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GEOMETRY OF SUB–RIEMANNIAN MANIFOLDS

EQUIPPED WITH A SEMIMETRIC

QUARTER–SYMMETRIC CONNECTION

A.V. BUKUSHEVA, S.V. GALAEV

Abstract. On a sub–Riemannian manifold we introduce a semimetric quarter–symmetric
connection by defining intrinsic metric connection and two structural endomorphisms pre-
serving the distribution on a sub–Riemannian manifold. We find conditions ensuring the
metric property of the introduced connection. We clarify the nature of the structural endo-
morphisms of semimetric connection consistent with a sub–Riemannian quasi–static struc-
ture defined on non-holonomic Kenmotsu manifold and on almost quasi–Sasakian manifold.
We find conditions, under which the mentioned manifolds are Einstein manifolds with re-
spect to the quarter–symmetric connection.
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1. Introduction

A lot of works was devoted to studying almost contract metric manifolds equipped with a
metric connection with a torsion, in particular, with metric quarter–symmetric connections, see
[1], [4], [5], [7]–[11], [23]. E. Cartan was first who considered a linear metric connection with a
torsion together with the Levi–Civita connection [13]. The most interest among the connections
with a torsion is attracted by a semi–symmetric connection [7], [9], [10], a thorough study of
which was carried out by K. Yano in work [22]. A quarter–symmetric connection was defined
by S. Golab in 1975 [19].
An interest of researches to the connections with a torsion is mostly motivated by the employ-

ing of such connections in theoretical physics [14], [16], [20]. In work [5] it was pointed out that
the most of studied connections with a torsion can be described by means of endomorphisms
preserving the distributions on almost contact metric manifolds.
In the present work, on a sub–Riemannian manifold of a contact type 𝑀 , we consider a

semi–metric quarter–symmetric connection 𝐷𝑋 , which is associated with a triple (∇, 𝑁, 𝑆),
where ∇ is an intrinsic metric connection, while 𝑁 and 𝑆 are endomorphisms preserving the
distribution 𝐷. In what follows we usually omit the term “semi–metric”.
The notion of a contact sub–Riemannian manifold is employed in work [15]. A contact

sub–Riemannian manifold is a smooth manifold 𝑀 of an odd dimension 𝑛 = 2𝑚 + 1 with a
defined on it maximal non–integrable distribution 𝐷 of codimension 1. On the distribution
𝐷 a positive definite metric is given, which defines the scalar product only for the vectors of
the distribution. Let 𝜂 be a differential 1–form generating the distribution 𝐷 : ker(𝜂) = 𝐷.

Then by means the identities 𝜂(𝜉) = 1, 𝑖𝜉𝜔 = 0 on the manifold 𝑀 we define a unique vector
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distribution 𝜉, which is transversal to the distribution 𝐷. Here 𝜔 = 𝑑𝜂 is a differential 2–form
of rank 2𝑚. Then the manifold 𝑀 naturally becomes a Riemannian manifold once we suppose
that 𝜉 is a unit vector field, which is orthogonal to the distribution 𝐷 with respect to the
metric of the manifold 𝑀 . In the present work we consider a more general notion than the
contact sub–Riemannian manifold. We study sub–Riemannian manifolds of a contact type.
The manifold 𝑀 is initially assumed to be Riemannian, the existence of the vector field 𝜉 is
postulated, while the distribution 𝐷 can have an arbitrary degree of integrability, in particular,
it can be involutive. The idea of generalization of the notion of the contact sub–Riemannian
manifold used in work [15] is motivated by the need of using a wide class of almost contact
metric structures appearing in specifying the sub–Riemannian structure. The structures of
non–holonomic Kenmotsu manifold and of quasi–Sasakian manifolds, which are employed in
the present work, are obtained from the structure of the sub–Riemannian manifold of contact
type by introducing a special structural endomorphism.
The quarter–symmetric connection 𝐷𝑋 , which is studied in this work, is expressed via Levi–

Civita connection ∇̃ by means of the following identity

𝐷𝑋𝑌 = ∇̃𝑋𝑌 + 𝐶(𝑋, 𝑌 )𝜉 + 𝜂(𝑋)(𝑁 − 𝐶 − 𝜓)𝑌 + 𝜂(𝑌 )(𝑆 − 𝐶 − 𝜓)𝑋.

Here an endomorphism 𝜓 : 𝑇𝑀 → 𝑇𝑀 is defined by the identity 𝜔(𝑋, 𝑌 ) = 𝑔(𝜓𝑋, 𝑌 ), while
𝑁, 𝑆 : 𝑇𝑀 → 𝑇𝑀 are endomorphisms of the tangent bundle of the manifold 𝑀 such that

𝑁𝜉 = 0⃗, 𝑁(𝐷) ⊂ 𝐷, 𝑆𝜉 = 0⃗, 𝑆(𝐷) ⊂ 𝐷.

The following relations also hold true:

𝐶(𝑋, 𝑌 ) =
1

2
(𝐿𝜉𝑔)(𝑋, 𝑌 ), 𝑔(𝐶𝑋, 𝑌 ) = 𝐶(𝑋, 𝑌 ).

