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PROBLEM ON STRING SYSTEM VIBRATIONS

ON STAR-SHAPED GRAPH WITH

NONLINEAR CONDITION AT NODE

M.B. ZVEREVA, M.I. KAMENSKII

Abstract. We consider a system of 𝑛 strings being in the equilibrium position along a

geometrical star-graph. We suppose that the edges of the graph have the same lengths

and the graph is oriented to the node. We study the case when the initial velocity of each

string is zero. The initial shape of each string is defined by means of given functions on

the edges. We assume that at the boundary vertices the strings are fixed. We study the

oscillatory process for the case, when the node point of the string system is located inside

the motion limiter. At the same time we suppose that the limiter can move in the direction

perpendicular to the graph plane. While the limiter does not touch the node point of the

string system, the transmission condition holds (the Kirchoff condition). Once the limiter

touches the node, their joint motion begins and an additional restriction for the sign of the

sum of derivatives at the node appears. Thus, at the node, a hysteresis type condition is

satisfied.

In the work we obtain a representation for the solution and prove its existence. For a

particular case we consider a case on periodic oscillations of the node point of the string

system. We solve a problem on boundary control of the oscillatory process under the

assumption that the oscillation time does not exceed the length of the strings.
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1. Introduction

Differential equations on spatial networks (geometric graphs), which attracted the attention
of mathematicians several decades ago, are relevant in many areas of technology and natural
science. They arise when describing phenomena in continuous systems with a network-like
structure (electrical, hydraulic, acoustic networks, heat pipes, waveguides, neural and comput-
ing systems, elastic lattice structures, electronic systems, etc.). An active mathematical interest
in studying such problems led to the appearance of numerous publications; we mention works
[1]-[3], [7]-[15], [17]-[21]. However, in all these works problems with linear boundary conditions
were considered. In papers [2], [3] the study of problems on deformations of string systems on
graphs with various nonlinear conditions was initiated. However, oscillatory processes for such
systems were not thoroughly studied.
In the present paper we obtain a representation for the solution to an initial boundary value

problem describing the oscillations of a string system located along a geometric star graph with
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a hysteresis type condition at the node. This condition arises due to a limiter for the oscillatory
process installed at the node. In its turn, the limiter can move in a direction perpendicular to
the graph plane so that its movement is described by the mapping 𝐶(𝑡) = [−ℎ, ℎ] + 𝜉(𝑡), 𝑡 ⩾ 0.
In what follows we use the terminology from [9].
We are going to describe the formulation of the problem. Let points 𝑂, 𝐴1, 𝐴2, . . . , 𝐴𝑛

belong to the horizontal plane 𝜋. We consider a mechanical system consisting of 𝑛 strings, the
equilibria of which coincide with the segments 𝑂𝐴1, 𝑂𝐴2, . . . , 𝑂𝐴𝑛. The end-points of the
strings are tied at the point 𝑂. A geometric star graph Γ consists of the edges (intervals) 𝑂𝐴1,
𝑂𝐴2, . . . , 𝑂𝐴𝑛, the node 𝑂 and boundary vertices 𝐴1, 𝐴2, . . . , 𝐴𝑛. We suppose that while
oscillating, the strings deviate from their equillibria in the direction perpendicular to the plane
𝜋 and we consider the case of small oscillations.
Let the edges of the graph have the same lengths and the graph is oriented to the node.

The introduced parametrization associated the node with the point 𝑥 = 𝑙, while the boundary
vertices are associated with 𝑥 = 0. By 𝑢(𝑥, 𝑡) we denote a function defined on the graph, which
describes the deviation of the string system from the equilibrium at the point 𝑥 and at the
time 𝑡. The restriction of 𝑢(𝑥, 𝑡) to the edges is denoted by 𝑢𝑖(𝑥, 𝑡), 𝑖 = 1, 2, . . . , 𝑛. Thus, each
function 𝑢𝑖(𝑥, 𝑡) determines the shape of 𝑖th string. At the points 𝑥 = 0 and 𝑥 = 𝑙 the functions
𝑢𝑖(𝑥, 𝑡) are defined by the corresponding boundary values. The tie condition for the strings at
the node means that 𝑢(𝑙, 𝑡) = 𝑢1(𝑙, 𝑡) = 𝑢𝑖(𝑙, 𝑡) = . . . = 𝑢𝑛(𝑙, 𝑡). We suppose that the initial
shape of the strings is described by the functions 𝜙𝑖(𝑥) (𝑖 = 1, 2, . . . , 𝑛). We consider the case,
when the initial velocity for all strings is zero. We assume that the end-points of the strings
are fixed at the boundary vertices, which means the validity of the conditions 𝑢𝑖(0, 𝑡) = 0,
(𝑖 = 1, 2, . . . , 𝑛).
We suppose that in the oscillatory process the node point of the string system 𝑢(𝑙, 𝑡) is located

inside the limiter, that is, the condition 𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡) is satisfied. As 𝑢(𝑙, 𝑡) is an internal point
of 𝐶(𝑡), the transmission condition (the Kirchoff condition) is satisfied:

𝑛∑︁
𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) = 0.

The derivatives at the node for each function 𝑢𝑖(𝑥, 𝑡) are treated as corresponding one-sided
derivatives. If the node point of the string system touches the boundary points of the limiter,
then during some time one of the following conditions hold:

𝑢(𝑙, 𝑡) = 𝜉(𝑡) + ℎ, at the same time
𝑛∑︁

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ⩽ 0,

or

𝑢(𝑙, 𝑡) = 𝜉(𝑡)− ℎ, at the same time
𝑛∑︁

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ⩾ 0.

The condition for the sign of the sum of the derivatives at the node describes the influence of
the support reaction force from the limiter, which blocks the movement of the node. Thus, we
should have

−
𝑛∑︁

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)),

where the set 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)) stands for an outward normal cone to 𝐶(𝑡) at the point 𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡),
which is defined as

𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)) = {𝜉 ∈ 𝑅1 : 𝜉 · (𝑐− 𝑢(𝑙, 𝑡)) ⩽ 0 ∀𝑐 ∈ 𝐶(𝑡)}.
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We observe that if 𝑢(𝑙, 𝑡) is an internal point of 𝐶(𝑡), then 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)) = 0. If 𝑢(𝑙, 𝑡) = 𝜉(𝑡)+ℎ,
then 𝐶(𝑡) = [0,+∞). As 𝑢(𝑙, 𝑡) = 𝜉(𝑡)− ℎ, then 𝐶(𝑡) = (−∞, 0].
Thus, the mathematical model of the problem reads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2𝑢𝑖

𝜕𝑥2
=
𝜕2𝑢𝑖

𝜕𝑡2
, 0 < 𝑥 < 𝑙, 𝑡 > 0 (𝑖 = 1, 2, . . . , 𝑛),

𝑢𝑖(𝑥, 0) = 𝜙𝑖(𝑥),

𝜕𝑢𝑖

𝜕𝑡
(𝑥, 0) = 0,

𝑢1(𝑙, 𝑡) = 𝑢2(𝑙, 𝑡) = . . . = 𝑢𝑛(𝑙, 𝑡) = 𝑢(𝑙, 𝑡),

−
𝑛∑︁

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)),

𝑢𝑖(0, 𝑡) = 0 (𝑖 = 1, 2, . . . , 𝑛),

𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡).

(1.1)

Hereafter we suppose that the conditions hold:

𝜙(𝑙) = 𝜙1(𝑙) = 𝜙2(𝑙) = . . . = 𝜙𝑛(𝑙), 𝜙(𝑙) ∈ 𝐶(0),

𝜙1(0) = 𝜙2(0) = . . . = 𝜙𝑛(0) = 0.

In the present work we obtain an analogue of the D’Alembert formula for the solution of problem
(1.1).

