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ON UNIFORM CONVERGENCE OF

SEMI-ANALYTIC SOLUTION OF DIRICHLET PROBLEM

FOR DISSIPATIVE HELMHOLTZ EQUATION IN VICINITY

OF BOUNDARY OF TWO-DIMENSIONAL DOMAIN

D.Yu. IVANOV

Abstract. In the framework of the collocation boundary element method, we propose a
semi-analytic approximation of the double-layer potential, which ensures a uniform cubic
convergence of the approximate solution to the Dirichlet problem for the Helmholtz equation
in a two-dimensional bounded domain or its exterior with a boundary of class 𝐶5. In order
to calculate integrals on boundary elements, an exact integration over the variable 𝜌 :=
(𝑟2 − 𝑑2)1/2 is used, where 𝑟 and 𝑑 are the distances from the observed point to integration
point and to the boundary of the domain, respectively. Under some simplifications we
prove that the use of a number of traditional quadrature formulas leads to a violation of
the uniform convergence of potential approximations in the vicinity of the boundary of the
domain. The theoretical conclusions are confirmed by a numerical solving of the problem
in a circular domain.
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1. Introduction

The boundary element method (BEM) [1, Sect. 2.5] is one of the main methods for ap-
proximate solution of problems of mathematical physics along with the finite element method
(FEM) and the finite difference method (FDM). Unlike FEM and FDM, the implementation of
FEM requires discretization of only the domain boundary. The solution to the problem in an
open domain Ω is sought in the form of a potential 𝑢(𝑥) expressed using the integral operator
via the density function 𝑣(𝑥′) defined on the boundary 𝜕Ω and being a solution to boundary
integral equations (BIE). Integrals in the BIE have the form of potentials and their derivatives
calculated at the boundary 𝜕Ω. In order to approximate potentials and their derivatives in the
two-dimensional case, the boundary 𝜕Ω is divided into arcs Γ𝑖, the so-called boundary elements
(BE), on each of which a polynomial interpolation of the function 𝑣(𝑥′) is made. After this,
the problem of calculating integrals on the BE arises.
Since the kernels of the integral operators has a singularity 𝑥 = 𝑥′, the boundary elements

Γ𝑖 are divided into three types [2]:
1) singular boundary elements (SBE) if 𝑥 ∈ Γ𝑖;
2) non-singular boundary elements (NSBE) if the point 𝑥 is sufficiently far from Γ𝑖;
3) almost singular boundary elements (ASBE) if 𝑥 ∈ Ω, the distance from the point 𝑥 to Γ𝑖

is small in comparison with the size Γ𝑖 and 𝑥0 ∈ Γ𝑖, where 𝑥0 is the projection of the point 𝑥
onto the boundary 𝜕Ω.
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The integrals on NSBE can be calculated with a good accuracy by using simple Gaussian
quadrature formulas (SGQF) [1, Sect. 2.6]. The integrands on the SBE, as a rule, have an
infinite discontinuity at 𝑥′ = 𝑥; on ASBE at 𝑥′ = 𝑥0 they are continuous but grow unboundedly
as 𝑥 → 𝑥0. Therefore, the integrals on the SBE and ASBE cannot be satisfactorily calculated
by using SGQF and special methods are used to calculate them, for example, semi-analytical
[3]–[11], one of which is studied in this work, as well as methods of adaptive division of SBE
and ASBE [12], [13] and methods of nonlinear transformation of the integration variable: ex-
ponential transformation [14], sinh-transformation [15], distance function transformation [2].
The inability to evaluate satisfactorily the integrals on ASBE using SGQF is called the

boundary layer effect [15]. The need to calculate integrals on ASBE arises when solving prob-
lems in thin-walled and multilayer structures, thin coatings, films, and at the ends of cracks [5],
[8], [12]. In these cases, FEM and FDM turn out to be ineffective, since their implementation
requires oversampling of the boundary layer, and the advantage of FEM, which does not require
sampling of the region, manifests itself. In addition, in such problems, high-precision approx-
imation of the boundary 𝜕Ω is of a great importance. Therefore, the linear approximation of
SBE and ASBE, used in works [2]–[4], [9]–[11], is considered unsatisfactory [6], [14], and special
methods were implemented in the case of quadratic approximation of SBE and ASBE [4]–[7].
However, recently there was a need for even more accurate approximation of the boundary, in
particular, using splines, and within the framework of such approximation, the ASBE adaptive
division method [12] and methods of nonlinear transformation of the integration variable [14]
were implemented. These methods are more easily adapted to more complex ASBE geome-
tries compared to semi-analytical ones, since ultimately the integrals on the SBE and ASBE in
them are calculated using SGQF, and therefore they can be implemented for any analytically
specified boundary 𝜕Ω. But these methods also have disadvantages: the method of adaptive
division of ASBE does not provide accuracy or requires a lot of computer time at very small
distances from point 𝑥 to the boundary 𝜕Ω [2], [5], and the accuracy of methods for nonlinear
transformation of the integration variable significantly depends on the position of the point 𝑥0
on the SGQF [13].
The boundary is approximated because of two reasons. The first, irremovable, is that in

practice the coordinates of only finitely many boundary points are known, with the help of
which the boundary 𝜕Ω is interpolated. The second reason is the need to specify the boundary
using simpler functions to be able to implement the computational algorithm. To implement
methods for adaptive division of ASBE and methods for transforming the integration variable,
as already noted, there is no need to specify the boundary using simpler functions. Semi-
analytical methods are based on exact integration, which becomes possible, in particular, due
to the approximation of the boundary, and refinement of the approximation is associated with a
significant complication of the algorithm. We note that as the approximation of the boundary,
we can also consider the replacement of the coordinate functions and the distance function by
the first terms of their expansion in Taylor series formed by the powers of discretization steps
of the curvilinear coordinates on the boundary.
Because of this, the semi-analytical methods proposed in works [4]–[6] are of interest for

approximating the integrals on the SBE and ASBE that arise when calculating the two-
dimensional simple layer potential (SLP) for the Laplace equation and its derivatives. In

the works [5], [6], exact integration over the variable 𝜌 := (𝑟2 − 𝑑2)
1/2

is used to approximate
integrals on ASBE, where 𝑑 and 𝑟 are the distances from the observed point 𝑥 to the nearest
boundary point 𝑥0 and to the boundary integration point 𝑥′, respectively. In order to an exact
integration over 𝜌 to become possible, the integrand function is represented as a product of two
functions, one of which, for small values of 𝑑, is rapidly varying in the vicinity of 𝜌 = 0 and
is taken as a weight function, and the other is slowly varying and is approximated by using
polynomial interpolation in the variable 𝜌. In an earlier work [4] a similar method was proposed
for calculating integrals on the SBE when 𝜌 = 𝑟. Although in works [4]–[6] this method was
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proposed for calculating integrals only on linear and quadratic SBE and ASBE, in fact it can
be used for any sufficiently smooth analytically given curve 𝜕Ω, since the integrals over the
variable 𝜌 depend on the curve 𝜕Ω only parametrically. Since the slowly varying function is
included as a factor in the numerator of the integrand, the complexity of the integrals does not
increase significantly with increasing powers of interpolants, and the order of approximation can
be increased quite easily. The disadvantage of this method is that it is currently implemented
only for a two-dimensional spatial domain.
Works [4]–[6] provide no rigorous justification of the method, and a number of theoretical

issues related to its use for solving problems of mathematical physics is not resolved. For
example, it is necessary to find out the conditions under which the change of variable and
interpolation are possible. It is also necessary to prove that the convergence of the approxima-
tions of the potentials and their derivatives, solutions of the BIE and boundary value problems
obtained on the base of this method is uniform in the vicinity of the boundary of domain.
These issues were considered by the author in works [16]–[19]. Works [16]–[18] are devoted
to applying the method to heat conduction problems: in work [16] the uniform convergence
of approximate solutions of the BIE is proved, in work [17] the uniform convergence of the
approximations of SLP and solutions to the Neumann and Robin problems was shown and in
work [18] the uniform convergence of approximations of the double layer potential (DLP) and
solutions to the Dirichlet problem was established. In work [19] the uniform convergence of
DLP approximations for the Laplace equation was proved.
Here we study approximations of the DLP, approximate solutions of the BIE and the Dirichlet

problem for the dissipative Helmholtz equation based on such approximations, as well as issues
related to the continuity of approximations of the DLP, which were not reflected in works [18],
[19]. In the fourth section we prove the uniform and stable cubic convergence of the DLP
approximations in the vicinity of the boundary of the domain of class 𝐶5. In order to construct
approximations, we use the representation of the integrand obtained in the second section as a
sum of functions with weaker singularities, see formula (2.6). We note that in works by [5], [6]
such possibility was not used. Similar representations in the form of sums were used in works
by the author [18], [19]. The exact integration over 𝜌 is made not precisely on the SBE and
ASBE, as in works [4]–[6], but in some domain of a fixed width including the point 𝑥0. On the
rest of the curve 𝜕Ω, the integrals on the BE are calculated by using SGQF. The cubic rate
of convergence is due to the use of piecewise quadratic interpolations (PQI). It is proved that
such semi-analytic approximations of the DLP have a property that is similar to the property
of the exact DLP: when passing the boundary 𝜕Ω, they undergo a first kind discontinuity, the
magnitude of which is proportional to the values of the PQI of the density function 𝑣(𝑥′).
In the fifth section, the uniform and stable cubic convergence of semi-analytic approximations

for the solution to the BIE and semi-analytic approximations for the solution to the Dirichlet
problem is proved. For this purpose, in the third section we solve an auxiliary problem; suf-
ficient conditions are obtained for the stable solvability of the BIE in spaces of differentiable
functions. In the fifth section it is also proven that semi-analytic approximations of the solution
to the Dirichlet problem, by analogy with the exact solution, have a finite discontinuity at the
boundary 𝜕Ω, the value of which is proportional to the values of the approximate solution of
the BIE.
In the sixth section it is proven that if instead of exact integration over the variable 𝜌 we

use SGQF, then there is no uniform convergence of the DLP approximations in the vicinity of
each boundary point, as a result of which there is a sharp decrease in accuracy in the vicinity
of the boundary of the domain. Since the lack of uniform convergence in the vicinities of the
nodes of the SGQF is quite often mentioned in the literature, see, for example, [10], [11], here
we consider special approximations when the point 𝑥0 never coincides with any SGQF node.
In this case, the approximations are always continuous when passing through the boundary
and do not have uniform convergence precisely for this reason, since the DLP itself has a finite
discontinuity when passing through the boundary. We note that in works by the author [18],
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[19] the lack of uniform convergence of DLP approximations based on SGQF was proven under
some simplifying assumptions by estimating the remainder term of SGQF.
The final seventh section presents the results of a numerical solution of the Dirichlet problem

in the unit disk for 𝑘 = 𝜋, which confirm that the use of exact integration over 𝜌 provides
uniform convergence close to cubic, while using SGQF instead leads to a serious violation of
accuracy in the vicinity of the boundary 𝜕Ω.

2. Preliminary remarks

Let Ω+ be a bounded open simply-connected two-dimensional domain with a boundary 𝜕Ω,
Ω− := R2∖Ω+. In Cartesian coordinates (𝑥1, 𝑥2) we define parametric equations of the curve 𝜕Ω:
𝑥1 = 𝑥̃1(𝑠), 𝑥2 = 𝑥̃2(𝑠). The absolute value of the parameter 𝑠 is equal to the length of the arc
drawn from some fixed point and ending at the point 𝑥̃(𝑠) := (𝑥̃1(𝑠), 𝑥̃2(𝑠)), and it increases in
passing the contour 𝜕Ω so that the domain Ω+ is located to the left. The functions 𝑥̃1(𝑠), 𝑥̃2(𝑠)
are 2𝑆-periodic, where 𝑆 is the half of the length of 𝜕Ω, and they make one-to-one mapping of
the set 𝐼𝑆 := [−𝑆, 𝑆) onto the set 𝜕Ω. In what follows we write 𝜕Ω ∈ 𝐶𝑛 if there exist derivatives

𝑥̃
(𝑙)
𝑖 (𝑠) continuous on the closed set 𝐼𝑆, 𝑙 = 0, 𝑛, 𝑖 = 1, 2, and 𝑥̃

(𝑙)
𝑖 (−𝑆 + 0) = 𝑥̃

(𝑙)
𝑖 (𝑆 − 0). We

assume that the boundary 𝜕Ω belongs to the smoothness class 𝐶2, unless otherwise stated.
By 𝑒⃗(𝑠) we denote the tangential unit vector to the curve 𝜕Ω at a point 𝑥̃(𝑠) in the increasing

direction of the parameter 𝑠, and 𝑛⃗(𝑠) stands for the unit normal to the curve 𝜕Ω passing
through the point 𝑥̃(𝑠) and directed inside the domain Ω+. The vectors 𝑒⃗(𝑠), 𝑛⃗(𝑠) form a
right-handed system, and their coordinates (𝑥1, 𝑥2) are calculated by the formulas [21]

𝑒⃗(𝑠) = (𝑥̃′1(𝑠), 𝑥̃
′
2(𝑠)) , 𝑛⃗(𝑠) = (−𝑥̃′2(𝑠), 𝑥̃′1(𝑠)) .