Such definition of the connection 𝐷𝑋 is a very perspective generalization of the connection,
which is traditionally defined in an almost contact manifold by the identity

𝐷𝑋𝑌 = ∇̃𝑋𝑌 − 𝜂(𝑋)𝜑𝑌.

The torsion 𝑇 (𝑋, 𝑌 ) of the defined connection 𝐷𝑋 reads as

𝑇 (𝑋, 𝑌 ) = 𝜂(𝑋)𝑁̃𝑌 − 𝜂(𝑌 )𝑁̃𝑋.

Here 𝑁̃ = 𝑁 − 𝑆.
The work consists of four sections. In each section we determine the nature of the struc-

tural endomorphisms 𝑁 and 𝑆 in view of the features of the studied structure, the Riemannian
structure, sub–Riemannian quasi–static structure, the nature of the non–holonomic Kenmotsu
manifold and the nature of the almost quasi–Sasakian manifold. We find the conditions ensuring
the metricity of the introduced connection. We find out the nature of the structural endomor-
phisms of semi–metric connection consistent with the sub–Riemannian quasi–static structure.
We study the properties of the semi–metric connection defined on the non–holonomic Ken-
motsu manifold and on almost quasi–Sasakian manifold. We find conditions, under which the
mentioned manifolds are Einstein ones with respect to the quarter–symmetric connection.
We note that the notion of the structures of the quasi–static manifold, of non–holonomic

Kenmotsu manifold and of almost quasi–Sasakian manifold were introduced by the authors of
the present work, see [1], [3], [6].

2. Defining quarter–symmetric connection

on sub–Riemannian manifolds of contact type

Let 𝑀 be a Riemannina manifold of an odd dimension 𝑛 = 2𝑚 + 1 with a given on it sub–
Riemannian structure (𝜉, 𝜂, 𝑔,𝐷) of contact type, where 𝑔 is a metric tensor defined on the
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manifold 𝑀, while 𝜂 and 𝜉 are 1–form and unit vector field generating respectively mutually
orthogonal distributions 𝐷 and 𝐷⊥ :

ker(𝜂) = 𝐷, 𝐷⊥ = ⟨𝜉⟩.

We postulate that

𝜔(𝜉, · ) = 𝑑𝜂(𝜉, · ) = 0, rk(𝜔) ⩾ 2.

In what follows we call 𝑀 a sub–Riemannian manifold.
Throughout the paper we actively use adapted coordinates. A chart 𝑘(𝑥𝑖), 𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛,

𝑎, 𝑏, 𝑐 = 1, . . . , 2𝑚, of the manifold 𝑀 is called adapted to the distribution 𝐷 if 𝜕𝑛 = 𝜉. Here(︀
𝜕

𝜕𝑥1 , . . . ,
𝜕

𝜕𝑥𝑛

)︀
= (𝜕1, . . . , 𝜕𝑛) is the field of the frames defined by the adapted chart.

Let 𝑃 : 𝑇𝑀 → 𝐷 be the projection defined by the expansion 𝑇𝑀 = 𝐷 ⊕ 𝐷⊥ and 𝑘(𝑥𝑖)
be an adapted chart. The vector fields 𝑃 (𝜕𝑎) = 𝑒⃗𝑎 = 𝜕𝑎 − Γ𝑛

𝑎𝜕𝑛 are linearly independent at
each point and in the domain of the corresponding chart they generate a distribution 𝐷, which
reads 𝐷 = Span(𝑒⃗𝑎). With a non–holonomic field of bases (𝑒⃗𝑖) = (𝑒⃗𝑎, 𝜕𝑛) we associate a field of
cobases (𝑑𝑥𝑎, 𝜂 = 𝜃𝑛 = 𝑑𝑥𝑛 + Γ𝑛

𝑎𝑑𝑥
𝑎).

For adapted charts 𝑘(𝑥𝑖) and 𝑘′(𝑥𝑖
′
) the following coordinate transform formulas hold: 𝑥𝑎 =

𝑥𝑎(𝑥𝑎
′
), 𝑥𝑛 = 𝑥𝑛

′
+ 𝑥𝑛(𝑥𝑎

′
).

A tensor field 𝑡 of type (𝑝, 𝑞) defined on a sub–Riemannian manifold is called admissible (to

the distribution 𝐷) or transversal if 𝑡 vanishes as soon as 𝜉 or 𝜂 is among its variables. A
coordinate representation of an admissible tensor field in an adapted chart reads as

𝑡 = 𝑡
𝑎1...𝑎𝑝
𝑏1...𝑏𝑞

𝑒⃗𝑎1 ⊗ . . .⊗ 𝑒⃗𝑎𝑝 ⊗ 𝑑𝑥𝑏1 ⊗ . . .⊗ 𝑑𝑥𝑏𝑞 .