2. Preliminaries

In this section we provide some notions and definitions, which will be needed in what follows.
Let 𝐻 be a Hilbert space. The scalar product in 𝐻 is denoted by ⟨·, ·⟩. For a closed convex

set 𝐶 ⊂ 𝐻 and 𝑥 ∈ 𝐶 the set

𝑁𝐶(𝑥) = {𝜉 ∈ 𝐻 : ⟨𝜉, 𝑐− 𝑥⟩ ⩽ 0 ∀𝑐 ∈ 𝐶}
denotes an outward normal cone to 𝐶 at the point 𝑥. We note that we always have 0 ∈ 𝑁𝐶(𝑥),
𝑁{𝑥}(𝑥) = 𝐻, and 𝑁𝐶(𝑥) = {0} for 𝑥 ∈ int𝐶, where int𝐶 is the set of interior points of 𝐶; we
suppose that int𝐶 ̸= ∅. The latter relation shows that the outward normal cone is non-trivial
only as 𝑥 ∈ 𝜕𝐶, where 𝜕𝐶 is the boundary of the set 𝐶.
The Hausdorff distance 𝑑𝐻(𝐶1, 𝐶2) between closed sets 𝐶1 and 𝐶2 is defined by the formula

𝑑𝐻(𝐶1, 𝐶2) = max{ sup
𝑥∈𝐶2

dist(𝑥,𝐶1), sup
𝑥∈𝐶1

dist(𝑥,𝐶2)},

where

dist(𝑥,𝐶) = inf{‖𝑥− 𝑐‖, 𝑐 ∈ 𝐶}.
We consider a so-called sweeping process [16]:

−𝑢′(𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑡)), 𝑡 ∈ [0, 𝑇 ], (2.1)

𝑢(0) = 𝑢0 ∈ 𝐶(0). (2.2)

A function 𝑢 : [0, 𝑇 ] → 𝐻 is called a solution of sweeping process (2.1), (2.2) if
(a) 𝑢(0) = 𝑢0;
(b) 𝑢(𝑡) ∈ 𝐶(𝑡) for all 𝑡 ∈ [0, 𝑇 ];
(c) 𝑢 is differentiable for almost all 𝑡 ∈ [0, 𝑇 ];
(d) −𝑢′(𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑡)) for almost all 𝑡 ∈ [0, 𝑇 ].
We shall need the following theorems from [16].
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Theorem 2.1. Assume that map 𝑡 → 𝐶(𝑡) satisfies the Lipschitz condition in the sense of
the Hausdorff distance, that is,

𝑑𝐻(𝐶(𝑡), 𝐶(𝑠)) ⩽ 𝐿|𝑡− 𝑠|,

and 𝐶(𝑡) ⊂ 𝐻 is nonempty, closed and convex for every 𝑡 ∈ [0, 𝑇 ]. Let 𝑢0 ∈ 𝐶(0). Then there
exists a solution 𝑢 : [0, 𝑇 ] → 𝐻 of problem (2.1), (2.2), which is Lipschitz continuous with
constant 𝐿. In particular, |𝑢′(𝑡)| ⩽ 𝐿 for almost every 𝑡 ∈ [0, 𝑇 ].

Theorem 2.2. The solution of (2.1), (2.2) is unique in the class of absolutely continuous
functions.

In what follows we apply the classes of functions introduced by V.A. Ilin in [5]. By 𝑄𝑇 we
denote a rectangle

𝑄𝑇 = [0 ⩽ 𝑥 ⩽ 𝑙]× [0 ⩽ 𝑡 ⩽ 𝑇 ].

We shall say that the function 𝑢(𝑥, 𝑡) belongs to the class ̂︁𝑊 1
2 (𝑄𝑇 ) if 𝑢(𝑥, 𝑡) is continuous in

𝑄𝑇 and possesses both generalized partial derivatives 𝑢𝑥(𝑥, 𝑡) and 𝑢𝑡(𝑥, 𝑡) in this rectangle and
each of these derivatives belongs to the class 𝐿2(𝑄𝑇 ) and to the class 𝐿2[0 ⩽ 𝑥 ⩽ 𝑙] for each
fixed 𝑡 in the segment [0, 𝑇 ] and to the class 𝐿2[0 ⩽ 𝑡 ⩽ 𝑇 ] for each fixed 𝑥 in the segment [0, 𝑙].

We shall say that Φ(𝑥, 𝑡) belongs to the class ̂︁𝑊 2
2 (𝑄𝑇 ) if the function Φ(𝑥, 𝑡) and its first

partial derivatives are continuous in 𝑄𝑇 and if Φ(𝑥, 𝑡) possesses in this rectangle all generalized
derivatives of second order, each of which belongs to the class 𝐿2(𝑄𝑇 ) and to the class 𝐿2[0 ⩽
𝑥 ⩽ 𝑙] for each fixed 𝑡 in the segment [0, 𝑇 ] and to the class 𝐿2[0 ⩽ 𝑡 ⩽ 𝑇 ] for each fixed 𝑥 in
the segment [0, 𝑙].

3. Problem on graph with a nonlinear condition at node

A solution to problem (1.1) is a function 𝑢(𝑥, 𝑡) such that

1) the restrictions of 𝑢(𝑥, 𝑡) on the edges coincide with 𝑢𝑖(𝑥, 𝑡) (𝑖 = 1, 2, . . . , 𝑛) and 𝑢𝑖(𝑥, 𝑡) ∈̂︁𝑊 1
2 (𝑄𝑇 ) for all 𝑇 > 0;

2) for 𝑡 ⩾ 0 the conditions

𝑢1(𝑙, 𝑡) = 𝑢2(𝑙, 𝑡) = . . . = 𝑢𝑛(𝑙, 𝑡) = 𝑢(𝑙, 𝑡), 𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡), 𝑢𝑖(0, 𝑡) = 0

hold;

3) for almost all 𝑡 ⩾ 0 the condition −
𝑛∑︀

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)) holds;

4) the conditions 𝑢𝑖(𝑥, 0) = 𝜙𝑖(𝑥) holds for all 𝑥 ∈ [0, 𝑙], and the conditions
𝜕𝑢𝑖

𝜕𝑡
(𝑥, 0) = 0

hold for almost all 𝑥 ∈ [0, 𝑙], 𝑖 = 1, 2, . . . , 𝑛;
5) for each 𝑇 > 0 the integral identity

𝑛∑︁
𝑖=1

𝑙∫︁
0

𝑇∫︁
0

𝑢𝑖(𝑥, 𝑡)[
𝜕2Ψ𝑖

𝜕𝑡2
(𝑥, 𝑡)− 𝜕2Ψ𝑖

𝜕𝑥2
(𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡+

𝑛∑︁
𝑖=1

𝑙∫︁
0

𝜕Ψ𝑖

𝜕𝑡
(𝑥, 0)𝜙𝑖(𝑥) 𝑑𝑥

+
𝑛∑︁

𝑖=1

𝑇∫︁
0

(𝑢𝑖(𝑙, 𝑡)
𝜕Ψ𝑖

𝜕𝑥
(𝑙, 𝑡)−Ψ𝑖(𝑙, 𝑡)

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡)) 𝑑𝑡 = 0

(3.1)

holds, where arbitrary functions Ψ𝑖 ∈ ̂︁𝑊 2
2 (𝑄𝑇 ), (𝑖 = 1, 2, . . . , 𝑛), are such that

Ψ𝑖(0, 𝑡) = 0, Ψ𝑖(𝑥, 𝑇 ) = 0,
𝜕Ψ𝑖

𝜕𝑡
(𝑥, 𝑇 ) = 0, Ψ1(𝑙, 𝑡) = Ψ2(𝑙, 𝑡) = . . . = Ψ𝑛(𝑙, 𝑡).



38 M.B. ZVEREVA, M.I. KAMENSKII

We consider functions Φ𝑖 of the following form:

– if 𝑥 ∈ [0, 𝑙], then Φ𝑖(𝑥) = 𝜙𝑖(𝑥);
– if 𝑥 ∈ [(𝑚+ 1)𝑙, (𝑚+ 2)𝑙] and 𝑚 is an even number, then

Φ𝑖(𝑥) = 2 ·
𝑚
2∑︁

𝑘=0

𝑔2𝑘(𝑥− (𝑚+ 1− 2𝑘)𝑙)− 𝜙𝑖((𝑚+ 2)𝑙 − 𝑥);

– if 𝑥 ∈ [(𝑚+ 1)𝑙, (𝑚+ 2)𝑙] and 𝑚 is an odd number, then

Φ𝑖(𝑥) = 2 ·
𝑚+1

2∑︁
𝑘=1

𝑔2𝑘−1(𝑥− (𝑚+ 2− 2𝑘)𝑙) + 𝜙𝑖(𝑥− (𝑚+ 1)𝑙);

Φ𝑖(−𝑥) = −Φ𝑖(𝑥).

Here the functions 𝑔0(𝑡) and 𝑔1(𝑡) are solutions of problems⎧⎪⎨⎪⎩−𝑔′0(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔0(𝑡)) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑙 − 𝑡), 𝑡 ∈ [0, 𝑙],

𝑔0(0) = 𝜙(𝑙),⎧⎪⎨⎪⎩−𝑔′1(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔1(𝑡)) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑡− 𝑙), 𝑡 ∈ [𝑙, 2𝑙],

𝑔1(𝑙) = 𝑔0(𝑙).

