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SOLVABILITY OF NONLINEAR BOUNDARY VALUE
PROBLEMS FOR NON-SLOPING TIMOSHENKO-TYPE
ISOTROPIC SHELLS OF ZERO PRINCIPAL CURVATURE

S.N. TIMERGALIEV

Abstract. We study the solvability of boundary value problem for a system of second order
partial differential equations under boundary given conditions describing the equilibrium of
elastic non-sloping isotropic inhomogeneous shells with free boundary in the framework of
the Timoshenko shear model. The base of the study method are the integral represen-
tations for generalized motions involving arbitrary functions, which also involve arbitrary
holomorphic functions. The arbitrary functions ate determined so that the generalized mo-
tions satisfy a linear system of equations and linear boundary conditions extracted from
the original boundary value problem. The holomorphic functions are sought as Cauchy
type integrals with real densities. The integral representations allow us to reduce the initial
boundary value problem to a nonlinear operator equations for generalized motions in the
Sobolev space. While studying the solvability of this operator equation, the most essential
point is to invert it with respect to the linear part. As a result, the work is reduced to
an equation, the solvability of which is established on the base of the contracting mapping
principle.

Keywords: non-sloping isotropic inhomogeneous Timoshenko-type shell of zero principal
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1. INTRODUCTION

At present the solvability of nonlinear boundary value problems of equilibria of elastic non-
sloping shells is studied rather completely in the framework of the simplest Kirchoff-Love, see
[1]-[5] and the references therein. At the same time a topical problem is to study similar
boundary value problems in the framework of more complicated models in the shell theory
not relying on the Kirchoff-Love assumptions [I]. Nowadays there is a series of works [6]-
[12], in which in the framework of the Timoshenko shear model the solvability of nonlinear
boundary value problems for sloping shells was studied. The base of the studies in [6]-[12]
were integral representations for generalized displacements involving arbitrary holomorphic
functions. The latter are defined so that the generalized displacement satisfy given boundary
conditions. In the present work the method of works [6]-[12] is developed for the case of non-
sloping inhomogeneous isotropic Timoshenko type shells of zero principal curvature referred to
the Euclidean coordinate systems. The passage to non-sloping shells complicates essentially
the study of the boundary value problem.
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2. FORMULATION OF PROBLEM

In a planar simply connected bounded domain €2 we consider a system of nonlinear differential
equations of form

T — BpT™w, — BpT® + R =0, j=1,2,
(TMw,)or + TR + By, + R* =0, (2.1)
MR -T34+ =0, j=1,2
with the following conditions on the boundary I' of the domain €2
T'do?/ds — Tda’ /ds = Pi(s), j=12
T%da?/ds — T?dat /ds 4+ (T da? /ds — T da! /ds)wy = P3(s), (2.2)
M'da?/ds — M??da’ /ds = N(s), j=1,2.
In (2.1), and below we use the following notations:
T =TY(y) = DY,
MY = MY(y) = DYy
v=0% " = (e M 2 1 0s)s k= 0,1

ho/2
Dikn — pidkn(gl o?) = / B (ol a? o) (a®)™da?, m=0,2, 4,j5,kn=13;
—ho/2

Bllll — B2222 — E/(l . V2),
B®? =E/2(1+v)), B"?=vE/(1-1%),
B1313 — B2323 — Eli2/(2(1 + l/));

Wj = W3qi + lewl + Bj2w2; J=12%

(2.3)

Vi = Wies — Bjjws +wj /2, j=1,2,
Vo = Wig2 + Woar — 2Biaws + wiws,
Vi = Vjass J =12,

Mg = V1az + Yaa1,

Vs =wi+ 5, §=1,2,
7:(3)3:7113507 k=1,3;

other B are zero, o’ = a’(s), j = 1,2, is the equation of the curve I' and s is the arc length
on the curve I'. The subscript o in (2.1)-(2.3) and later denotes the differentiation in a?,
A=1,2.

System (2.1]) with boundary conditions describe the equilibrium of an elastic non-sloping
isotropic inhomogeneous shell with free boundary in the framework of Timoshenko shear model
[13] referred to the Euclidean coordinate system. Here T are forces, M are momenta 7},
i,7 = 1,3, k = 0,1, are the components of the deformation of thee middle surface Sy of the
shell identified with the domain Q; w;, 7 = 1,2, and w3 are respectively tangential and normal
displacement of the points Sp; ¥, © = 1,2, are the rotation angles of normal sections Sy; B;j,
i,7 = 1,2, are the entries of the curvature tensor for the surface So; R7, P/, j = 1,3, L¥, N*,
k = 1,2, are the components of external forces acting on the shell; v is the Poisson coefficient,
F is the Young’s module, x? is the translation coefficient, hg = const is the width of the shell;

o', o? are Cartesian coordinates of the points in the domain 2.
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In (2.1)—(2.3) and later we suppose the summation over the repeating Latin indices from 1
to 3, while the summation over Greek indices is from 1 to 2.
Problem (2.1), (2.2). We need to find a solution to problem ({2.1) satisfying boundary

conditions (2.2]).
We study boundary value problem (2.1)), (2.2)) in the generalized setting. We suppose the

following conditions:

(a) B (ol a2 a3) € (W (Q) N Cs(Q)) X Li[—ho/2, ho/2], 3., k,n =T, 3;

(b) Byu(at,a?) € CH(Q), A\, u = 1,2, and at the same time By By — B2, = 0, By # 0 in

(c) The components of external forces R/, j = 1,3, and L*, k = 1,2, belong to the space
L,(Q), the components P?, j = 1,3, N¥ k= 1,2, belong to the space C3(T'), and the external
forces are self-balanced,;

(d) © is an arbitrary simply connected domain with the boundary I' € Cj.

Hereinafter

2<p<4/(2-0), 0<pB<1.

Definition 2.1. A wvector of generalized displacements a = (wy,wq, ws,1,1s) is called a

generalized solution of problem , if a belongs to the space ngz)(Q), satisfies system
(2.1) almost everywhere and boundary conditions (2.2)) pointwise.

Here W,Sj)(Q), j = 1,2, are the Sobolev spaces. By the embedding theorems for the Sobolev
spaces W52 (€) with p > 2, the generalized solution a belongs to the space C()). Hereinafter
a=(p—2)/p.

We note that as 2 < p < 4/(2 — ), the inequality o < /3/2 holds.