By 𝐶(𝜕Ω) we denote the Banach space of complex functions 𝑓(𝑠), which are 2𝑆-periodic and
continuous on the entire real line R with norm ‖𝑓‖𝐶(𝜕Ω) = sup

𝑠∈𝐼𝑆
|𝑓(𝑠)| . Let 𝐶𝑛(𝜕Ω), 𝑛 ∈ Z+,

be the Banach spaces of functions 𝑓 ∈ 𝐶(𝜕Ω) having continuous derivatives 𝑓 (𝑙)(𝑠), 𝑠 ∈ R,

𝑙 = 1, 𝑛, with norm ‖𝑓‖𝐶𝑛(𝜕Ω) =
𝑛∑︀

𝑙=0

⃦⃦
𝑓 (𝑙)

⃦⃦
𝐶(𝜕Ω)

and 𝐶0(𝜕Ω) = 𝐶(𝜕Ω) [20, Ch. IV, Part 2, Subp.

23]. We can suppose that a function 𝑓 ∈ 𝐶𝑛(𝜕Ω) is well-defined if it is defined on some set 𝐼𝑆
and can be extended to the closed set 𝐼𝑆 so that on the set 𝐼𝑆 there are continuous derivatives
𝑓 (𝑙)(𝑠), 𝑙 = 0, 𝑛, and the identities 𝑓 (𝑙)(−𝑆 + 0) = 𝑓 (𝑙)(𝑆 − 0) are satisfied.
We introduce interior and exterior Dirichlet problem:

∇2𝑢± = 𝑘2𝑢± (𝑥 := (𝑥1, 𝑥2) ∈ Ω±, ∇ := (𝜕𝑥1 , 𝜕𝑥2)), 𝑢±(𝑥̃(𝑠)) = 𝑤(𝑠), (2.1)

where 𝑢±(𝑥) and 𝑤(𝑠) are complex-valuied functions defined on the sets Ω± and 𝐼𝑆, respectively.
We assume that Re 𝑘 > 0. Then it is known [22, Ch. 3] that under the condition 𝑤 ∈ 𝐶(𝜕Ω)
problem (2.1) possesses a unique solution 𝑢± ∈ 𝐶(Ω±) ∩ 𝐶2(Ω±), for which in the case of an
external problem the Sommerfeld condition must be satisfied:

𝑢− = 𝑜(|𝑥|−1/2), |∇𝑢−| = 𝑜(|𝑥|−1/2) for |𝑥| :=
√︁
𝑥21 + 𝑥22 → ∞

uniformly in all directions 𝑥/|𝑥|. The solution to problem (2.1) for 𝑥 ∈ Ω± can be obtained in
the form of a DLP: 𝑢±(𝑥) = 𝐺(𝑥)𝑣±, where

𝐺(𝑥)𝑓 :=

∫︁
𝐼𝑆

𝑔(𝑥, 𝑠′)𝑓(𝑠′) 𝑑𝑠′ (𝑓 ∈ 𝐶(𝜕Ω), 𝑥 ∈ Ω±), (2.2)

𝑔(𝑥, 𝑠′) := −𝑎0(𝑟2)𝑏, 𝑎0(𝑟
2) := 𝑟2𝑎(𝑟2), 𝑎(𝑟2) := (2𝜋𝑟)−1𝜕𝑟𝐾0(𝑘𝑟), 𝑏(𝑥, 𝑠′) := 𝜕𝑛⃗(𝑠′) ln 𝑟

−1,

𝑟(𝑥, 𝑠′) = |𝑟⃗|, 𝑟⃗(𝑥, 𝑠′) :=
−−−−→
𝑥 𝑥̃(𝑠′). Here we adopt that sometimes for the sake of brevity we do not

write the variables of a function if they are same as were used in the definition of the function;
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the differentiation 𝜕𝑛⃗(𝑠′) is made with respect to the variable 𝑥′ := 𝑥̃(𝑠′) in the direction 𝑛⃗(𝑠′);
𝐾0(𝑧) is the MacDonald function admitting the representation

𝐾0(𝑧) = −
[︀
2−1 ln(𝑧2/4) + 𝐶

]︀ ∞∑︁
𝑛=0

(𝑛!)−2
(︀
𝑧2/4

)︀𝑛
+

∞∑︁
𝑛=1

(𝑛!)−2
(︀
𝑧2/4

)︀𝑛 𝑛∑︁
𝑚=1

𝑚−1, (2.3)

see [23, Sect. 3.71, Eq. (14)]), where arg 𝑧 ∈ (−𝜋, 𝜋], 𝑧 ̸= 0, and 𝐶 is the Euler constant. For
each boundary function 𝑤 ∈ 𝐶(𝜕Ω) the density function 𝑣± is the unique solution in the class
𝐶(𝜕Ω) corresponding to BIE:

G±𝑣± = 𝑤, (2.4)

where
G± := ±2−1 +G, (G𝑣±)(𝑠) := 𝐺(𝑥̃(𝑠))𝑣± (𝑠 ∈ 𝐼𝑆).

A solution to problem (2.1) can be written by the formula 𝑢±(𝑥) = 𝑅±(𝑥)𝑤, 𝑥 ∈ Ω±, where
𝑅±(𝑥) := 𝐺(𝑥)G−1

± are the resolvent functionals. By formula (2.3) the function 𝑎(𝑟2) can be
written as

𝑎(𝑟2) = 𝑟−2𝑓1(𝑟
2) + ln(𝑟2)𝑓2(𝑟

2) + 𝑓3(𝑟
2), (2.5)

where 𝑓𝑖(𝑧), 𝑖 = 1, 3, are entire functions and 𝑓1(0) = −(2𝜋)−1.
We consider the functions via which the DLP is expressed on the boundary 𝜕Ω and in its

vicinity. Let 𝑟⃗0(𝑠, 𝑠
′) :=

−−−−−−→
𝑥̃(𝑠) 𝑥̃(𝑠′), 𝑟0(𝑠, 𝑠

′) := |𝑟⃗0|. On the set

Θ :=
{︀
(𝑠, 𝑠′) : 𝑠 ∈ 𝐼𝑆, 𝑠

′ − 𝑠 ∈ 𝐼𝑆
}︀

we define functions 𝜓𝑖(𝑠, 𝑠
′), 𝑖 = 0, 5, by the identities 𝜓𝑖 := 𝜙𝑖/(𝑠

′ − 𝑠)2, 𝑖 = 0, 2, and 𝜓𝑖 :=
𝜙𝑖/(𝑠

′ − 𝑠), 𝑖 = 3, 5, as 𝑠′ ̸= 𝑠, where

𝜙0 :=𝑟
2
0 = [𝑥̃1(𝑠

′)− 𝑥̃1(𝑠)]
2
+ [𝑥̃2(𝑠

′)− 𝑥̃2(𝑠)]
2
,

𝜙1 :=2−1𝜕𝑛⃗(𝑠′)𝑟
2
0 = −𝑥̃′2(𝑠′) [𝑥̃1(𝑠′)− 𝑥̃1(𝑠)] + 𝑥̃′1(𝑠

′) [𝑥̃2(𝑠
′)− 𝑥̃2(𝑠)] = (𝑛⃗(𝑠′), 𝑟⃗0)R2 ,

𝜙2 :=2−1𝜕𝑛⃗(𝑠)𝑟
2
0 = −𝑥̃′2(𝑠) [𝑥̃1(𝑠)− 𝑥̃1(𝑠

′)] + 𝑥̃′1(𝑠) [𝑥̃2(𝑠)− 𝑥̃2(𝑠
′)] = −(𝑛⃗(𝑠), 𝑟⃗0)R2 ,

𝜙3 :=2−1𝜕𝑠′𝑟
2
0 = 𝑥̃′1(𝑠

′) [𝑥̃1(𝑠
′)− 𝑥̃1(𝑠)] + 𝑥̃′2(𝑠

′) [𝑥̃2(𝑠
′)− 𝑥̃2(𝑠)] = (𝑒⃗(𝑠′), 𝑟⃗0)R2 ,

𝜙4 :=2−1𝜕𝑠𝑟
2
0 = 𝑥̃′1(𝑠) [𝑥̃1(𝑠)− 𝑥̃1(𝑠

′)] + 𝑥̃′2(𝑠) [𝑥̃2(𝑠)− 𝑥̃2(𝑠
′)] = −(𝑒⃗(𝑠), 𝑟⃗0)R2 ,

𝜙5 :=𝜕𝑠′𝜙2 = 𝑥̃′2(𝑠) 𝑥̃
′
1(𝑠

′)− 𝑥̃′1(𝑠) 𝑥̃
′
2(𝑠

′);

here (·, ·)R2 is the scalar product in the Euclidean space R2. As 𝑠′ = 𝑠, we let

𝜓0 = 𝜓3 = −𝜓4 := 1, 𝜓1 = 𝜓2 = 𝜓5 := 2−1 [𝑥̃′2(𝑠)𝑥̃
′′
1(𝑠)− 𝑥̃′1(𝑠)𝑥̃

′′
2(𝑠)] .

Also on the set Θ we define the functions 𝑏̂(𝑠, 𝑠′) := 𝑏(𝑥̃(𝑠), 𝑠′) and 𝜌0(𝑠, 𝑠
′): 𝜌0 := 𝑟0 if 𝑠

′ ⩾ 𝑠
and 𝜌0 := −𝑟0 if 𝑠′ < 𝑠.

Theorem 2.1 ([24, Lm.]). Let 𝐼 be a closed interval on the real line. Assume that some real
function 𝑓(𝑧, 𝜁) possesses continuous derivatives 𝜕𝑖𝑧𝜕

𝑗
𝜁𝑓 , 𝑖 = 0,𝑚, 𝑗 = 0,𝑚+ 𝑞, on the set 𝐼× 𝐼

and 𝑚 ∈ Z+, 𝑞 ∈ N and 𝜕𝑗𝜁𝑓 |𝜁=𝑧 = 0 as 𝑧 ∈ 𝐼, 𝑗 = 0, 𝑞 − 1. Then the function ℎ(𝑧, 𝜁) defined

by the identity ℎ(𝑧, 𝜁) := 𝑓/ (𝜁 − 𝑧)𝑞 as 𝜁 ̸= 𝑧 and by ℎ(𝑧, 𝑧) := 𝜕𝑞𝜁𝑓 |𝜁=𝑧/𝑞! as 𝜁 = 𝑧 possesses

continuous derivatives 𝜕𝑖𝑧𝜕
𝑗
𝜁ℎ on the set 𝐼 × 𝐼 as 𝑖 = 0,𝑚− 𝑗, 𝑗 = 0,𝑚.

