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HOMOGENIZATION OF MOTION EQUATIONS

FOR MEDIUM CONSISTING OF ELASTIC MATERIAL

AND INCOMPESSIBLE KELVIN-VOIGT FLUID

A.S. SHAMAEV, V.V. SHUMILOVA

Abstract. We consider an initial-boundary problem describing the motion of a two-phase
medium with a periodic structure. The first phase of the medium is an isotropic elastic
material and the second phase is an incompressible viscoelastic Kelvin-Voigt fluid. This
problem consists of second and fourth order partial differential equations, conditions of
continuity of displacements and stresses at the phase boundaries, and homogeneous initial
and boundary conditions. Using the Laplace transform method, we derive a homogenized
problem, which is an initial boundary value problem for the system of fourth order partial
integro-differential equations with constant coefficients. The coefficients and convolution
kernels of the homogenized equations are found by using solutions of auxiliary periodic
problems on the unit cube. In the case of a layered medium, the solutions of the periodic
problems are written explicitly, and this allows us to find analytic expressions for the ho-
mogenized coefficients and convolution kernels. In particular, we establish that the type
and properties of the homogenized convolution kernels depend on the volume fraction of
the fluid layers inside the periodicity cell.

Keywords: homogenization, equations of motion, two-phase medium, elastic material,
Kelvin-Voigt fluid
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1. Introduction

The construction of rigorously justified homogenized models of micro-inhomogeneous media
is among the main directions of the homogenization theory for partial differential equations.
From the point of view of practical applications a large interest is attracted by homogenized
models of two-phase media possessing 𝜀-periodic structure and consisting of a solid material
and a fluid. The dynamics of such solid-fluid media is described by initial boundary value
problems for partial differential or integro-differential equations, the coefficients of which are 𝜀-
periodic functions of spatial variables. A straightforward numerical solving for media consisting
of many thousands or millions of periodicity cells causes serious troubles. On the other hand,
for some models of two-phase media one succeeds to derive corresponding homogenized models
constructed as 𝜀 → 0. As a rule, the homogenized models of periodic rigid-fluid media are
initial boundary value problems for equations with constant coefficients. It should be recalled
that according the main idea of the homogenization, the solutions of perturbed problems and
of the corresponding homogenized ones should be close from small 𝜀.
In works [1]–[9] homogenized motion models were constructed for periodic two-phase medium,

one phase of which consisted of an elastic or viscoelastic material, while the other phase did of
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a viscous Newtonian fluid. According to the results of these works, the homogenized equations
are integro-differential even in the case, when the equations for each phase are differential.
In the present work we consider the homogenization for an initial boundary value problem

describing the motion of a two-phase medium with an 𝜀-periodic structure. As the phases, we
choose an isotropic elastic material and an incompressible viscoelastic Kelvin-Voigt fluid. The
description and properties of the non-Newtonian fluids of such kind can be found, for instance,
in works [10], [11]. By means of the Laplace transform and the results of works [6]–[8] we write
out the homogenized problem, which is an initial boundary value problem for the system of
integro-differential equations with constant coefficients. The coefficients and the convolution
kernels of the homogenized equations can be found by means of a series of auxiliary periodic
problems on the unit cube. We show that in the case of layered medium the solutions of the
periodic problems can be written explicitly and it is possible to obtain in this way explicit
analytic expressions for the homogenized coefficients and the convolution kernels.

2. Original model of two-phase medium

We consider a bounded domain Ω ⊂ R3 with a smooth boundary 𝜕Ω filled by a two-phase
medium with a periodic microstructure. The period of this medium is the cube 𝑌𝜀 = 𝜀𝑌 , where
𝑌 = (0, 1)3 is the unit cube and the quantity 𝜀 is much less than the linear sizes of the domain
Ω. We partition 𝑌 into two open disjoint subsets 𝑌1 and 𝑌2 with a common smooth boundary
Γ: 𝑌 = 𝑌1 ∪ 𝑌2 ∪ Γ. We introduce the sets

𝐸𝑠 =
⋃︁
𝑘∈Z3

(𝑌𝑠 ∪ (𝜕𝑌𝑠 ∩ 𝜕𝑌 ) + 𝑘) , 𝑠 = 1, 2,

obtained by the 𝑌 -periodic continuation of the sets 𝑌𝑠 on the entire space R3. We denote
Ω𝑠𝜀 = Ω ∩ 𝜀𝐸𝑠 and in what follows we suppose that the set Ω1𝜀 is filled by an isotropic elastic
material, while the set Ω2𝜀 is filled by an incompressible viscoelastic Kelvin–Voigt fluid.
The constitutive relations for the components of the stress tensor and small deformations in

the elastic phase Ω1𝜀 read as

𝜎𝜀
𝑖𝑗 = 𝑎𝑖𝑗𝑘ℎ𝑒𝑘ℎ(𝑢

𝜀), (2.1)

where 𝑢𝜀(𝑥, 𝑡) is the vector of displacements, 𝜎𝜀 and 𝑒(𝑢𝜀) are the stress tensor and tensor of
small deformations, respectively, 𝑎 is a positive definite tensor of elasticity modules,

𝑒𝑘ℎ(𝑢
𝜀) = 𝑒𝑥𝑘ℎ(𝑢

𝜀) =
1

2

(︂
𝜕𝑢𝜀

𝑘

𝜕𝑥ℎ

+
𝜕𝑢𝜀

ℎ

𝜕𝑥𝑘

)︂
, 𝑎𝑖𝑗𝑘ℎ = 𝜆𝛿𝑖𝑗𝛿𝑘ℎ + 𝜇(𝛿𝑖𝑘𝛿𝑗ℎ + 𝛿𝑖ℎ𝛿𝑗𝑘).