For the sake of convenience in further study, we write relations for the component of defor-
mations in (2.3)) as

T = el e X Hi=13, k=01, (2.4)
where we have adopted the notations
€gjj = Wjas €aj3 = Waai + 1, €sij = Yjais J=1,2,
€01y = Wia2 + Waqt, €a1 = V102 + Voat,
egj; = —Bjjws,  ey; =0, j=1,2, 2.5
6812 = —2Bjpws, 62j3 = Bjjw; + Bjpwy, j=1,2, '
X =032, =12 X =wws,

Xilj = X?:a = 6233 = eijS = 61233 =0, 4,j=13 k=01
3. CONSTRUCTION OF INTEGRAL REPRESENTATIONS FOR GENERALIZED DISPLACEMENTS
We introduce two complex functions
v =0;(2) = D (Wiar + wye2) + DM (Y101 + 1ae2)
+ i[D;3112(w2a1 — Wia2) + Djl-zm(@bgal —1a2)], i=1,2, z=a'+id’

In system (2.1), we replace the forces 79%, momenta M’* and the components of the defor-
mations 77} by their expressions from (2.3), (2.4). After that we add the second equation in
(2.1) multiplied by the imaginary unit ¢ to the first equation and the fifth equation multiplied
by i to the forth equation. In this way, by means of the functions v;(z) from (3.1)), we represent
system in a form convenient for further study:

vz + 1 (a) = fl(a) + fila) = F/(2), j=1,2,
D (wsatar + Wsaze2) + h3(a) = f2(a) + fi(a) — F°(2), z €,

(3.1)

(3.2)
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where we have adopted the following notations:
Uiz = (Vjar +10ja2)/2, j=1,2,
hj(a) = (_1)M71(D31-2rl/\2 2a3-1VA2an + ZDglilAz ganVatas—n) — (J — 1)D3313<€213 + Z'6223)/27
U = wy, '—%7 j_172a
h3

(Cl) D13)\ w3a (D1313w>\)a/\;
fa) = (faj-2 +ifaj-1)/2, j=1,2,
fila) = (faj—2 +ifi1)/2, =12,
fia) = fa(a),  fia) = fula),

foi(a) = T2 (e.) + BpT™(7), j=1,2,
fiawi(a) = =M (ee) + T%(e.), j=1,2,

faa(a) = =T (e.) — By,T™(e),

Fri(a) = =TR(X) + BaT™ (7)wy,

fx3+3(a) = _Mii\(X>7 7=12,

fra(a) = (T/\Mwu)ozA - B/\MTM(X)a

F'= (R' +iR?)/2, F? = (L' +iL%)/2, F? = R%

e=es+ e, es = (2, el), ee = (e, el),

(3.3)

E_ .k k k _k _k _k

s = (€515 €412, €513, Caans Co03, €433 ),
k _
C

ko k koook ko k _ .
(6011760127 €135 €225 €235 c33) k=0,1;

X = (X117X127X22);

e’;-j, e’;j, ij were defined in (2.5). We note that by e and x we define respectively linear

and nonlinear parts of the components of deformations + and this ensures the representation

y=e+x.
Similarly, we write boundary conditions (2.2)) in the form

Rel(—iP0n(t)] + 2A(=1V D2 yv5y_jonda®/ds
— et (@0) + P @) = F(s), ki =12, (3.4)
Dg*P[(wsq2 +hp)da’ [ds — (wzr + ¢1)da® /ds] = pe(a)(t) + ya(a)(t) — FO(s),
where
0ei(a)(t) = T?(e.)da' Jds — T (e.)da?/ds,
pesti(a)(t) = MP(e;)da' [ds — M7 (e.)da® [ ds,
wes(a)(t) = T (e.)da? /ds — T (e.)da’ /ds;
pri(a)(t) = T (x)da' Jds — T (x)da? /ds,
prari(a)(t) = MP(x)da' /ds — MY (x)da? /ds,  j=1,2,
pa(a)(t) = (T (v)wr + T (y)wolda? [ds — [T?(y)ws + T2 (y)wn]da’ /ds;
Y = —pi j=1,2,
FS(s) = P%s), F""=_-NF k=12
the forces T7% and the moments M7* wrre defined in (2.3).

The base for studying system of equations (3.2)) with boundary conditions (3.4) is integral
representations for the generalized displacements w;, j = 1,3, ¢k, k = 1,2. In order to derive

(3.5)
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them, we introduce the equations
Vjz = p] (.] =1, 2)7 D[1)313<w3a1a1 + w3a2a2) = p37 (36)

where
pl=pitips, P =pitips, P =py
are arbitrary fixed functions belongs to the space L,({2).
The first two equations in (3.6)) are inhomogeneous Cauchy—Riemann equations. Their gen-

eral solutions are given by the formulas [14]
0i(2) = By(2) + TP (2) = 0;(®53 ) (2),

//c— dédn, j=1,2, ¢=E+in, (3.7)

where ®;(2) are arbitrary holomorphic functions belonging to the space C,(Q).
It is known [14] that 7" is a completely continuous operator in the spaces L,(Q2) and C*(Q),
which maps these spaces into the spaces C,(Q) and C**1(Q), respectively. Moreover, there
exist generalized derivatives
orf
=

Z
Sf

0aTzf __// . (3.8)

where S is a bounded linear operator in L (Q) p>1, and Ck(Q).
By means of the functions v{ = wy + iwy, v = ¥y + ith; we rewrite representations (3.7) as

inhomogeneous Cauchy-Riemann equations

U;')Z = Z'(dgjfl[Uﬂ + de[UQ]) = ’iﬂ’U, j = 1, 2, v = (Ul, Ug), (39)
the general solutions of which read as
v)(2) = W;(z) +iTTw(z) = v) (V;0)(2), j=1,2 (3.10)

In (3.9), (3.10) we have adopted the notations

dojir-ava] = dyj s _gua + (175, 0%, 4, A=1,2,

1111 1212
s (D (1Y D) ,
4 do

‘ 1 /D22 pu
dj2 - d?i = Z ( (:;1 + (_I)J ! ) ) k:j = 1727 (311)

_ 111l 1111 1111\ 2
0o = DO D2 — (D1 ) ,
_ yl212 11212 1212\ 2 |
0 = D0 D2 — (D1 ) ;

W,(z) € CL(Q) are arbitrary holomorphic functions.
We represent the third equation in (3.6]) as

W3z — 53/4, 53 = pg/Dé313, W3, = (wgal — iw3a2>/2,
which yields
ws(z) = Re U3(2 —Ths = w3(Vs; p3)(2),

TP3 ——//Ps ¢)In

where WU3(2) € CL(Q) is an arbitrary holomorphlc function.