Corollary 2.1. Let 𝜕Ω ∈ 𝐶𝑛+2, 𝑛 ∈ Z+. Then on the set Θ there exist the following
continuous derivatives:
(i) 𝜕𝑘𝑠 𝜕

𝑙
𝑠′𝜓𝑖, 𝑘 = 0, 𝑛− 𝑙; 𝑙 = 0, 𝑛 as 𝑖 = 0, 1, 2, 5; 𝑙 = 0, 𝑛+ 1 as 𝑖 = 3, 4;

(ii) 𝜕𝑘𝑠 𝜕
𝑙
𝑠′ 𝑏̂, 𝜕

𝑘+1
𝑠 𝜕𝑙𝑠′𝜌0, 𝜕

𝑘
𝑠 𝜕

𝑙+1
𝑠′ 𝜌0 (𝑘 = 0, 𝑛− 𝑙, 𝑙 = 0, 𝑛).

Proof. We observe the inclusion Θ ⊂ 𝐼2𝑆 × 𝐼2𝑆. Let 𝐼 = 𝐼2𝑆, 𝑧 = 𝑠, 𝜁 = 𝑠′. The assumptions of
Theorem 2.1 hold in the following cases:
1) 𝑓 = 𝜙0 or 𝑓 = 𝜙2, 𝑚 = 𝑛, 𝑞 = 2;
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2) 𝑓 = 𝜙4, 𝑚 = 𝑛+ 1, 𝑞 = 1;
3) 𝑓 = 𝜙5, 𝑚 = 𝑛, 𝑞 = 1. Moreover, 𝜙1(𝑠, 𝑠

′) = 𝜙2(𝑠
′, 𝑠), 𝜙3(𝑠, 𝑠

′) = 𝜙4(𝑠
′, 𝑠).

This is why in accordance with Theorem 2.1 Statement (i) holds true. Since the contour
𝜕Ω ∈ 𝐶2 has no self-intersections, there exists a positive constant 𝑐𝑟 := inf

(𝑠,𝑠′)∈Θ
𝜓0, 𝑐𝑟 ⩽ 1.

Since 𝑏̂ = −𝜓1𝜓
−1
0 , 𝜕𝑠′𝜌0 = 𝜓3𝜓

−1/2
0 , 𝜕𝑠𝜌0 = 𝜓4𝜓

−1/2
0 , then Statement (ii) is true. The proof is

complete.

The estimate
𝜗 ⩽ 𝑐𝐾 |𝑠′ − 𝑠| ⩽ 𝑐′𝐾𝑐

−1/2
𝑟 𝑟0,

where 𝜗 is the acute angle between the normals at the points 𝑥̃(𝑠′) and

𝑐𝐾 := sup
𝑠∈𝐼𝑆

𝐾(𝑠, 𝑠), 𝑐′𝐾 := sup
(𝑠,𝑠′)∈Θ

𝐾(𝑠, 𝑠′), 𝐾(𝑠, 𝑠′) :=
⃒⃒
𝜕2𝑠′𝜙2

⃒⃒
,

and 𝐾(𝑠, 𝑠) is the curvature of the curve at the point 𝑥̃(𝑠). This is why the quantity 3𝐷, where

𝐷 := 𝑐
1/2
𝑟 (3𝑐′𝐾)

−1, can be used as the radius of the Lyapunov circle, see [25, Sect. 94, Cond.
(3), (5)]. We introduce local systems of Cartesian coordinates (𝜉𝑠, 𝜂𝑠) with origins at the points
𝑥̃(𝑠) and the ordinate axes directed along the normal inside the domain Ω+. The points 𝑥̃𝑑(𝑠),
𝑠 ∈ 𝐼𝑆, with local coordinates (𝜉𝑠, 𝜂𝑠) = (0, 𝑑) for a fixed 𝑑 ∈ 𝐼𝐷 := [−𝐷, 0) ∪ (0, 𝐷] form a
closed line 𝜕Ω𝑑 ∈ 𝐶1, and the correspondence between the points 𝑥̃𝑑(𝑠) and 𝑥̃(𝑠) is one-to-one
(𝑥̃0(𝑠) := 𝑥̃(𝑠)), and the normals 𝑥̃(𝑠)𝑥̃𝑑(𝑠) to the curve 𝜕Ω are also normals to the curve 𝜕Ω𝑑,
see [25, Sect. 102]. According to [25, Sect. 102], the curves 𝜕Ω𝑑, 𝑑 ∈ 𝐼𝐷 are called parallel to
the curve 𝜕Ω.
We suppose that the value of the parameter 𝑠 corresponds to the observation point 𝑥 = 𝑥̃𝑑(𝑠),

while the value 𝑠′ does to the integration point 𝑥′ = 𝑥̃(𝑠′) in expression (2.2) for the DLP. Local
coordinates (𝜉𝑠, 𝜂𝑠) of the points 𝑥̃(𝑠

′) are equal to

((𝑒⃗(𝑠), 𝑟⃗0)R2 , (𝑛⃗(𝑠), 𝑟⃗0)R2) = (−𝜙4,−𝜙2) ,

and this is why

𝑟2 = |𝑥̃𝑑(𝑠)− 𝑥̃(𝑠′)|2 = 𝜙′
0 + 𝑑2,

where 𝜙′
0(𝑑, 𝑠, 𝑠

′) := 𝜙0 +2𝑑𝜙2. Since the curve 𝜕Ω and the circle of radius 𝑑 ∈ 𝐼𝐷 with center
𝑥̃𝑑(𝑠) have only one common point 𝑥̃(𝑠), then 2𝑑 cos𝛼 < 𝑟0, where 𝛼 is the angle between the
rays 𝑥̃(𝑠)𝑥̃(𝑠′) and 𝑥̃(𝑠)𝑥̃𝑑(𝑠). Therefore, 𝜙

′
0 = 𝑟20 − 2𝑑𝑟0 cos𝛼 > 0 for (𝑑, 𝑠, 𝑠′) ∈ Υ := 𝐼𝐷 × Θ,

𝑠 ̸= 𝑠′. We define a function 𝜌′(𝑑, 𝑠, 𝑠′): 𝜌′ =
√︀
𝜙′
0 if 𝑠

′ ⩾ 𝑠; 𝜌′ = −
√︀
𝜙′
0 if 𝑠

′ < 𝑠 (𝜌′ = 𝜌0 for
𝑑 = 0), and functions 𝜓′

0(𝑑, 𝑠, 𝑠
′) := 𝜓0 + 2𝑑𝜓2, 𝜓

′
1(𝑑, 𝑠, 𝑠

′) = 𝜓3 + 𝑑𝜓5. Under the condition
𝜕Ω ∈ 𝐶𝑛+2 (𝑛 ∈ Z+) the derivatives of 𝜕𝑗𝑠′𝜓

′
𝑖, 𝑗 = 0, 𝑛, 𝑖 = 0, 1, are continuous on the set

Υ by Corollary 2.1. Since 𝜓0(𝑠, 𝑠) = 1, |𝜓2(𝑠, 𝑠)| = 2−1𝐾(𝑠, 𝑠) and 𝐷 ⩽ (3𝑐𝐾)
−1, then for

(𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆 we have the estimate: 𝜓′
0(𝑑, 𝑠, 𝑠) ⩾ 2/3. Therefore, 𝜓′

0 > 0 on the set Υ, and

the derivatives 𝜕𝑗𝑠′𝜌
′, 𝑗 = 0, 𝑛+ 1, are continuous on Υ once 𝜕Ω ∈ 𝐶𝑛+2 since 𝜕𝑠′𝜌

′ = (𝜓′
0)

−1/2 𝜓′
1.

In view of the identity
2−1𝜕𝑛⃗(𝑠′)𝑟

2 = 𝜙1 + 𝑑𝜙6,

where
𝜙6(𝑠, 𝑠

′) := −𝑥̃′1(𝑠)𝑥̃′1(𝑠′)− 𝑥̃′2(𝑠)𝑥̃
′
2(𝑠

′),

we can write the function 𝑔(𝑥, 𝑠′) as 𝑥 = 𝑥̃𝑑(𝑠), (𝑑, 𝑠, 𝑠′) ∈ Υ (except for the point 𝑥 as
𝑑 = 𝑠′ − 𝑠 = 0) in the following form:

𝑔(𝑥̃𝑑(𝑠), 𝑠
′) = −𝑎1(𝑑, 𝜌′)𝛿1(𝑑, 𝑠, 𝑠′)− 𝑎2(𝑑, 𝜌

′)𝛿2(𝑑, 𝑠, 𝑠
′), (2.6)

where

𝑎1(𝑑, 𝜌) := 𝜌2𝑎(𝜌2 + 𝑑2), 𝑎2(𝑑, 𝜌) := 𝑑 𝑎(𝜌2 + 𝑑2); 𝛿1 := −𝜓1 /𝜓
′
0 , 𝛿2 := −𝜙6.

Since 𝜓′
0 > 0, under the condition 𝜕Ω ∈ 𝐶𝑛+2, 𝑛 ∈ Z+, there exist continuous on the set Υ

derivatives 𝜕𝑗𝑠′𝛿𝑖, 𝑗 = 0, 𝑛, 𝑖 = 1, 2.
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By E𝑠 we denote the closed arc of the curve 𝜕Ω bounded by two parallel lines located at a
distance 𝐷 from the line 𝑥̃(𝑠)𝑥̃𝐷(𝑠) for a fixed 𝑠 ∈ 𝐼𝑆 and 𝑥̃(𝑠) ∈ E𝑠. For a fixed 𝑠, we introduce
a curvilinear coordinate 𝜎𝑠 of the point 𝑥̃(𝑠

′): 𝜎𝑠 := 𝑠′ − 𝑠. The values of 𝜎𝑠 corresponding to
the boundaries of the arc E𝑠 are denoted by Σ′

𝑠, Σ
′′
𝑠 , Σ

′
𝑠 < 0 < Σ′′

𝑠 , and then 𝜎𝑠 ∈ Ξ𝑠 := [Σ′
𝑠,Σ

′′
𝑠 ],

𝜉𝑠 ∈ 𝐼𝐷 if 𝑥̃(𝑠′) ∈ E𝑠. We also define a function 𝜉𝑠 := 𝜉𝑠(𝜎𝑠), which describes the dependence of
the local Cartesian coordinate 𝜉𝑠 of a point 𝑥̃(𝑠′) on its local curvilinear coordinate 𝜎𝑠.

Lemma 2.1. Under the condition 𝜕Ω ∈ 𝐶2 the values Σ′
𝑠, Σ

′′
𝑠 depend continuously on 𝑠 ∈ 𝐼𝑆.

Proof. Since the arc E𝑠 is located inside the Lyapunov circle centered at the point 𝑥̃(𝑠) [25,
Sect. 94], the angle between the normals 𝑛⃗(𝑠) and 𝑛⃗(𝑠′) does not exceed 𝜋/3 if 𝑥̃(𝑠′) ∈ E𝑠, see

[25, Sect. 94, Estim. (7)]. This is why the derivative 𝑑𝜉𝑠(𝜎𝑠)/𝑑𝜎𝑠 is positive and continuous on

the set Ξ𝑠 for each 𝑠 ∈ 𝐼𝑆 and the function 𝜉𝑠(𝜎𝑠) is a 𝐶
1 diffeomorphism of the set Ξ𝑠 onto the

set 𝐼𝐷. The derivative 𝜕𝜎𝑠𝜉 of the function 𝜉(𝑠, 𝜎𝑠) := 𝜉𝑠(𝜎𝑠) is postivie and continuous on the

set
{︀
(𝑠, 𝜎𝑠) : 𝑠 ∈ 𝐼𝑆, 𝜎𝑠 ∈ Ξ𝑠

}︀
, and this is why the derivative 𝜕𝜉𝑠𝜎̂ = (𝜕𝜎𝑠𝜉)

−1 of the function

𝜎̂(𝑠, 𝜉𝑠) := 𝜎̃𝑠(𝜉𝑠), where 𝜎̃𝑠(𝜉𝑠) is a function inverse to the the function 𝜉𝑠(𝜎𝑠), is continuous on
the set 𝐼𝑆 × 𝐼𝐷. Therefore, the values Σ′

𝑠 = 𝜎̂(𝑠,−𝐷), Σ′′
𝑠 = 𝜎̂(𝑠,𝐷) depend continuously on

𝑠 ∈ 𝐼𝑆. The proof is complete.