Here 𝜆 and 𝜇 are the Lamé parameters, 𝜇 > 0, 3𝜆+2𝜇 > 0, and 𝛿𝑖𝑗 is the Kronecker delta. We
note that in (2.1) and in what follows we suppose the summation over repeating indices and,
unless else is stated, the indices 𝑖, 𝑗, 𝑘, ℎ range from 1 to 3.
The constitutive relations in the fluid phase Ω2𝜀 read as

𝜎𝜀
𝑖𝑗 = −𝛿𝑖𝑗𝑝

𝜀 + 2𝜂𝑒𝑖𝑗

(︂
𝜕𝑢𝜀

𝜕𝑡

)︂
+ 2𝜃𝑒𝑖𝑗

(︂
𝜕2𝑢𝜀

𝜕𝑡2

)︂
, (2.2)

where 𝑝𝜀(𝑥, 𝑡) is the pressure, 𝜂 is the viscousity coefficient of the fluid, and 𝜏 = 𝜃/𝜂 is the
retardation time [10].
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The initial boundary value problem describing the motion of the two phase medium in the
domain Ω is written as

𝜌𝑠
𝜕2𝑢𝜀

𝑖

𝜕𝑡2
=

𝜕𝜎𝜀
𝑖𝑗

𝜕𝑥𝑗

+ 𝑓𝑖(𝑥, 𝑡) in Ω𝑠𝜀 × (0, 𝑇 ), 𝑠 = 1, 2,

div
𝜕𝑢𝜀

𝜕𝑡
= 0 in Ω2𝜀 × (0, 𝑇 ), [𝑢𝜀]|Γ𝜀 = 0, [𝜎𝜀

𝑖𝑗𝑛𝑗]|Γ𝜀 = 0,

𝑢𝜀(𝑥, 𝑡)|𝜕Ω = 0, 𝑢𝜀(𝑥, 0) =
𝜕𝑢𝜀

𝜕𝑡
(𝑥, 0) = 0,

(2.3)

where 𝜌𝑠 = const is the density of the medium in Ω𝑠𝜀; 𝑓(𝑥, 𝑡) ∈ 𝐻2(0, 𝑇 ;𝐿2(Ω)3) is the vector of
a volume force; [𝑔]|Γ𝜀 is the jump of a function 𝑔 at the surface Γ𝜀 = 𝜕Ω1𝜀∩𝜕Ω2𝜀; 𝑛 = (𝑛1, 𝑛2, 𝑛3)
is the unit normal vector to the surface Γ𝜀 directed from the rigid phase into the fluid one.
The variational formulation of problem (2.3) is as follows: find 𝑢𝜀(𝑡) and 𝑝𝜀(𝑡) with values in

𝐻1
0 (Ω)

3 and 𝐿2(Ω2𝜀), respectively, satisfying the integral identity

2∑︁
𝑠=1

𝜌𝑠

∫︁
Ω𝑠𝜀

𝜕2𝑢𝜀

𝜕𝑡2
· 𝑣 𝑑𝑥+

∫︁
Ω1𝜀

𝑎𝑖𝑗𝑘ℎ𝑒𝑘ℎ(𝑢
𝜀)𝑒𝑖𝑗(𝑣) 𝑑𝑥

+ 2𝜂

∫︁
Ω2𝜀

𝑒𝑖𝑗

(︂
𝜕𝑢𝜀

𝜕𝑡

)︂
𝑒𝑖𝑗(𝑣) 𝑑𝑥+ 2𝜃

∫︁
Ω2𝜀

𝑒𝑖𝑗

(︂
𝜕2𝑢𝜀

𝜕𝑡2

)︂
𝑒𝑖𝑗(𝑣) 𝑑𝑥

−
∫︁
Ω2𝜀

𝑝𝜀 div 𝑣 𝑑𝑥 =

∫︁
Ω

𝑓 · 𝑣 𝑑𝑥 ∀𝑣 ∈ 𝐻1
0 (Ω)

3

(2.4)

for almost each 𝑡 ∈ (0, 𝑇 ), the incompressibility condition of the fluid phase

div
𝜕𝑢𝜀

𝜕𝑡
= 0 in Ω2𝜀 × (0, 𝑇 ) (2.5)

and homogeneous initial conditions

𝑢𝜀(0) = 0,
𝜕𝑢𝜀

𝜕𝑡
(0) = 0. (2.6)

The unique solvability of problem (2.4)–(2.6) for each fixed 𝜀 > 0 can be established as in
works [1], [2], in which there was considered a case of two-phase medium consisting of an elastic
material and a viscous Newtonian fluid.
From integral identity (2.4) we can derive a series of apriori estimates uniform in 𝜀. First of

all letting 𝑣 = 𝜕𝑢𝜀/𝜕𝑡 in (2.4), we obtain

𝑑𝑧𝜀

𝑑𝑡
⩽ 2

∫︁
Ω

𝑓 · 𝜕𝑢
𝜀

𝜕𝑡
𝑑𝑥, (2.7)

where

𝑧𝜀(𝑡) =
2∑︁

𝑠=1

𝜌𝑠

∫︁
Ω𝑠𝜀

⃒⃒⃒⃒
𝜕𝑢𝜀

𝜕𝑡

⃒⃒⃒⃒2
𝑑𝑥+

∫︁
Ω1𝜀

𝑎𝑖𝑗𝑘ℎ𝑒𝑘ℎ(𝑢
𝜀)𝑒𝑖𝑗(𝑢

𝜀) 𝑑𝑥+ 2𝜃

∫︁
Ω2𝜀

⃒⃒⃒⃒
𝑒

(︂
𝜕𝑢𝜀

𝜕𝑡

)︂⃒⃒⃒⃒2
𝑑𝑥.

By (2.7) we have

𝑑𝑧𝜀

𝑑𝑡
⩽
∫︁
Ω

|𝑓 |2𝑑𝑥+

∫︁
Ω

⃒⃒⃒⃒
𝜕𝑢𝜀

𝜕𝑡

⃒⃒⃒⃒2
𝑑𝑥 ⩽

∫︁
Ω

|𝑓 |2𝑑𝑥+ 𝑘1𝑧
𝜀, 𝑘1 =

1

min{𝜌1, 𝜌2}
,
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which by Grönwall inequality yield the estimates⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝑢𝜀

𝜕𝑡

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿∞(0,𝑇 ;𝐿2(Ω)3)

⩽ 𝐶‖𝑓‖1, ||𝑒(𝑢𝜀)||𝐿∞(0,𝑇 ;𝐿2(Ω1𝜀)3)
⩽ 𝐶‖𝑓‖1,⃒⃒⃒⃒⃒⃒⃒⃒

𝑒

(︂
𝜕𝑢𝜀

𝜕𝑡

)︂⃒⃒⃒⃒⃒⃒⃒⃒
𝐿∞(0,𝑇 ;𝐿2(Ω2𝜀)3)

⩽ 𝐶‖𝑓‖1, ‖𝑓‖1 = ‖𝑓‖𝐿2(0,𝑇 ;𝐿2(Ω)3),

where 𝐶 stand for various positive constants independent of 𝜀. It also follows from these
estimates and the Korn inequality that

‖𝑢𝜀‖𝐿∞(0,𝑇 ;𝐻1
0 (Ω)3) ⩽ 𝐶‖𝑓‖1.