(3.12)

1——’d§dn,
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Relations (3.10)), (3.12]) are sought integral representations for the generalized displacements.
By means of formulas (3.7)—(3.12) and formula (8.20) in [14] for their partial derivatives of first
and second orders we obtain the representations

Wyos = 2Re (¥ 'ws,), j=1,2,

ws, = W(2)/2 + Ts(2) /4

Vinaios = — Re{i" [V} + (1) (v, + 0]},
Vinataz = Re{i" (v}, — i)},

Wsaies = 2ws.z + (1) ' Rews..], k,n,j=1,2,
W3ple2 = —2Imws,.;

Ukzz TklU -+ Skl( 0> )00)7 (3 13)
Ve = Thov + Sa(Ph; po), |

1 Tk’U ) o
Ukzz_\lf"( )+SkaC( —%/ﬁd77 ]{::1,2,
r

<D6:<(I)/17(I)2)7 /)0:<;0 P )7
wsz: = W5(2)/2+ Sps/4,

W3,z = 53/4

Ekv - Z[d2j+u 2 kvﬂ + ( )]+'ud2j+,u 2 kUM] ja k= 1a 27

Sk (o po) = @[dzjwfz%,k + (-1 )jwd%jwﬁvmi’)—k]? J k=12,
vi1 = v = Pi(2) + 5P (2), j=12

Uj2EUjE:pja J=12,
o= Foo=d

m,1 — Ymz> m,2 — Ymz

i k=12 m=T14

4. SOLUTION OF PROBLEM (2.1)), (2.2)

Integral representations (3.10]), (3.12)) for generalized displacements a = (wy, wa, w3, Y1, o)
involve arbitrary holomorphlc functlons D,(2), j = 1,2, Ui(2), k = 1,3 and arbitrary functions
p(2), 7 = 1,3. We find them so that the generalized displacements satisfy system and
boundary conditions assuming temporarily that the right hand sides of equations
and boundary conditions are known. In order to do this, we substitute relations ([3.10)),

(3.12), (3.13) into the left hand sides of system (3.2) and boundary conditions (3.4). Then
system of equations (3.2) is written as

P (2) + 1 (p)(2) + 13(@)(2) = fl(a)(2) + fila)(z) = FI(2), j=13, z€9Q,  (41)

where h(p)(z) and h}(®)(z) we denote the parts of the expression for the operator hi(a) in
(3.3), which involve the functions p = (p', p?, p?) and ® = (&, Dy, Uy, Uy, U3), respectively.
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The representations

S(T;%0) " (t) = —( )’ [dzj 1(8)® (8 )+d2]( JO2(1)] + Koj(Po) (1), Bo = (D1, D),

Ko (@0)(1) = — =2 / AR =D g, (e

27m
_( 1 ]Jrudzﬂ';;m? /¢ ; ;ﬁ ) u( )d?
) ) (4.2)
- // d2]+u 2((@2_ :)l2j+u 5(t) o, (C)dedy

1)7+# A1, a(t) .
// 2”‘2 ?“2 ®,(¢)dedn,  j=1,2,

w<7—7 t) = (F - t)/(T - t)? w(tat) = (t )27

obtained by means of relations (3.7)—(3.9), formulas (4.7), (4.9) from [I4] and Sokhotskii for-
mulas [15] allow us to rewrite boundary conditions (3.4]) in the form

(=1)dix(t) Re[i?t' @(t)] — 2D320_5(8) Reli "W ()] — 2D3355(t) Re[it' Kox(®o) (¢)]
+ Hah1)150(1) = @eah—1)45(@) () + pxagnyas(a)(t) = F*(s),  k,j=1,2, (4.3)
Dy (t) Relit" U3 (1)] + Koa(®)(t) + Hzp(t) = pes(a)(t) + pya(a)(t) — F(s),
where we have adopted the following notations
Hage1y150(8) = Rel(—) Tk ()]
— 2D, (1) Re{dt (I + S)(TTpo) (D)}, hvj= 1.2,
Hyp(t) = Do’ (t) Relit (Tp3(t)/2 + TToTpo(t))], (4.4)
Ko3(®)(t) = Dg* () Re{t'[Us(t) + 1T ToPo(t)]};
dij(t) = (=17 2(- D) D3R o) o o(t) + 3 =k — 4], k=12,

I is the identity mappings, the operators T, S, T\ and the functions df(t) are defined in (3.7)),

B.8), (3-9), (B-11), respectively; ®,(t) = @ (t), t € I'. Hereinafter the symbol ®7 (¢) denotes
the limit of the function ®,(z) as z — ¢ € I inside the domain (2.
Thus, to determine the functions

pj € LP(Q)v J= T), (I)k;(z) < Ca(ﬁ)v k=1,2,

Ui(z) € Ca(Q), j=1,3,

we have obtained system of equations (4.1)), (4.3). We seek holomorphic functions as Cauchy
type integrals with real densities

Pp(2) = O(p2k)(2) = Pulpan)(z), k=12,
Vi(2) = V2O (ug; 1) (2) = W) (2),  J=1.3,

=5 [ F g

where pu;(t) € C,(T), j = 1,5, are arbitrary real functions, 7/ = dr/do, do is a differential of
the arc length of the curve I'.

(4.5)
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For the functions ¥;(z), j = 1,3, we have the representations

V(2) = Z'(jil)(jﬁ)ﬁ@o(mjfl)(Z) + 951 + 025 = Vj(poj-1)(2) + cajo1 +ice;, j=1,3,

©°(f)(z) = —% / @ In (1 - ;) dr, (4.6)

where ¢;, j = 1,6, are arbitrary real constants, while by In(1—z/7) we mean a univalent branch
vanishing as z = 0.

Using the Sokhotskii formulas [15], we find ®x(t) (k = 1,2) ), j = 1,3, t € . Substi-
tuting their expressions and representations (4.6) mto system (4.1 ‘ ([£.3), after simple trans-
formations we arrive at the following system of equations for the functions p € L,(Q) and

o= (s pia, p3, pa, pis) € Co(T)
P(2) + 1 (p)(2) + h(p)(2) = f1(a)(2) + fila)(z) + gli(z) — FU(2), z€Q, j=1.3,

S en®me) 60 [ 2T | 4 Kt + it (4.7)
= ¢ei(a)(t) + oy(a)(t) + g2 (t) — FPH(t), tel, j=1,5
in which we have adopted the notations
K3(n—1)+jﬂ(t) - (_1)jdn/\(t){Re[ith@(M2A)(m - Z‘Re(ijil)@(T/Mz\)(t)}
+ 2D, (O){Re[i? 'O (p2r-1) (1)) — i Re(#7)O (7' pior—1) (¢)
— Re[i’t' Ko(o) (1))}, n,j = 1,2,
Ku(t) = Kos(p)(t) — Do’ () Re[t'© () (1))

g2 (2) = D§*3(cy +ic3) /2,

92 (2) = —cs Dt — 3D,

g%(t) = D3 (t)(cyda® /ds — csdat /ds), (4.8)
9:(2) = g7 () =0, j=1245

as(e—1)+5 2(t) = (=1) dpa(t) Re () /2,
Ds(k—1)+5 2x(t) = (=1 dpa(t) Re(# ™)/ (2m),
a3(r-1)4j 2x—1(t) = =D3IEo(t) Re(# ™),
bs 3(k—1)+j 2A— 1(t) = D}&k2 o(t )Re(z’j)/m k,j,A=1,2,
ass(t) = =Dy (1) /2;
other aji, bj, are zero. Here
(1) (2) = hy(@(n))(2),
Koj (1) (t) = Koj(Po(po))(t), J=1,2;
Koz (1) (t) = Koz(P(1))(2),
) = (P1(p2), Polpta), Vi (1), Walps), ¥s(ps)),