The functions 𝑔𝑚(𝑡), where 𝑡 ∈ [𝑚𝑙, (𝑚 + 1)𝑙], with even numbers 𝑚 ⩾ 2 are solutions to the
problems ⎧⎪⎪⎨⎪⎪⎩−𝑔′𝑚(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑚(𝑡)) + 2

𝑚−2
2∑︁

𝑘=0

𝑔′2𝑘(𝑡−𝑚𝑙 + 2𝑘𝑙) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑚𝑙 + 𝑙 − 𝑡),

𝑔𝑚(𝑚𝑙) = 𝑔𝑚−1(𝑚𝑙),

while for odd 𝑚 ⩾ 3 and 𝑡 ∈ [𝑚𝑙, (𝑚+ 1)𝑙] they solve the problems⎧⎪⎪⎨⎪⎪⎩−𝑔′𝑚(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑚(𝑡)) + 2

𝑚−1
2∑︁

𝑘=1

𝑔′2𝑘−1(𝑡− 𝑙 −𝑚𝑙 + 2𝑘𝑙) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑡−𝑚𝑙),

𝑔𝑚(𝑚𝑙) = 𝑔𝑚−1(𝑚𝑙).

Theorem 3.1. Let the functions 𝜉(𝑡) and 𝜙𝑖(𝑥) satisfy the Lipschitz condition on their do-
mains. Then the solution to problem (1.1) can be represented as

𝑢𝑖(𝑥, 𝑡) =
Φ𝑖(𝑥− 𝑡) + Φ𝑖(𝑥+ 𝑡)

2
, (3.2)

where 𝑖 = 1, 2, . . . , 𝑛.

Proof. We first formally suppose that the solution to problem (1.1) is of form (3.2). Then
𝑢𝑖(𝑥, 0) = Φ𝑖(𝑥) = 𝜙𝑖(𝑥), where 𝑥 ∈ [0, 𝑙]. It follows from the condition 𝑢𝑖(0, 𝑡) = 0 that the
functions Φ𝑖(𝑥) should be defined for 𝑥 < 0 in the odd way. Since

𝑢𝑖𝑥(𝑥, 𝑡) =
Φ𝑖′(𝑥− 𝑡) + Φ𝑖′(𝑥+ 𝑡)

2
, 𝑢𝑖𝑡(𝑥, 𝑡) =

−Φ𝑖′(𝑥− 𝑡) + Φ𝑖′(𝑥+ 𝑡)

2
,

then

−𝑢𝑖𝑡(𝑙, 𝑡) = −𝑢𝑖𝑥(𝑙, 𝑡) + Φ𝑖′(𝑙 − 𝑡)
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and therefore,

− 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑡(𝑙, 𝑡) = − 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑥(𝑙, 𝑡) +
1

𝑛

𝑛∑︁
𝑖=1

Φ𝑖′(𝑙 − 𝑡).

We denote

𝑔(𝑡) =
1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖(𝑙, 𝑡) = 𝑢(𝑙, 𝑡).

We note that since

−
𝑛∑︁

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡))

then

− 1

𝑛

𝑛∑︁
𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)),

and hence,

−𝑔′(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔(𝑡)) +
1

𝑛

𝑛∑︁
𝑖=1

Φ𝑖′(𝑙 − 𝑡).

We consider the case 0 ⩽ 𝑡 ⩽ 𝑙. Then

1

𝑛

𝑛∑︁
𝑖=1

Φ𝑖′(𝑙 − 𝑡) =
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑙 − 𝑡).

We introduce a function 𝑔0(𝑡), which is equal to 𝑔(𝑡) as 0 ⩽ 𝑡 ⩽ 𝑙. We then see that 𝑔0(𝑡) is a
solution to problem ⎧⎪⎨⎪⎩−𝑔′0(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔0(𝑡)) +

1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑙 − 𝑡), 𝑡 ∈ [0, 𝑙],

𝑔0(0) = 𝜙(𝑙).

(3.3)

Let us show that this problem possesses a unique solution, which is defined for all 𝑡 ∈ [0, 𝑙].
We consider a function

𝑤(𝑡) = 𝑔0(𝑡) +

𝑡∫︁
0

1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑙 − 𝑠) 𝑑𝑠

and a set

𝐷(𝑡) = 𝐶(𝑡) +

𝑡∫︁
0

1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑙 − 𝑠) 𝑑𝑠.

Since the functions 𝜉(𝑡) and 𝜙𝑖(𝑥) satisfy the Lipschitz condition, then the mapping 𝐷(𝑡)
also satisfies the Lipschitz condition in the sense of the Hausdorff distance. We observe that
𝑁𝐶(𝑡)(𝑔0(𝑡)) = 𝑁𝐷(𝑡)(𝑤(𝑡)). Thus, we obtain the problem

− 𝑑

𝑑𝑡
𝑤(𝑡) ∈ 𝑁𝐷(𝑡)(𝑤(𝑡)), 𝑤(0) = 𝜙(𝑙) ∈ 𝐷(0), 𝑡 ∈ [0, 𝑙].

According to Theorems 2.1 and 2.2, this problem possesses a unique solution 𝑤(𝑡) defined on
the entire segment [0, 𝑙]. The function 𝑤(𝑡) satisfies the Lipschitz condition and its derivative
is almost everywhere bounded. Then problem (3.3) possesses a unique solution 𝑔0(𝑡), where
𝑔0(𝑡) ∈ 𝐶(𝑡) and 𝑔0(𝑡) also satisfies the Lipschitz condition. Since

Φ𝑖(𝑙 − 𝑡) + Φ𝑖(𝑙 + 𝑡) = 2𝑔0(𝑡),
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we obtain

Φ𝑖(𝑥) = 2𝑔0(𝑥− 𝑙)− 𝜙𝑖(2𝑙 − 𝑥),

where 𝑥 ∈ [𝑙, 2𝑙]. We note that each function Φ𝑖(𝑥) satisfies the Lipschitz condition on the
segment [𝑙, 2𝑙] and its derivative is bounded almost everywhere. Thus, Φ𝑖 ∈ 𝑊 1

2 [𝑙, 2𝑙].
We are going to show that Φ𝑖(𝑙 − 0) = Φ𝑖(𝑙 + 0). We have

Φ𝑖(𝑙 − 0) = 𝜙(𝑙), and Φ𝑖(𝑙 + 0) = 2𝑔0(0)− 𝜙𝑖(𝑙) = 2𝜙(𝑙)− 𝜙(𝑙) = 𝜙(𝑙).

We consider the case 𝑡 ∈ [𝑙, 2𝑙] and on this segment we define a function 𝑔1(𝑡) = 𝑔(𝑡). We
consider a problem⎧⎪⎨⎪⎩− 𝑑

𝑑𝑡
𝑔1(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔1(𝑡)) +

1

𝑛

𝑛∑︁
𝑖=1

Φ𝑖′(𝑙 − 𝑡), 𝑡 ∈ [𝑙, 2𝑙],

𝑔1(𝑙) = 𝑔0(𝑙).

We note that for all 𝑖 = 1, 2, . . . , 𝑛 we have Φ𝑖(𝑙− 𝑡) = −𝜙𝑖(𝑡− 𝑙). We then obtain the problem⎧⎪⎨⎪⎩−𝑔′1(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔1(𝑡)) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑡− 𝑙), 𝑡 ∈ [𝑙, 2𝑙],

𝑔1(𝑙) = 𝑔0(𝑙).

Similarly to (3.3) we prove that the latter problem possesses a unique solution 𝑔1(𝑡), where
𝑔1(𝑡) ∈ 𝐶(𝑡) and 𝑔1(𝑡) satisfies the Lipschitz condition. Thus, we can determine Φ𝑖(𝑥) for
𝑥 ∈ [2𝑙, 3𝑙] as

Φ𝑖(𝑥) = 2𝑔1(𝑥− 𝑙) + 𝜙𝑖(𝑥− 2𝑙).

We observe that Φ𝑖 ∈ 𝑊 1
2 [2𝑙, 3𝑙].

Let us show that Φ𝑖(2𝑙 − 0) = Φ𝑖(2𝑙 + 0). We have

Φ𝑖(2𝑙 − 0) = 2𝑔0(𝑙)− 𝜙𝑖(0) = 2𝑔0(𝑙)

and

Φ𝑖(2𝑙 + 0) = 2𝑔1(𝑙) + 𝜙𝑖(0) = 2𝑔0(𝑙).

In the same way we consider the case 𝑡 ∈ [2𝑙, 3𝑙]. We define the function 𝑔2(𝑡) = 𝑔(𝑡), where
𝑡 ∈ [2𝑙, 3𝑙]. Then 𝑔2(𝑡) is a solution to the problem⎧⎪⎨⎪⎩− 𝑑

𝑑𝑡
𝑔2(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔2(𝑡)) + 2𝑔′0(𝑡− 2𝑙) +

1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(3𝑙 − 𝑡), 𝑡 ∈ [2𝑙, 3𝑙],

𝑔2(2𝑙) = 𝑔1(2𝑙).

Now we can determine each function Φ𝑖(𝑥) on the segment 𝑥 ∈ [3𝑙, 4𝑙] as

Φ𝑖(𝑥) = 2𝑔2(𝑥− 𝑙) + 2𝑔0(𝑥− 3𝑙)− 𝜙𝑖(4𝑙 − 𝑥).