Theorem 2.2 ([17, Thm. 5]). Let 𝜕Ω ∈ 𝐶𝑛+2, 𝑛 ∈ Z+. Then the function

𝛿0(𝑑, 𝑠, 𝑠
′) := (𝜕𝑠′𝜌

′)
−1

=
√︀
𝜓′
0/𝜓

′
1

is positive and defined everywhere on the set

Υ′ :=
{︀
(𝑑, 𝑠, 𝑠′) : 𝑑 ∈ 𝐼𝐷, 𝑠 ∈ 𝐼𝑆, 𝑠

′ − 𝑠 ∈ Ξ𝑠

}︀
,

and there exist continuous derivatives 𝜕𝑗𝑠′𝛿0, 𝑗 = 0, 𝑛.

Corollary 2.2. Let 𝜕Ω ∈ 𝐶𝑛+2, 𝑛 ∈ Z+. The for all fixed 𝑠 ∈ 𝐼𝑆, 𝑑 ∈ 𝐼𝐷 the function
𝜌𝑑,𝑠(𝜎) := 𝜌′(𝑑, 𝑠, 𝑠+𝜎) diffeomorphically maps the set Ξ𝑠 onto the 𝜌𝑑,𝑠(Ξ𝑠) with the smoothness
𝐶𝑛+1. The function 𝜎′(𝑑, 𝑠, 𝜌) := 𝜎𝑑,𝑠(𝜌), where 𝜎𝑑,𝑠(𝜌) is the inverse function for 𝜌𝑑,𝑠(𝜎), and

𝛿0(𝑑, 𝑠, 𝜌) := 𝛿0(𝑑, 𝑠, 𝑠+ 𝜎𝑑,𝑠(𝜌)), 𝛿𝑖(𝑑, 𝑠, 𝜌) := 𝛿𝑖(𝑑, 𝑠, 𝑠+ 𝜎𝑑,𝑠(𝜌))𝛿0, 𝑖 = 1, 2,

possess continuous derivatives 𝜕𝑗𝜌𝜎
′, 𝜕𝑗𝜌𝛿𝑖, 𝑗 = 0, 𝑛, 𝑖 = 0, 2, on the set

Υ̃′ :=
{︀
(𝑑, 𝑠, 𝜌) : 𝑑 ∈ 𝐼𝐷, 𝑠 ∈ 𝐼𝑆, 𝜌 ∈ 𝜌𝑑,𝑠(Ξ𝑠)

}︀
.

To conclude this section, we consider the functions that will be used for the interpolation.
We denote by Λ𝑚(𝑡, 𝜏1, 𝜏2), 𝑚 = 0, 2, 𝑡 ∈ [𝜏1, 𝜏2], Lagrange quadratic polynomials:

Λ𝑚(𝑡, 𝜏1, 𝜏2) :=
2∏︁

𝑗=0(𝑗 ̸=𝑚)

𝑡− 𝑡𝑗
𝑡𝑚 − 𝑡𝑗

.

Here

𝑡𝑗 := 𝜏 + 𝑞𝑗△𝜏, 𝑗 = 0, 2, △𝜏 := 2−1 (𝜏2 − 𝜏1) ,

𝜏 := 2−1 (𝜏1 + 𝜏2) , 𝑞0 := −1, 𝑞1 := 0, 𝑞2 := 1,

[26, Ch. 2, Sect. 3, Item 2]. Let 𝑓(𝑡) be a complex-valued function on the segment [𝜏1, 𝜏2]. Then

for the function 𝑓(𝑡) :=
2∑︀

𝑚=0

𝑓(𝑡𝑚)Λ𝑚(𝑡, 𝜏1, 𝜏2) and for its first two derivatives, as 𝑡 ∈ [𝜏1, 𝜏2],

the estimates hold:⃒⃒⃒
𝑓(𝑡)− 𝑓(𝑡)

⃒⃒⃒
⩽ 𝑐𝜔 sup

𝑡∈[𝜏1,𝜏2]

⃒⃒
𝑓 (3)(𝑡)

⃒⃒
△𝜏 3 (𝑓 ∈ 𝐶3([𝜏1, 𝜏2])), (2.7)⃒⃒⃒

𝑓 (𝑗)(𝑡)
⃒⃒⃒
⩽ 𝑐Λ,𝑗 max

𝑚=0,2
|𝑓(𝑡𝑚)|△𝜏−𝑗 (𝑓 ∈ 𝐶([𝜏1, 𝜏2]), 𝑗 = 0, 2), (2.8)
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𝑓 (𝑗)(𝑡)

⃒⃒⃒
⩽ 𝑐′Λ,𝑗 sup

𝑡∈[𝜏1,𝜏2]

⃒⃒
𝑓 (𝑗)(𝑡)

⃒⃒
(𝑓 ∈ 𝐶𝑗([𝜏1, 𝜏2]), 𝑗 = 1, 2), (2.9)

where

𝑐𝜔 := 2
√
3/9, 𝑐Λ,𝑗 := 3, 𝑗 = 0, 2, 𝑐′Λ,1 := 3, 𝑐′Λ,2 := 2−1.

Lemma 2.2. Let a function 𝑓(𝑡, 𝛼) be defined and continuous on a set

T := {(𝑡, 𝛼) : 𝑡 ∈ [𝜏1(𝛼), 𝜏2(𝛼)] , 𝛼 ∈ A} ,
where A is an 𝑛-dimensional rectangle and the functions 𝜏1(𝛼), 𝜏2(𝛼) are continuous and
𝜏1(𝛼) ⩽ 𝜏2(𝛼) on the set A. Moreover, let on a subset T′ ⊆ T selected in T by the condi-
tion 𝜏1(𝛼) < 𝜏2(𝛼) there exist continuous derivatives 𝜕𝑗𝑡 𝑓 , 𝑗 = 1, 2, which can be extended as

𝜏1(𝛼) = 𝜏2(𝛼) to continuous on the set T functions. Then the function 𝑓 of the form

𝑓(𝑡, 𝛼) :=
2∑︁

𝑚=0

𝑓 (𝑡𝑚(𝛼), 𝛼) Λ𝑚 (𝑡, 𝜏1(𝛼), 𝜏2(𝛼))

as (𝑡, 𝛼) ∈ T′ and

𝑓(𝑡, 𝛼) := 𝑓(𝑡, 𝛼)

as (𝑡, 𝛼) ∈ T ∖ T′ is continuous on the set T.

Proof. Under the condition 𝜏1 < 𝜏2 the function 𝑓(𝑡), 𝑡 ∈ [𝜏1, 𝜏2] can be represented as

𝑓(𝑡) = 𝑓(𝜏) + 𝑓1(𝜏1, 𝜏2)(𝑡− 𝜏) + 2−1𝑓2(𝜏1, 𝜏2)(𝑡− 𝜏)2, (2.10)

where

𝑓1 := 2−1△𝜏−1 [𝑓(𝜏2)− 𝑓(𝜏1)] , 𝑓2 := △𝜏−2 [𝑓(𝜏1)− 2𝑓(𝜏) + 𝑓(𝜏2)] .

Under the condition 𝑓 ∈ 𝐶2([𝜏1, 𝜏2]), by the Taylor formula with the remainder in the integral
form [27, Sect. 318] and the mean value theorem, the formulas

𝑓𝑗(𝜏1, 𝜏2) = 2𝑗−2△𝜏−𝑗

⎡⎣(−1)𝑗
𝜏1∫︁
𝜏

𝑓 (𝑗)(𝑡) (𝜏1 − 𝑡)𝑗−1 𝑑𝑡+

𝜏2∫︁
𝜏

𝑓 (𝑗)(𝑡) (𝜏2 − 𝑡)𝑗−1 𝑑𝑡

⎤⎦
= 2−1

[︀
𝑓 (𝑗)(𝑡1,𝑗) + 𝑓 (𝑗)(𝑡2,𝑗)

]︀
𝑡1,𝑗 ∈ [𝜏1, 𝜏 ] , 𝑡2,𝑗 ∈ [𝜏 , 𝜏2] , 𝑗 = 1, 2,

(2.11)

hold true. Now by identities (2.10) and (2.11) we complete the proof.

We note that if T′ = ∅, then on the set T as the functions 𝜕𝑗𝑡 𝑓 , 𝑗 = 1, 2, arbitrary continuous
functions can serve.

3. Stable solvability of boundary integral equation

in spaces of differentiable functions

In this section we solve an auxiliary problem: we study sufficient conditions under which
BIE (2.4) are stably solvable in spaces of differentiable functions. These results will be used in
what follows to justify the stable convergence of approximations of solutions of the BIE (2.4)
and solutions of boundary value problems (2.1).
Let 𝑋 and 𝑌 be some Banach spaces. As an operator A from the space 𝑋 to the space 𝑌 ,

we call a linear operator mapping each element of some linear subspace 𝐷(A) ⊆ 𝑋 into some
element of the space 𝑌 , and if 𝑋 = 𝑌 , then we call the operator A an operator in the space 𝑋.
If 𝐷(A) = 𝑋, then we say that the operator A from the space 𝑋 into the space 𝑌 is defined
everywhere and denote it as A [𝑋 → 𝑌 ], and if 𝑋 = 𝑌 , then A [𝑋].

Theorem 3.1. Let 𝜕Ω ∈ 𝐶𝑛+2, 𝑛 ∈ Z+. Then the operator G in the space 𝐶𝑛(𝜕Ω) is
everywhere defined and is bounded.



84 D.Yu. IVANOV

Proof. We introduce the functions

𝑔(𝑠, 𝜎) := 𝑔(𝑥̃(𝑠), 𝑠+ 𝜎), 𝜓0(𝑠, 𝜎) := 𝜓0(𝑠, 𝑠+ 𝜎),

𝑎̃0(𝑠, 𝜎) := 𝑎0(𝜎
2𝜓0), 𝑏̃(𝑠, 𝜎) := 𝑏̂(𝑠, 𝑠+ 𝜎)

and operators G𝜀, 𝜀 ∈ (0, 𝑆]:

(G𝜀𝑓)(𝑠) :=

𝜀∫︁
−𝜀

𝑔(𝑠, 𝜎)𝑓(𝑠+ 𝜎) 𝑑𝜎 𝑓 ∈ 𝐶(𝜕Ω), 𝑠 ∈ 𝐼𝑆.

We have the formula 𝑔 = −𝑎̃0𝑏̃. Since by Corollary 2.1 there exist continuous on the set
Θ derivatives 𝜕𝑘𝑠 𝜕

𝑙
𝑠′𝜓0, 𝜕

𝑘
𝑠 𝜕

𝑙
𝑠′ 𝑏̂(𝑠, 𝑠

′), 𝑘 = 0, 𝑛− 𝑙, 𝑙 = 0, 𝑛, then there exist derivatives 𝜕𝑙𝑠𝜓0

continuous on the set 𝐼𝑆 × 𝐼𝑆, 𝜕
𝑙
𝑠𝑏̃, 𝑙 = 0, 𝑛. In addition, taking into consideration formula

(2.5) and the strict positivity of the function 𝜓0 on 𝐼𝑆 × 𝐼𝑆, we can represent the function 𝑎̃0
as the sum 𝜎2 ln𝜎2𝑓1 + 𝑓2, where the functions 𝑓𝑖(𝑠, 𝜎) (𝑖 = 1, 2) have continuous on the set
𝐼𝑆 × 𝐼𝑆 derivatives 𝜕𝑙𝑠𝑓𝑖, 𝑙 = 0, 𝑛. Therefore, the derivatives 𝜕𝑙𝑠𝑔, 𝑙 = 0, 𝑛, can be extended at
𝜎 = 0 to continuous on the set 𝐼𝑆 × 𝐼𝑆 functions. Let 𝑓 ∈ 𝐶𝑛(𝜕Ω). Then there exist continuous

derivatives 𝑗
(𝑙)
𝜀 (𝑠), 𝑠 ∈ 𝐼𝑆, 𝑙 = 0, 𝑛, of the functions 𝑗𝜀 := G𝜀𝑓 . Since

𝑥̃
(𝑙)
𝑖 (−𝑆 + 0) = 𝑥̃

(𝑙)
𝑖 (𝑆 − 0), 𝑙 = 0, 𝑛+ 2, 𝑖 = 1, 2,

and
𝑓 (𝑙)(−𝑆 + 0) = 𝑓 (𝑙)(𝑆 − 0), 𝑙 = 0, 𝑛,

then
𝑗(𝑙)𝜀 (−𝑆 + 0) = 𝑗(𝑙)𝜀 (𝑆 − 0), 𝑙 = 0, 𝑛.