In the same way we show that⃒⃒⃒⃒⃒⃒⃒⃒
𝜕3𝑢𝜀

𝜕𝑡3

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿∞(0,𝑇 ;𝐿2(Ω)3)

⩽ 𝐶‖𝑓‖𝐻2(0,𝑇 ;𝐿2(Ω)3),⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝑟𝑢𝜀

𝜕𝑡𝑟

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿∞(0,𝑇 ;𝐻1

0 (Ω)3)

⩽ 𝐶‖𝑓‖𝐻𝑟(0,𝑇 ;𝐿2(Ω)3), 𝑟 = 1, 2.

In particular, the obtained estimates imply that after a possible change on a set of zero Lebesgue
measure we get 𝑢𝜀 ∈ 𝐶1([0, 𝑇 ];𝐻1

0 (Ω)
3) ∩ 𝐶2([0, 𝑇 ];𝐿2(Ω)3) [11].

It remains to obtain an estimate for the pressure 𝑝𝜀(𝑥, 𝑡). In order to do this we consider the
problem

div 𝑞𝜀 = 𝑃 𝜀 in Ω× (0, 𝑇 ), 𝑞𝜀(𝑥, 𝑡)|𝜕Ω = 0, (2.8)

where

𝑃 𝜀(𝑥, 𝑡) =

⎧⎪⎨⎪⎩
− 1

|Ω1𝜀|

∫︁
Ω2𝜀

𝑝𝜀(𝑥, 𝑡) in Ω1𝜀 × (0, 𝑇 ),

𝑝𝜀(𝑥, 𝑡) in Ω2𝜀 × (0, 𝑇 ).

It is easy to confirm that∫︁
Ω

𝑃 𝜀(𝑥, 𝑡) 𝑑𝑥 = 0, ‖𝑃 𝜀‖𝐿2(0,𝑇 ;𝐿2(Ω)) ⩽ 𝐶‖𝑝𝜀‖𝐿2(0,𝑇 ;𝐿2(Ω2𝜀)).

It is known [12] that there exists a solution to problem (2.8) and it satisfies the estimate

‖𝑞𝜀‖𝐿2(0,𝑇 ;𝐻1
0 (Ω)3) ⩽ 𝐶‖𝑃 𝜀‖𝐿2(0,𝑇 ;𝐿2(Ω)).

In the integral identity we take 𝑣 = 𝑞𝜀, a solution of problem (2.8). Taking into consideration
the above estimates for 𝑢𝜀, it is easy to obtain

‖𝑝𝜀‖𝐿2(0,𝑇 ;𝐿2(Ω2𝜀)) ⩽ 𝐶.

3. Homogenized model of two-phase medium

In order to write out a homogenized problem corresponding to (2.3) as 𝜀 → 0, we continue
𝑓(𝑥, 𝑡) by zero for 𝑡 < 0 and 𝑡 > 𝑇 . Then we apply the Laplace transform in the time 𝑡 to
(2.4)–(2.6) and we denote the image of the function 𝑔(𝑡) by 𝑔𝜆 or 𝑔(𝜆), where 𝜆 is the parameter
of the Laplace transform. Following the arguing from works [6]–[8] used in derivations of the
homogenized models for two-phase medium, we can show that

lim
𝜀→0

∫︁
Ω

|𝑢𝜀
𝜆(𝑥)− 𝑢𝜆(𝑥)|2 𝑑𝑥 = 0, lim

𝜀→0

∫︁
Ω2𝜀

|𝑝𝜀𝜆(𝑥)− 𝑝𝜆(𝑥, 𝜀
−1𝑥)|2 𝑑𝑥 = 0,

lim
𝜀→0

∫︁
Ω

|𝑒(𝑢𝜀
𝜆(𝑥))− 𝑒(𝑢𝜆(𝑥))− 𝑤𝜆(𝑥, 𝜀

−1𝑥)|2 𝑑𝑥 = 0, 𝑤𝜆(𝑥, 𝑦) = 𝑒𝑦(𝑣𝜆(𝑥, 𝑦)),
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𝑣𝜆(𝑥, 𝑦) = 𝑄𝑘ℎ
𝜆 (𝑦)

𝜕𝑢𝜆𝑘

𝜕𝑥ℎ

, 𝑝𝜆(𝑥, 𝑦) = 𝑃 𝑘ℎ
𝜆 (𝑦)

𝜕𝑢𝜆𝑘

𝜕𝑥ℎ

,

where the pairs {𝑄𝑘ℎ
𝜆 (𝑦) ∈ 𝐻1

per
(𝑌 )3/R3, 𝑃 𝑘ℎ

𝜆 (𝑦) ∈ 𝐿2
per

(𝑌2)} are solutions of auxiliary problems
on the cell 𝑌 (“per” stands for the 𝑌 -periodicity), while 𝑢𝜆(𝑥) ∈ 𝐻1

0 (Ω)
3 is the solution of the

homogenized problem in Laplace transforms

𝜌0𝜆
2𝑢𝜆𝑖 =

𝜕𝜎𝜆
𝑖𝑗

𝜕𝑥𝑗

+ 𝑓𝜆𝑖(𝑥) in Ω, 𝑢𝜆|𝜕Ω = 0. (3.1)

Here 𝜌0 = |𝑌1|𝜌1 + |𝑌2|𝜌2 is the density and 𝜎𝜆 is the stress tensor of the homogenized medium
written in the Laplace images. For the considered two-phase medium the components of the
tensor 𝜎𝜆 read as

𝜎𝜆
𝑖𝑗 = 𝐷𝑖𝑗𝑘ℎ(𝜆)𝑒𝑘ℎ(𝑢𝜆) (3.2)

with

𝐷𝑖𝑗𝑘ℎ(𝜆) = |𝑌1|𝑎𝑖𝑗𝑘ℎ + |𝑌2|𝜆(𝜂 + 𝜃𝜆)(𝛿𝑖𝑘𝛿𝑘ℎ + 𝛿𝑖ℎ𝛿𝑗𝑘) +

∫︁
𝑌1

𝑎𝑖𝑗𝑙𝑚𝑒
𝑦
𝑙𝑚(𝑄

𝑘ℎ
𝜆 ) 𝑑𝑦

+

∫︁
𝑌2

(︁
2𝜆(𝜂 + 𝜃𝜆)𝑒𝑦𝑖𝑗(𝑄

𝑘ℎ
𝜆 )− 𝛿𝑖𝑗𝑃

𝑘ℎ
𝜆

)︁
𝑑𝑦,

and the pairs {𝑄𝑘ℎ
𝜆 (𝑦), 𝑃 𝑘ℎ

𝜆 (𝑦)} are solutions to 𝑌 -periodic problems⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕

𝜕𝑦𝑗

(︁
𝜎
(0)
𝑖𝑗 (𝑄𝑘ℎ

𝜆 , 𝑃 𝑘ℎ
𝜆 )
)︁
= 0 in 𝑌, div𝑦 𝑄𝑘ℎ

𝜆 = −𝛿𝑘ℎ in 𝑌2,∫︁
𝑌

𝑄𝑘ℎ
𝜆 𝑑𝑦 = 0, [𝑄𝑘ℎ

𝜆 ]|Γ = 0, [𝜎
(0)
𝑖𝑗 (𝑄𝑘ℎ

𝜆 , 𝑃 𝑘ℎ
𝜆 )𝜈𝑗]|Γ = 0,

(3.3)

where 𝜈𝑗 are the components of the unit normal vector to the surface Γ,

𝜎
(0)
𝑖𝑗 (𝑄𝑘ℎ

𝜆 , 𝑃 𝑘ℎ
𝜆 ) =

{︃
𝑎𝑖𝑗𝑘ℎ + 𝑎𝑖𝑗𝑙𝑚𝑒

𝑦
𝑙𝑚(𝑄

𝑘ℎ
𝜆 ) in 𝑌1,

𝜆(𝜂 + 𝜃𝜆)(2𝑒𝑦𝑖𝑗(𝑄
𝑘ℎ
𝜆 ) + 𝛿𝑖𝑘𝛿𝑗ℎ + 𝛿𝑖ℎ𝛿𝑗𝑘)− 𝛿𝑖𝑗𝑃

𝑘ℎ
𝜆 in 𝑌2.

In order to return back to the original variables 𝑥 and 𝑡, we make the inverse Laplace transform
in (3.2) and (3.3). It follows from (3.2) that the components of the homogenized tensor 𝜎 are
of the form

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘ℎ(𝑡) * 𝑒𝑘ℎ(𝑢),
where 𝐷(𝑡) is the tensor of relaxation kernels for the homogenized medium, while the symbol
* denotes the convolution in the variable 𝑡,

𝑔1(𝑡) * 𝑔2(𝑡) =
𝑡∫︁

0

𝑔1(𝑡− 𝑠)𝑔2(𝑠) 𝑑𝑠.

It is easy to see that both the originals of solutions to problems (3.3) and the components
of the tensor 𝐷(𝑡) depend on the delta-function 𝛿(𝑡). Let us show that 𝑄𝑘ℎ(𝑦, 𝑡) and 𝑃 𝑘ℎ(𝑦, 𝑡)
can be represented as

𝑄𝑘ℎ(𝑦, 𝑡) = 𝛿(𝑡)𝑍𝑘ℎ(𝑦) +𝑊 𝑘ℎ(𝑦, 𝑡), 𝑦 ∈ 𝑌,

𝑃 𝑘ℎ(𝑦, 𝑡) = 𝛿′′(𝑡)𝐴𝑘ℎ(𝑦) + 𝛿′(𝑡)𝐵𝑘ℎ(𝑦) + 𝛿(𝑡)𝐶𝑘ℎ(𝑦) + 𝑆𝑘ℎ(𝑦, 𝑡), 𝑦 ∈ 𝑌2,
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where 𝑊 𝑘ℎ(𝑦, 𝑡) and 𝑆𝑘ℎ(𝑦, 𝑡) are independent of 𝛿(𝑡). Indeed, it follows immediately from (3.3)
that the pairs {𝑍𝑘ℎ(𝑦), 𝐴𝑘ℎ(𝑦)} and {𝑊 𝑘ℎ(𝑦, 𝑡), 𝑆𝑘ℎ(𝑦, 𝑡)} are 𝑌 -perioidc solutions to problems⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕

𝜕𝑦𝑗

(︁
𝜎
(𝑠)
𝑖𝑗 (𝑍𝑘ℎ, 𝐴𝑘ℎ)

)︁
= 0 in 𝑌𝑠, 𝑠 = 1, 2, div𝑦 𝑍𝑘ℎ = −𝛿𝑘ℎ in 𝑌2,∫︁

𝑌

𝑍𝑘ℎ𝑑𝑦 = 0, [𝑍𝑘ℎ]|Γ = 0, 𝜎
(2)
𝑖𝑗 (𝑍𝑘ℎ, 𝐴𝑘ℎ)𝜈𝑗|Γ = 0,

(3.4)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝑦𝑗

(︁
𝜎
(3)
𝑖𝑗 (𝑊 𝑘ℎ, 𝑆𝑘ℎ)

)︁
= 0 in 𝑌, div𝑦 𝑊

𝑘ℎ = 0 in 𝑌2,

𝑊 𝑘ℎ(𝑦, 0) = 𝐷𝑘ℎ(𝑦),
𝜕𝑊 𝑘ℎ

𝜕𝑡
(𝑦, 0) = 𝑁𝑘ℎ(𝑦) in 𝑌2,∫︁

𝑌

𝑊 𝑘ℎ𝑑𝑦 = 0, [𝑊 𝑘ℎ]|Γ = 0, [𝜎
(3)
𝑖𝑗 (𝑊 𝑘ℎ, 𝑆𝑘ℎ)𝜈𝑗]|Γ = 0,

(3.5)

respectively, where

𝜎
(1)
𝑖𝑗 (𝑍𝑘ℎ, 𝐴𝑘ℎ) = 𝑎𝑖𝑗𝑘ℎ + 𝑎𝑖𝑗𝑙𝑚𝑒

𝑦
𝑙𝑚(𝑍

𝑘ℎ), 𝑦 ∈ 𝑌1,

𝜎
(2)
𝑖𝑗 (𝑍𝑘ℎ, 𝐴𝑘ℎ) = 2𝜃𝑒𝑦𝑖𝑗(𝑍

𝑘ℎ) + 𝜃(𝛿𝑖𝑘𝛿𝑗ℎ + 𝛿𝑖ℎ𝛿𝑗𝑘)− 𝛿𝑖𝑗𝐴
𝑘ℎ, 𝑦 ∈ 𝑌2,

𝜎
(3)
𝑖𝑗 (𝑊 𝑘ℎ, 𝑆𝑘ℎ) =

⎧⎪⎨⎪⎩
𝑎𝑖𝑗𝑙𝑚𝑒

𝑦
𝑙𝑚(𝑊

𝑘ℎ), 𝑦 ∈ 𝑌1,

2𝜂𝑒𝑦𝑖𝑗

(︂
𝜕𝑊 𝑘ℎ

𝜕𝑡

)︂
+ 2𝜃𝑒𝑦𝑖𝑗

(︂
𝜕2𝑊 𝑘ℎ

𝜕𝑡2

)︂
− 𝛿𝑖𝑗𝑆

𝑘ℎ, 𝑦 ∈ 𝑌2.