We consider the case 𝑡 ∈ [3𝑙, 4𝑙]. Having determined 𝑔3(𝑡) = 𝑔(𝑡), we see that 𝑔3(𝑡) is a
solution of the problem⎧⎪⎨⎪⎩− 𝑑

𝑑𝑡
𝑔3(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔3(𝑡)) + 2𝑔′1(𝑡− 2𝑙) +

1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑡− 3𝑙), 𝑡 ∈ [3𝑙, 4𝑙],

𝑔3(3𝑙) = 𝑔2(3𝑙),

and for 𝑥 ∈ [4𝑙, 5𝑙] we determine the functions

Φ𝑖(𝑥) = 2𝑔3(𝑥− 𝑙) + 2𝑔1(𝑥− 3𝑙) + 𝜙𝑖(𝑥− 4𝑙).
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Let us show that as 𝑥 ∈ [(𝑚+ 1)𝑙, (𝑚+ 2)𝑙], for even 𝑚 we have

Φ𝑖(𝑥) = 2 ·
𝑚
2∑︁

𝑘=0

𝑔2𝑘(𝑥− (𝑚+ 1− 2𝑘)𝑙)− 𝜙𝑖((𝑚+ 2)𝑙 − 𝑥);

while for odd 𝑚 we have

Φ𝑖(𝑥) = 2 ·
𝑚+1

2∑︁
𝑘=1

𝑔2𝑘−1(𝑥− (𝑚+ 2− 2𝑘)𝑙) + 𝜙𝑖(𝑥− (𝑚+ 1)𝑙).

In their turn, the functions 𝑔𝑚(𝑡), where 𝑡 ∈ [𝑚𝑙, (𝑚+ 1)𝑙], are solution of the problems⎧⎪⎪⎨⎪⎪⎩−𝑔′𝑚(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑚(𝑡)) + 2

𝑚−2
2∑︁

𝑘=0

𝑔′2𝑘(𝑡−𝑚𝑙 + 2𝑘𝑙) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑚𝑙 + 𝑙 − 𝑡),

𝑔𝑚(𝑚𝑙) = 𝑔𝑚−1(𝑚𝑙),

for even 𝑚 ⩾ 2, while for odd 𝑚 ⩾ 3 they solve the problems⎧⎪⎪⎨⎪⎪⎩−𝑔′𝑚(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑚(𝑡)) + 2

𝑚−1
2∑︁

𝑘=1

𝑔′2𝑘−1(𝑡− 𝑙 −𝑚𝑙 + 2𝑘𝑙) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑡−𝑚𝑙),

𝑔𝑚(𝑚𝑙) = 𝑔𝑚−1(𝑚𝑙).

For 𝑚 = 2, 3 the statement is proved. Suppose that it is true for 𝑚 ⩽ 𝑀 and let us show
that then it holds for 𝑚 =𝑀 + 1.
We consider the case of even 𝑀 and we are going to show that

Φ𝑖(𝑥) = 2

𝑀+2
2∑︁

𝑘=1

𝑔2𝑘−1(𝑥− (𝑀 + 3− 2𝑘)𝑙) + 𝜙𝑖(𝑥− (𝑀 + 2)𝑙),

where 𝑥 ∈ [(𝑀 +2)𝑙, (𝑀 +3)𝑙]. Having determined 𝑔(𝑡) = 𝑔𝑀+1(𝑡) for 𝑡 ∈ [(𝑀 +1)𝑙, (𝑀 +2)𝑙],
we obtain

−𝑔′𝑀+1(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑀+1(𝑡)) +
1

𝑛

𝑛∑︁
𝑖=1

Φ𝑖′(𝑙 − 𝑡).

Since

Φ𝑖′(𝑙 − 𝑡) = 2 ·
𝑀
2∑︁

𝑘=1

𝑔′2𝑘−1(𝑡− 𝑙 − (𝑀 + 1− 2𝑘)𝑙) + 𝜙𝑖′(𝑡− 𝑙 −𝑀𝑙),

then

−𝑔′𝑀+1(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑀+1(𝑡)) + 2 ·
𝑀
2∑︁

𝑘=1

𝑔′2𝑘−1(𝑡− 2𝑙 −𝑀𝑙 + 2𝑘𝑙) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑡− 𝑙 −𝑀𝑙).

We note that

𝑔𝑀+1((𝑀 + 1)𝑙) =
Φ((2 +𝑀)𝑙)− Φ(𝑀𝑙)

2
.

Since

Φ((𝑀 + 2)𝑙) = 2

𝑀
2∑︁

𝑘=0

𝑔2𝑘(𝑙 + 2𝑘𝑙) and Φ(𝑀𝑙) = 2

𝑀−2
2∑︁

𝑘=0

𝑔2𝑘(𝑙 + 2𝑘𝑙),

then

𝑔𝑀+1((𝑀 + 1)𝑙) = 𝑔𝑀((𝑀 + 1)𝑙).
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The problem⎧⎪⎪⎨⎪⎪⎩−𝑔′𝑀+1(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑀+1(𝑡)) + 2 ·
𝑀
2∑︁

𝑘=1

𝑔′2𝑘−1(𝑡− 2𝑙 −𝑀𝑙 + 2𝑘𝑙) +
1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖′(𝑡− 𝑙 −𝑀𝑙),

𝑔𝑀+1((𝑀 + 1)𝑙) = 𝑔𝑀((𝑀 + 1)𝑙)

possesses a unique solution 𝑔𝑀+1(𝑡) defined on the segment [(𝑀 + 1)𝑙, (𝑀 + 2)𝑙]. Then

𝑔𝑀+1(𝑡) =
Φ𝑖(𝑙 − 𝑡) + Φ𝑖(𝑙 + 𝑡)

2
.

Hence,

Φ𝑖(𝑥) = 2𝑔𝑀+1(𝑥− 𝑙)− Φ𝑖(2𝑙 − 𝑥),

where 𝑥 ∈ [(𝑀 + 2)𝑙, (𝑀 + 3)𝑙]. Since

Φ𝑖(2𝑙 − 𝑥) = −2

𝑀
2∑︁

𝑘=1

𝑔2𝑘−1(𝑥− 3𝑙 −𝑀𝑙 + 2𝑘𝑙)− 𝜙𝑖(𝑥− 2𝑙 −𝑀𝑙),

then

Φ𝑖(𝑥) = 2𝑔𝑀+1(𝑥− 𝑙) + 2

𝑀
2∑︁

𝑘=1

𝑔2𝑘−1(𝑥− 3𝑙 −𝑀𝑙 + 2𝑘𝑙) + 𝜙𝑖(𝑥− 2𝑙 −𝑀𝑙)

= 2

𝑀+2
2∑︁

𝑘=1

𝑔2𝑘−1(𝑥− 3𝑙 −𝑀𝑙 + 2𝑘𝑙) + 𝜙𝑖(𝑥− 2𝑙 −𝑀𝑙),

and this is what we needed. Other cases can be treated in the same way.
We thus have obtained a representation for the functions Φ𝑖(𝑥) (𝑖 = 1, 2, . . . , 𝑛). Let us show

that the functions 𝑢𝑖(𝑥, 𝑡) defined by identity (3.2) are solutions to problem (1.1). We observe

that 𝑢𝑖 ∈ ̂︁𝑊 1
2 (𝑄𝑇 ) for all 𝑇 since the functions Φ𝑖(𝑥) are continuous on the entire axis and

Φ𝑖 ∈ 𝑊 1
2 [𝑚𝑙, (𝑚+1)𝑙] for 𝑚 = 0, 1, 2, . . ., while for 𝑥 < 0 the functions Φ𝑖(𝑥) are defined in the

odd way.
Since 𝑢(𝑙, 𝑡) = 𝑔(𝑡), where 𝑔(𝑡) = 𝑔𝑚(𝑡) as 𝑡 ∈ [𝑚𝑙, (𝑚 + 1)𝑙], 𝑔𝑚(𝑚𝑙) = 𝑔𝑚−1(𝑚𝑙) and

𝑔𝑚(𝑡) ∈ 𝐶(𝑡), then 𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡) for all 𝑡 ⩾ 0. We note that the conditions