As a result we have 𝑗𝜀 ∈ 𝐶𝑛(𝜕Ω). Taking into consideration the arbitrariness of the function
𝑓 ∈ 𝐶𝑛(𝜕Ω), the operator G in the space 𝐶𝑛(𝜕Ω) is defined everywhere. The estimates hold:

⃒⃒
(G𝜀𝑓)

(𝑙)(𝑠)
⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 𝑙∑︁
𝑘=0

𝐶𝑘
𝑙

𝜀∫︁
−𝜀

𝜕𝑘𝑠 𝑔(𝑠, 𝜎)𝜕
𝑙−𝑘
𝑠 𝑓(𝑠+ 𝜎) 𝑑𝜎

⃒⃒⃒⃒
⃒⃒ ⩽ 2𝑛+1𝜀𝑐𝑛‖𝑓‖𝐶𝑛(𝜕Ω), (3.1)

where

𝑠 ∈ 𝐼𝑆, 𝑐𝑛 := sup
0⩽𝑙⩽𝑛, (𝑠,𝜎)∈𝐼𝑆×𝐼𝑆

|𝜕𝑙𝑠𝑔(𝑠, 𝜎)|, 𝐶𝑘
𝑙 := 𝑙!/(𝑙 − 𝑘)!/𝑘!, 𝑙 = 0, 𝑛.

In accordance with estimates (3.1), the operators G𝜀 [𝐶
𝑛(𝜕Ω)] are bounded. Since G = G𝜀 as

𝜀 = 𝑆, this completes the proof.

Theorem 3.2. Let 𝜕Ω ∈ 𝐶𝑛+2, 𝑤 ∈ 𝐶𝑛(𝜕Ω), 𝑛 ∈ Z+. Then there exists a unique solution
𝑣± ∈ 𝐶𝑛(𝜕Ω) to BIE (2.4).

Proof. Let 𝜂𝜀(𝜎) be a 𝑛 times continuously differentiable on the segment 𝐼𝑆 real function:

𝜂𝜀(𝜎) = 1 as |𝜎| ⩽ 𝜀/2, 0 < 𝜂𝜀(𝜎) < 1 as 𝜀/2 < |𝜎| < 𝜀,

𝜂𝜀(𝜎) = 0 as |𝜎| ⩾ 𝜀, 𝜀 ∈ (0, 𝑆); 𝑔′𝜀(𝑠, 𝜎) := 𝜂𝜀𝑔, 𝑔′′𝜀 (𝑠, 𝑠
′) := [1− 𝜂𝜀(𝑠

′ − 𝑠)] 𝑔.

We represent the operator G as the sum G = G′
𝜀+G′′

𝜀 , where the operators G
′
𝜀, G

′′
𝜀 are defined

by the identities

(G′
𝜀𝑓)(𝑠) :=

𝑆∫︁
−𝑆

𝑔′𝜀(𝑠, 𝜎)𝑓(𝑠+ 𝜎)𝑑𝜎, (G′′
𝜀𝑓)(𝑠) :=

𝑆∫︁
−𝑆

𝑔′′𝜀 (𝑠, 𝑠
′)𝑓(𝑠′)𝑑𝑠′

(𝑓 ∈ 𝐶(𝜕Ω), 𝑠 ∈ 𝐼𝑆). Similarly to Theorem 3.1, the operator G′
𝜀 in the space 𝐶𝑛(𝜕Ω) is defined

everywhere, bounded and in view of the inequality 𝜂𝜀(𝜎) ⩽ 1, it satisfies estimates (3.1). The
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operatorG′′
𝜀 from the space 𝐶(𝜕Ω) into the space 𝐶𝑛(𝜕Ω) is also defined everywhere, since there

exist continuous on set Θ derivatives 𝜕𝑗𝑠𝑔
′′
𝜀 , 𝑗 = 0, 𝑛, and 𝜕𝑗𝑠𝑔

′′
𝜀 (−𝑆 + 0, 𝑠′) = 𝜕𝑗𝑠𝑔

′′
𝜀 (𝑆 − 0, 𝑠′).

By the assumptions, condition, the right side of BIE (2.4) satisfies 𝑤 ∈ 𝐶(𝜕Ω), therefore,
there exists a unique solution 𝑣± ∈ 𝐶(𝜕Ω) of BIE (2.4) [22, Ch. 3]. It remains to prove that
𝑣± ∈ 𝐶𝑛(𝜕Ω). Since 𝑤 ∈ 𝐶𝑛(𝜕Ω) and the operator G′′

𝜀 from the space 𝐶(𝜕Ω) into the space
𝐶𝑛(𝜕Ω) is defined everywhere, then ℎ±𝜀 := ±2(𝑤−G′′

𝜀𝑣±) ∈ 𝐶𝑛(𝜕Ω). BIE (2.4) can be written
in the following form:

𝑣± ± 2G′
𝜀𝑣± = ℎ±𝜀 . (3.2)

We note that the right side ℎ±𝜀 of equation (3.2) depends on the solution 𝑣±, but under the
assumptions of this theorem we have ℎ±𝜀 ∈ 𝐶𝑛(𝜕Ω).

Let 𝜀 < [(𝑛+ 1)2𝑛+2𝑐𝑛]
−1
. Since (𝑛 + 1)2𝑛+2𝑐𝑛 ⩾ 4𝑐0, then, due to inequalities (3.1), for

the operator G′
𝜀 [𝐶(𝜕Ω)] we have the estimate ‖G′

𝜀‖ < 2−1, and therefore the operator 1 ±
2G′

𝜀 is boundedly invertible in the space 𝐶(𝜕Ω) and the inverse operator (1± 2G′
𝜀)

−1 can be

represented as a Neumann series
∞∑︀
𝑖=0

(∓2G′
𝜀)

𝑖 convergent in the operator norm [20, Ch. VII,

Sect. 3, Subsect. 4, Lm.]. Hence, in view of identity (3.2), the function 𝑣± ∈ 𝐶(𝜕Ω) can

be represented as a series
∞∑︀
𝑖=0

𝑗±𝜀,𝑖 convergent in the 𝐶(𝜕Ω)-norm, where 𝑗±𝜀,𝑖 := (∓2G′
𝜀)

𝑖 ℎ±𝜀 .

Since 𝜀 < [(𝑛+ 1)2𝑛+2𝑐𝑛]
−1
, due to inequalities (3.1) for the operator G′

𝜀 [𝐶𝑛(𝜕Ω)] we have
the estimate 𝑞 := 2‖G′

𝜀‖ < 1. In addition, by Theorem 3.1, 𝑗±𝜀,𝑖 ∈ 𝐶𝑛(𝜕Ω), 𝑖 ∈ Z+, since
ℎ±𝜀 ∈ 𝐶𝑛(𝜕Ω). By induction we obtain the following inequalities:⃒⃒

(𝑗±𝜀,𝑖)
(𝑙)(𝑠)

⃒⃒
⩽

⃦⃦
𝑗±𝜀,𝑖

⃦⃦
𝐶𝑛(𝜕Ω)

⩽ 𝑞𝑖
⃦⃦
ℎ±𝜀

⃦⃦
𝐶𝑛(𝜕Ω)

𝑠 ∈ 𝐼𝑆, 𝑙 = 0, 𝑛, 𝑖 = 0, 1, . . . ,

due to which the series
∞∑︀
𝑖=0

(𝑗±𝜀,𝑖)
(𝑙)(𝑠) converges uniformly in 𝑠 ∈ 𝐼𝑆, and then

𝑣
(𝑙)
± =

∞∑︁
𝑖=0

(𝑗±𝜀,𝑖)
(𝑙) ∈ 𝐶(𝜕Ω), 𝑙 = 0, 𝑛,

that is, 𝑣± ∈ 𝐶𝑛(𝜕Ω). The proof is complete.

We observe that we can not obtain the result of Theorem 3.2 on the base of the smoothness
improving theorems for solutions to second order Fredholm equations proven in works [28]–
[33]. Namely, let Φ := {(𝑠, 𝑠′) ∈ (−𝑆, 𝑆)× (−𝑆, 𝑆) : 𝑠 ̸= 𝑠′}. Under the condition 𝜕Ω ∈ 𝐶𝑛+2,
𝑛 ∈ Z+, the function 𝑔(𝑠, 𝑠

′) := 𝑔(𝑥̃(𝑠), 𝑠′) is 𝑛 times continuously differentiable on the set Φ
and the estimates hold:

⃒⃒
𝜕𝑘𝑠 (𝜕𝑠 + 𝜕𝑠′)

𝑙𝑔
⃒⃒
⩽ 𝑐𝑛 ·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 (𝑘 < 2),⃒⃒⃒⃒

ln
⃒⃒⃒
(𝑠′ − 𝑠)

(︀
𝑠′ − (𝑠+ 2𝑆)

)︀(︀
𝑠′ − (𝑠− 2𝑆)

)︀⃒⃒⃒⃒⃒⃒⃒
(𝑘 = 2),⃒⃒⃒

(𝑠′ − 𝑠)
(︀
𝑠′ − (𝑠+ 2𝑆)

)︀(︀
𝑠′ − (𝑠− 2𝑆)

)︀⃒⃒⃒2−𝑘

(𝑘 > 2),

where 𝑐𝑛 are positive constants, 𝑘 + 𝑙 ⩽ 𝑛, (𝑠, 𝑠′) ∈ Φ. Thus, the derivatives of the kernels of
the integral operator G possesses not only a diagonal singularity (as 𝑠→ 𝑠′), but also boundary
singularities (as 𝑠→ −𝑆, 𝑠′ → 𝑆 and as 𝑠→ 𝑆, 𝑠′ → −𝑆). Theorem in [28], Theorem 1 in [29],
Theorems 1, 2 in [30], Theorem 5 [31] were proved for the kernels of the integral operators, the
derivatives of which possess only the diagonal singularity. Theorems 1.1–1.3 in [32], Theorem 4
in [33] were proved for the kernels, the derivatives of which possess also boundary singularities,
but in contrast to the derivatives of the function 𝑔, the boundary singularities of the derivatives
of such kernels do not increase as the order of the partial derivative 𝜕𝑘𝑠 grows.
On the base of Theorems 3.1, 3.2 and the Banach theorem on the inverse operator [20, Ch. II,

Sect. 2, Subsect. 2, Thm.] we obtain the main result of the present section.
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Corollary 3.1. Let 𝜕Ω ∈ 𝐶𝑛+2, 𝑛 ∈ Z+. Then the operators G± [𝐶𝑛(𝜕Ω)] are boundedly
invertible.

4. Semi-analytic approximation of double layer potential

We first consider some representations and properties of intergral operators of DLP, which
will be employed for constructing semi-analytic approximations for DLPs and for studying their
properties. By Ω𝐷 we denote the set formed by the points 𝑥 = 𝑥̃𝑑(𝑠) as 𝑑 ∈ 𝐼𝐷, 𝑠 ∈ 𝐼𝑆. Let

𝑓 ∈ 𝐶(𝜕Ω), 𝐵𝑖(𝑑, 𝑠, 𝜌)𝑓 := 𝛿𝑖(𝑑, 𝑠, 𝜌)𝑓(𝑠+ 𝜎𝑑,𝑠(𝜌)), 𝑖 = 1, 2,

𝐵(𝑑, 𝑠, 𝑠′)𝑓 := 𝑔(𝑥̃𝑑(𝑠), 𝑠
′)𝑓(𝑠′).

For 𝑥 ∈ Ω𝐷 we define the functionals 𝐺𝑖(𝑥), 𝑖 = 1, 3:

𝐺𝑖(𝑥)𝑓 := −
∫︁

𝜌𝑑,𝑠(Ξ𝑠)

𝑎𝑖(𝑑, 𝜌)𝐵𝑖(𝑑, 𝑠, 𝜌)𝑓 𝑑𝜌, 𝑖 = 1, 2,

𝐺3(𝑥)𝑓 :=

∫︁
𝐼𝑆∖Ξ𝑠

𝐵(𝑑, 𝑠, 𝑠+ 𝜎)𝑓 𝑑𝜎.