(p
fo = (b2, pa).
Lemma 4.1. Let Conditions (a), (b), (¢), (d) hold true. Then
1) hj( ), 7 = 1,3, are linear completely continuous operators in L,(Q);

2) B (u (), j)— 1,3, are linear completely continuous operators from C,(T') into L,(Q) for all
€ (0,1);



88 S.N. TIMERGALIEV

3) Kjp, j =1,5, are linear completely continuous operators from C,(T') into C(T) for all
ve(0,1) and v < /2;

4) Hjp, j =1,5), are linear completely continuous operators from L,(Q) into Co (T) for all
o < a and are bounded operators from L,(§2) into Cy(L);

5) The belongings hold:

fila)(2), Fla)(z), F'(2), gl(2) € Ly(Q), j=1.3;
pei(a)(t), yi(a)(t) € Ca(T), (1), go(t), as(t), bi(t) € Cs(T), j k=15

Proof. It is known that [I4] the Cauchy type integral 6(f) in is a bounded operator
from C,(T') into C,(Q), and its derivative §'(f) is a bounded operator from C,(T) into L,(),
1 < q<2/(1—a). Moreover, it is easy to show that 6(f) is a completely continuous operator
from C,(T) into L,(Q) for all p > 1 and into Co/(Q) for all o/ < a. Taking this fact into
consideration as well as properties of the operators T', S defined in (3.7), and using the
representations for the first derivatives of the generalized displacements in and expressions
for the operators h7(a) in , we conclude that the first two statements of the lemma are
true.

Since ¢(7,t) € Cs(I) x Cs(T) [15], dea(t) € Cs(T), di(2), D§***(2) € C3(Q), then taking into
consideration Corollary 4.3 from [16], we easily confirm that first two terms in the right hand
side for the operators Ko;(u) in (4.2) are completely continuous operators from C,(I') into
C,(T) for all v € (0,1) and v < B. It is also easy to show that the third and forth terms of
this representation in (4.2) are completely continuous operators from C,(I') into C,(I") for all
v € (0,1) and v < . We then obtain that Ko;(), j = 1,2, are linear completely continuous
operators from C,(I") into C,(I") for all v € (0,1) and v < §. Similarly to the representation of
the operator Kos(i) in it follows that Ky3(u) is a linear completely continuous operator
from C,(T") into C(T") for all v € (0, 1).

We transform the first two terms in the right hand side of the formula for the operator

Ksn—1)4jp in (4.8) to the form

d(t) Y ._1/“”(7) L (_Dj/’“‘”(ﬂ Im (%) dr

21 ™ Tt T 7!
r r

(=)
2

Therefore, in view of the belongings 77, d,» € C3(I") and the identity
Im[t'/(7 = 6)] = ka(r,0) /|7 — t|"°2,

where k. (7,t) € Cg/2(I') x Cg/2(I") [15], and also by Corollaries 4.4, 4.5 in [I6] we obtain that the
first two terms in the expression for the operator Ksg,_1)4 i in define a linear completely
continuous operator from C,(I") into C,(I') for all v € (0,1) and v < /2. In the same way
we show that the third and fourth terms in the expression for the operator Ksp,—1)4;u in (4.8)
possess the same properties. Then the representations for the operators K;u, j = 1,5, in ({.8))
imply the third statement of the lemma. The validity of its fourth statement is implied by the
representations for the operators H;p, j = 1,5, in due to the properties of the operators
T, S, of the Cauchy type integral and the relations
S(T\Tpo)* () =T (%TAT%) (t) — %(t’)QT,\TpO(t) — 2% / TATL_OET)@ A=1,2,

which are obtained by using formulas (8.20) from [14] and the Sokhotskii formulas. The validity

of the fifth statement of the lemma follows directly from formulas (3.3), (3.5), (4.8)). The proof
is complete. O
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We are going to study the solvability of the system of equations in the space L,(€2) x
Cw(T'), &' < a. We observe that each solution (p,u) € L,(Q) x Cy(T") of system (4.7) by
Lemma [4.1| belongs to the space L,(2) x C,(I"). Using the expressions for a;x(t), b (t) in (4.8)),
we calculate the determinant

det[A(t) — miB(t)] = Dg*"01(a2 — apas)/(320), a, = DM 4 D122 =0,1,2,

where dy, 01 are defined in (3.11)), while A = (a;i), B = (b;) are square matrices of fifth order.
Thus, det[A(t) — miB(t)] # 0 on I' for the index of system (4.7) we obtain

1 det(A —miB)] 0.

X=on |8 det(A+miB) |,

here the symbol [arg ¢|r means the increment of the argument of the function ¢ while passing
the curve I' once in the positive direction. Hence, we can apply the Fredholm alternative to
system ([4.7). Let (p,pu) € L,y(Q) x Co(I') be a solution of system for the zero right
hand side. By formulas (4.5), with constants ¢; = 0, j = 1,6, to these solutions, the
holomorphic functions ®(z), ¥;(z) correspond to, which by formulas (3.10)), determine

the function wj, 7 = 1,3, ¥, kK = 1,2. As we see easily, these functions satisfy homogeneous
system of linear equations (3.2,

and homogeneous linear boundary conditions (3.4)),

@cj+¢xj_F3+jEOu ]:17_5
We multiply the real and imaginary part of the first equation in homogeneous system (3.2
respectively by w; and ws. For the second equation we make a similar multiplication by
respectively ¥, and 15, while the third equation is multiplied by ws. After that we integrate over
the domain ) and sum the obtained identities. In view of homogeneous boundary conditions
we obtain that w;, j = 1,3, ¢x, k = 1,2, satisfy the system

Vital = 0, Vjsa?2 = 0, Vjla?2 T Vjzal = 0, W3ai + wj =0, j=12

a solution of which reads as

wy = —cpd® + 1, Wy = e + ¢,
wy = —csa’ — c50” + g, 1 = cy, thy = cs, (49)
where ¢; are arbitrary real constants.
Since ¥;(0) =0, j = 1,3, w3(0) =0, by we get
wy = —coa® + ¢4, wy = coalt + ¢y, Wy = Yy = 1y = 0.
Then v;(z) = 2icoD}*'?, j = 1,2 and equations imply the identities
p(z) =2icD?E, j=12, p’(2)=0, ze. (4.10)

Using formulas (3.7), (3.10)), (3.12) and representation for v?, in (3.13), we find ®4(z), k =
1,2, ¥/(z), j = 1,3. Substituting them into (4.5), we obtain
)/t = co(F')? = Fy (1),
poj () [t = 2ico D2 P () = Fy(t), = 1,2,

poj 1 (t) /1 = Fy; (1), j=2,3,
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where F)(t) are the boundary values of the function F; (z), which is holomorphic outside
and decays at infinity. Therefore, we obtain the Riemann-Hilbert problem for the function
F;(z) in the exterior of the domain { with the boundary condition
Relit' F; ()] = f;7 (1),  j=1,5,
where
fi () = co Re(it'), fo;(t) = 2coD?P(t) Ret',  j=1,2, fo1(t) =0, j=2,3.