𝑢𝑖(0, 𝑡) = 0, 𝑢1(𝑙, 𝑡) = 𝑢2(𝑙, 𝑡) = . . . = 𝑢𝑛(𝑙, 𝑡) = 𝑔(𝑡)

are satisfied for all 𝑡 ⩾ 0; the condition

𝜕𝑢𝑖

𝜕𝑡
(𝑥, 0) = 0

holds for almost each 𝑥 ∈ [0, 𝑙] and the condition

𝑢𝑖(𝑥, 0) = 𝜙𝑖(𝑥)

holds for all 𝑥 ∈ [0, 𝑙].
Since

−𝑢𝑖𝑥(𝑙, 𝑡) = −1

2
(Φ𝑖′(𝑙 − 𝑡) + Φ𝑖′(𝑙 + 𝑡)),

Φ𝑖′(𝑙 + 𝑡) = 2𝑔′(𝑡) + Φ𝑖′(𝑙 − 𝑡)

almost everywhere, then

− 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑥(𝑙, 𝑡) = − 1

𝑛

𝑛∑︁
𝑖=1

Φ𝑖′(𝑙 − 𝑡)− 𝑔′(𝑡).
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Since

−𝑔′(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔(𝑡)) +
1

𝑛

𝑛∑︁
𝑖=1

Φ𝑖′(𝑙 − 𝑡),

then

− 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑥(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑔(𝑡)) = 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)),

and hence,

−
𝑛∑︁

𝑖=1

𝑢𝑖𝑥(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡))

almost everywhere.
Now we are going to show that the integral identity holds true. Integral identity (3.1) can

be represented as

𝑛∑︁
𝑖=1

𝑙∫︁
0

⎛⎝ 𝑇∫︁
0

𝑢𝑖(𝑥, 𝑡)Ψ𝑖
𝑡𝑡(𝑥, 𝑡) 𝑑𝑡

⎞⎠ 𝑑𝑥−
𝑛∑︁

𝑖=1

𝑇∫︁
0

⎛⎝ 𝑙∫︁
0

𝑢𝑖(𝑥, 𝑡)Ψ𝑖
𝑥𝑥(𝑥, 𝑡) 𝑑𝑥

⎞⎠ 𝑑𝑡

+
𝑛∑︁

𝑖=1

𝑙∫︁
0

Ψ𝑖
𝑡(𝑥, 0)𝜙

𝑖(𝑥) 𝑑𝑥−
𝑛∑︁

𝑖=1

𝑇∫︁
0

Ψ𝑖(𝑙, 𝑡)𝑢𝑖𝑥(𝑙, 𝑡) 𝑑𝑡+
𝑛∑︁

𝑖=1

𝑇∫︁
0

Ψ𝑖
𝑥(𝑙, 𝑡)𝑢

𝑖(𝑙, 𝑡) 𝑑𝑡

=
𝑛∑︁

𝑖=1

𝑙∫︁
0

(︀
𝑢𝑖(𝑥, 𝑇 )Ψ𝑖

𝑡(𝑥, 𝑇 )− 𝑢𝑖(𝑥, 0)Ψ𝑖
𝑡(𝑥, 0)

)︀
𝑑𝑥−

𝑛∑︁
𝑖=1

𝑙∫︁
0

𝑇∫︁
0

𝑢𝑖𝑡(𝑥, 𝑡)Ψ
𝑖
𝑡(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

−
𝑛∑︁

𝑖=1

𝑇∫︁
0

(︀
Ψ𝑖

𝑥(𝑙, 𝑡)𝑢
𝑖(𝑙, 𝑡)−Ψ𝑖

𝑥(0, 𝑡)𝑢
𝑖(0, 𝑡)

)︀
𝑑𝑡+

𝑛∑︁
𝑖=1

𝑇∫︁
0

𝑙∫︁
0

𝑢𝑖𝑥(𝑥, 𝑡)Ψ
𝑖
𝑥(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+
𝑛∑︁

𝑖=1

𝑙∫︁
0

Ψ𝑖
𝑡(𝑥, 0)𝜙

𝑖(𝑥) 𝑑𝑥−
𝑛∑︁

𝑖=1

𝑇∫︁
0

Ψ𝑖(𝑙, 𝑡)𝑢𝑖𝑥(𝑙, 𝑡) 𝑑𝑡+
𝑛∑︁

𝑖=1

𝑇∫︁
0

Ψ𝑖
𝑥(𝑙, 𝑡)𝑢

𝑖(𝑙, 𝑡) 𝑑𝑡

=
𝑛∑︁

𝑖=1

𝑇∫︁
0

𝑙∫︁
0

𝑢𝑖𝑥(𝑥, 𝑡)Ψ
𝑖
𝑥(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡−

𝑛∑︁
𝑖=1

𝑙∫︁
0

∫︁ 𝑇

0

𝑢𝑖𝑡(𝑥, 𝑡)Ψ
𝑖
𝑡(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡−

𝑛∑︁
𝑖=1

𝑇∫︁
0

Ψ𝑖(𝑙, 𝑡)𝑢𝑖𝑥(𝑙, 𝑡) 𝑑𝑡

=
1

2

𝑛∑︁
𝑖=1

𝑇∫︁
0

𝑙∫︁
0

(︁
Φ𝑖′(𝑥− 𝑡) + Φ𝑖′(𝑥+ 𝑡)

)︁
Ψ𝑖

𝑥(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

−1

2

𝑛∑︁
𝑖=1

𝑙∫︁
0

𝑇∫︁
0

(︁
Φ𝑖′(𝑥+ 𝑡)− Φ𝑖′(𝑥− 𝑡)

)︁
Ψ𝑖

𝑡(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥−
𝑛∑︁

𝑖=1

𝑇∫︁
0

Ψ𝑖(𝑙, 𝑡)𝑢𝑖𝑥(𝑙, 𝑡) 𝑑𝑡

=
1

2

𝑛∑︁
𝑖=1

𝑙∫︁
0

Ψ𝑖
𝑥(𝑥, 𝑇 )(−Φ𝑖(𝑥− 𝑇 ) + Φ𝑖(𝑥+ 𝑇 )) 𝑑𝑥− 1

2

𝑛∑︁
𝑖=1

𝑙∫︁
0

Ψ𝑖
𝑥(𝑥, 0)(−Φ𝑖(𝑥) + Φ𝑖(𝑥)) 𝑑𝑥

−1

2

𝑛∑︁
𝑖=1

𝑇∫︁
0

𝑙∫︁
0

Ψ𝑖
𝑥𝑡(𝑥, 𝑡)(Φ

𝑖(𝑥+ 𝑡)− Φ𝑖(𝑥− 𝑡)) 𝑑𝑥 𝑑𝑡



44 M.B. ZVEREVA, M.I. KAMENSKII

−1

2

𝑛∑︁
𝑖=1

𝑇∫︁
0

Ψ𝑖
𝑡(𝑙, 𝑡)(Φ

𝑖(𝑙 + 𝑡)− Φ𝑖(𝑙 − 𝑡)) 𝑑𝑡+
1

2

𝑛∑︁
𝑖=1

𝑇∫︁
0

Ψ𝑖
𝑡(0, 𝑡)(Φ

𝑖(𝑡)− Φ𝑖(−𝑡)) 𝑑𝑡

+
1

2

𝑛∑︁
𝑖=1

𝑙∫︁
0

𝑇∫︁
0

Ψ𝑖
𝑡𝑥(𝑥, 𝑡)(Φ

𝑖(𝑥+ 𝑡)− Φ𝑖(𝑥− 𝑡)) 𝑑𝑥 𝑑𝑡−
𝑛∑︁

𝑖=1

𝑇∫︁
0

Ψ(𝑙, 𝑡)𝑢𝑖𝑥(𝑙, 𝑡) 𝑑𝑡

=− 1

2

𝑛∑︁
𝑖=1

𝑇∫︁
0

Ψ𝑖
𝑡(𝑙, 𝑡)(Φ

𝑖(𝑙 + 𝑡)− Φ𝑖(𝑙 − 𝑡)) 𝑑𝑡− 1

2

𝑛∑︁
𝑖=1

𝑇∫︁
0

(Φ𝑖′(𝑙 − 𝑡) + Φ𝑖′(𝑙 + 𝑡))Ψ𝑖(𝑙, 𝑡) 𝑑𝑡

= −1

2

𝑛∑︁
𝑖=1

𝑇∫︁
0

Ψ𝑖
𝑡(𝑙, 𝑡)(Φ

𝑖(𝑙 + 𝑡)− Φ𝑖(𝑙 − 𝑡)) 𝑑𝑡+
1

2

𝑛∑︁
𝑖=1

𝑇∫︁
0

Ψ𝑖
𝑡(𝑙, 𝑡)(Φ

𝑖(𝑙 + 𝑡)− Φ𝑖(𝑙 − 𝑡)) 𝑑𝑡 = 0.

The proof is complete.

Remark 3.1. We observe that problem (1.1) has a unique solution.

Proof. Suppose that the functions 𝑢𝑖(𝑥, 𝑡) form a solution to problem (1.1). Then the function

̃︀𝑢(𝑥, 𝑡) = 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖(𝑥, 𝑡)

is a solution of the problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2̃︀𝑢
𝜕𝑥2

=
𝜕2̃︀𝑢
𝜕𝑡2

, 0 < 𝑥 < 𝑙, 𝑡 > 0,

̃︀𝑢(𝑥, 0) = 1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖(𝑥),

𝜕̃︀𝑢
𝜕𝑡

(𝑥, 0) = 0,

𝜕̃︀𝑢
𝜕𝑥

(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(̃︀𝑢(𝑙, 𝑡)),̃︀𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡),̃︀𝑢(0, 𝑡) = 0.

