{(p+1)}\right)\geqslant -\mathbf{f}_p^{'}(\mu)-\boldsymbol{l}(\boldsymbol{\rho}(G(\mu)))(\boldsymbol{\rho}(G)-\mu)^{p}.$$

Умножим последнее неравенство на положительную на сегменте $[0, \boldsymbol{\rho}(G)]$ функцию $1/(\boldsymbol{\rho}(G)-\mu)^{p+2}$.

Получим

$$\frac{(p+2)\mathbf{f}_p(\mu)}{(\boldsymbol{\rho}(G)-\mu)^{p+3}} + \frac{\mathbf{f}_p'(\mu)}{(\boldsymbol{\rho}(G)-\mu)^{p+2}} - \frac{(p+2)l(\boldsymbol{\rho}(G(\mu)))}{(p+1)(\boldsymbol{\rho}(G)-\mu)^2} + \frac{l(\boldsymbol{\rho}(G(\mu)))}{(\boldsymbol{\rho}(G)-\mu)^2} \geqslant 0.$$

Тогда

$$\left(\frac{\mathbf{f}_p(\mu)}{(\boldsymbol{\rho}(G)-\mu)^{p+2}}\right)' \geqslant \frac{l(\boldsymbol{\rho}(G(\mu)))}{(p+1)(\boldsymbol{\rho}(G)-\mu)^2}.$$

Последнее неравенство равносильно оценке

$$\frac{d}{d\mu} \left(\frac{(p+1)\mathbf{f}_p(\mu) - \boldsymbol{l}(\boldsymbol{\rho}(G(\mu)))(\boldsymbol{\rho}(G) - \mu)^{p+1}}{(p+1)(\boldsymbol{\rho}(G) - \mu)^{p+2}} \right) \geqslant 0.$$

Применяя определение функционала $\mathbf{H}_p(\mu)$, неравенство $\mathbf{H}_p(\boldsymbol{\rho}(G)) \geqslant \mathbf{H}_p(\mu)$, $\mu \in [0, \boldsymbol{\rho}(G)]$, имеем

$$\lim_{\mu \to \boldsymbol{\rho}(G)} \left(\frac{(p+1)\mathbf{f}_p(\mu) - \boldsymbol{l}(\boldsymbol{\rho}(G))(\boldsymbol{\rho}(G) - \mu)^{p+1}}{(p+1)(\boldsymbol{\rho}(G) - \mu)^{p+2}} \right) \geqslant \frac{\mathbf{f}_p(\mu)}{(\boldsymbol{\rho}(G) - \mu)^{p+2}} - \frac{l(\boldsymbol{\rho}(G))}{(p+1)(\boldsymbol{\rho}(G) - \mu)}. \quad (4.1)$$

Поскольку $\mathbf{H}_p(\mu)$ возрастающая функция при $p \geqslant 0$, поэтому функционал слева в (4.1) монотонно возрастает.

Тогда неравенство (4.1) справедливо и для $d(\rho(G))$:

$$\lim_{\mu \to \rho(G)} \left(\frac{(p+1)\mathbf{f}_p(\mu) - \mathbf{d}(\rho(G))(\rho(G) - \mu)^{p+1}}{(p+1)(\rho(G) - \mu)^{p+2}} \right) \geqslant \frac{\mathbf{f}_p(\mu)}{(\rho(G) - \mu)^{p+2}} - \frac{\mathbf{d}(\rho(G))}{(p+1)(\rho(G) - \mu)}.$$
(4.2)

Рассмотрим дробь, стоящую в левой части неравенства (4.1), и преобразуем ее, применяя равенства (3.2) и свойство 4 функционала $\mathbf{K}(G)$:

$$\frac{(p+1)\mathbf{f}_{p}(\mu) - \mathbf{d}(\boldsymbol{\rho}(G))(\boldsymbol{\rho}(G) - \mu)^{p+1}}{(p+1)(\boldsymbol{\rho}(G) - \mu)^{p+2}} \\
= \frac{(p+1)\int_{\mu}^{\boldsymbol{\rho}(G)} (s-\mu)^{p}l(s,G)\mathrm{d}s - \mathbf{d}(\boldsymbol{\rho}(G))(\boldsymbol{\rho}(G) - \mu)^{p+1}}{(p+1)(\boldsymbol{\rho}(G) - \mu)^{p+2}} \\
= \frac{(p+1)\int_{\mu}^{\boldsymbol{\rho}(G)} (s-\mu)^{p}l(s,D)\mathrm{d}s - \mathbf{d}(\boldsymbol{\rho}(G))(\boldsymbol{\rho}(G) - \mu)^{p+1}}{(p+1)(\boldsymbol{\rho}(G) - \mu)^{p+2}} \\
\leq \frac{(p+1)\left(\int_{\mu}^{\boldsymbol{\rho}(G)} (s-\mu)^{p}\left(\mathbf{K}(G)(\boldsymbol{\rho}(G) - s) + \mathbf{d}(\boldsymbol{\rho}(G))\right)\mathrm{d}s\right) - \mathbf{d}(\boldsymbol{\rho}(G))(\boldsymbol{\rho}(G) - \mu)^{p+1}} \\
\leq \frac{(p+1)\left(\int_{\mu}^{\boldsymbol{\rho}(G)} (s-\mu)^{p}\left(\mathbf{K}(G)(\boldsymbol{\rho}(G) - s) + \mathbf{d}(\boldsymbol{\rho}(G))\right)\mathrm{d}s\right) - \mathbf{d}(\boldsymbol{\rho}(G))(\boldsymbol{\rho}(G) - \mu)^{p+1}} \\
\leq \frac{\mathbf{K}(G)}{(p+1)(p+2)}.$$