(4.1)

By formula (2.6) and Corollary 2.2 the functionals 𝐺(𝑥) can be represented as the sum

𝐺(𝑥) = 𝐺1(𝑥) +𝐺2(𝑥) +𝐺3(𝑥) (𝑥 ∈ Ω𝐷), (4.2)

and 𝐺(𝑥̃(𝑠))𝑓 = 𝐺1(𝑥̃(𝑠))𝑓 +𝐺3(𝑥̃(𝑠))𝑓 is the direct value of DLP on the boundary 𝜕Ω, since
𝐺2(𝑥̃(𝑠))𝑓 = 0 according to identities (4.1) (𝑠 ∈ 𝐼𝑆).
By Corollary 2.2 the functions 𝐵𝑖(𝑑, 𝑠, 𝜌)𝑓 , 𝑖 = 1, 2, are continuous on the set Υ̃′ since

𝜕Ω ∈ 𝐶2, 𝑓 ∈ 𝐶(𝜕Ω). Moreover, the values Σ′
𝑠, Σ′′

𝑠 depend continuously on 𝑠 ∈ 𝐼𝑆, see
Lemma 2.1, and therefore, the values 𝜌𝑑,𝑠(Σ

′
𝑠), 𝜌𝑑,𝑠(Σ

′′
𝑠) depend continuously on (𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆

since the function 𝜌′ is continuous on the set Υ. We also note that by formula (2.5) we can
represent the functions 𝑎𝑖(𝑑, 𝜌), 𝑖 = 1, 2, as the sums

𝑎1 = −(2𝜋)−1𝜌2
(︀
𝜌2 + 𝑑2

)︀−1
+ 𝑎′1, 𝑎2 = −(2𝜋)−1𝑑

(︀
𝜌2 + 𝑑2

)︀−1
+ 𝑎′2, (4.3)

where the functionals 𝑎′𝑖(𝑑, 𝜌) can be extended at 𝑑 = 𝜌 = 0 to continuous on the set 𝐼𝐷 × 𝐼𝑆
functions. This is why the function 𝐺1(𝑥)𝑓 is continuous on the closed set Ω𝐷 by the theorem
on the continuity of improper integrals with a parameter [34, Ch. XVII, Sect. 2, Stat.5], while
the continuity of the function𝐺2(𝑥)𝑓 is guaranteed only on the set Ω𝐷.
The function 𝐺3(𝑥)𝑓 is continuous on the set Ω𝐷. Indeed, as we have already mentioned,

the values Σ′
𝑠, Σ

′′
𝑠 depend continuously on 𝑠 ∈ 𝐼𝑆, and the function 𝐵3(𝑑, 𝑠, 𝑠

′)𝑓 is continuous

on the set Υ ∖Υ′ since here 𝑟 ⩾ 𝐷.
We observe that by formula (2.5), 𝑎′2 → 0 as 𝑑→ 0 uniformly in 𝜌 ∈ 𝐼𝑆 and by the inequality

𝜓′
0 > 0, as (𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆, the inequalities hold:

|𝜌𝑑,𝑠(Σ′
𝑠)| ⩾ 𝑐0|Σ′

𝑠| ⩾ 𝑐0𝐷, 𝜌𝑑,𝑠(Σ
′′
𝑠) ⩾ 𝑐0Σ

′′
𝑠 ⩾ 𝑐0𝐷, 𝑐0 := inf

(𝑑,𝑠,𝑠′)∈ϒ

√︀
𝜓′
0 > 0.

This is why in view of second identity (4.3) and the boundedness of the function 𝐵2(𝑑, 𝑠, 𝜌)𝑓
and the values Σ′

𝑠, Σ
′′
𝑠 for each fixed 𝜀 ∈ (0, 𝑐0𝐷] we have limits

lim
𝑑→0

∫︁
𝜌𝑑,𝑠(Ξ𝑠)∖[−𝜀,𝜀]

𝑎2𝐵2𝑓 𝑑𝜌 = −(2𝜋)−1 lim
𝑑→0

∫︁
𝜌𝑑,𝑠(Ξ𝑠)∖[−𝜀,𝜀]

𝑑
(︀
𝜌2 + 𝑑2

)︀−1
𝐵2𝑓 𝑑𝜌 = 0

converging uniformly in 𝑠 ∈ 𝐼𝑆. Taking into consideration identities 𝐵2(𝑑, 𝑠, 0)𝑓 = 𝑓(𝑠) as
(𝑑, 𝑠) ∈ 𝐼𝐷×𝐼𝑆 and the continuity of the function 𝐵2(𝑑, 𝑠, 𝜌)𝑓 on the set Υ̃′, we obtain uniformly



ON UNIFORM CONVERGENCE OF SEMI-ANALYTIC SOLUTION . . . 87

convering on 𝑠 ∈ 𝐼𝑆 limits

lim
𝑑→±0

𝐺2(𝑥̃𝑑(𝑠))𝑓 = − lim
𝜀→+0

⎛⎝ lim
𝑑→±0

𝜀∫︁
−𝜀

𝑎2(𝑑, 𝜌)𝐵2(𝑑, 𝑠, 𝜌)𝑓 𝑑𝜌

⎞⎠
= (2𝜋)−1 lim

𝜀→+0

⎛⎝ lim
𝑑→±0

𝑑

𝜀∫︁
−𝜀

(︀
𝜌2 + 𝑑2

)︀−1
𝐵2(𝑑, 𝑠, 𝜌)𝑓 𝑑𝜌

⎞⎠
= 𝜋−1 lim

𝜀→+0

(︂
lim
𝑑→±0

𝐵2(𝑑, 𝑠, 𝜌𝑑,𝑠,𝜀)𝑓 arctan (𝜀/𝑑)

)︂
= ±2−1𝑓(𝑠),

(4.4)

where 𝜌𝑑,𝑠,𝜀 ∈ [−𝜀, 𝜀], see generalized mean value theorem [27, Sect. 299]. On the base of
identities (4.2), (4.4) we get well-known limiting relations for DLP, which hold as 𝜕Ω ∈ 𝐶2,
𝑓 ∈ 𝐶(𝜕Ω) uniformly in 𝑠 ∈ 𝐼𝑆:

lim
𝑑→±0

𝐺(𝑥̃𝑑(𝑠))𝑓 = ±2−1𝑓(𝑠) +𝐺(𝑥̃(𝑠))𝑓. (4.5)

Using identities (4.4) and (4.5), we can define the functions 𝐺2(𝑥)𝑓 and 𝐺(𝑥)𝑓 (𝑓 ∈ 𝐶(𝜕Ω))

to functions continuous on closed sets Ω±
𝐷, Ω

±
𝐷 := Ω𝐷 ∩ Ω±. Under the condition 𝑤 ∈ 𝐶(𝜕Ω),

the functions 𝑢±(𝑥) := 𝑅±(𝑥)𝑤 are continuous on the corresponding sets Ω±
𝐷 and they can be

extended to continuous on the sets Ω±
𝐷 functions by means of uniformly converging in 𝑠 ∈ 𝐼𝑆

limits:

lim
𝑑→±0

𝑢±(𝑥̃𝑑(𝑠)) = ±2−1𝑣±(𝑠) + 𝑢±(𝑥̃(𝑠)) = 𝑤(𝑠), (4.6)

at the same time

𝑢±(𝑥̃(𝑠)) := 𝑅±(𝑥̃(𝑠))𝑤, 𝑅±(𝑥̃(𝑠)) := 𝐺(𝑥̃(𝑠))G−1
± , 𝑠 ∈ 𝐼𝑆,

are direct values of the functions 𝑢±(𝑥) and the functionals 𝑅±(𝑥) on the boundary 𝜕Ω.
In view of identities (4.3), the functions 𝑎𝑖(𝑑, 𝜌), 𝑖 = 1, 2, are absolutely integrable in 𝜌 ∈ 𝐼𝑆

and the integrals are uniformly bounded in 𝑑 ∈ 𝐼𝐷. The norms of the functionals 𝐺𝑖(𝑥)
[𝐶(𝜕Ω) → C], 𝑥 ∈ Ω𝐷, 𝑖 = 1, 3, satisfy the estimate

‖𝐺𝑖(𝑥)‖ ⩽ 𝐴𝑖𝑐𝑖,0, 𝑖 = 1, 2, ‖𝐺3(𝑥)‖ ⩽ 2𝑆𝑐3,0, (4.7)

where

𝐴𝑖 := sup
𝑑∈𝐼𝐷

∫︁
𝐼𝑆

|𝑎𝑖(𝑑, 𝜌)| 𝑑𝜌, 𝑐𝑖,0 := sup
(𝑑,𝑠,𝜌)∈ϒ̃′

|𝛿𝑖|, 𝑖 = 1, 2; 𝑐3,0 := sup
(𝑑,𝑠,𝑠′)∈ϒ∖ϒ′

|𝑔(𝑥̃𝑑(𝑠), 𝑠′)|.

By identity (4.2) and estimates (4.7) we have the following estimates for the norms of the
functionals 𝐺(𝑥) [𝐶(𝜕Ω) → C]:

‖𝐺(𝑥)‖ ⩽ 𝑐𝐺 := 𝐴1𝑐1,0 + 𝐴2𝑐2,0 + 2𝑆𝑐3,0 (𝑥 ∈ Ω𝐷). (4.8)

By estimate (4.8) the functionals 𝐺(𝑥) [𝐶(𝜕Ω) → C] are bounded uniformly in 𝑥 ∈ Ω𝐷.
Let us discretize BLP in the integration variable 𝑠′ in accordance with BEM. In order to

do this, we parition the boundary 𝜕Ω into boundary elements and on each of them we replace
the density function by its quadratic interpolant. Namely, let 𝐿/2 ∈ N, ℎ := 𝑆/(𝐿 + 1),
𝑠𝑙 := 𝑙ℎ, 𝑙 ∈ Z (𝑥̃(𝑠𝑙+2𝐿+2) = 𝑥̃(𝑠𝑙)). We introduce spaces 𝐻𝐿 of complex-valued grid functions
𝑓 with values 𝑓𝑙 defined as the collocation points 𝑠𝑙 on the set 𝐼𝑆 (𝑓𝑙+2𝐿+2 = 𝑓𝑙) with the norm
‖𝑓‖𝐻𝐿

= max
−𝐿−1⩽𝑙⩽𝐿

|𝑓𝑙|. We define projection operators P𝐿 [𝐶(𝜕Ω) → 𝐻𝐿]: (P𝐿𝑓)𝑙 := 𝑓(𝑠𝑙)
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(‖P𝐿‖ ⩽ 1). We introduce interpolation operators P̈𝐿 [𝐻𝐿 → 𝐶(𝜕Ω)]:

(P̈𝐿𝑓)(𝑠) :=
2∑︁

𝑚=0

𝑓2𝑙−1+𝑚Λ𝑚(𝑠, 𝑠2𝑙−1, 𝑠2𝑙+1), 𝑠 ∈ [𝑠2𝑙−1, 𝑠2𝑙+1] , 𝑙 = −𝐿/2, 𝐿/2.

