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ON MEAN-SQUARE APPROXIMATION
OF FUNCTIONS IN BERGMAN SPACE B,
AND VALUE OF WIDTHS OF
SOME CLASSES OF FUNCTIONS

M.Sh. SHABOZOV, D.K. TUKHLIEV

Abstract. Let A(U) be a set of functions analytic in the circle U := {z € C, |2| < 1} and
By := Bs(U) be the space of the functions f € A(U) with a finite norm

||f||2—< // |2do> < o0,

where do is the area differential and the integral is treated in the Lebesgue sense.

In the work we study extremal problems related with the best polynomial approximation
of the functions f € A(U). We obtain a series of sharp theorems and calculate the values of
various n—widths of some classes of functions defined by the continuity moduluses of mth
order for the rth derivative f(") in the space Bs.
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1. INTRODUCTION

The issues of best polynomial approximation of analytic in a circle functions belonging to
the Bergman space By, p > 1, were studied, for instance, in works [I]-[I5]. Here we consider
some questions on square—mean approximation of complex functions in the space B, and for
some classes of functions we calculate the values of various n—widths in Bs.

We use the notation from [16].

Let IN, Z, R, R be respectively the sets of natural, non-—negative integer, positive and real
numbers. Let C be a complex plane, U := {z € C: |z| < 1} be the unit circle in C, A(U) be
the set of functions analytic in circle U.

Definition 1.1 (|2]). A function f € A(U) is said to belong to the space By if

||f||z:=\|f!|32=< // |2da>é<oo.

The derivative of rth order of the function

ch 2F e A(U) (1.1)
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is defined in a standard way:

f(z) = Zakrck ke, (1.2)

dz””

where

k!
A p = m, k,T’ < IN, k > r; Ao = 1, a1 = k.

By the symbol Bg"), r € 2y, Béo) = By, we denote the set of functions f € Bs, for which
the derivative of rth order f((z) is also an element of By:

Bg) = {f € By : ||f(r)||2 < oo}

Let P,, be a subspace of complex algebraic polynomials of degree n of form

n

pn(z) = Zakzk, a € C.

k=0
The quantity
En(f)Q = E(f: Pn)BQ = lnf{Hf _anQ ‘Pn € Pn} (13)

is called the best polynomial mean—square approximation of a function f € By by the subspace
P,.. It is well-known [I7] that for an arbitrary function f € By the relation

B (12 = 1 = Toa(Dll = {Z o) } 1.4

k=n

holds, where T,,_; is a partial sum of order n — 1 of series (1.1)).
Representing the norm of a function f € By in a more convenient form

1

1 27 2

I912= {5 [ [ 170 Epdpar |
0 O

AT peit) -— 1)k (m) pi(t+kh)
n (pe”) ];( L ) e )
we denote a finite difference of mth order of a function f € By in the variable ¢ with a step h.
The identity

by the symbol

1 27 2

A7), = //iA Fpe")[* pdpdt

defines a norm of the finite difference of mth order for a function f € Bs.
A modulus of continuity of mth order of a function f € B, is defined in a standard way by
the identity

Wi (f, )2 := sup {{|AF(f)lly = [h] < 7} (1.5)
Applying formula (1.5 to function (1.2)), after simple calculations we obtain
0 2
W2 (7). 1)y = 2™ su a? Ml—cosk—rhm. 1.6
M= 3 o I~ ot =) (16)

In what follows we shall make use of the following lemma.
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Lemma 1.1 ([I3]). For alln € N, r € Z,, n > r, the identity
B, Im—r+1 1
sup 1(f()2) _n T+ (1.7)
fGBér) Enfrfl(f : )2 n+1 Qe

holds true. The supremum in is achieved on the function fy(z) = 2" € Lg).

The main result of this paper are the following theorems.

Theorem 1.1. For alln,m e N, r €Z,,n>r, 0< (n—r)h < 7/2 the identity

Oén,r'Enfl(f>2 . n—r—l—l{ n—r }TQH
sup - m — el — (18)
e (ol T T

0

holds true.

Proof. Without loss of generality we shall consider functions f € B,, the Taylor coefficients of
which satisfy the conditions c¢x(f) =0, k =0,1,...,n — 1, that is, we consider the functions of

form .
2)=> al(f)z* € By
k=n
For such functions we have
m m ’ m
AT ()5 =2 Z ; + 1 cos kt)™. (1.9)
Taking into consideration and (L.9)), we c0n51der the difference

B y(f)2 — i ’C]j(_{)f cos kt = i": ‘Clj(—ij—C)f (1 — coskt)

k=n =n

- Z (|C£+1 )1_’1 (%)m (1 — cos kt).