Таким образом, левая часть неравенства (4.1) ограничена сверху. Следовательно,

$$\lim_{\mu \to \rho(G)} \left(\frac{(p+1)\mathbf{f}_p(\mu) - \mathbf{d}(\rho(G))(\rho(G) - \mu)^{p+1}}{(p+1)(\rho(G) - \mu)^{p+2}} \right) \leqslant \frac{\mathbf{K}(G)}{(p+1)(p+2)}.$$

Отсюда получаем следующее неравенство

$$\frac{\mathbf{K}(G)}{(p+1)(p+2)} \geqslant \frac{\mathbf{f}_p(\mu)}{(\boldsymbol{\rho}(G) - \mu)^{p+2}} - \frac{\boldsymbol{d}(\boldsymbol{\rho}(G))}{(p+1)(\boldsymbol{\rho}(G) - \mu)}.$$

Это неравенство эквивалентно неравенству (3.4). Все неравенства в теореме 3.2 обращаются в равенства для областей из класса Γ . Это завершает доказательство теоремы 3.2.

Доказательство теоремы 3.1. Определим функционал, рассмотренный в [10]. Для любой односвязной области G при $p \geqslant p_0 > 0$ положим

$$\mathbf{i}_p(\mu) := p \int_{\mu}^{\rho(G)} t^{p-1} \mathbf{a}(t) dt. \tag{4.3}$$

При $\mu = 0$ это — евклидовый момент области G относительно границы, т.е. $\mathbf{i}_p(0) = \mathbf{I}_p(G)$. Известны следующие равенства для производных [11]:

$$\mathbf{f}_{2}'(\mu) = -2\mathbf{i}_{1}(\mu), \qquad \mathbf{f}_{2}''(\mu) = 2\mathbf{a}(\mu).$$
 (4.4)

Из [12] известно, что

$$\mathbf{I}_p(G) = p(p-1) \int_0^{\rho(G)} \mu^{p-2} \mathbf{i}_1(\mu) d\mu.$$

Учтем, что $\mathbf{i}_1(\mu) = \mathbf{f}_1(\mu)$ [12]. Применяя теорему 3.2, получим:

$$\mathbf{I}_{p}(G) \geqslant p(p-1) \int_{0}^{\boldsymbol{\rho}(G)} \mu^{p-2} \frac{(\boldsymbol{\rho}(G) - \mu)^{3}}{6} \left(\frac{\mathbf{L}(G)}{\boldsymbol{\rho}(G)} + \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))(2\boldsymbol{\rho}(G) + \mu)}{\boldsymbol{\rho}(G)(\boldsymbol{\rho}(G) - \mu)} \right) d\mu$$

$$= \frac{\boldsymbol{\rho}(G)^{p+2}}{(p+1)(p+2)} \left(\frac{\mathbf{L}(G)}{\boldsymbol{\rho}(G)} + \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))(p+1)}{\boldsymbol{\rho}(G)} \right), \quad p > 1.$$

Наконец, применяя неравенство (3.4) теоремы 3.2, получим оценку сверху для $\mathbf{I}_p(G)$

$$\mathbf{I}_{p}(G) = p(p-1) \int_{0}^{\boldsymbol{\rho}(G)} \mu^{p-2} \mathbf{f}_{1}(\mu) d\mu$$

$$\leq p(p-1) \int_{0}^{\boldsymbol{\rho}(G)} \frac{\mu^{p-2}}{2} \left(\frac{\boldsymbol{d}(\boldsymbol{\rho}(G))}{(\boldsymbol{\rho}(G) - \mu)} + \frac{\mathbf{K}(G)}{3} \right) (\boldsymbol{\rho}(G) - \mu)^{3} d\mu$$

$$= \frac{\boldsymbol{\rho}(G)^{p+1}}{(p+1)(p+2)} \left(\mathbf{K}(G) \boldsymbol{\rho}(G) + \boldsymbol{d}(\boldsymbol{\rho}(G))(p+2) \right).$$

Теорема 3.1 доказана.