By estimate (2.8) as 𝑗 = 0 the operators P̈𝐿 [𝐻𝐿 → 𝐶(𝜕Ω)] are uniformly bounded: ‖P̈𝐿‖ ⩽
𝑐Λ,0. On the base of inequality (2.7) we have the estimates⃦⃦⃦

P̈𝐿P𝐿𝑓 − 𝑓
⃦⃦⃦
𝐶(𝜕Ω)

⩽ 𝑐𝜔
⃦⃦
𝑓 (3)

⃦⃦
𝐶(𝜕Ω)

ℎ3 , 𝑓 ∈ 𝐶3(𝜕Ω). (4.9)

By means of identities 𝐺̈(𝑥)𝑓 := 𝐺(𝑥)P̈𝐿𝑓 (𝑓 ∈ 𝐻𝐿) we define the functionals 𝐺̈(𝑥) [𝐻𝐿 → C],
𝑥 ∈ Ω𝐷. Using inequalities (4.8), (4.9), we obtain the estimates of approximation of the
functionals 𝐺(𝑥) by the functionals 𝐺̈(𝑥)P𝐿:⃒⃒⃒

𝐺̈(𝑥)P𝐿𝑓 −𝐺(𝑥)𝑓
⃒⃒⃒
⩽ 𝑐𝐺 𝑐𝜔

⃦⃦
𝑓 (3)

⃦⃦
𝐶(𝜕Ω)

ℎ3, 𝑥 ∈ Ω𝐷, 𝑓 ∈ 𝐶3(𝜕Ω). (4.10)

The functionals 𝐺̈(𝑥) are expressed via the integrals
𝑠2𝑙+1∫︁

𝑠2𝑙−1

𝑔(𝑥, 𝑠′)𝑓(𝑠′) 𝑑𝑠′, 𝑓 := P̈𝐿𝑓, 𝑓 ∈ 𝐻𝐿,

which in the general case can not be calculated exactly. This is why we need an additional
approximation. We note that in accordance with identities (4.2) the functionals 𝐺̈(𝑥) can be
represented as the sums 𝐺̈(𝑥) = 𝐺̈1(𝑥)+𝐺̈2(𝑥)+𝐺̈3(𝑥) as 𝑥 ∈ Ω𝐷, where 𝐺̈𝑖(𝑥) := 𝐺𝑖(𝑥)P̈𝐿, 𝑖 =

1, 3. We introduce the functionals 𝐺̂𝑖(𝑥) approximating 𝐺̈𝑖(𝑥), 𝑥 ∈ Ω𝐷, 𝑖 = 1, 2. In order to do

this, in expressions (4.1) for 𝐺̈𝑖(𝑥̃𝑑(𝑠))𝑓 we replace the functions 𝐵̈𝑖(𝑑, 𝑠, 𝜌)𝑓 := 𝛿𝑖𝑓(𝑠+𝜎𝑑,𝑠(𝜌)),

𝑓 ∈ 𝐻𝐿, 𝑓 := P̈𝐿𝑓 , (𝑑, 𝑠, 𝜌) ∈ Υ̃′, by their piece-wise-quadratic interpolants 𝐵̂𝑖(𝑑, 𝑠, 𝜌)𝑓 in the
variable 𝜌:

𝐺̂𝑖(𝑥̃𝑑(𝑠))𝑓 := −
∫︁

𝜌𝑑,𝑠(Ξ𝑠)

𝑎𝑖(𝑑, 𝜌)𝐵̂𝑖(𝑑, 𝑠, 𝜌)𝑓 𝑑𝜌. (4.11)

Here

𝐵̂𝑖(𝑑, 𝑠, 𝜌)𝑓 := 𝐵̂𝑖,𝑙(𝑑, 𝑠, 𝜌)𝑓, 𝜌 ∈ [𝜌𝑑,𝑠,𝑙, 𝜌𝑑,𝑠,𝑙+1] , 𝑙 ∈ Z,

𝐵̂𝑖,𝑙(𝑑, 𝑠, 𝜌)𝑓 :=

⎧⎪⎪⎨⎪⎪⎩
2∑︁

𝑚=0

𝐵̈𝑖(𝑑, 𝑠, 𝜌𝑑,𝑠,𝑙,𝑚)𝑓 Λ𝑚(𝜌, 𝜌𝑑,𝑠,𝑙, 𝜌𝑑,𝑠,𝑙+1) (𝜌𝑑,𝑠,𝑙 < 𝜌𝑑,𝑠,𝑙+1),

𝐵̈𝑖(𝑑, 𝑠, 𝜌𝑑,𝑠,𝑙) (𝜌𝑑,𝑠,𝑙 = 𝜌𝑑,𝑠,𝑙+1);

𝜌𝑑,𝑠,𝑙,𝑚 := 2−1 (𝜌𝑑,𝑠,𝑙 + 𝜌𝑑,𝑠,𝑙+1) + 𝑞𝑚ℎ
′
𝑑,𝑠,𝑙, ℎ′𝑑,𝑠,𝑙 := 2−1 (𝜌𝑑,𝑠,𝑙+1 − 𝜌𝑑,𝑠,𝑙) , 𝜌𝑑,𝑠,𝑙 := 𝜌𝑑,𝑠(𝛼𝑠,𝑙).

We define the values 𝛼𝑠,𝑙, 𝑙 ∈ Z, 𝑠 ∈ 𝐼𝑆, so that to satisfy the conditions:
(1)

⋃︀
𝑙∈Z

[𝛼𝑠,𝑙, 𝛼𝑠,𝑙+1] = Ξ𝑠; (2)
(︀
{𝑠𝑘 − 𝑠}𝑘∈Z ∩ Ξ𝑠

)︀
⊆ {𝛼𝑠,𝑙}𝑙∈Z; (3) 𝛼𝑠,𝑙 ⩽ 𝛼𝑠,𝑙+1 (𝑙 ∈ Z);

(4) 𝛼𝑠,𝑙, 𝑙 ∈ Z, continuously depend on 𝑠 ∈ 𝐼𝑆 if Σ′
𝑠, Σ

′′
𝑠 continuously depend on 𝑠 ∈ 𝐼𝑆. Let

𝑠 ∈ [𝑠𝑘, 𝑠𝑘+1) for 𝑘 from −𝐿− 1 to 𝐿. Then we let

𝛼𝑠,2𝑙+𝑘 := min {𝑠𝑙+𝑘 − 𝑠,Σ′′
𝑠} , 𝛼𝑠,2𝑙+1+𝑘 := min {𝑙ℎ,Σ′′

𝑠} , 𝑙 ⩾ 0;

𝛼𝑠,2𝑙+𝑘 := max {𝑠𝑙+𝑘 − 𝑠,Σ′
𝑠} , 𝛼𝑠,2𝑙+1+𝑘 := max {𝑙ℎ,Σ′

𝑠} , 𝑙 < 0.

We note that in formula (4.11), it is sufficient to prescribe the functions 𝐵̂𝑖(𝑑, 𝑠, 𝜌)𝑓 on the
segments [𝜌𝑑,𝑠,𝑙, 𝜌𝑑,𝑠,𝑙+1] only for 𝑙 = −3𝐿− 2, 3𝐿+ 2 since for other values 𝑙 ∈ Z the lengths of
these segments are zero (𝜌𝑑,𝑠,𝑙 = 𝜌𝑑,𝑠,𝑙+1) for all 𝑠 ∈ 𝐼𝑆 even if Σ′

𝑠 = −𝑆, Σ′′
𝑠 = 𝑆.
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We introduce the functions 𝐵̈(𝑑, 𝑠, 𝑠′)𝑓 := 𝑔(𝑥̃𝑑(𝑠), 𝑠
′)𝑓(𝑠′) (𝑓 ∈ 𝐻𝐿, 𝑓 := P̈𝐿𝑓 , (𝑑, 𝑠, 𝑠

′) ∈ Υ)
and approximate the functionals 𝐺̈3(𝑥̃𝑑(𝑠)) for (𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆 by the functionals 𝐺̃3(𝑥̃𝑑(𝑠))
constructed with help of SGQF with 𝛾 nodes:

𝐺̃3(𝑥̃𝑑(𝑠))𝑓 :=
3𝐿+2∑︁

𝑙=−3𝐿−2

ℎ′′𝑠,𝑙 𝐵̃3,𝑙(𝑑, 𝑠)𝑓, (4.12)

where

𝐵̃3,𝑙(𝑑, 𝑠)𝑓 :=

𝛾∑︁
𝑗=1

𝜔𝑗 𝐵̈(𝑑, 𝑠, 𝑠+ 𝛽𝑠,𝑙,𝑗)𝑓,

𝛽𝑠,𝑙,𝑗 := 2−1(𝛽𝑠,𝑙 + 𝛽𝑠,𝑙+1) + ℎ′′𝑠,𝑙𝑧𝑗, ℎ′′𝑠,𝑙 := 2−1(𝛽𝑠,𝑙+1 − 𝛽𝑠,𝑙).

Here 𝑧𝑗 are the roots of the polynomial 𝑃𝛾(𝑧) := (𝑑𝛾/𝑑𝑧𝛾) (𝑧2 − 1)𝛾 on the interval (−1, 1)
[26, Ch. 3, Sect. 5, Item 2] (𝑧1 < 𝑧2 < . . . < 𝑧𝛾). For the weight coefficients 𝜔𝑗 the relations
𝛾∑︀

𝑗=1

𝜔𝑗 = 2 and 𝜔𝑗 > 0 hold [26, Ch. 3, Sect. 5, Item 1].

We prescribe the values 𝛽𝑠,𝑙, 𝑙 ∈ Z, 𝑠 ∈ 𝐼𝑆, so that to satisfy the conditions:

(1)
⋃︀
𝑙∈Z

[𝛽𝑠,𝑙, 𝛽𝑠,𝑙+1] = 𝐼𝑆 ∖ Ξ𝑠; (2)
(︀
{𝑠𝑘 − 𝑠}𝑘∈Z ∩ 𝐼𝑆 ∖ Ξ𝑠

)︀
⊆ {𝛽𝑠,𝑙}𝑙∈Z;

(3) 𝛽𝑠,𝑙 ⩽ 𝛽𝑠,𝑙+1;
(4) 𝛽𝑠,𝑙 (𝑙 ∈ Z) continuously depend on 𝑠 ∈ 𝐼𝑆 if Σ′

𝑠, Σ
′′
𝑠 continuously depend on 𝑠 ∈ 𝐼𝑆. Let

𝑠 ∈ [𝑠𝑘, 𝑠𝑘+1) for some 𝑘 from −𝐿− 1 to 𝐿. Then we let

𝛽𝑠,2𝑙+𝑘 := min
{︀
max {𝑠𝑙+𝑘 − 𝑠,Σ′′

𝑠} , 𝑆
}︀
, 𝛽𝑠,2𝑙+1+𝑘 := min

{︀
max {𝑙ℎ,Σ′′

𝑠} , 𝑆
}︀
, 𝑙 ⩾ 0;

𝛽𝑠,2𝑙+𝑘 := max
{︀
min {𝑠𝑙+𝑘 − 𝑠,Σ′

𝑠} ,−𝑆
}︀
, 𝛽𝑠,2𝑙+1+𝑘 := max

{︀
min {𝑙ℎ,Σ′

𝑠} ,−𝑆
}︀
, 𝑙 < 0.

We note that in formula (4.12) the sum over 𝑙 = −3𝐿− 2, 3𝐿+ 2 can be replaced by that over
𝑙 ∈ Z since all additional terms are zero (ℎ′′𝑠,𝑙 = 0) for all 𝑠 ∈ 𝐼𝑆.

Let 𝐺̂(𝑥) := 𝐺̂1(𝑥) + 𝐺̂2(𝑥) + 𝐺̃3(𝑥). By estimate (2.8) as 𝑗 = 0 the functionals 𝐵̂𝑖(𝑑, 𝑠, 𝜌)
[𝐻𝐿 → C], 𝑖 = 1, 2, is uniformly bounded in (𝑑, 𝑠, 𝜌) ∈ Υ̃′:⃦⃦⃦

𝐵̂𝑖(𝑑, 𝑠, 𝜌)
⃦⃦⃦
⩽ 𝑐2Λ,0𝑐𝑖,0,

while the functionals 𝐵̃3,𝑙(𝑑, 𝑠) [𝐻𝐿 → C] are bounded uniformly in (𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆, 𝑙 ∈ Z:⃦⃦⃦
𝐵̃3,𝑙(𝑑, 𝑠)

⃦⃦⃦
⩽ 2𝑐Λ,0𝑐3,0.

This is why as 𝑥 ∈ Ω𝐷 we have inequalities⃦⃦⃦
𝐺̂𝑖(𝑥)

⃦⃦⃦
⩽ 𝐴𝑖𝑐

2
Λ,0𝑐𝑖,0 𝑖 = 1, 2,

⃦⃦⃦
𝐺̃3(𝑥)

⃦⃦⃦
⩽ 2𝑆𝑐Λ,0𝑐3,0,

on the base of which as well as of the inequality ‖P𝐿‖ ⩽ 1 we obtain the following statement.