The transformation of the entries of an admissible tensor field in the adapted coordinates

follows the law 𝑡𝑎𝑏 = 𝐴𝑎
𝑎′𝐴

𝑏′

𝑏 𝑡
𝑎′

𝑏′ , where 𝐴
𝑎′
𝑎 = 𝜕𝑥𝑎′

𝜕𝑥𝑎 .
The transformation formulas for the entries of admissible field yield that the derivatives 𝜕𝑛𝑡

𝑎
𝑏

are the entries of an admissible tensor field of the same type. We observe that vanishing of the
derivatives 𝜕𝑛𝑡

𝑎
𝑏 is independent of the choice of the adapted coordinates.

The adapted coordinates play a role of holonomic coordinates for a non–involutive distribu-
tion. The identity [𝑒⃗𝑎, 𝑒⃗𝑏] = 2𝜔𝑏𝑎𝜉 holds true. In particular, this implies a statement, which

is important for further consideration: the condition 𝑑𝜂(𝜉, · ) = 0 is equivalent to the identity
𝜕𝑛Γ

𝑛
𝑎 = 0.

An intrinsic linear connection ∇ [17], [18] on sub–Riemannian manifold is a mapping ∇ :
Γ(𝐷)× Γ(𝐷) −→ Γ(𝐷) obeying the following conditions:

1) ∇𝑓1𝑋+𝑓2𝑌 = 𝑓1∇𝑋 + 𝑓2∇𝑌 ,
2) ∇𝑋𝑓𝑌 = (𝑋𝑓)𝑌 + 𝑓∇𝑋𝑌,
3) ∇𝑋(𝑌 + 𝑍) = ∇𝑋𝑌 +∇𝑋𝑍,

where Γ(𝐷) is the module of admissible vector fields, which are vector fields belonging to the
distribution 𝐷 at each point.
The coefficients of intrinsic linear connection are determined by the relation ∇𝑒⃗𝑎 𝑒⃗𝑏 = Γ𝑐

𝑎𝑏𝑒⃗𝑐.

The identity 𝑒⃗𝑎 = 𝐴𝑎′
𝑎 𝑒⃗𝑎′ , where 𝐴

𝑎′
𝑎 = 𝜕𝑥𝑎′

𝜕𝑥𝑎 , implies in a usual way a formula for transforming
the coefficients of the intrinsic connection:

Γ𝑐
𝑎𝑏 = 𝐴𝑎′

𝑎 𝐴
𝑏′

𝑏 𝐴
𝑐
𝑐′Γ

𝑐′

𝑎′𝑏′ + 𝐴𝑐
𝑐′ 𝑒⃗𝑎𝐴

𝑐′

𝑏 .

In particular this implies that the derivatives 𝜕𝑛Γ
𝑑
𝑎𝑐 are the components of an admissible tensor

field.
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A torsion and a curvature of the intrinsic connection are respectively admissible tensor fields

𝑇 (𝑋, 𝑌 ) = ∇𝑋𝑌 −∇𝑌𝑋 − 𝑃 [𝑋, 𝑌 ],

𝑅(𝑋, 𝑌 )𝑍 = ∇𝑋∇𝑌𝑍 −∇𝑌∇𝑋𝑍 −∇𝑃 [𝑋,𝑌 ]𝑍 − 𝑃 [𝑄[𝑋, 𝑌 ], 𝑍],

where 𝑄 = 𝐼 − 𝑃, 𝑋, 𝑌, 𝑍 ∈ Γ(𝐷).
The tensor 𝑅(𝑋, 𝑌 )𝑍 is called a Schouten curvature tensor of a sub–Riemannian manifold.

The entries of the Schouten curvature tensor in the adapted coordinates are determined by the
identity

𝑅𝑑
𝑎𝑏𝑐 = 2𝑒⃗[𝑎Γ

𝑑
𝑏]𝑐 + 2Γ𝑑

[𝑎|𝑒|Γ
𝑒
𝑏]𝑐.

The following proposition holds true.

Proposition 2.1. On a sub–Riemannian manifold there exists a unique connection ∇ with

zero torsion such that ∇𝑋𝑔(𝑌, 𝑍) = 0, 𝑋, 𝑌, 𝑍 ∈ Γ(𝐷).

The proof of the above proposition almost literally reproduces the proof of existence and
uniqueness theorem for the Levi–Civita connection.
We call the connection ∇ an intrinsic metric connection. The coefficients of the intrinsic

metric connection are given by the formulas

Γ𝑎
𝑏𝑐 =

1

2
𝑔𝑎𝑑(𝑒⃗𝑏𝑔𝑐𝑑 + 𝑒⃗𝑐𝑔𝑏𝑑 − 𝑒⃗𝑑𝑔𝑏𝑐).

Let ∇̃ be a Levi–Civita connection.