Using the solution of this problem [I7], we obtain representations for the functions y;(t):

,u](t) = CO,UE)(t) + 50]/%1(@7 j = 17 2747 :U](t) = 60]#}(75)7 j = 37 57 (411)
where 1% (t) are some known real functions belonging to the space Co(T'); co, fo; are arbitrary
real constants.

Solutions (4.10)), (4.11)) show that homogeneous system of equations (4.7)) possesses six lin-
early independent solutions. Then the adjoint system of equations also has six linearly indepen-
dent solutions. In order to derive the adjoint system, we multiply the real and imaginary parts
of the left hand sides of the equations in (4.1)) respectively by functions vy, v, v3, v4, v5 € L, (€2),
1/p+ 1/q = 1, and integrate over the domain 2, while the left hand sides of the equations
in (4.3) are multiplied by real functions vy, ve, vs, vy, 5 € Co(I') and then we integrate over
the curve I'. After that we sum them up and equate to zero. Replacing the holomorphic func-
tions ®;(z), Ui(z), ¥} (2) by their expressions in (4.5)), (4.6) with constants equalling to zero,
interchanging the integration order in the obtained iterated integrals, by means of traditional
arguing we make simple but rather bulky calculations, and this leads us to the adjoint system

vIi(2) = Tay0(2) +20(T'vi)(2) =0, j=1,2, z€Q,
ReTsv(z) =0, z€Q,
Re{i[Ty4jo(t) =207 (Fv)()]} =0, j=1,2,
Re[T'g(v)(t) + ©~ (7' D™ *u3)(8)] = 0,
Re{T[DL2 -0¥](t) — 20~ (' D2 ™) (1)
+ (7 = DT g(v)(t) = TR(Dg* ') (1))} =0, tel, j=1,2
v = 35 0 + ivz;_1, V=g +ivgiy,  j=1,2,
"US = Vs, 1/3 = 3.
In equations (4.12)) we have adopted the notations
Tsv(z) = —2Tg(v)(2) + 2Dg*3(2)vs(2) — 20(7' D§*3ws)(2),
T3+jU(Z) = 2de+2)\_2[5)\7}}(2) + Td2+j [TgU](Z),
v = (vla V2, U3, Vg, ,05)7

S;o(2) = SIDI2 0¥ () — DR, () — 20/ (P DR M), G =12,

9(v)(2) = Dz (2)vs(2) — Dg™*(2)v*(2) /4,

//f )in (1 — —) dédn, (4.13)
T f( 2m/f ln 1——)d

L[ s

(4.12)
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©~(f)(t) are the boundary values of the function ©(f)(z) as z — t € ' outside 2; the operators
Tf,Sf, d;[f], ©(f) are defined in (3.7), (3.8), - ([1.5), respectively.

As it was noted above, system (|4.12]) possesses six linearly independent solutions; we are going
to obtain their explicit expressions. Belon in by v € L,(Q), 1/p+1/qg=1,v e C,u (),
we mean some its solution.

We observe that the operators T, T°, T introduced in , , define the functions
Tf(z), T°f(2), TY, f(z), which are holomorphic in the exterior of the domain 2 and vanish at
infinity. The function 6(f)(z) possesses the same property. This is why the five latter identities
on the curve I' in are boundary conditions for the Riemann-Liouville problem with the
zero index for the functions holomorphic outside 2 and decaying at infinity. As it is known,
such problem possesses only the zero solution. Therefore, these five identities on the curve I
are transformed to the form

Tsyjv(z) —20(T'vi)(2) =0, j=1,2,
Tg(v)(2) + O(7' D™ vs)(2) = 0,
TID}2 0 (2) — 20(7' D2 507) ()
+ (G — DT g(v)(2) — TR(DFPBP7'v3)(2)] =0, j=1,2, z€Q =C\Q,
C is the complex plane.
It follovvs from the first three identities in - 4.12)) that the functions v;, j = 1,5, belong to the

space qu (DNCL(Q), 1 < g1 <2/(1—a). In these identities we pass to the limit as z — t € T’
inside the domain €2, while in the first three identities in we do the same outside the
domain 2. Then the latter identities are added to the former three identities, respectively.
Taking into consideration the continuity of the functions outside of form T'f(z) as f € L,(Q)
on C and using the Sokhotskii formulas, we obtain

V(t) = —200(t), j=1,2, v3(t) = 13(t), teT. (4.15)
We differentiate first two identities in (4.12)) in Z. In view of (3.8) we get the identities
vz = 2dj 40 o[Sav](2) + doy[T30](2), j=1,2, z€

Considering them as a system for X; = 2570, Xo = 25v + T3v and solving it, we have

(4.14)

Xj = (D]li1)\172 - Dgl‘ilx\z—2> (DHA 2 1+ D_]1'<2i>1/\272)v2\7 J=12 zeQ (4-16)
We additionally suppose that the conditions
1212 _ 1313 2
D**(j =0,1,2), D' e W! >(Q) (4.17)

hold true. Using the relations for the functions Tyv(z), Sjv(z), j = 1,2, in ([{.13)), we find Xz,
j = 1,2, which, as we see easily, belong to the space qu(Q) 1 <q < 2/(1 — «a). Now we
substitute these expressions Xz, j = 1,2, into the left hand sides of the relations obtained by
differentiating of identities with respect to z. We differentiate the third identity in (4.12))
in z and Z. By means of simple transformations of the obtained relations we confirm that the
vector function ¥ = (v, v, 203, v4, v5) is a solution of system of linear equations with zero
right hand side.