(3.4)

This problem possesses a unique solution. Indeed, if 𝜙(𝑙) ∈ (−ℎ + 𝜉(0), ℎ + 𝜉(0)), then for all
𝑡 ∈ [0, 𝑡1] the function ̃︀𝑢(𝑥, 𝑡) is a solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2̃︀𝑢
𝜕𝑥2

=
𝜕2̃︀𝑢
𝜕𝑡2

, 0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑡1,

̃︀𝑢(𝑥, 0) = 1

𝑛

𝑛∑︁
𝑖=1

𝜙𝑖(𝑥),

𝜕̃︀𝑢
𝜕𝑡

(𝑥, 0) = 0,̃︀𝑢(0, 𝑡) = 0,̃︀𝑢′𝑥(𝑙, 𝑡) = 0.

As it is known [4], the latter problem possesses a unique solution ̃︀𝑢(𝑥, 𝑡). At time 𝑡1 either the
condition ̃︀𝑢(𝑙, 𝑡1) = −ℎ + 𝜉(𝑡) or ̃︀𝑢(𝑙, 𝑡1) = ℎ + 𝜉(𝑡) is satisfied and for 𝑡 ∈ [𝑡1, 𝑡2] the function
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̃︀𝑢(𝑥, 𝑡) is a solution of one of problems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2̃︀𝑢*
𝜕𝑥2

=
𝜕2̃︀𝑢*
𝜕𝑡2

, 0 < 𝑥 < 𝑙, 𝑡1 < 𝑡 < 𝑡2,̃︀𝑢*(𝑥, 𝑡1) = ̃︀𝑢(𝑥, 𝑡1),
𝜕̃︀𝑢*
𝜕𝑡

(𝑥, 𝑡1) = ̃︀𝑢′

𝑡(𝑥, 𝑡1),̃︀𝑢(0, 𝑡) = 0,̃︀𝑢(𝑙, 𝑡) = ±ℎ+ 𝜉(𝑡).

Such problems also have a unique solution on [𝑡1, 𝑡2] [4]. Continue similar arguing, we obtain
that the initial problem can have only a unique solution.
We introduce functions 𝜔𝑖(𝑥, 𝑡) = 𝑢𝑖(𝑥, 𝑡) − ̃︀𝑢(𝑥, 𝑡), (𝑖 = 1, 2, . . . , 𝑛). We note that 𝜔𝑖(𝑥, 𝑡),

(𝑖 = 1, 2, . . . , 𝑛) are a solution to the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2𝜔𝑖

𝜕𝑥2
=
𝜕2𝜔𝑖

𝜕𝑡2
, 0 < 𝑥 < 𝑙, 𝑡 > 0 (𝑖 = 1, 2, . . . , 𝑛),

𝜔𝑖(𝑥, 0) = 𝜙𝑖(𝑥)− 1

𝑛

𝑛∑︁
𝑗=1

𝜙𝑗(𝑥),

𝜕𝜔𝑖

𝜕𝑡
(𝑥, 0) = 0,

𝜔𝑖(0, 𝑡) = 0,

𝜔𝑖(𝑙, 𝑡) = 0.

According to [4], for each 𝑖 = 1, 2, . . . , 𝑛 the functions 𝜔𝑖(𝑥, 𝑡) are defined uniquely. Hence, the
functions 𝑢𝑖(𝑥, 𝑡) are also defined uniquely and this completes the proof.

We consider an example of solving a problem of form (1.1). Namely, we consider a problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2𝑢𝑖

𝜕𝑥2
=
𝜕2𝑢𝑖

𝜕𝑡2
, 0 < 𝑥 < 𝑙, 𝑡 > 0 (𝑖 = 1, 2, . . . , 𝑛),

𝑢𝑖(𝑥, 0) = 0,

𝜕𝑢𝑖

𝜕𝑡
(𝑥, 0) = 0,

𝑢1(𝑙, 𝑡) = 𝑢2(𝑙, 𝑡) = . . . = 𝑢𝑛(𝑙, 𝑡) = 𝑢(𝑙, 𝑡),

−
𝑛∑︁

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)),

𝑢𝑖(0, 𝑡) = 0 (𝑖 = 1, 2, . . . , 𝑛),

𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡),

where 𝐶(𝑡) = [−ℎ, ℎ] + 𝜉(𝑡) and 𝜉(𝑡) is defined as 𝑙-periodic function of form

𝜉(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

8ℎ

𝑙
𝑡 𝑡 ∈

[︂
0,
𝑙

4

]︂
,

−8ℎ

𝑙

(︂
𝑡− 𝑙

2

)︂
, 𝑡 ∈

[︂
𝑙

4
,
3𝑙

4

]︂
,

8ℎ

𝑙
(𝑡− 𝑙), 𝑡 ∈

[︂
3𝑙

4
, 𝑙

]︂
.
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We note that the function 𝜉(𝑡) satisfies the Lipschitz condition with the constant 𝐿 =
8ℎ

𝑙
. As

it was proved above, such problem possesses a unique solution, where

𝑢𝑖(𝑥, 𝑡) =
Φ𝑖(𝑥− 𝑡) + Φ𝑖(𝑥+ 𝑡)

2
, 𝑖 = 1, 2, . . . , 𝑛.

Each of the functions Φ𝑖(𝑥) can be represented as follows:
1) If 𝑥 ∈ [0, 𝑙], then Φ𝑖(𝑥) = 0;
2) If 𝑥 ∈ [(𝑚+ 1)𝑙, (𝑚+ 2)𝑙] and 𝑚 is even, then

Φ𝑖(𝑥) = 2 ·
𝑚
2∑︁

𝑘=0

𝑔2𝑘(𝑥− (𝑚+ 1− 2𝑘)𝑙);

3) If 𝑚 is odd, then

Φ𝑖(𝑥) = 2 ·
𝑚+1

2∑︁
𝑘=1

𝑔2𝑘−1(𝑥− (𝑚+ 2− 2𝑘)𝑙);

Φ𝑖(−𝑥) = −Φ𝑖(𝑥).

Here the functions 𝑔0(𝑡) and 𝑔1(𝑡) are solutions of problems{︃
−𝑔′0(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔0(𝑡)), 𝑡 ∈ [0, 𝑙],

𝑔0(0) = 0,
(3.5){︃

−𝑔′1(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔1(𝑡)), 𝑡 ∈ [𝑙, 2𝑙],

𝑔1(𝑙) = 𝑔0(𝑙).
(3.6)

The functions 𝑔𝑚(𝑡) for even numbers 𝑚 ⩾ 2 are solutions of the problems⎧⎪⎪⎨⎪⎪⎩−𝑔′𝑚(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑚(𝑡)) + 2

𝑚−2
2∑︁

𝑘=0

𝑔′2𝑘(𝑡−𝑚𝑙 + 2𝑘𝑙), 𝑡 ∈ [𝑚𝑙, (𝑚+ 1)𝑙],

𝑔𝑚(𝑚𝑙) = 𝑔𝑚−1(𝑚𝑙),

while for odd 𝑚 ⩾ 3 they solve the problems⎧⎪⎪⎨⎪⎪⎩−𝑔′𝑚(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔𝑚(𝑡)) + 2

𝑚−1
2∑︁

𝑘=1

𝑔′2𝑘−1(𝑡− 𝑙 −𝑚𝑙 + 2𝑘𝑙), 𝑡 ∈ [𝑚𝑙, (𝑚+ 1)𝑙],

𝑔𝑚(𝑚𝑙) = 𝑔𝑚−1(𝑚𝑙).

We consider problem (3.5). Having solved it, we obtain

𝑔0(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑡 ∈
[︂
0,
𝑙

8

]︂
,

𝜉(𝑡)− ℎ, 𝑡 ∈
[︂
𝑙

8
,
𝑙

4

]︂
,

ℎ, 𝑡 ∈
[︂
𝑙

4
,
𝑙

2

]︂
,

𝜉(𝑡) + ℎ, 𝑡 ∈
[︂
𝑙

2
,
3𝑙

4

]︂
,

−ℎ, 𝑡 ∈
[︂
3𝑙

4
, 𝑙

]︂
.
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We consider problem (3.6). Its solution reads as

𝑔1(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜉(𝑡)− ℎ, 𝑡 ∈
[︂
𝑙,
5𝑙

4

]︂
,

ℎ, 𝑡 ∈
[︂
5𝑙

4
,
3𝑙

2

]︂
,

𝜉(𝑡) + ℎ, 𝑡 ∈
[︂
3𝑙

2
,
7𝑙

4

]︂
,

− ℎ, 𝑡 ∈
[︂
7𝑙

4
, 2𝑙

]︂
.