Proposition 2.2. The coefficients Γ̃𝑘
𝑖𝑗 of the Levi–Civita connection ∇̃ of a sub–Riemannian

manifold in the adapted coordinates read as

Γ̃𝑐
𝑎𝑏 = Γ𝑐

𝑎𝑏, Γ̃𝑛
𝑎𝑏 = 𝜔𝑏𝑎−𝐶𝑎𝑏, Γ̃𝑏

𝑎𝑛 = Γ̃𝑏
𝑛𝑎 = 𝐶𝑏

𝑎+𝜓
𝑏
𝑎, Γ̃𝑛

𝑛𝑎 = −𝜕𝑛Γ𝑛
𝑎 , Γ̃𝑎

𝑛𝑛 = 𝑔𝑎𝑏𝜕𝑛Γ
𝑛
𝑏 ,

where

Γ𝑎
𝑏𝑐 =

1

2
𝑔𝑎𝑑(𝑒⃗𝑏𝑔𝑐𝑑 + 𝑒⃗𝑐𝑔𝑏𝑑 − 𝑒⃗𝑑𝑔𝑏𝑐), 𝜓𝑏

𝑎 = 𝑔𝑏𝑐𝜔𝑎𝑐, 𝐶𝑎𝑏 =
1

2
𝜕𝑛𝑔𝑎𝑏, 𝐶𝑏

𝑎 = 𝑔𝑏𝑐𝐶𝑎𝑐.

Proof. We recall that the endomorphism 𝜓 : 𝑇𝑀 → 𝑇𝑀 is determined by the identity
𝜔(𝑋, 𝑌 ) = 𝑔(𝜓𝑋, 𝑌 ). Moreover, the following relations hold:

𝐶(𝑋, 𝑌 ) =
1

2
(𝐿𝜉𝑔)(𝑋, 𝑌 ), 𝑔(𝐶𝑋, 𝑌 ) = 𝐶(𝑋, 𝑌 ).

The proof is reduced to applying a known formula for the coefficients of the Levi–Civita con-
nection in a non–holonomic frame (𝐴𝑖) :

2Γ𝑚
𝑖𝑗 = 𝑔𝑘𝑚(𝐴𝑖𝑔𝑗𝑘 + 𝐴𝑗𝑔𝑖𝑘 − 𝐴𝑘𝑔𝑖𝑗 + Ω𝑙

𝑘𝑗𝑔𝑙𝑖 + Ω𝑙
𝑘𝑖𝑔𝑙𝑗) + Ω𝑚

𝑖𝑗 .

The object Ω𝑚
𝑖𝑗 is called nonholonomity object of the frame (𝐴𝑖). The field of the frames

(𝑒⃗𝑖) = (𝑒⃗𝑎, 𝜕𝑛), which is used in this work, satisfies the identity Ω𝑛
𝑎𝑏 = 2𝜔𝑏𝑎.

Remark 2.1. The coefficients Γ̃𝑘
𝑖𝑗 become simpler if we adopt the condition 𝑑𝜂(𝜉,𝑋) = 0. In

this case Γ̃𝑛
𝑛𝑎 = −𝜕𝑛Γ𝑛

𝑎 = 0 and Γ̃𝑎
𝑛𝑛 = 𝑔𝑎𝑏𝜕𝑛Γ

𝑛
𝑏 = 0.

The intrinsic connection provides a parallel transport of admissible vectors (the vectors, which
belong to the distribution 𝐷) along admissible curves (the curves, which touch the distribution
𝐷 at each point). At the same time, in order to solve a series of problem, there appears a
need to extend the intrinsic connection to a connection on the entire manifold. Sometimes it
is sufficient to have an intermediate construction, a connection in the vector bundle (𝑀,𝜋,𝐷).
There exist various ways of continuing the intrinsic connection. In papers [1], [4]–[6], [12],
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[17], [18] a so–called 𝑁–connection ∇𝑁 is discussed. On a sub–Riemannian manifold 𝑀 the
𝑁–connection ∇𝑁 is defined by a pair (∇, 𝑁), where ∇ is the intrinsic metric connection,
𝑁 : 𝑇𝑀 → 𝑇𝑀 is the endomorphism of the tangent bundle of the manifold 𝑀 such that
𝑁𝜉 = 0⃗, 𝑁(𝐷) ⊂ 𝐷.
We define a semi–metric quarter–symmetric connection 𝐷𝑋 on a sub–Riemannian manifold

by the following identity:

𝐷𝑋𝑌 = ∇̃𝑋𝑌 + 𝐶(𝑋, 𝑌 )𝜉 + 𝜂(𝑋)(𝑁 − 𝐶 − 𝜓)𝑌 + 𝜂(𝑌 )(𝑆 − 𝐶 − 𝜓)𝑋,

where the endomorphism 𝜓 : 𝑇𝑀 → 𝑇𝑀 is defined by the identity 𝜔(𝑋, 𝑌 ) = 𝑔(𝜓𝑋, 𝑌 ), while
𝑁, 𝑆 : 𝑇𝑀 → 𝑇𝑀 are the endomorphisms of the tangent bundle of the manifold 𝑀 such that
𝑁𝜉 = 0⃗, 𝑁(𝐷) ⊂ 𝐷, 𝑆𝜉 = 0⃗, 𝑆(𝐷) ⊂ 𝐷.
It follows from the definition of the quarter–symmetric connection 𝐷𝑋 that its torsion

𝑇 (𝑋, 𝑌 ) is given by the identity

𝑇 (𝑋, 𝑌 ) = 𝜂(𝑋)𝑁̃𝑌 − 𝜂(𝑌 )𝑁̃𝑋.