Then for the solution (v,v) of adjoint system of equations we require v(t) € CL(T).
Then, as we see easily, v(z) € CL(Q). Now we pass to limit as z — ¢ € I inside the domain
in identities and the left hand side X" (t) is replaced by the expression obtained by using
the representations for (S;v)(z), Tsv(2) in (4.13). Then we deduct respectively the identities
obtained by differentiating in z of the latter two relations followed by the passage to the
limit as z — ¢ € I" outside Q. Then the third identities in and are differentiated
in z, in the obtained identities we pass to the limit as z — ¢ € I" respectively inside and outside
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the domain €2 and we deduct one from another. By means of the obtained in this way identities
on the curve I', using relations (4.15)), the formulas

(SHY) = (SH7() = =f(&)- (@), 0N =0~ (7)) = fi+ fr- (), teT,
in which the operators Sf, ©(f) are defined in (3.8), (4.13)), and assuming without loss of gen-
erality that ¢t = 0 € I', after simple transformations we see that the functions vy, va, 2v3, vy, vs
satisfy also homogeneous boundary conditions in (3.4). Thus, the vector ¥ = (vy, va, 203, V4, Us)
is a solution of homogeneous system of linear equations in satisfying homogeneous bound-
ary conditions in . Therefore, in accordance with (4.9)), for the components of the vector
v we obtain the following representations:

v = —coa® + ¢, vy = coat + ¢y, v3 = (—csat — csa® +c6) /2, vy = cy, Vs = Cs,
where ¢; are arbitrary real constants.
The functions v;(t) and vy, are related by formulas ([£.15). Therefore, the solution (v,v)7,
v = (v, Vg, V3,04, 05), v = (11, V2, V3, V4, U5) Of adjoint system (4.12]) can be represented as
(v, )" = com + c172 + cays + caya + 575 + CoYe,

where v, = (a1, Vk2, - - - r10), K = 1,6, are linearly independent solutions of system (4.12)).
Then system (4.7)) is solvable if and only the conditions

/ {Re [(f2+ fy + 90 — F)(2) (1 — ivk2) (2)
H(2 4+ 13402 = F?)(2) (s — iis) (2)] + (2 + f2 + 92 — F*)(2)ma(2) } da'do?

5
+ Z /(Sﬁcj + o+ 907 = FPY) () ks44(t)ds =0, k=16,
j=1 T

hold true, which, after simple transformations, become

[[ waataer + [Pras— [[ Bairoe) + r@padatda? 0, =12,
O T 0

//(Rla2 — R*aY)datdo® + /(P1a2 — P?aY)ds

0 T

+ //(alBQA — CYQBL\)[T)\“(’}/)CU“ + T)‘3(’y)]d041d042 =0,
Q

(4.18)
//(osz?’ — L))datda® + /(ajP3 — NY)ds + // o By, T ()da*da?
Q

) T
— // T*(y)w,da'da® =0, j=1,2,
)

/ R*datda® + / P3ds + / By, T (y)da'da?® = 0,
Q T Q

where R, P7 (j = 1,3), L*, N*, k = 1,2, are the components of external forces, v is an
arbitrarily fixed vector of deformation, w, is an arbitrarily fixed function.
Under conditions (4.18)), the general solution of system (4.7)) can be represented as

(s 1) = (pes ) (@) + (pxs ix) (@) + (pss 1) + (pE pip),  (Pes pre) (@) = Rfe(a),

(pX"uxxa) = 9%fX(a)’ (p*,u*) = Rg. + (ﬁv /j)a (pFa,UF) = —SRF, <4'19)
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where

fC(a>:(fc17fc27 gv(pcla"'v(pcnﬁ)v fx(a):(fivf)za )?790x17"'a90x5)7 962(9377908)7
F:(F17"'>F8); m:(%la"wmfﬂ);

Rj, j = 1,3, and Ry, k = 4,8, are linear bounded operators from L, (©2) x C(T) into L, () and
into C, ( ) respectwely, the functions p = (p1, p2, p3), £ = ({1, - . ., j15) are defined by formulas

(@.10), ([@.12), while f7, fi, @k, Px» 9o F™ are defined by formulas in (3.3), (3.5), .
If we substltute the expression for the vector function yu(t) in into relations (4.5)), (4.6),

then for a holomorphic vector function ®(z) = (P, V), $¢ = (<I>1,CI>2) U = (\Ifl,\Ilg,\If3) we
obtain a representation:

P(z) = P(a)(2) + Dy (a)(2) + Pu(2) + Pp(z), z€Q, (4.20)

where

De(a)(z) = P(pe(a))(2), Py(a)(z) = P(uy(a))(2), Pr(z) = P(ur)(2),
D,(2) = D(Rgo)(2) + B(2), P(2) = (cofo(2), cobi(2), covo(2) + €1 + ica, 0,0),
Bi(z) = 200(t'D;*?)(2), j=0,1, ~(z) = O(t'T)(2);

the function O(f)(z) is defined in and c; are arbitrary real constants.

Now we substitute the expressions for p(z) in and for the holomorphic functions in
([#.20)) into (3.10)), (3-12)). Then problem (2.1)), is reduced to a system of nonlinear equations
for the vector function a = (wq, wq, w3, Y1, 1s), which we represent as

vj(2) = vje(a) + 05 (a) +v5.(2) +jp(z),  5=1.2,

J

w3(2) = wse(a) + way(a) + ws(2) + wap(2), 2eq, (4.21)

where
U;')c<a> - U;')(\Iljc(a); ch(a)), Uc(a> = (Ulca U20>7
ch(a) = Uj(q)jc(a);ﬂi(a)), §=12  ws(a) = ws(¥s(a); po(a)).
Other terms in are defined Similarly, while the operators v;(®;;p7), v9(¥;;v;) and

ws(Ws; p°) are deﬁned in (3.7, (3.10), (3.12), respectively.

We observe that the functions U?*(z), wg*(z) and v (2), wsp(z) depend respectively on

arbitrary constants and external forces acting on the shell. At the same time, as we see easily,
the functions v9, (2) = way + Wiy, V9, (2) = thay + 1114, ws.(2) satisfy representations (4.9)).
We proceed to studying the solvability of system (4.21) in the space WISQ)(Q).