Доказательство теоремы 3.3. Пусть $p \geqslant q$ и $0 \leqslant q \leqslant 2$. Тогда для жесткости кручения справедливо следующее неравенство [6]:

$$\mathbf{P}(G) \leqslant \frac{4}{3(q+2)} \left(\frac{(p+1)(p+2)}{\rho(G)^{p-2}} \mathbf{I}_p(G) - (p-q) \mathbf{l}(\rho(G)) \rho(G)^3 \right) - \frac{2\pi (2-q) \rho(G)^4}{3(q+2)}.$$

Применим к функционалу $I_p(G)$ теорему 3.1, справедливую для p > 1, получим

$$\mathbf{P}(G) \leqslant \frac{4\boldsymbol{\rho}(G)^3}{3(q+2)} \left(\boldsymbol{d}(\boldsymbol{\rho}(G)))(q+2) + \mathbf{K}(G)\boldsymbol{\rho}(G) - \frac{\pi(2-q)\boldsymbol{\rho}(G)}{2(q+1)} \right).$$

Полагая q = 0, получаем утверждение теоремы 3.3.

Доказательство теоремы 3.4. Пусть q > 0 и $0 \le p \le q$, тогда справедливо неравенство [6]:

$$\mathbf{P}(G) \ge \frac{1}{2(q+2)} \left[\frac{(p+1)(p+2)}{\rho(G)^{p-2}} \mathbf{I}_p(G) + (q-p) \mathbf{l}(\rho(G)) \rho(G)^3 \right] + \frac{\pi q \rho(G)^4}{2(q+2)}.$$

Последнее неравенство в совокупности с теоремой 3.1, при p>1, дают следующее неравенство

$$\mathbf{P}(G) \geqslant \frac{\boldsymbol{\rho}(G)^4}{2(2+q)} \left(\frac{\mathbf{L}(G)}{\boldsymbol{\rho}(G)} + \frac{\boldsymbol{l}(\boldsymbol{\rho}(G))(q+1)}{\boldsymbol{\rho}(G)} + \pi q \right).$$

Отсюда получаем утверждение теоремы 3.4.

СПИСОК ЛИТЕРАТУРЫ

- 1. Г. Полиа, Г. Сегё. Изопериметрические неравенства в математической физике. М.: Физматгиз (1962).
- 2. С.П. Тимошенко. Истрия науки о сопротивлении материалов. М.:ГИФМЛ (1957).
- 3. L.E. Payne. Some isoperimetric inequalities in the torsional problem for multiply connected regions. In: Stud. Math. Anal. related Topics, Essays in Honor of G. Polya, Standford University Press, California, 270–280 (1962).
- 4. E. Makai. On the principal frequency of a membrane and the torsional rigidity of a beam. In: Stud. Math. Anal. related Topics, Essays in Honor of G. Polya, Standford University Press, California, 227–231 (1962).
- 5. Ф.Г. Авхадиев. *Решение обобщенной задачи Сен-Венана* // Мат. сб. **189**:12, 3–12 (1998).
- 6. Л.И. Гафиятуллина, Р.Г. Салахудинов. Об одном обобщении неравенств Полиа-Сегё и Макаи для эксесткости кручения // Изв. высш. учебн. завед., мат. 11, 86–91 (2021).
- 7. R.G. Salakhudinov, L.I. Gafiyatullina. Two-Sided Estimate for the Torsional Rigidity of Convex Domain Generalizing the Polya-Szego and Makai Inequalities // Lobachevskii J. Math. 43:10, 3020-3032 (2022).
- 8. E. Makai. A proof of Saint-Venant's theorem on torsional rigidity // Acta Math. Acad. Sci. Hung. 17, 419–422 (1966).
- 9. Р.Г. Салахудинов. Изопериметрические свойства евклидовых граничных моментов односвязной области // Изв. высш. учебн. завед., мат. 8, 66–79 (2013).
- 10. R.G. Salahudinov. Refined inequalities for euclidean moments of a domain with respect to its boundary // SIAM J. Math. Anal. 44:4, 2949–2961 (2012).
- 11. Р.Г. Салахудинов. Некоторые свойства функционалов на множествах уровня // Уфим. мат. ж. 11:2, 118–129 (2019).
- 12. R.G. Salahudinov Torsional rigidity and euclidian moments of a convex domain // Q. J. Math. 67:4, 669-681 (2016).
- 13. В.М. Тихомиров. Рассказы о максимумах и минимумах М.: МЦНМО (2006).

Лилия Ильгизяровна Гафиятуллина,

Казанский (Приволжский) федеральный университет,

ул. Кремлевская, 18,

420008, Россия, РТ, г. Казань

E-mail: gafiyat@gmail.ru

Рустем Гумерович Салахудинов,

Казанский (Приволжский) федеральный университет,

ул. Кремлевская, 18,

420008, Россия, РТ, г. Казань

E-mail: rsalakhud@gmail.com