Applying the Hélder inequality for sums to the right hand side of the obtained relation with
p:=m/(m —1), ¢ :=1/m and taking into consideration identity (1.9)), we find:

= () (DY (S el )P 7
=2 i i< (S (S5 s

2 1_* m % 27% ]' %
= (Bra(f)2) ™5 ||A (D" < Bt (Fagws ()2
Thus, for each function f € B; the inequality
X er(f)]? 1 o2 2
o< 3R coskt + B (i (.0 (1.10)

holds true. Integrating both sides of inequality ((1.10)) in the variable ¢ from 0 to 7 and dividing
the result by 7, we get

2 Jex(f)|? sin kT -2 1 2
< S R e B g [ (111)

kT
0



ON MEAN-SQUARE APPROXIMATION OF FUNCTIONS 69

Using the identity [19]

sin nt T
= ) 0<nt< —,
nt 2

sin u

max
uz=nt

by inequality (1.11)) we obtain

u

nrt

(1 _sin ”) B (e <E T (flas / wit (f. D) dt,

and hence,

E.(f)2 < {Q(nT —nsin nr) }

If f € B{", then it follows from 1) that

L/ué(ﬁtbdt . (1.12)

w[3

B (f)2 < {2[(n - T)Tn_—s;(n —r)7] }

and applying the formula
1 n—r+1
En1(f)2 < —/ Enpa(f7
1(f)2 oV s 1)z

implied by identity (1.7), we obtain

1 /n—r+1 n—r A 2 )
Ena(f)2 < Q. n+1 {2[(n — )7 —sin(n — r)7] } /wm (77 1)z dt o (113)
0

where 0 < (n—r)7 < m/2. This inequality implies an estimate for the quantity in the left hand
side of identity (1.8):

nTEn— - 1 - %
sup U 1 (f)2 < In—r+ { nor } . (1.14)
ey [ 7 3 n+1 2[(n — r)T — sin(n — r)7]

w

In order to obtain a similar estimate from below for the mentioned quantity, we introduce the

function fy(z) = 2" € Bg), which by 1} and 1) satisfies

En—l(fo)z = \/n——i—l’ (1.15)
wfn(fér), t)y = 2m#¢i1(1 —cos(n —r)t)", (1.16)

and since

w[3

n—r

]wémﬁt) o, {ﬂm—ry—mmn—mﬂ} | 117)
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70
taking into consideration identities (1.15)) and (1.17)), we write a lower bound
n-1(f0)2

m

oy B
(1.18)

an,r : En—l(f)2
sup w =
™ (7T 2 2 T2
RN S
0
Qpr/Vn+1
i 5
T
< —.
2

0
]
%
0<(n—r)r <

a Qpp/vVn —1+1{2[(n —r)r —sin(n —r)7]/(n —1r)}
_ n—r+1 n—r
V on+1 2[(n —r)7 — sin(n — r)7] ’
Required identity (1.8]) is implied by comparing inequalities (|1.14]) and (1.18]) and this completes
the proof. O
Theorem 1.2. For alln,m e N, r € Z,, n>r, and 0 < h < 7/(n —r) the identity holds:
n—r-+1 1
— = . (L1.19
TV n+1l [(n—r)hm (1.19)

an,rEn—l(f)Z
h 2 2
m )2 dT}

sup
resy” { 2
7 0
Proof. We multiply both sides of (1.10) by 2, integrate then in the variable 7 from 0 to h and
h T
2
d :

21 b2 N
|1 — coskh v E m(f>2/ /w;;{(f,t)g N g

=
0 0

WE?_,
Replacing then 1/k? by 1/n? under the sum and integrating by parts in the double integral, we
h
/ -7 wm (f,T)2dr. (1.20)
0

wit (f0,h)a + (n—r)? [(h = 7)wii (f

we obtain the inequality

arrive at the inequality
2—
—coskh)+E, T (f

|k
2\7122: k:—l—l

R*E? |
By (1.10)) the above inequality becomes
h
(hPEE (e <l (£ + 0 [ (= 7y (£,7)
0
This yields
h El
2
Bues(f)a < (0h) ™ il (£, 0 [ (h = ) (.7
0
We write the latter inequality for the quantity E,_._1(f™), as follows:
h E)
B a5 < (=) S (PO (=) [ =7 (0 mar y 20
0
Using Lemma [1.1] and taking into consideration inequality (L.21)), we get
h
n—r+1 1 1 2 2
B (f)y < ) _ 2/h_ 0 1) d
e L L SO e+ (=7 [ (1) e
0

wl3
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which implies an upper bound for the quantity in the left hand side of identity (1.19):
an,rEn—l(f>2