Let us show that for all 𝑚 ∈ N we have

𝑔𝑚(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜉(𝑡)− ℎ, 𝑡 ∈
[︂
𝑚𝑙,

𝑙(4𝑚+ 1)

4

]︂
,

ℎ, 𝑡 ∈
[︂
𝑙(4𝑚+ 1)

4
,
𝑙(2𝑚+ 1)

2

]︂
,

𝜉(𝑡) + ℎ, 𝑡 ∈
[︂
𝑙(2𝑚+ 1)

2
,
𝑙(4𝑚+ 3)

4

]︂
,

−ℎ, 𝑡 ∈
[︂
𝑙(4𝑚+ 3)

4
, 𝑙(𝑚+ 1)

]︂
.

For 𝑚 = 1 the statement is true. Suppose that it is true for 𝑚 ⩽ 𝑁 and let us show that in
this case it is true for 𝑚 = 𝑁 + 1. We consider the case, when 𝑁 = 2𝑀 , and we are going to
prove that

𝑔2𝑀+1(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜉(𝑡)− ℎ, 𝑡 ∈
[︂
2𝑀𝑙 + 𝑙, 2𝑀𝑙 +

5𝑙

4

]︂
,

ℎ, 𝑡 ∈
[︂
2𝑀𝑙 +

5𝑙

4
, 2𝑀𝑙 +

3𝑙

2

]︂
,

𝜉(𝑡) + ℎ, 𝑡 ∈
[︂
2𝑀𝑙 +

3𝑙

2
, 2𝑀𝑙 +

7𝑙

4

]︂
,

−ℎ, 𝑡 ∈
[︂
2𝑀𝑙 +

7𝑙

4
, 2𝑀𝑙 + 2𝑙

]︂
.

(3.7)

We have ⎧⎪⎪⎨⎪⎪⎩
−𝑔′2𝑀+1(𝑡) ∈ 𝑁𝐶(𝑡)(𝑔2𝑀+1(𝑡)) + 2

𝑀∑︁
𝑘=1

𝑔′2𝑘−1(𝑡− 2𝑙 − 2𝑀𝑙 + 2𝑘𝑙),

𝑔2𝑀+1((2𝑀 + 1)𝑙) = −ℎ, 𝑡 ∈ [(2𝑀 + 1)𝑙, (2𝑀 + 2)𝑙].

We denote

𝑣(𝑡) = 𝑔2𝑀+1(𝑡) + 2

𝑡∫︁
(2𝑀+1)𝑙

𝑀∑︁
𝑘=1

𝑔′2𝑘−1(𝑠− 2𝑙 − 2𝑀𝑙 + 2𝑘𝑙) 𝑑𝑠.

We have

𝑣(𝑡) = 𝑔2𝑀+1(𝑡) + 2
𝑀∑︁
𝑘=1

(𝑔2𝑘−1(𝑡− 2𝑙 − 2𝑀𝑙 + 2𝑘𝑙)− 𝑔2𝑘−1((2𝑘 − 1)𝑙)

= 𝑔2𝑀+1(𝑡) + 2
𝑀∑︁
𝑘=1

𝑔2𝑘−1(𝑡− 2𝑙 − 2𝑀𝑙 + 2𝑘𝑙) + 2𝑀ℎ.
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We denote

𝜉(𝑡) = 𝜉(𝑡) + 2𝑀ℎ+ 2
𝑀∑︁
𝑘=1

𝑔2𝑘−1(𝑡− 2𝑙 − 2𝑀𝑙 + 2𝑘𝑙),

𝐷(𝑡) = [−ℎ, ℎ] + 𝜉(𝑡), 𝑡 ∈ [(2𝑀 + 1)𝑙, (2𝑀 + 2)𝑙].

In view of the induction assumption and the representation for the function 𝜉(𝑡) we get

𝜉(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + 2𝑀)𝜉(𝑡), 𝑡 ∈
[︂
2𝑀𝑙 + 𝑙, 2𝑀𝑙 +

5𝑙

4

]︂
,

𝜉(𝑡) + 4𝑀ℎ, 𝑡 ∈
[︂
2𝑀𝑙 +

5𝑙

4
, 2𝑀𝑙 +

3𝑙

2

]︂
,

𝜉(𝑡) + 4𝑀ℎ+ 2𝑀𝜉(𝑡), 𝑡 ∈
[︂
2𝑀𝑙 +

3𝑙

2
, 2𝑀𝑙 +

7𝑙

4

]︂
,

𝜉(𝑡), 𝑡 ∈
[︂
2𝑀𝑙 +

7𝑙

4
, 2𝑀𝑙 + 2𝑙

]︂
.

Since 𝑣(𝑡) is a solution of problem{︃
−𝑣′(𝑡) ∈ 𝑁𝐷(𝑡)(𝑣(𝑡)), 𝑡 ∈ [(2𝑀 + 1)𝑙, (2𝑀 + 2)𝑙],

𝑣((2𝑀 + 1)𝑙) = −ℎ,

then

𝑣(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ℎ+ 𝜉(𝑡) + 2𝑀𝜉(𝑡), 𝑡 ∈
[︂
2𝑀𝑙 + 𝑙, 2𝑀𝑙 +

5𝑙

4

]︂
,

ℎ+ 4𝑀ℎ, 𝑡 ∈
[︂
2𝑀𝑙 +

5𝑙

4
, 2𝑀𝑙 +

3𝑙

2

]︂
,

𝜉(𝑡) + 4𝑀ℎ+ 2𝑀𝜉(𝑡) + ℎ, 𝑡 ∈
[︂
2𝑀𝑙 +

3𝑙

2
, 2𝑀𝑙 +

7𝑙

4

]︂
,

−ℎ, 𝑡 ∈
[︂
2𝑀𝑙 +

7𝑙

4
, 2𝑀𝑙 + 2𝑙

]︂
.

Therefore, 𝑔2𝑀+1(𝑡) = 𝑣(𝑡) − 𝜉(𝑡) + 𝜉(𝑡) and we obtain (3.7) for the function 𝑔2𝑀+1(𝑡). Other
cases can be considered in the same way.
We define a function 𝑔(𝑡) coinciding with the function 𝑔𝑚(𝑡) on each segment 𝑡 ∈ [𝑚𝑙, (𝑚+1)𝑙],

where 𝑚 = 0, 1, 2, . . . Since 𝑢(𝑙, 𝑡) = 𝑔(𝑡), the node of the string system periodically oscillates
with the period 𝑙 from the time 𝑡 = 𝑙

4
. At the same time, the touching of the limiter occurs at

times 𝑙
8
, 𝑛𝑙

2
, where 𝑛 ∈ N.

4. Boundary control problem

Problems on boundary control of oscillating processes on a segment in the case of linear
boundary conditions were studied, for instance, in works by V.A. Ilin and E.I. Moiseev [4]–[6].
We consider a problem of such kind for the star graph for the case of a nonlinear condition at
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the node: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2𝑢𝑖

𝜕𝑥2
=
𝜕2𝑢𝑖

𝜕𝑡2
, 0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇 (𝑖 = 1, 2, . . . , 𝑛),

𝑢𝑖(𝑥, 0) = 𝜙𝑖(𝑥),

𝜕𝑢𝑖

𝜕𝑡
(𝑥, 0) = 0,

−
𝑛∑︁

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)),

𝑢(𝑙, 𝑡) = 𝑢1(𝑙, 𝑡) = 𝑢2(𝑙, 𝑡) = . . . = 𝑢𝑛(𝑙, 𝑡),

𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡),

𝑢𝑖(0, 𝑡) = 𝜇𝑖(𝑡).

(4.1)

We need to find functions 𝜇𝑖(𝑡) ∈ 𝑊 1
2 [0, 𝑇 ] such that

𝑢𝑖(𝑥, 𝑇 ) = 𝜙 *𝑖 (𝑥), (𝑢𝑖)′𝑡(𝑥, 𝑇 ) = 𝜓 *𝑖 (𝑥),

where 𝜙*𝑖 ∈ 𝑊 1
2 [0, 𝑙], 𝜓*𝑖 ∈ 𝐿2[0, 𝑙] are given functions. Suppose that the functions 𝜉(𝑡) and

𝜙𝑖(𝑥) satisfy the Lipschitz condition on their domains.
A solution of problem (4.1) is a function 𝑢(𝑥, 𝑡) such that

1) the restrictions of 𝑢(𝑥, 𝑡) to the edges coincide with 𝑢𝑖(𝑥, 𝑡), (𝑖 = 1, 2, . . . , 𝑛), and 𝑢𝑖(𝑥, 𝑡) ∈̂︁𝑊 1
2 (𝑄𝑇 );

2) for 0 ⩽ 𝑡 ⩽ 𝑇 the conditions

𝑢1(𝑙, 𝑡) = 𝑢2(𝑙, 𝑡) = . . . = 𝑢𝑛(𝑙, 𝑡) = 𝑢(𝑙, 𝑡), 𝑢(𝑙, 𝑡) ∈ 𝐶(𝑡), 𝑢𝑖(0, 𝑡) = 𝜇𝑖(𝑡),

hold;