Here 𝑁̃ = 𝑁 − 𝑆.
The following proposition holds true.

Proposition 2.3. Nonzero coefficients 𝐺𝑘
𝑖𝑗 of the connection 𝐷𝑋 of a sub–Riemannian man-

ifold in the adapted coordinates read as

𝐺𝑐
𝑎𝑏 = Γ̃𝑐

𝑎𝑏, 𝐺𝑛
𝑎𝑏 = 𝜔𝑏𝑎, 𝐺𝑏

𝑛𝑎 = 𝑁 𝑏
𝑎, 𝐺𝑏

𝑎𝑛 = 𝑆𝑏
𝑎.

In order to prove the proposition it is sufficient to substitute the corresponding basis vectors
into the formula for the quarter–symmetric connection 𝐷𝑋 . For instance, if 𝑋 = 𝑒𝑎, 𝑌 = 𝑒⃗𝑏,
then we get

𝐺𝑐
𝑎𝑏𝑒⃗𝑐 +𝐺𝑛

𝑎𝑏𝜕𝑛 = Γ̃𝑐
𝑎𝑏𝑒⃗𝑐 + Γ̃𝑛

𝑎𝑏𝜕𝑛 + 𝐶𝑎𝑏𝜕𝑛.

In view of Proposition 2 we obtain 𝐺𝑐
𝑎𝑏 = Γ̃𝑐

𝑎𝑏, 𝐺
𝑛
𝑎𝑏 = 𝜔𝑏𝑎.

We are going to find out under which restrictions for the endomorphisms 𝑁, 𝑆 the connection
𝐷𝑋 is a metric one. It is straightforward to confirm that if 𝑁 = 𝐶, then 𝐷𝑛𝑔𝑎𝑏 = 0. We then
have

𝐷𝑎𝑔𝑛𝑏 = −𝐺𝑐
𝑎𝑛𝑔𝑐𝑏 −𝐺𝑛

𝑎𝑏 = −𝑆𝑐
𝑎𝑔𝑐𝑏 − 𝜔𝑏𝑎 = 0.

This implies 𝑆 = 𝜓.

Proposition 2.4. The quarter–symmetric connection 𝐷𝑋 associated with the triple

(∇, 𝐶, 𝑆) is a metric connection if and only if 𝑆 = 𝜓.

Remark 2.2. Here we consider the case 𝑁 = 𝐶 due to the reason that exactly in this case

we succeed to obtain a metric connection, which is an independent important fact.

3. Sub–Riemannian quasi–static manifolds equipped with the semi–metric

quarter–symmetric connection

In work [3], on a non–holonomic Kenmotsu manifold, a sub–Riemannian quasi–static struc-
ture was introduced and studied. Non–holonomic Kenmotsu manifolds form a special class
of sub–Riemannian manifolds of contact type. The case of the sub–Riemannian quasi–static
structure defined on a non–holonomic Kenmotsu manifold is a connection with a torsion of
a spectial nature. Such connection is defined by an intrinsic connection and a structural en-
domorphism, which preserves the distributions on the non–holonomic Kenmotsu manifold. It
was shown in work [3] that the intrinsic connection is consistent with the metric induced on
the distribution on the considered manifold. The nature of the structural endomorphism was
found.
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A triplet (𝑀, 𝑔,∇) is called a sub–Riemannian quasi–static structure [3] if the identity

𝛷(𝑋, 𝑌, 𝑍) = ∇𝑋𝑔(𝑌, 𝑍)−∇𝑌 𝑔(𝑋,𝑍) + 𝑇 (𝑋, 𝑌, 𝑍)− 2𝜔(𝑋, 𝑌 )𝜂(𝑍) = 0

holds, where 𝑇 (𝑋, 𝑌, 𝑍) = 𝑔(𝑇 (𝑋, 𝑌 ), 𝑍), 𝑋, 𝑌, 𝑍 ∈ Γ(𝑇𝑀). In the adapted coordinates the
non–zero entries of the tensor 𝑇 (𝑋, 𝑌, 𝑍) read as

𝑇 (𝑒⃗𝑎, 𝑒⃗𝑏, 𝜕𝑛) = 0,

𝑇 (𝑒⃗𝑎, 𝜕𝑛, 𝑒⃗𝑏) = −𝑔(𝑁̃ 𝑒⃗𝑎, 𝑒⃗𝑏),
𝑇 (𝜕𝑛, 𝑒⃗𝑎, 𝑒⃗𝑏) = 𝑔(𝑁̃ 𝑒⃗𝑎, 𝑒⃗𝑏).

Theorem 3.1. A quarter–symmetric connection is a connection of a sub–Riemannian quasi–

static structure if and only if the identities 𝑁 = 2𝐶 + 𝜓, 𝑔(𝑆𝑋, 𝑌 ) = 𝑔(𝑋,𝑆𝑌 ) hold true.