2 h

0

n—r+1 1
S V. n+1 [(n—r)h]™

In order to obtain a similar lower bound, we observe that the above considered function fy(z) =

2" e Bg), apart of identities 1}1 , satisfies also the identity

sup

(1.22)

h Fl
it (5 o+ (=) [ (=i (7 e | = == rh". (129

0

Taking into consideration identities (1.15)) and (1.23)), we write the lower bound
an,rEn—l(f)Q

- {wn%(ﬂv-), R+ (0= 1)2 [ (h = 7Yt (£, )2 dT} |

0

Qp By
> rEnma(fo): - (1.24)

2 h 2 2
{w,’n"(fé’"), h)y+ (n—r)2 [(h— 1w (f7,7), dT}

0

_ /v + 1 N TS
o/ (Vn—r+1[(n—7r)hm) \/TH[( )h]™.

We obtain required identity (1.19) by comparing inequalities (1.22)) and (1.24). The proof is
complete. O

sup

2. VALUES OF n—WIDTHS FOR SOME CLASSES OF FUNCTIONS

Before exposing further results, we recall needed notions and definitions. Let S be the unit
ball in By, 97 be a convex central-symmetric subset in B,, £, C By be an n-dimensional
subspace, £" C By be a subspace of codimension n; A : By, — £, be a continuous linear
operator mapping the space By into £,, A+ : By — £, be a continuous operator of linear
projecting of the space Bs. The quantities

b, (9; By) = sup {sup{e >0:eSNL 1 CTM}: L,11 C B},

d,(9; By) = inf {sup {inf{||f — ¢l : o€ £,}: f €M} : £, C By},

0, (9; By) = inf {inf {sup {||f — Afll2: f €M} : ABy C £,}: £, C By},

d"(9; By) = inf {sup{||fll2: feMN L"} : £" C By},

I1,,(9M; By) = inf {inf {sup{”f —Afla: f e Dﬁ} cATB, C Sn} L, C BQ}
are respectively called Bernstein, Kolmogorov, linear, Gelfand, projection n—widths of a subset
M € Bs.

Since the Bergman space By is Hilbert, by the general theory of n—widths, see, for instance,
[18] ,[3], the introduced n—widths satisfy the relations

b (; By) < d™(M; By) < dp(IM; By) = 6,(M; By) = I1,,(M; By). (2.1)

We are going to introduce classes of functions, for which we shall find exact values of the
aforementioned n-widths.
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Let ®(u) be an arbitrary continuous increasing as v > 0 function such that ®(u) = 0. In

view of the result of Theorem by Wi )(<I>) we denote the class of functions f € Bér), which

satisfy the condition
t
2

/w;ﬁ(f(r),T)ng < O(1)
0
foralln,me N, reZ,, n>randt>0. FormeIN,reZ, and h > 0 we also let

(r) o [
Wby i= 4 £ € B s |wlf (70 + (=0 [ wlf (50 mdr| <1
0
For a subset 9 C By we let

En1(M)y := sup{En_1(f) : f € M}

Theorem 2.1. If the majorant ®(t) satisfies the conditions

(n—r)t—sin(n—r)t if 0<t< T :
m

o(t) 2

(/210”72 ) o — )t —x it

(2.2)

n—r’
foralln e N, r € Z,, n>r andt >0, then the identities

A (WD(®), By) = E,_y (WD (®)) = aim,/” T_h:r ! {: - 2@ (Q(RW_ T)) }g (2.3)

hold true for al n € IN. The set of majorants ® obeying s non—empty.
Proof. Letting 7 = w/2(n — r) in inequality (1.13), we obtain

w/2(n—r) Fl

1 n—r+1)n—r 2
E,_ < () ) odt
e et e B AVAON

0

For an arbitrary function f € W (®) this implies

rehs o (2 ()| @

Then by inequalities (2.1)) we obtain an upper bound for all aforementioned n—widths

1 /n—r+1|n-r il i
A (W@, Ba) < Eny (W2(®), < /=5 722 (a9 =

In order to obtain lower bound for the mentioned n—widths, in the set P, N By we consider

the ball
1 n—r+1((n—r T 3
S?’L == n n: mn < @
" {pu>ep I < e =5 (g ) | }

and we are going to show that it belongs to the class qu)(@). In order to do this, we shall
need the following inequality:

- m n+1
wi (P, 7)2 < 2 e |

(1 —cos(n —)7)7 [|palls (2.6)

where )
—cosu)™ if O<u<m,
2m if uw>m.