At the same time, the pairs {𝐷𝑘ℎ(𝑦), 𝐵𝑘ℎ(𝑦)} and {𝑁𝑘ℎ(𝑦), 𝐶𝑘ℎ(𝑦)} are 𝑌 -periodic solutions of
problems ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕

𝜕𝑦𝑗

(︁
𝜎
(4)
𝑖𝑗 (𝐷𝑘ℎ, 𝐵𝑘ℎ)

)︁
= 0, div𝑦 𝐷𝑘ℎ = 0 in 𝑌2,∫︁

𝑌2

𝐷𝑘ℎ𝑑𝑦 = 0, 𝜎
(4)
𝑖𝑗 (𝐷𝑘ℎ, 𝐵𝑘ℎ)𝜈𝑗|Γ = 0,

(3.6)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕

𝜕𝑦𝑗

(︁
𝜎
(5)
𝑖𝑗 (𝑁𝑘ℎ, 𝐶𝑘ℎ)

)︁
= 0, div𝑦 𝑁𝑘ℎ = 0 in 𝑌2,∫︁

𝑌2

𝑁𝑘ℎ𝑑𝑦 = 0, 𝜎
(5)
𝑖𝑗 (𝑁𝑘ℎ, 𝐶𝑘ℎ)𝜈𝑗|Γ = 𝜎

(1)
𝑖𝑗 (𝑍𝑘ℎ, 𝐴𝑘ℎ)𝜈𝑗|Γ,

(3.7)

respectively, where

𝜎
(4)
𝑖𝑗 (𝐷𝑘ℎ, 𝐵𝑘ℎ) = 2𝜂𝑒𝑦𝑖𝑗(𝑍

𝑘ℎ) + 2𝜃𝑒𝑦𝑖𝑗(𝐷
𝑘ℎ) + 𝜂(𝛿𝑖𝑘𝛿𝑗ℎ + 𝛿𝑖ℎ𝛿𝑗𝑘)− 𝛿𝑖𝑗𝐵

𝑘ℎ,

𝜎
(5)
𝑖𝑗 (𝑁𝑘ℎ, 𝐶𝑘ℎ) = 2𝜂𝑒𝑦𝑖𝑗(𝐷

𝑘ℎ) + 2𝜃𝑒𝑦𝑖𝑗(𝑁
𝑘ℎ)− 𝛿𝑖𝑗𝐶

𝑘ℎ.

By means of solutions to problems (3.4)–(3.7), the tensor of the relaxation kernels 𝐷(𝑡) can
be written as

𝐷(𝑡) = 𝛿(𝑡)𝛼 + 𝛿′(𝑡)𝛽 + 𝛿′′(𝑡)𝛾 − 𝑔(𝑡), (3.8)

where the components of the tensors 𝛼, 𝛽, 𝛾, 𝑔(𝑡) are given by the formulas

𝛼𝑖𝑗𝑘ℎ = |𝑌1|𝑎𝑖𝑗𝑘ℎ +
∫︁
𝑌1

𝑎𝑖𝑗𝑙𝑚𝑒
𝑦
𝑙𝑚(𝑍

𝑘ℎ) 𝑑𝑦 +

∫︁
𝑌2

(︁
2𝜂𝑒𝑦𝑖𝑗(𝐷

𝑘ℎ) + 2𝜃𝑒𝑦𝑖𝑗(𝑁
𝑘ℎ)− 𝛿𝑖𝑗𝐶

𝑘ℎ
)︁
𝑑𝑦,
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𝛽𝑖𝑗𝑘ℎ = 𝜂|𝑌2|(𝛿𝑖𝑘𝛿𝑗ℎ + 𝛿𝑖ℎ𝛿𝑗𝑘) +

∫︁
𝑌2

(︁
2𝜂𝑒𝑦𝑖𝑗(𝑍

𝑘ℎ) + 2𝜃𝑒𝑦𝑖𝑗(𝐷
𝑘ℎ)− 𝛿𝑖𝑗𝐵

𝑘ℎ
)︁
𝑑𝑦,

𝛾𝑖𝑗𝑘ℎ = 𝜃|𝑌2|(𝛿𝑖𝑘𝛿𝑗ℎ + 𝛿𝑖ℎ𝛿𝑗𝑘) +

∫︁
𝑌2

(︁
2𝜃𝑒𝑦𝑖𝑗(𝑍

𝑘ℎ)− 𝛿𝑖𝑗𝐴
𝑘ℎ
)︁
𝑑𝑦,

𝑔𝑖𝑗𝑘ℎ(𝑡) = −
∫︁
𝑌1

𝑎𝑖𝑗𝑙𝑚𝑒
𝑦
𝑙𝑚(𝑊

𝑘ℎ) 𝑑𝑦 −
∫︁
𝑌2

(︂
2𝜂𝑒𝑦𝑖𝑗

(︂
𝜕𝑊 𝑘ℎ

𝜕𝑡

)︂
+ 2𝜃𝑒𝑦𝑖𝑗

(︂
𝜕2𝑊 𝑘ℎ

𝜕𝑡2

)︂
− 𝛿𝑖𝑗𝑆

𝑘ℎ

)︂
𝑑𝑦.

It is easy to confirm that 𝑍𝑘ℎ(𝑦) = 𝑍ℎ𝑘(𝑦) and similarly for 𝐷𝑘ℎ(𝑦), 𝑁𝑘ℎ(𝑦), 𝑊 𝑘ℎ(𝑦, 𝑡),
𝐴𝑘ℎ(𝑦), 𝐵𝑘ℎ(𝑦), 𝐶𝑘ℎ(𝑦) and 𝑆𝑘ℎ(𝑦, 𝑡). Moreover, the components of the tensors 𝛼, 𝛽, 𝛾, 𝑔(𝑡)
obey classical symmetry conditions, that is,

𝛼𝑖𝑗𝑘ℎ = 𝛼𝑗𝑖𝑘ℎ = 𝛼𝑖𝑗ℎ𝑘 = 𝛼ℎ𝑘𝑖𝑗

and similarly for the tensors 𝛽, 𝛾 and 𝑔(𝑡).
Making the inverse Laplace transform in (3.1), we obtain the homogenized problem corre-

sponding to problem (2.3):

𝜌0
𝜕2𝑢𝑖

𝜕𝑡2
=

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗

+ 𝑓𝑖(𝑥, 𝑡) in Ω× (0, 𝑇 ),

𝑢(𝑥, 𝑡)|𝜕Ω = 0, 𝑢(𝑥, 0) =
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0,

(3.9)

where, in view of representation (3.8), the components of the homogenized stress tensor 𝜎 are
of the form

𝜎𝑖𝑗 = 𝛼𝑖𝑗𝑘ℎ𝑒𝑘ℎ(𝑢) + 𝛽𝑖𝑗𝑘ℎ𝑒𝑘ℎ

(︂
𝜕𝑢

𝜕𝑡

)︂
+ 𝛾𝑖𝑗𝑘ℎ𝑒𝑘ℎ

(︂
𝜕2𝑢

𝜕𝑡2

)︂
− 𝑔𝑖𝑗𝑘ℎ(𝑡) * 𝑒𝑘ℎ(𝑢).