The proof of the theorem is reduced to checking the equivalence of the identity 𝑔(𝑆𝑋, 𝑌 ) =
𝑔(𝑋,𝑆𝑌 ) to the identity 𝛷(𝑒⃗𝑎, 𝑒⃗𝑏, 𝜕𝑛) = 0 as well as to the equivalence of the identities
𝛷(𝑒⃗𝑎, 𝜕𝑛, 𝑒⃗𝑏) = 0 and 𝑁 = 2𝐶 + 𝜓.
As an example we consider the case Φ(𝑒⃗𝑎, 𝜕𝑛, 𝑒⃗𝑏) = 0. Taking into consideration Proposi-

tion 2.3 and the expression for Φ(𝑋, 𝑌, 𝑍), we have:

Φ(𝑒⃗𝑎, 𝜕𝑛, 𝑒⃗𝑏) = ∇𝑎𝑔𝑛𝑏 −∇𝑛𝑔𝑎𝑏 − 𝑔𝑐𝑏𝑁̃
𝑐
𝑎 = −𝑆𝑐

𝑎𝑔𝑐𝑏 − 𝜔𝑏𝑎 − 𝜕𝑛𝑔𝑎𝑏 +𝑁 𝑐
𝑎𝑔𝑐𝑏 +𝑁 𝑐

𝑏 𝑔𝑐𝑎 − 𝑔𝑐𝑏𝑁̃
𝑐
𝑎 = 0.

Taking into consideration the identities

𝜓𝑏
𝑎 = 𝑔𝑏𝑐𝜔𝑎𝑐, 𝐶𝑎𝑏 =

1

2
𝜕𝑛𝑔𝑎𝑏, 𝐶𝑏

𝑎 = 𝑔𝑏𝑐𝐶𝑎𝑐,

we confirm that the theorem is true.

4. Non–holonomic Kenmotsu manifolds equipped

with semi–metric quarter–symmetric connection

A normal almost contact metric manifold 𝑀 is called a non–holonomic Kenmotsu manifold
if the identity 𝑑Ω = 2𝜂 ∧Ω holds true. It is easy to show that the manifold 𝑀 also satisfies the
condition 𝐿𝜉𝑔 = 2(𝑔 − 𝜂 ⊗ 𝜂). A non–holonomic Kenmotsu manifold was introduced by one of

the authors of the present work [1]. In contrast to the classical case of the Kenmotsu manifold
[2], [21], the distribution on a non–holonomic Kenmotsu manifold is not supposed to possess
involutive property.
The intrinsic geometry of a non–holonomic Kenmotsu manifold 𝑀 possesses a series of won-

derful properties [1]. Earlier it was established that the Schouten–Wagner tensor field vanishes:
𝑃 = 𝐿𝜉Γ = 0 [1]. The entries of the Schouten–Wagner field in the adapted coordinates are
expressed by the identities 𝑃 𝑐

𝑎𝑑 = 𝜕𝑛Γ
𝑐
𝑎𝑑.

We consider the case when the quarter–symmetric connection 𝐷𝑋 is associated with the
triple (∇, 𝐶, 𝜓). As it was shown in Proposition 2.4, in this case the connection 𝐷𝑋 is metric
one.
The non–zero coefficients 𝐺𝑘

𝑖𝑗 of the connection 𝐷𝑋 of a non–holonomic Kenmotsu manifold
in the adapted coordinates read as

𝐺𝑐
𝑎𝑏 = Γ̃𝑐

𝑎𝑏, 𝐺𝑛
𝑎𝑏 = 𝜔𝑏𝑎, 𝐺𝑏

𝑛𝑎 = 𝛿𝑏𝑎, 𝐺𝑏
𝑎𝑛 = 𝜓𝑏

𝑎.

Let us calculate the further needed entries of the curvature tensor 𝐾 of the connection 𝐷𝑋 .We
have

𝐾𝑑
𝑎𝑏𝑐 = 𝑅𝑑

𝑎𝑏𝑐 − 𝜓𝑑
𝑏𝜔𝑐𝑎 + 𝜓𝑑

𝑎𝜔𝑐𝑏 + 2𝜔𝑎𝑏𝛿
𝑑
𝑐 , 𝐾𝑛

𝑎𝑛𝑏 = 𝜔𝑏𝑎.

Let 𝑘(𝑋, 𝑌 ) be the Ricci tensor associated with the tensor 𝐾(𝑋, 𝑌 )𝑍. We have the identity

𝑘𝑎𝑐 = 𝑟𝑎𝑐 + 𝜓𝑏
𝑎𝜔𝑐𝑏 + 𝜔𝑎𝑐,
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where 𝑟𝑎𝑐 are the entries of the Schouten–Ricci tensor 𝑟(𝑋,𝑍) = tr(𝑌 → 𝑅(𝑋, 𝑌 )𝑍), 𝑋, 𝑌, 𝑍 ∈
Γ(𝐷) [1].

Proposition 4.1. For a non–holonomic Kenmotsu manifold of dimension 𝑛 = 2𝑚 + 1 the

following identity holds: 𝑟[𝑎𝑐] = 2𝑚𝜔𝑐𝑎.