(1 —cosu) := {(1 (2.7)
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In order to prove (2.6)), we employ identity (1.6). We have:

n 2
w2 (P, 7)g 1= 2™ sup ir—|ck(pn)’ (1 —cos(k —r)h)™
|h|<7—k=r+1 k—
d 41 Joa(pa)l
= 2™ sup Z oz (1 —cos(k —r)h)™
hisr Sy R L k4L (2.8)
E+1 " er(pn)]?
< om 2 _vr- - . m =R\l
k+1
. 2 - . . m 2
=2 max a2, (1 = cos(n — )T .
Let us show that "
9 +1 s n+1
L 2.9
r%?gzak’rk—r—l—l a’”n—r%—l (2.9)
Since a function of a natural variable
k+1 s k+1
k) =0, ————=[k(k—=1)---(k—r+2)(k—r+1) ——
y(h) =0 s = (h(h = 1) (= 7+ 2) (b= o+ D

=[k(k—1)--(k—r+2)* (k—r+1)(k+1)
is increasing for all k& € [r,n], then max,<x<, y(k) = y(n) and this proves identity (2.9). Em-

ploying (2.9), by (2.8) we obtain inequality (2.6]).

Let 0 < ¢t < 7/(n —r). By the definition of the class W) (®), the first of conditions (2.2
and relations (2.7)), for each p,, € S,+1 we obtain

o /t(l —cos(n —r)7)dr

t 1
n+1 m 2
/ '"(Pna T)2 d7<2( TTJFJ 1Pnll3
0

2 «n—ﬂﬁwmm—TWQ(ﬂlL—)<®@.

T —2 n—r)

Let t > w/(n—r). In this case similar arguing in view of (2.6)), (2.7) and the second inequality
from (2.2) show that for each p, € S, we have

(2.10)

<

t m/(n—r) t
2
JureRna=| [+ [ |eiednar
0 0 7/(n—r) (2.11)
2 T
— _ N )
< 7T_2[2(n r)t —w|® <2(n—r)> < D(t)

Inequalities (]2.10b and (|2.11b yield S,41 C WT(,:’)(CD) Using relations 1. for the aforemen-
tioned n—widths and the definition of Bernstein n—width, we write lower bounds:

Ao (WSH(@), Ba) 2 by (WS(®), By) = by(Sns1, Be)

S 1 n—r-+1 n—r(b s 3 (2.12)
T,V o n+1l |[7—2 \2(n-r) '

Comparing upper bounds (2.5) and lower bounds (2.12)), we obtain required identity (2.3).
We note that condition (2.2)) for m = 1 first appeared in calculation of the exact value of

Kolmogorov n—width for the classes W' (®) of periodic function in the space Ly = L0, 27]
in work [19] by L.V. Taikov. It was proven in the same work that the function ®(t) = t=2
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satisfies condition 1} for m = 1. This implies immediately that in our case ®(t) = t72 obeys
condition (2.2 for each m € IN and this completes the proof. O

Theorem 2.2. Letm,n € N, r € Z,, n > r. Then for each0 < h < 7/(n—r) the identities
—r+1 1 1
A (WD(R), By) = By oy (WD () = ) — 2.13
( m()? 2) 1( m()) n+1 an,r[(n—r)h]m ( )
hold true.

Proof. An upper bound for the class Wi )(h) is implied by inequality 1)

b (W00, 52) < By (W) <\ s e )

In order to obtain a similar lower bound for the aforementioned n—widths, in the set of the
complex polynomials P,, we introduce (n + 1)-dimensional ball

n—r-+11 1
= pa(2) € Po: Ipull <
Ont1 {p (2) € P - Ipall \/Tﬂam [(n — 7“>h]m}

and we are going to show that it belongs to the class W,(,f)(h). Taking into consideration the
definition of the class and using inequality (2.6)) for 0 < h < w/(n —r), we get
h

2 ) 2
Wit (00 h) + (n — 1) / (h — t)win (o), 1)t

0
1

n+1
< {2 (ai p.| )

[1=cos(n—r)t+(n—r) /h 1—cos(n—7“))dt]}

m‘g

_ 2(1 — cos(n —r)h) + 2(n — r)Q/h (t — M) dt

[(n —r)h]™ n—r
1 m o __
= W[(n—r)h] =1.

This proves that 0,41 C Wi )(h) and according to the definition of Bernstein n—width and
relation (2.1)) we write a lower bound

111 1
)(R). By) > (") (h). By) > By) > /21— + . (21
/\n (Wm (h)> 2) bn (Wm (h)a 2) bn(an-‘rb 2) n+1 Q. [(TL _ T)h]m ( 5)

Inequalities (2.14) and (2.15) imply identities (2.13)) and this completes the proof. O
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