Lemma 4.2. Let Conditions (a), (b), (¢), (d) hold. Then

1) v2.(a) (j =1,2), wsc(a) are linear completely continuous operators in WIS2)(Q);

2) U?X(a), Jj = 1,2, ws,(a) are nonlinear bounded operators in Wp(Q)(Q), and for all @@ =
(w], wh, wi, o, v]) € WiP(Q), j = 1,2, the estimates

vy (a') = U?x<a2)”WT$2>(Q) < C(llalllW@) o T llazllWéQ)(Q)
2 gy + 012, 0 )0 = @y
W W™ () » (Q) (4.22)

(0" = wsn(@?)l oy < (1ol oy + ||a2uw<z> o

+ l|w1||W<2> + |lw2||W<2> )Hal - a2||W152>(Q)
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hold, where
¢ is a known positive constant depending on physical and geometrical characteristics of the

shell;
3) W.(2),0%(2) € WP(Q), j = 1,2,

Proof. The representations for f/(a), fi(a) in and those for ¢.;(a), ¢yj(a) in imply
that f/(a) and ¢.;(a) are linear completely continuous, while fJ(a) and ¢,;(a) are nonlinear
bounded operators from Wf)(Q) into L,(Q2) and into Co(T'), respectively; for f3(a), ys(a) we
have estimates of form ([.22), while fi(a), ¢y;(a), j = 1,2, satisfy estimates of form

1£7(a") = fi@®) |y, llexs(a’) = oxi(@®)llear < e (leHWng(m (423)

ey q) ot = @l J=1,2
Then in view of the boundedness of the operators RR; by (4.19) we obtain that p(a) and pg.(a)

are linear completely continuous, while pi(a) and p, (@) are nonlinear bounded operators from

W,?)(Q) into L,(€2) and into Co(T'), respectively, and for pl (a), pry(a) estimates ([#.22) hold.
Therefore, in view of the properties of the Cauchy type integral in in (4.20) we conclude that
Pre(a), Vi (a) are linear completely continuous, @, (a), ¥’ (a) are nonlinear bounded operators

from W2 (Q) into C,(©2) and for nonlinear operators iy (a), ¥ (a) estimates (4.22)) hold.
Let us study the properties of the operators
Oho(a) = O (pre(a), k=12, Wi(a) =TV (g 1e(a)), j=T13,  (4.24)

where the operator ©'(f) is defined in (4.13).

We observe that the functions pi(a)(z), pre(a)(t) defined in are solutions of system
(4.7) with the right hand side f7(a)(z), 7 = 1,3, @a(a)(t) k = 1,5. This is why the vector
te = (M1e, - - - 5 f5e) can be represented as

T—1

we@)(®) = A7) [eca)®) - B0) [P ar — Kna)t) - Hp) 0| (425)

where A7'(t) € Cy(T) is the matrix inverse to the matrix A(t), . = (Ye1,-- ., Pe5), K =
(K1,...,Ks5), H=(Hy,...,Hs), p. = (pL, p2. p2).

We substitute expression for p1c(a)(t) into (4.24), interchange the integration order in
the iterated integrals and use the aforementioned properties of the Cauchy type integral and
of the operators T', S, as well as relations (4.7), (4.9) from [I4] and Lemma Then after
simple but rather bulky transformations we obtain that the operators ®; (a), k = 1,2, ¥} (a),

j = 1,3, are lincar completely continuous operators from WS?(€) into L,(€2). By means of

similar arguing we also see that ®; (a), k = 1,2, ¥/ (a), j = 1,3, are nonlinear bounded
operators from WISQ)(Q) into L,(€2) and they satisfy estimates (4.22). Once we employ now

relations (3.9), (3.10), (3.13) and estimates (4.23)), then the statement of the lemma becomes

obvious. The proof is complete. O
We write system (4.21)) in the form
a— L(a) — G(a) = a, + ar, (4.26)
where

L= (L,....,Ls), G=(Gy,...,Gs),
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Ay = (Wis, Wos, Wi, V14, Vo),  ap = (W1p, Wap, WsF, %F,{/;zF),
V), = Wa +iwr,, VY, = Yo, + ity

Lin-1y+j(a) = —=Re[i?vl.(a)], n,j=1,2;

G3n-1)1j(a) = —Re[ijvgx(a))], n,j=1,2;

Ls(a) = ws.(a), Gzla) = wsy(a),

wip = — Re[vip], 7=1,2,
Yir = — Relfvdy], j=1,2,
1713F = W3F.

We note that L(a) is a linear completely continuous and G(a) is a nonlinear bounded operator
in W,@(Q) and G(a) satisfies estimate (4.22)); ap € WZEZ)(Q) is a known function depending on
the external forces; the components of the vector a, are given by formulas .

The equation @ — L(a) = 0 has only trivial solution in W}g)(Q). Indeed if a € Wéz)(Q) is
its nonzero solution then, as one can easily see a is a solution of system of linear equations of
equilibrium obeying linear homogeneous boundary conditions. Arguing then as in the case of
system (4.7), we conclude that the vector a satisfies the system

Wjqi — Bjjws =0, j=1,2,

Wig2 + Woet — 2B12w3 = 0,

Vjo =0, J=12, (4.27)
VY102 + a1 = 0,

Wsi + Bjywy +19; =0, j=1,2.

We proceed to solving system (4.27). By means of the fourth, fifth and sixth identities for
1, Yo we obtain the representations

¢1 = 00062 + c1, wg = —CoOél + Co, (428)

where cg, c1, co are arbitrary real constants.

We multiply the first identity in by Bss, the second is multiplied by Bi;, the third is
multiplied by Bis. After that we sum first two identities and deduct the third one. As a result,
in view of condition (b) and the relations

Bi1a2 = Biaat, Bisg2 = Bagot (4.29)
implied by the Gauss—Peterson-Codazzi formulas [I] we obtain the identity
(Baawi — Biows)ar + (Briws — Biawy )2 = 0.
Then we easily see that there exists a function u(a', a?) € C*(Q) such that the relations
Biawy — Biiws = Ugy, Bosw; — Biows = g2 (4.30)

hold. We multiply the first identity in (4.30) by Bis, the second identity is multiplied by By,
and then we deduct one from the other. Then we obtain an equation for the function u(a!, o?):

Biaugr — Briugz =0,
the general solution of which is given by the formula [I8]
(ah,0?)
u(a', o) = Ai(z), z=az(a’,0’) = / By (B, 8%)dB" + Bua(5', 8%)d?, (4.31)

(ag,09)
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where A;(z) is an arbitrary real function belonging to the space C? and (o}, a3) is an arbitrarily
fixed point in Q.