3) for almost all 0 ⩽ 𝑡 ⩽ 𝑇 the condition −
𝑛∑︀

𝑖=1

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡) ∈ 𝑁𝐶(𝑡)(𝑢(𝑙, 𝑡)) holds;

4) the conditions 𝑢𝑖(𝑥, 0) = 𝜙𝑖(𝑥) hold for all 𝑥 ∈ [0, 𝑙], while the conditions
𝜕𝑢𝑖

𝜕𝑡
(𝑥, 0) = 0

hold for almost all 𝑥 ∈ [0, 𝑙], 𝑖 = 1, 2, . . . , 𝑛;
5) The integral identity

𝑛∑︁
𝑖=1

∫︁ 𝑙

0

𝑇∫︁
0

𝑢𝑖(𝑥, 𝑡)[
𝜕2Ψ𝑖

𝜕𝑡2
(𝑥, 𝑡)− 𝜕2Ψ𝑖

𝜕𝑥2
(𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡+

𝑛∑︁
𝑖=1

𝑙∫︁
0

𝜕Ψ𝑖

𝜕𝑡
(𝑥, 0)𝜙𝑖(𝑥) 𝑑𝑥

+
𝑛∑︁

𝑖=1

𝑇∫︁
0

(𝑢𝑖(𝑙, 𝑡)
𝜕Ψ𝑖

𝜕𝑥
(𝑙, 𝑡)−Ψ𝑖(𝑙, 𝑡)

𝜕𝑢𝑖

𝜕𝑥
(𝑙, 𝑡)) 𝑑𝑡−

𝑛∑︁
𝑖=1

𝑇∫︁
0

𝜕Ψ𝑖

𝜕𝑥
(0, 𝑡)𝜇𝑖(𝑡) 𝑑𝑡 = 0

hold, where arbitrary functions Ψ𝑖 ∈ ̂︁𝑊 2
2 (𝑄𝑇 ), (𝑖 = 1, 2, . . . , 𝑛), are such that

Ψ𝑖(0, 𝑡) = 0, Ψ𝑖(𝑥, 𝑇 ) = 0,
𝜕Ψ𝑖

𝜕𝑡
(𝑥, 𝑇 ) = 0, Ψ1(𝑙, 𝑡) = Ψ2(𝑙, 𝑡) = . . . = Ψ𝑛(𝑙, 𝑡).

We consider the case 𝑇 < 𝑙.

Theorem 4.1. For 𝑇 < 𝑙 a solution to problem (4.1) is uniquely defined. The functions
𝜇𝑖(𝑡) should read as

𝜇𝑖(𝑡) =
1

2
(𝜙𝑖(𝑡)−̂︂𝜓*𝑖(𝑇 − 𝑡) + 𝜙 *𝑖 (𝑇 − 𝑡)).
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At the same time, for all 𝑖 = 1, 2, . . . , 𝑛 the initial and final data should be related by the
identitieŝ︂𝜓*𝑖(𝑥)− 𝜙 *𝑖 (𝑥) + 𝜙𝑖(𝑥− 𝑇 ) ≡ 0, 𝑇 ⩽ 𝑥 ⩽ 𝑙,̂︂𝜓*𝑖(𝑥) + 𝜙 *𝑖 (𝑥)− 𝜙𝑖(𝑥+ 𝑇 ) ≡ 0, 0 ⩽ 𝑥 ⩽ 𝑙 − 𝑇,̂︂𝜓*𝑖(𝑥) + 𝜙 *𝑖 (𝑥)− 2𝑔0(𝑇 + 𝑥− 𝑙) + 𝜙𝑖(2𝑙 − 𝑥− 𝑇 ) ≡ 0, 𝑙 − 𝑇 ⩽ 𝑥 ⩽ 𝑙.

Here for each 𝑖 = 1, 2, . . . , 𝑛 by ̂︂𝜓*𝑖 we denote the primitive for the function 𝜓*𝑖, which obeys
the identity ̂︂𝜓*𝑖(𝑥𝑖0)− 𝜙 *𝑖 (𝑥𝑖0) + 𝜙𝑖(𝑥𝑖0 − 𝑇 ) = 0,

𝑥𝑖0 ∈ [𝑇, 𝑙] are fixed, 𝑔0(𝑡) is a solution of problem (3.3).

Proof. We introduce the functions

𝜇𝑖(𝑡) =

{︃
𝜇𝑖(𝑡), 𝑡 ⩾ 0,

0, 𝑡 < 0,
𝑖 = 1, 2, . . . , 𝑛,

We denote by 𝑣𝑖(𝑥, 𝑡) a solution to problem (1.1), (𝑖 = 1, 2, . . . , 𝑛). Similarly to Theorem 3.1,
by straightforward checking of the conditions we confirm that

𝑢𝑖(𝑥, 𝑡) = 𝜇𝑖(𝑡− 𝑥) + 𝑣𝑖(𝑥, 𝑡)

is a solution of problem (4.1), (𝑖 = 1, 2, . . . , 𝑛). Thus,

𝑢𝑖(𝑥, 𝑡) = 𝜇𝑖(𝑡− 𝑥) +
Φ𝑖(𝑥− 𝑡) + Φ𝑖(𝑥+ 𝑡)

2
.

Then

𝜇𝑖(𝑇 − 𝑥) +
Φ𝑖(𝑥− 𝑇 ) + Φ𝑖(𝑥+ 𝑇 )

2
= 𝜙 *𝑖 (𝑥),

and therefore,

−𝜇𝑖′(𝑇 − 𝑥) +
Φ𝑖′(𝑥+ 𝑇 ) + Φ𝑖′(𝑥− 𝑇 )

2
= 𝜙 *𝑖′ (𝑥). (4.2)

On the other hand,

𝜇𝑖′(𝑇 − 𝑥) +
Φ𝑖′(𝑥+ 𝑇 )− Φ𝑖′(𝑥− 𝑇 )

2
= 𝜓 *𝑖 (𝑥). (4.3)

Deducting identity (4.2) from (4.3), we obtain

2𝜇𝑖′(𝑇 − 𝑥)− Φ𝑖′(𝑥− 𝑇 ) = 𝜓 *𝑖 (𝑥)− 𝜙 *𝑖′ (𝑥). (4.4)

We proceed to the case 𝑇 ⩽ 𝑥 ⩽ 𝑙. Using representations for the functions 𝜇𝑖 and Φ𝑖, we
obtain ̂︂𝜓*𝑖(𝑥)− 𝜙 *𝑖 (𝑥) + 𝜙𝑖(𝑥− 𝑇 ) ≡ 0, 𝑇 ⩽ 𝑥 ⩽ 𝑙,

where we choose the primitive ̂︂𝜓*𝑖(𝑥) of the function 𝜓 *𝑖 (𝑥) so that it to satisfy the identitŷ︂𝜓*𝑖(𝑥𝑖0)− 𝜙 *𝑖 (𝑥𝑖0) + 𝜙𝑖(𝑥𝑖0 − 𝑇 ) = 0,

where 𝑥𝑖0 ∈ [𝑇, 𝑙] is fixed for each 𝑖 = 1, 2, . . . , 𝑛.
We consider identity (4.4) for 0 ⩽ 𝑥 ⩽ 𝑇 . We obtain

2𝜇𝑖(𝑇 − 𝑥) = 𝜙𝑖(𝑇 − 𝑥)−̂︂𝜓*𝑖(𝑥) + 𝜙 *𝑖 (𝑥),
which for all 0 ⩽ 𝑡 ⩽ 𝑇 implies

𝜇𝑖(𝑡) =
1

2
(𝜙𝑖(𝑡)−̂︂𝜓*𝑖(𝑇 − 𝑡) + 𝜙 *𝑖 (𝑇 − 𝑡)).
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Summing (4.2) and (4.3), we find

Φ𝑖′(𝑥+ 𝑇 ) = 𝜓 *𝑖 (𝑥) + 𝜙 *𝑖′ (𝑥). (4.5)

Let us consider the case 𝑙 − 𝑇 ⩽ 𝑥 ⩽ 𝑙. Using the representations for the functions Φ𝑖

obtained in Theorem 3.1, we get̂︂𝜓*𝑖(𝑥) + 𝜙 *𝑖 (𝑥)− 2𝑔0(𝑇 + 𝑥− 𝑙) + 𝜙𝑖(2𝑙 − 𝑥− 𝑇 ) ≡ 0.

If 0 ⩽ 𝑥 ⩽ 𝑙 − 𝑇 , then ̂︂𝜓*𝑖(𝑥) + 𝜙 *𝑖 (𝑥)− 𝜙𝑖(𝑥+ 𝑇 ) ≡ 0.

The proof is complete.
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