Thus, the homogenized motion model of the original two-phase medium is written as an initial
boundary value problem for a system of integro-differential equations with constant coefficients.
The proof of the unique solvability of periodic problems (3.4)–(3.7) in the case, when the sets

𝑌2 and 𝐸2 are connected respectively in 𝑌 and R3 is based on the arguing given in [3] in studying
solutions of periodic problems of such kind. Moreover, under the mentioned connectedness
conditions the tensors 𝛼 and 𝐷(𝜆) as 𝜆 > 0 are positive definite. In its turn, the positive
definiteness of the latter tensor is a sufficient condition for the unique solvability of homogenized
problem (3.9) [3], [14]. At the same time, as it will be shown in the next section on the example
of a layered medium, the connectedness condition for the sets 𝑌2 and 𝐸2 is not necessary for
the unique solvability of homogenized problem (3.9).
The results obtained in the present section can be formulated as the following theorem.

Theorem 3.1. Let 𝑢𝜀(𝑥, 𝑡) be a solution of problem (2.3). Then for all 𝑡 ∈ [0, 𝑇 ]

lim
𝜀→0

∫︁
Ω

|𝑢𝜀(𝑥, 𝑡)− 𝑢(𝑥, 𝑡)|2 𝑑𝑥 = 0, lim
𝜀→0

∫︁
Ω2𝜀

|𝑝𝜀(𝑥, 𝑡)− 𝑝(𝑥, 𝜀−1𝑥, 𝑡)|2 𝑑𝑥 = 0,

lim
𝜀→0

∫︁
Ω

|𝑒(𝑢𝜀(𝑥, 𝑡))− 𝑒(𝑢(𝑥, 𝑡))− 𝑤(𝑥, 𝜀−1𝑥, 𝑡)|2 𝑑𝑥 = 0,

where 𝑢(𝑥, 𝑡) is the solution of the homogenized problem (3.9),

𝑤(𝑥, 𝑦, 𝑡) = 𝑒𝑦(𝑣(𝑥, 𝑦, 𝑡)), 𝑣(𝑥, 𝑦, 𝑡) = 𝑍𝑘ℎ(𝑦)
𝜕𝑢𝑘

𝜕𝑥ℎ

+𝑊 𝑘ℎ(𝑦, 𝑡) * 𝜕𝑢𝑘

𝜕𝑥ℎ

,
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𝑊 𝑘ℎ(𝑦, 0) = 𝐷𝑘ℎ(𝑦),
𝜕𝑊 𝑘ℎ

𝜕𝑡
(𝑦, 0) = 𝑁𝑘ℎ(𝑦) in 𝑌2,

𝑝(𝑥, 𝑦, 𝑡) = 𝐴𝑘ℎ(𝑦)
𝜕3𝑢𝑘

𝜕𝑥ℎ𝜕𝑡2
+𝐵𝑘ℎ(𝑦)

𝜕2𝑢𝑘

𝜕𝑥ℎ𝜕𝑡
+ 𝐶𝑘ℎ(𝑦)

𝜕𝑢𝑘

𝜕𝑥ℎ

+ 𝑆𝑘ℎ(𝑦, 𝑡) * 𝜕𝑢𝑘

𝜕𝑥ℎ

,

while the pairs {𝑍𝑘ℎ(𝑦), 𝐴𝑘ℎ(𝑦)}, {𝑊 𝑘ℎ(𝑦, 𝑡), 𝑆𝑘ℎ(𝑦, 𝑡)}, {𝐷𝑘ℎ(𝑦), 𝐵𝑘ℎ(𝑦)} and {𝑁𝑘ℎ(𝑦), 𝐶𝑘ℎ(𝑦)}
are 𝑌 -periodic solutions to problems (3.4)–(3.7).

4. Case of layered medium

In the case, when the medium consists of alternating elastic and fluid layers, we can obtain
explicit formulas for the components of the tensors 𝛼, 𝛽, 𝛾 and 𝑔(𝑡). In order to do this, we
adopt that the layers are parallel to the plane 𝑂𝑥2𝑥3, and the sets 𝑌1 and 𝑌2 are given by

𝑌1 =
𝑀⋃︁

𝑚=0

(𝑞2𝑚, 𝑞2𝑚+1)× (0, 1)2, 𝑌2 =
𝑀⋃︁

𝑚=1

(𝑞2𝑚−1, 𝑞2𝑚)× (0, 1)2, 𝑀 ⩾ 1,

where 0 = 𝑞0 < 𝑞1 < 𝑞2 < . . . < 𝑞2𝑀 < 𝑞2𝑀+1 = 1. We note that under such assumption the
period 𝑌𝜀 consists 𝑀 fluid layers and 𝑀 + 1 elastic layers, while in the boundary conditions
of the periodic problems we have 𝜈1 = 1, 𝜈2 = 𝜈3 = 0. Moreover, if by 𝑞 we denote the total
volume fraction of the fluid inside the period 𝑌𝜀, then

𝑞 =
|𝜀𝑌2|
|𝑌𝜀|

=
|𝑌2|
|𝑌 |

=
𝑀∑︁

𝑚=1

(𝑞2𝑚 − 𝑞2𝑚−1), 0 < 𝑞 < 1.

We write out solutions for periodic problems (3.4)–(3.7) as 𝑘 ⩽ ℎ. It is easy to confirm that
as 𝑘 = 2 and ℎ = 3

𝑍23(𝑦) = 𝐷23(𝑦) = 𝑁23(𝑦) = 𝑊 23(𝑦, 𝑡) = (0, 0, 0),

𝐴23(𝑦) = 𝐵23(𝑦) = 𝐶23(𝑦) = 𝑆23(𝑦, 𝑡) = 0.