Proof. The proof is based on the following identity [1]:

∇[𝑒∇𝑎]𝑔𝑏𝑐 = 2𝜔𝑒𝑎𝜕𝑛𝑔𝑏𝑐 − 𝑔𝑑𝑐𝑅
𝑑
𝑒𝑎𝑏 − 𝑔𝑏𝑑𝑅

𝑑
𝑒𝑎𝑐.

In the case of the non–holonomic Kenmotus manifold this identity is rewritten as

0 = 4𝜔𝑒𝑎𝑔𝑏𝑐 − 𝑔𝑑𝑐𝑅
𝑑
𝑒𝑎𝑏 − 𝑔𝑏𝑑𝑅

𝑑
𝑒𝑎𝑐.

Applying necessary transformations and using the algebraic Bianchi identity for the Schouten
curvature tensor, we arrive at the identity

2𝑚𝜔𝑐𝑎 =
1

2
(𝑟𝑎𝑐 − 𝑟𝑐𝑎).

The proof is complete.

Theorem 4.1. If a non–holonomic Kenmotsu manifold 𝑀 is an Einstein manifold with

respect to the quariter–symmetric connection 𝐷𝑋 , then its dimension is equal to three.

Proof. Let 𝑀 be an Einstein manifold with respect to the quarter–symmetric connection 𝐷𝑋 :
𝑘𝑖𝑗 = 𝜆𝑔𝑖𝑗, 𝜆 ∈ R. This implies that

𝑘𝑎𝑐 = 𝑟𝑎𝑐 + 2𝑚𝑔𝑎𝑐 + 2𝜔𝑎𝑐 = 𝜆𝑔𝑎𝑐.

The latter identity yields: 𝑟[𝑎𝑐] = −2𝜔𝑎𝑐 = 2𝜔𝑐𝑎. Comparing the obtained identity with 𝑟[𝑎𝑐] =
2𝑚𝜔𝑐𝑎, we conclude that 2𝑚 = 2 and 𝑚 = 1. The proof is complete.

Example 1. Non–holonomic Kenmotsu manifold of dimension 3. Let 𝑀 = R3 and
(𝜕𝛼), 𝛼 = 1, 2, 3, be the standard basis of the arithmetic space. On 𝑀 we define an 1–form 𝜂
letting 𝜂 = 𝑑𝑥3 + 𝑥2𝑑𝑥1. Then we let

𝑒⃗1 = 𝜕1 − 𝑥2𝜕3, 𝑒⃗2 = 𝜕2, 𝑒⃗3 = 𝜉 = 𝜕3, 𝐷 = Span(𝑒⃗1, 𝑒⃗2).

We define a metric tensor as

𝑔(𝑒⃗1, 𝑒⃗1) = 𝑔(𝑒⃗2, 𝑒⃗2) = 𝑒2𝑥
3

, 𝑔(𝑒⃗3, 𝑒⃗3) = 1.

We straightforwardly confirm the validity of the identity 𝐿𝜉𝑔 = 2(𝑔−𝜂⊗𝜂).We define the first
structural endomorphism by the identities

𝜙(𝑒⃗1) = 𝑒⃗2, 𝜙(𝑒⃗2) = −𝑒⃗1, 𝜙(𝑒⃗3) = 0⃗.

By straightforward calculations we confirm that the non–zero entries of the intrinsic connection
are the following ones: Γ1

11 = Γ2
21 = −Γ1

22 = −𝑥2. We then get

𝑟12 = 𝑅2
122 = 1, 𝑟21 = 𝑅1

211 = −1.

Thus, 𝑟12 − 𝑟21 = 2. On the other hand, 4𝜔12 = −2. The identity

𝑘12 = 𝑟12 + 2𝑔12 + 2𝜔12 = 1 + 𝑔12 − 1 = 2𝑔12,

in particular implies that 𝑀 is an Einstein manifold with respect to the quarter–symmetric
connection 𝐷𝑋 .



GEOMETRY OF SUB–RIEMANNIAN MANIFOLDS 33

5. Almost quasi–Sasakian manifolds equipped

with semi–metric quarter–symmetric connection

By an almost quasi–Sasakian manifold we mean an almost normal almost contact metric
manifold with a closed fundamental form, which obeys the condition 𝑑𝜂(𝜉, · ) = 0 [6], [17].
One of the authors of this paper called an almost contact metric manifold an almost normal

if the identity

𝑁̃𝜙 = 𝑁𝜙 + 2𝜙 * 𝑑𝜂 ⊗ 𝜉 = 0

holds, where

𝑁𝜙(𝑋, 𝑌 ) = [𝜙𝑋,𝜙𝑌 ] + 𝜙2[𝑋, 𝑌 ]− 𝜙[𝜙𝑋, 𝑌 ]− 𝜙[𝑋,𝜙𝑌 ].