Now we multiply the seventh identity in by Baa, the eighth identity is implied by B,
and we deduct one identity from the other. This gives

Baswsar — Biawse2 = Bias — Bastn,
and in view of relations (4.28]), (4.29) this gives a representation for the function w; [18]:
w3(a17 Oéz) = A2(y) + U};(Oély &2),
(ah,a?)
y=slat?) = [ Buls 58"+ Bl 55"
(ag,03)

1

wi(at, a?) = coar(at, a?) + craz(at, a?) + coaz(at, o),

al

(ot y) = — /[51&12(51&) +a2(B,y) Bas(B, )]/ B (8", y)d B,

1
Qo

(4.32)

al

a?(alv 052) = aé - CM17 63(a1>y) = /312(617 y)/B22(Bla y)dﬂla
al
0
B)\;L(Bl7y) EBAH(Bl,OP), AaM: ]-727 aj(alay) ECL]'(OCI,O{2)7 ]: 1737
where o? = a?(al, ) is a solution of the equation y(a!, o) = y with respect to a?; this solution
exists due to the condition y,2 = Bay # 0 in Q; ¢;, 7 = 0, 1,2, are arbitrary real constants.
In order to derive representations for wy, wy from the seventh identity in (4.27) and the first
identity in (4.30f), we form the system

Biiwy + Biraws = —wsar — 1, Biawy — Brijws = g
Solving this system with respect to wy, wy, we obtain
wi = bi[A)(z) = Ay (y)] + wi(at, a?),
wy = bo[ A} (w) — Ay(y)] — Ay(2) +wi(a',a?),
wy = —Byj(Wip + 1)/ (Bf + BY,), =12,
by = B/(1+ B?),
b2 = 1/<1 + 82)7
B = By1/B1a = B2/ B,
where 11, w3 are defined in (4.28)), (4.32). We note that by Condition (b) we have wj, b; €
cl(Q),j=1,2.
Excluding the function ws from the first two identities in (4.27), we obtain
ngwlal — Bllw2a2 =0. (434)

We differentiate the seventh identity in (4.27) in the variable a?, while the eighth identity
is differentiated in the variable a'; then we deduct one identity from the other. In view of

relations (4.28)), (4.29) we then get
Blg(w1a1 — w2a2) + BQQU}Qal — anlaz = 2C0. (435)

Now we substitute the expressions for wq, we, ws from (4.32)), (4.33)) into (4.34)), (4.35) and into
the last identity in system (4.27). As a result, in view of relations z,1 = Bi1, Z42 = Yor = Bia,

(4.33)
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Yo2 = Bao implied by the representations for the functions z(a', o?), y(a!, o?) in (4.31), (4.32),
we obtain a system of form

B BioA{(z) + bs[A () — Ay(y)] = di,
ba[A}(x) — AS(y)] = da, (4.36)
Wia2 — (W1 + 1) /B + b2 =0,
where we have adopted the notations
b3 = Basbia1 — Bi1baye, by = Baabyar — Bi1bia2 + Bia(biar — baa2),
dy = Byws,2 — Baswj 1, dy = 2¢o + Byjwi 2 — Baowy,1 — Bra(wi i — ws,2),
the functions wi(a!,a?), j = 1,3, are defined in ([4.32)), [£.33); d;, byy; € C(Q), j = 1,2.

Suppose that the components of the curvature tensor of the middle surface of the shell satisfy
the conditions

BB.: — By # 0, B2 # 0, 1+ a'B,: #0, (', a?) € Q, (4.38)
where B is defined in (4.33).
In view of the expressions for the functions w3, ¥, 19 in (4.28), (4.32)), we rewrite the third
identity in (4.36]) as
caBa2 — co(1+a'B,2) =0,

and by conditions this implies ¢ = ¢ = 0. Then
w] = w; =0, Py =0, wh = —cia, V1 = ¢,
and hence, by we get: d; = dy = 0. We note that by the first condition in (4.38) we have
by # 0 in €. This is why by the second equation in (4.36]) we get
Aj(z) = Ay(y) = 0.

Then the first equation in implies Af(z) = 0 and hence, Aj(x) = c3 = A)(y), where c3
is an arbitrary real constant. By formulas (4.28), ([£.33) we have w; = 0, wy = —c3, and it
follows from the first identity in that ws = 0 in Q. Therefore, taking into consideration
representation for w3, we get the identity As(y)—cia! = 0. Differentiating this identity in
the variable a! and using the formula y,1 = Bis, we arrive at the identity c3 Bja(at, a?)—c; = 0.
Then in view of Condition (b) we have ¢; = ¢3 = 0, thatis, w; =0, j = 1,3, ¢, =0, k = 1,2, in
Q. Thus, the equation a— L(a) = 0 has only trivial solution in W,” (€2). Hence, there exists the
inverse operator (I — L)~ bounded in W}?(€), by means of which equation is reduced

to the equivalent equation

(4.37)

a—G.(a) = ap, (4.39)
where
G.(a) = (I — L) 'G(a), ap = (I — L) 'ag.

We observe that the vector a, = (I — L) 'a, is a solution of the homogeneous system of linear
equilibrium equations satisfying homogeneous linear boundary conditions. This is why by the
above proven facts we have a. = 0, which has been taken into consideration while passing to
equation (4.39).

We also note that the vector ap in (4.39) depends only on external forces and ar = 0 once
the external forces are absent.

Lemma 4.3. Let Conditions (a), (b), (¢), (d) hold. Then

1) Gi(a) is a nonlinear bounded operator in Wzgz)(Q) and for all &/ = (wl,w), wi, ], ¥3),
7 =1,2, the estimate

G (a) = Gal@)ly oy < & (1 o 0y + 12l 0
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+ Hw1||$/[/152)(0) + HwQHiV;S”(Q)) Hal - a2||W1(72)(Q)7

w17 = [|wA | + il + il =1,2,

2 2 2 .
W (9) Wi () W (9) W@ J
holds true, where c, is a known positive constant depending on physical and geometrical

characteristics of the shell;

2) ap € WS (Q).

The validity of the lemma is implied by Lemma in view of the aforementioned properties
of the operators (I — L)™' and G.

We proceed to studying the solvability of equation (4.39) in the space WIEQ)(Q). Using

Lemma , for all a’ € WP(Q)(Q), j = 1,2, belonging to the ball ||al| < r, we obtain

Wi ()
|G (at) — G*(QQ)’|WI§2)(Q) < gillat — a2||WT£2)(Q), G« = 2c,r(1+1).
Suppose that the radius r of the ball and external forces are such that the inequalities
gy < 1, HG’FHW,?)(Q) < (1 — q*)T’ (440)

hold. Then we can apply the contracting mapping principle to equation (4.39) [19], according
to which equation (4.39) in the ball ||aHW(2)(Q) < r possesses a unique solution of form a =
p

R(ar) € Wp(2)(Q), where R is the resolvent of the operator G,.. We note that if the external
load is absent, then problem ({2.1)), (2.2)) possesses only the zero solution.

We return back to solvability conditions (£.18)), in which by a = (w1, wa, w3, Y1, 12) € W (92)
we mean a solution to problem (2.1)), and w,,, p = 1,2, are defined in (4.3). Using identities
(2.1) and (2.2)), we confirm that solvability conditions are satisfied.

Thus, we have proved the following theorem.

Theorem 4.1. Let Conditions (a), (b), (c), (d), (4.17)), (4.38) and (4.40) be satisfied. Then
problem , possesses a unique generalized solution a = (wy, we, w3, Y1, Ys) € W;@(Q),
2<p<4/(2-7) .
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