In order to write out the solutions to other periodic problems, we introduce a piecewise-linear
function

𝑧(𝑦1) =

⎧⎨⎩
−𝑦1 + 𝐶2𝑚, 𝑦1 ∈ (𝑞2𝑚−1, 𝑞2𝑚), 𝑚 = 1, . . . ,𝑀,
𝑞𝑦1
1− 𝑞

+ 𝐶2𝑚+1, 𝑦1 ∈ (𝑞2𝑚, 𝑞2𝑚+1), 𝑚 = 0, . . . ,𝑀,

where the constants 𝐶2𝑚 and 𝐶2𝑚+1 are given by the expressions

𝐶1 =
1

2(1− 𝑞)

(︃
𝑞 −

2𝑀∑︁
𝑚=1

(−1)𝑚𝑞2𝑚

)︃
,

𝐶𝑚 =
1

2(1− 𝑞)

(︃
−𝑞 −

2𝑀∑︁
𝑘=1

(−1)𝑘𝑞2𝑘 + 2
2𝑀∑︁
𝑘=𝑚

(−1)𝑘𝑞𝑘

)︃
, 𝑚 = 2, . . . ,𝑀,

𝐶2𝑀+1 = − 1

2(1− 𝑞)

(︃
𝑞 +

2𝑀∑︁
𝑚=1

(−1)𝑚𝑞2𝑚

)︃
.

As it is known [15], the function 𝑧(𝑦1) satisfies the following conditions:

𝑧(+0) = 𝑧(1− 0),

1∫︁
0

𝑧(𝑦1) 𝑑𝑦1 = 0, [𝑧]|𝑦1=𝑞𝑚 = 0, 𝑚 = 1, . . . , 2𝑀.
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We continue the function 𝑧(𝑦1) periodically with the period 1 to the entire real line and keep
the same notation for the continuation. It is easy to confirm that the solutions of stationary
periodic problems are written as

𝑍𝑖𝑖(𝑦) = (𝑧(𝑦1), 0, 0), 𝑍12(𝑦) = (0, 𝑧(𝑦1), 0), 𝑍13(𝑦) = (0, 0, 𝑧(𝑦1)),

𝐴1𝑖(𝑦) = 𝐵1𝑖(𝑦) = 0, 𝐴𝑗𝑗(𝑦) = −2𝜃, 𝐵𝑗𝑗(𝑦) = −2𝜂,

𝐷𝑖𝑖(𝑦) = 𝐷1𝑗(𝑦) = 𝑁 𝑖𝑖(𝑦) = (0, 0, 0), 𝑁12(𝑦) = (0, 𝑐1𝑧(𝑦1), 0),

𝑁13(𝑦) = (0, 0, 𝑐1𝑧(𝑦1)), 𝐶11(𝑦) = −𝜆+ 2𝜇

1− 𝑞
, 𝐶𝑗𝑗(𝑦) = −𝜆+ 2𝜇𝑞

1− 𝑞
,

𝐶1𝑗(𝑦) = 0, 𝑐1 = − 𝜇

𝜃(1− 𝑞)
, 𝑖 = 1, 2, 3, 𝑗 = 2, 3.

The solutions of evolution periodic problems read as

𝑊 𝑖𝑖(𝑦, 𝑡) = (0, 0, 0), 𝑊 12(𝑦, 𝑡) = (0, 𝑧(𝑦1)𝑤(𝑡), 0) ,

𝑊 13(𝑦, 𝑡) = (0, 0, 𝑧(𝑦1)𝑤(𝑡)) , 𝑆𝑖𝑖(𝑦, 𝑡) = 𝑆1𝑗(𝑦, 𝑡) = 0, 𝑖 = 1, 2, 3, 𝑗 = 2, 3,

where 𝑤(𝑡) is the solution to the differential equation

𝜃(1− 𝑞)
𝑑2𝑤

𝑑𝑡2
+ 𝜂(1− 𝑞)

𝑑𝑤

𝑑𝑡
+ 𝜇𝑞𝑤(𝑡) = 0

satisfying the initial conditions

𝑤(0) = 0,
𝑑𝑤

𝑑𝑡
(0) = 𝑐1.

It is easy to confirm that 𝑤(𝑡) = 𝑐1𝑤0(𝑡), where

𝑤0(𝑡) = 𝑡 exp
(︁
− 𝜂

2𝜃
𝑡
)︁

if 𝜂2(1− 𝑞) = 4𝑞𝜇𝜃,

𝑤0(𝑡) =
𝜃√
𝐷

(︃
exp

(︃
−𝜂 −

√
𝐷

2𝜃
𝑡

)︃
− exp

(︃
−𝜂 +

√
𝐷

2𝜃
𝑡

)︃
if 𝜂2(1− 𝑞) > 4𝑞𝜇𝜃, and

𝑤0(𝑡) =
𝜃√
−𝐷

exp
(︁
− 𝜂

2𝜃
𝑡
)︁
sin

(︂√
−𝐷

2𝜃
𝑡

)︂
if 𝜂2(1− 𝑞) < 4𝑞𝜇𝜃. Here by 𝐷 we denote the discriminant of the square equation

𝜃𝜆2 + 𝜂𝜆+
𝑞𝜇

1− 𝑞
= 0, (4.1)

that is,

𝐷 = 𝜂2 − 4𝑞𝜇𝜃

1− 𝑞
.

Once we know explicit solutions of all periodic problems, we can proceed to calculating of
the components of the tensors 𝛼, 𝛽, 𝛾 and 𝑔(𝑡). But before we should have in mind that
𝐷𝑖𝑗𝑘ℎ(𝑡) = 0 as soon as 𝛿𝑖𝑗𝛿𝑘ℎ + 𝛿𝑖𝑘𝛿𝑗ℎ + 𝛿𝑖ℎ𝛿𝑗𝑘 = 0. Moreover, the homogenized medium is
transversally isotropic, that is, the relations

𝐷2222(𝑡) = 𝐷3333(𝑡), 𝐷1122(𝑡) = 𝐷1133(𝑡),

𝐷1212(𝑡) = 𝐷1313(𝑡), 𝐷2222(𝑡)−𝐷2233(𝑡) = 2𝐷2323(𝑡)

hold true.
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Now we substitute the solutions of problems (3.4)–(3.7) into the formulas for the components
of the tensors 𝛼, 𝛽, 𝛾 and 𝑔(𝑡) given in the previous section. After simple transformations we
arrive at the following result.