For a normal almost contact metric space the condition 𝑁𝜙 + 2𝑑𝜂 ⊗ 𝜉 = 0 is satisfied. The
expediency of introducing the concept of an almost normal almost contact metric manifold was
realized after studying the so–called extended almost contact metric structures that naturally
arise on distributions on sub–Riemannian manifolds of contact type [4], [6], [12], [18].
Let a quarter–symmetric connection 𝐷𝑋 be associated with the triple (∇, 𝐶, 𝜓). Since for an

almost quasi–Sasakian manifold the condition 𝐶 = 0 holds [17], then non–zero coefficients 𝐺𝑘
𝑖𝑗

of the connection 𝐷𝑋 in the adapted coordinates become

𝐺𝑐
𝑎𝑏 = Γ̃𝑐

𝑎𝑏, 𝐺𝑛
𝑎𝑏 = 𝜔𝑏𝑎, 𝐺𝑏

𝑎𝑛 = 𝜓𝑏
𝑎.

The components of the curvature tensor 𝐾 of the connection 𝐷𝑋 cast into the form

𝐾𝑑
𝑎𝑏𝑐 = 𝑅𝑑

𝑎𝑏𝑐 − 𝜓𝑑
𝑏𝜔𝑐𝑎 + 𝜓𝑑

𝑎𝜔𝑐𝑏, 𝐾𝑑
𝑎𝑏𝑛 = ∇𝑎𝜓

𝑑
𝑏 −∇𝑏𝜓

𝑑
𝑎.

Let 𝑘(𝑋, 𝑌 ) be the Ricci tensor associated with the tensor 𝐾(𝑋, 𝑌 )𝑍. The identities

𝑘𝑎𝑐 = 𝑟𝑎𝑐 + 𝜓𝑏
𝑎𝜔𝑐𝑏, 𝑘𝑎𝑛 = −∇𝑏𝜓

𝑏
𝑎, 𝑘𝑛𝑛 = 0

hold, where 𝑟𝑎𝑐 are the entries of the Schouten–Ricci tensor 𝑟(𝑋,𝑍) = tr(𝑌 → 𝑅(𝑋, 𝑌 )𝑍),
𝑋, 𝑌, 𝑍,∈ Γ(𝐷).
Now let ∇𝜓 = 0. Then the following theorem turns out to be true.

Theorem 5.1. Let 𝑀 be an almost quasi–Sasakian manifold and let the structural endo-

morphism 𝜓 be covariantly constant with respect to the intrinsic connection. Then the manifold

𝑀 is an Einstein manifold with respect to the quarter–symmetric connection if and only if the

identity

𝑟𝑎𝑐 + 𝜓𝑏
𝑎𝜔𝑐𝑏 = 0

holds true.

Example 2. Almost quasi–Sasakian Einstein manifold. As a simplest example of
an almost quasi–Sasakian Einstein manifold we consider a cosymplectic manifold [21]. On the
manifold 𝑀 = R5 we introduce a cosymplectic structure by letting
1) 𝐷 = ⟨𝑒⃗1, 𝑒⃗2, 𝑒⃗3, 𝑒⃗4⟩ , where 𝑒⃗1 = 𝜕1, 𝑒⃗2 = 𝜕2, 𝑒⃗3 = 𝜕3, 𝑒⃗4 = 𝜕4, and (𝜕1, 𝜕2, 𝜕3, 𝜕4, 𝜕5) is the

natural basis in R5,

2) 𝜉 = 𝜕5,
3) 𝜂 = 𝑑𝑣,

4) 𝜙𝑒⃗1 = 𝑒⃗2, 𝜙𝑒⃗2 = −𝑒⃗1, 𝜙𝑒⃗3 = 𝑒⃗4, 𝜙𝑒⃗4 = −𝑒⃗3, 𝜙𝜉 = 0,

5) in the basis (𝑒⃗1, 𝑒⃗2, 𝑒⃗3, 𝑒⃗4, 𝜉) the metric tensor is defined by the identity 𝑔 = (𝑑𝑥)2+(𝑑𝑦)2+
(𝑑𝑧)2 + (𝑑𝑢)2 + (𝑑𝑣)2.
In the considered case the identity 𝑟𝑎𝑏 = 𝜔𝑑𝑎𝜓

𝑑
𝑏 is naturally satisfied since both its left hand

side and right hand side vanish.
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6. Conclusion

In this paper we introduce a semi–metric quarter–symmetric connection on sub–Riemannian
manifold of contact type by defining an intrinsic metric connection and two structural en-
domorphisms, which preserve the distribution on the sub–Riemannian manifold. The work
consistently develops the idea of the fundamental role of intrinsic geometry in the context of
the study of almost contact metric structures [12], [17]. Briefly speaking, intrinsic geometry is
responsible for the parallel transport of the admissible vectors along the admissible curves. To
the intrinsic geometry of almost contact metric manifolds we also include the endomorphisms
studied in this article, which preserve the distributions on sub–Riemannian manifolds. It is
impossible to describe in a limited work the variety of currently existing approaches allowing
determine connections with torsion in almost contact metric spaces. This was partially done
in work [5]. At the same time, Proposition 2.2 indicates the possibility of constructing connec-
tions with a torsion by introducing additional admissible tensor fields into the geometry of the
studied manifolds. In our case, these are endomorphisms 𝑁 , 𝑆.
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