Theorem 4.1. For a layered medium of the above described type the homogenized tensors

𝛼, 𝛽, 𝛾 and 𝑔(𝑡) have the following non-zero components:

𝛼1111 =
𝜆+ 2𝜇

1− 𝑞
, 𝛼𝑖𝑖𝑖𝑖 =

𝜆+ 2𝜇(1− 2𝑞 + 2𝑞2)

1− 𝑞
, 𝛼𝑖𝑖𝑗𝑗 =

𝜆+ 2𝜇𝑞2

1− 𝑞
,

𝛼11𝑖𝑖 = 𝛼𝑖𝑖11 =
𝜆+ 2𝜇𝑞

1− 𝑞
, 𝛼1𝑖1𝑖 = 𝛼1𝑖𝑖1 = 𝛼𝑖1𝑖1 = 𝛼𝑖11𝑖 =

𝜇

1− 𝑞
,

𝛼𝑖𝑗𝑖𝑗 = 𝛼𝑖𝑗𝑗𝑖 = 𝜇(1− 𝑞), 𝛽𝑖𝑖𝑖𝑖 = 4𝜂𝑞, 𝛽𝑖𝑖𝑗𝑗 = 2𝜂𝑞,

𝛽𝑖𝑗𝑖𝑗 = 𝛽𝑖𝑗𝑗𝑖 = 𝜂𝑞, 𝛾𝑖𝑖𝑖𝑖 = 4𝜃𝑞, 𝛾𝑖𝑖𝑗𝑗 = 2𝜃𝑞, 𝛾𝑖𝑗𝑖𝑗 = 𝛾𝑖𝑗𝑗𝑖 = 𝜃𝑞,

𝑔1𝑖1𝑖(𝑡) = 𝑔1𝑖𝑖1(𝑡) = 𝑔𝑖1𝑖1(𝑡) = 𝑔𝑖11𝑖(𝑡) =
𝜇2𝑞𝑤0(𝑡)

𝜃(1− 𝑞)2
, 𝑖 = 2, 3, 𝑗 = 5− 𝑖.

It is easy to confirm that 𝛼 and 𝐷(𝜆) = 𝛼 + 𝜆𝛽 + 𝜆2𝛾 − 𝑔(𝜆) as 𝜆 > 0 are positive definite
tensors, while 𝛽, 𝛾 and 𝑔(𝑡) are degenerate tensors.
To compare, we briefly describe the homogenized tensors for a layered medium consisting of

an isotropic elastic material and an incompressible Newtonian fluid, for which we should let
𝜃 = 0 in constitutive relations (2.2). As it was shown in [16], for such medium the components
of the tensors 𝛼 and 𝛽 are calculated exactly by the same formulas as above, while the tensor
𝛾 is zero. Concerning the tensor 𝑔(𝑡), all its components are zero except for

𝑔1𝑖1𝑖(𝑡) = 𝑔1𝑖𝑖1(𝑡) = 𝑔𝑖1𝑖1(𝑡) = 𝑔𝑖11𝑖(𝑡) =
𝜇2𝑞𝑤1(𝑡)

𝜂(1− 𝑞)2
, 𝑖 = 2, 3,

where we have denoted

𝑤1(𝑡) = exp

(︂
− 𝜇𝑞

𝜂(1− 𝑞)
𝑡

)︂
.

We see that the comparing of the properties of the tensors 𝑔(𝑡) for two layered medium is
reduced to comparing the properties of the functions 𝑤0(𝑡) and 𝑤1(𝑡). We first of all observe
a common property of these functions, which is 𝑤0(𝑡) → 0 and 𝑤1(𝑡) → 0 as 𝑡 → +∞. While
in other aspects, these functions differ essentially. Namely, 𝑤1(𝑡) is a positive function strictly
decreasing as 𝑡 > 0, while the behavior of the function 𝑤0(𝑡) depends on the fraction of the
fluid 𝑞 within the period. If 𝑞 < 𝜂2/(𝜂2 + 4𝜇𝜃), then 𝑤0(𝑡) is a positive function, which first
strictly increases achieving the maximum at

𝑡 =
𝜃√
𝐷

ln
𝜂 +

√
𝐷

𝜂 −
√
𝐷
,

and then it strictly decreases. If 𝑞 = 𝜂2/(𝜂2 +4𝜇𝜃), then the function 𝑤0(𝑡) is also positive and
first it strictly increases achieving the maximum at 𝑡 = 2𝜃/𝜂, and then it strictly decreases. If
𝑞 > 𝜂2/(𝜂2 + 4𝜇𝜃), then 𝑤0(𝑡) > 0 as

𝑡 ∈
(︂

4𝜃𝜋𝑘√
−𝐷

,
2𝜃𝜋√
−𝐷

+
4𝜃𝜋𝑘√
−𝐷

)︂
, 𝑘 = 0, 1, 2, . . .

and 𝑤0(𝑡) < 0 for other values 𝑡 > 0. Moreover, the function 𝑤0(𝑡) strictly decreases on the
intervals

2𝜃√
−𝐷

(︃
2𝜋𝑘 + arccos

𝜂√︀
𝜂2 −𝐷

)︃
< 𝑡 <

2𝜃√
−𝐷

(︃
𝜋 + 2𝜋𝑘 + arccos

𝜂√︀
𝜂2 −𝐷

)︃
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and strictly increases on other intervals in the semi-axis 𝑡 > 0. Thus, it possesses infinitely
many maximum and minimum points, and the absolute values of its maximal and minimal
values decay exponentially as 𝑡 → +∞.
In conclusion we mention that we have first found the presence of the maxima for the con-

volution kernels for the integro-differential equations appearing in homogenization of layered
two-phase medium with a periodic structure. Earlier we showed that if the first phase is an
elastic material or a viscoelastic Kelvin–Voigt material, while the second phase is a viscoelastic
Kelvin–Voigt material or a viscous Newtonian fluid, then the convolution kernels of the homog-
enized equations are decaying exponents [16]–[19]. Thus, for all these media the convolution
kernels are positive functions strictly decaying as 𝑡 > 0. In contrast to them, for the media
consisting of an elastic material and a Kelvin–Voight fluid, the numbers of monotonicity in-
tervals and of the maximum points of the convolution kernels depend on the fraction of the
fluid 𝑞 within the periodicity cell. Namely, we can find a number 𝑀0 such that as 0 < 𝑞 ⩽ 𝑀0

the convolution kernels possess two monotonicity intervals and one maximum point, while as
𝑀0 < 𝑞 < 1 they have infinitely many alternating intervals of increasing and decreasing as well
as infinitely many maximum and minimum points.
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