Theorem 4.1. Let 𝜕Ω ∈ 𝐶2, 𝛾, 𝐿/2 ∈ N. Then the functionals 𝐺̂(𝑥) [𝐻𝐿 → C], 𝐺̂(𝑥)P𝐿

[𝐶(𝜕Ω) → C] are equibounded uniformly in 𝑥 ∈ Ω𝐷.

By Corollary 2.2 and the inequality 𝑟 ⩾ 𝐷, which holds if (𝑑, 𝑠, 𝑠′) ∈ Υ ∖Υ′, under the
mentioned smoothness of the curve 𝜕Ω and for 𝑗 = 0, 𝑛, 𝑛 ∈ Z+ we can define the constants

𝑐𝑖,𝑗 := sup
(𝑑,𝑠,𝜌)∈ϒ̃′

⃒⃒⃒
𝜕𝑗𝜌𝛿𝑖

⃒⃒⃒
, 𝑖 = 1, 2, 𝜕Ω ∈ 𝐶𝑛+2,

𝑐3,𝑗 := sup
(𝑑,𝑠,𝑠′)∈ϒ∖ϒ′

⃒⃒
𝜕𝑗𝑠′𝑔(𝑥̃𝑑(𝑠), 𝑠

′)
⃒⃒
, 𝜕Ω ∈ 𝐶𝑛+1.
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Employing inequalities (2.7)–(2.9) and ℎ′𝑑,𝑠,𝑙 ⩽ 2−1𝑐ℎℎ (𝑐ℎ := sup
(𝑑,𝑠,𝑠′)∈ϒ′

𝜕𝑠′𝜌
′) and letting 𝑓 ∈

𝐶2(𝜕Ω), 𝑥 = 𝑥̃𝑑(𝑠), (𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆, under the mentioned smoothness of the curve 𝜕Ω we
obtain the estimates⃒⃒⃒

𝐺̂𝑖(𝑥)P𝐿𝑓 − 𝐺̈𝑖(𝑥)P𝐿𝑓
⃒⃒⃒
⩽ 8−1𝐴𝑖𝑐

3
ℎ𝑐𝜔 ess sup

(𝑑,𝑠,𝜌)∈ϒ̃′

⃒⃒⃒
𝜕3𝜌𝐵̈𝑖(𝑑, 𝑠, 𝜌)P𝐿𝑓

⃒⃒⃒
ℎ3

⩽ 𝑐𝑖 ‖𝑓‖𝐶2(𝜕Ω) ℎ
3, 𝜕Ω ∈ 𝐶5, 𝑖 = 1, 2,

(4.13)

⃒⃒⃒
𝐺̃3(𝑥)P𝐿𝑓 − 𝐺̈3(𝑥)P𝐿𝑓

⃒⃒⃒
⩽ 2𝑆 ess sup

(𝑑,𝑠,𝑠′)∈ϒ∖ϒ′

⃒⃒⃒
𝜕2𝛾𝑠′ 𝐵̈(𝑑, 𝑠, 𝑠′)P𝐿𝑓

⃒⃒⃒
ℎ2𝛾

⩽ 𝑐3 ‖𝑓‖𝐶2(𝜕Ω) ℎ
2𝛾 (𝜕Ω ∈ 𝐶2𝛾+1),

(4.14)

where the constants 𝑐𝑖, 𝑖 = 1, 2, 𝑐3 are defined by the identities

𝑐𝑖 := 8−1𝐴𝑖𝑐
3
ℎ𝑐𝜔

[︀
𝑐𝑖,3𝑐Λ,0 + (3𝑐𝑖,2𝑐0,0 + 3𝑐𝑖,1𝑐0,1 + 𝑐𝑖,0𝑐0,2) 𝑐

′
Λ,1 + 3

(︀
𝑐𝑖,1𝑐

2
0,0 + 𝑐𝑖,0𝑐0,1𝑐0,0

)︀
𝑐′Λ,2

]︀
,

𝑐3 := 2𝑆 (𝛾!)4 [(2𝛾)!]−3 (2𝛾 + 1)−1
[︀
𝑐3,2𝛾 𝑐Λ,0 + 2𝛾𝑐3,2𝛾−1𝑐

′
Λ,1 + 𝛾(2𝛾 − 1)𝑐3,2𝛾−2𝑐

′
Λ,2

]︀
.

Here ess sup is the essential supremum [20, Ch. III, Sect. 1, Subsect. 11]. While obtaining
estimate (4.14), we have employed an estimate for the remainder in SGQF [26, Ch. 3, Sect. 5,
Item 2]. By estimates (4.10), (4.13), (4.14) we arrive at the statement.

Theorem 4.2. Let 𝜕Ω ∈ 𝐶2𝛾+1, 𝛾 ⩾ 2, 𝛾, 𝐿/2 ∈ N. Then the functionals 𝐺̂(𝑥)P𝐿

[𝐶3(𝜕Ω) → C] converge as 𝐿 → ∞ in the uniform operator topology to corresponding func-
tionals 𝐺(𝑥) [𝐶3(𝜕Ω) → C] uniformly in 𝑥 ∈ Ω𝐷 with the approximation order 𝑂(𝐿−3).

For definitions and basic information concerning the convergence of the operators in various
topologies we refer to [20, Ch. VI, Sect. 1, Subsect. 1–3].
By estimates (4.8), (4.10), (4.13), (4.14), Theorem 4.1 and the density of the set 𝐶3(𝜕Ω) in

the space 𝐶(𝜕Ω) we also obtain the following statement.

Corollary 4.1. Let 𝜕Ω ∈ 𝐶2𝛾+1, 𝛾 ⩾ 2, 𝛾, 𝐿/2 ∈ N. Then, as 𝐿 → ∞, the functionals

𝐺̂(𝑥)P𝐿 [𝐶(𝜕Ω → C] converge to corresponding functionals 𝐺(𝑥) [𝐶(𝜕Ω → C] in the strong
operator topology uniformly in 𝑥 ∈ Ω𝐷.

We observe that in view of formula (2.3) the integrals in 𝜌 in expressions for 𝐺̂𝑖(𝑥), 𝑖 = 1, 2,
can be calculated analytically.

Theorem 4.3. Let 𝜕Ω ∈ 𝐶4, 𝐿/2 ∈ N, 𝑓 ∈ 𝐻𝐿, 𝑓 := P̈𝐿𝑓 . Then the functions 𝐺̂(𝑥)𝑓 is

continuous on the set Ω𝐷 and it can be extended to a continuous function on the closure Ω±
𝐷 by

means of the corresponding limits converging uniformly in 𝑠 ∈ 𝐼𝑆:

lim
𝑑→±0

𝐺̂(𝑥̃𝑑(𝑠))𝑓 = ±2−1𝑓(𝑠) + 𝐺̂(𝑥̃(𝑠))𝑓. (4.15)

Proof. Since Σ′
𝑠, Σ

′′
𝑠 are continuous in 𝑠 ∈ 𝐼𝑆 (see Lemma 2.1), then by definition, all 𝛼𝑠,𝑙,

𝑙 ∈ Z, depend continuously on 𝑠 ∈ 𝐼𝑆, while 𝛼𝑠,𝑙 ⩽ 𝛼𝑠,𝑙+1. Therefore, by Theorem 2.2, the
values 𝜌𝑑,𝑠,𝑙, 𝑙 ∈ Z, depend continuously on (𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆 and 𝜌𝑑,𝑠,𝑙 ⩽ 𝜌𝑑,𝑠,𝑙+1. We also note

that 𝑓 ∈ 𝐶(𝜕Ω), and since
(︀
{𝑠𝑘 − 𝑠}𝑘∈Z ∩ Ξ𝑠

)︀
⊆ {𝛼𝑠,𝑙}𝑙∈Z, then on each subset selected from

the set
Υ𝑙 :=

{︀
(𝑠, 𝜎) : 𝑠 ∈ 𝐼𝑆, 𝜎 ∈ [𝛼𝑠,𝑙, 𝛼𝑠,𝑙+1]

}︀
, 𝑙 ∈ Z

by the inequality 𝛼𝑠,𝑙 < 𝛼𝑠,𝑙+1, there exist continuous derivatives 𝜕𝜎𝑓
(𝑗)(𝑠+ 𝜎), 𝑗 = 1, 2, which

for 𝛼𝑠,𝑙 = 𝛼𝑠,𝑙+1 can be extended by continuity to the entire set Υ𝑙. Therefore, by Corollary 2.2

the functions 𝐵̈𝑖(𝑑, 𝑠, 𝜌)𝑓 (𝑖 = 1, 2) are continuous on the set Υ̃′, and on each subset selected
from the set

Υ̃′
𝑙 :=

{︀
(𝑑, 𝑠, 𝜌) : 𝑑 ∈ 𝐼𝐷, 𝑠 ∈ 𝐼𝑆, 𝜌 ∈ [𝜌𝑑,𝑠,𝑙, 𝜌𝑑,𝑠,𝑙+1]

}︀
, 𝑙 ∈ Z,
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by the inequality 𝜌𝑑,𝑠,𝑙 < 𝜌𝑑,𝑠,𝑙+1, there exist continuous derivatives 𝜕𝑗𝜌𝐵̈𝑖(𝑑, 𝑠, 𝜌)𝑓 , 𝑗 = 1, 2,

which for 𝜌𝑑,𝑠,𝑙 = 𝜌𝑑,𝑠,𝑙+1 can be extended by continuity to the entire set Υ̃′
𝑙. Therefore, by

Lemma 2.2 and the identities
⋃︀
𝑙∈Z

Υ̃′
𝑙 = Υ̃′, 𝐵̂𝑖(𝑑, 𝑠, 𝜌𝑑,𝑠,𝑙)𝑓 = 𝐵̈𝑖(𝑑, 𝑠, 𝜌𝑑,𝑠,𝑙)𝑓 (the values 𝜌𝑑,𝑠,𝑙 are

collocation points) the functions 𝐵̂𝑖(𝑑, 𝑠, 𝜌)𝑓 , 𝑖 = 1, 2, are continuous on the set Υ̃′. In view
of the fact that the value 𝜌 = 0 is a collocation point (𝜌𝑑,𝑠,𝑘+1 = 0 if 𝑠 ∈ [𝑠𝑘, 𝑠𝑘+1)), for all
(𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆 we have the following identities:

𝐵̂2(𝑑, 𝑠, 0)𝑓 = 𝐵̈2(𝑑, 𝑠, 0)𝑓 = 𝛿2(𝑑, 𝑠, 0)𝑓(𝑠+ 𝜎𝑑,𝑠(0)) = 𝑓(𝑠). (4.16)

Similarly to the functions 𝐺𝑖(𝑥)𝑓 , 𝑓 ∈ 𝐶(𝜕Ω), 𝑖 = 1, 2, we conclude that the functions 𝐺̂1(𝑥)𝑓 ,

𝐺̂2(𝑥)𝑓 , 𝑓 ∈ 𝐻𝐿, are continuous on the sets Ω𝐷, Ω𝐷, respectively, and by identities (4.16) the

function 𝐺̂2(𝑥)𝑓 can be extended to a continuous one on the closures Ω±
𝐷 by means of limits

convergent uniformly in 𝑠 ∈ 𝐼𝑆:

lim
𝑑→±0

𝐺̂2(𝑥̃𝑑(𝑠))𝑓 = ±2−1𝐵̂2(𝑑, 𝑠, 0)𝑓 = ±2−1𝑓(𝑠), (4.17)

cf. limits (4.4).
Since Σ′

𝑠, Σ
′′
𝑠 depend continuously on 𝑠 ∈ 𝐼𝑆, then by definition all 𝛽𝑠,𝑙 (𝑙 ∈ Z) depend

continuously on 𝑠 ∈ 𝐼𝑆, while 𝛽𝑠,𝑙 ⩽ 𝛽𝑠,𝑙+1. Therefore, the nodes of SGQF 𝑥̃(𝑠 + 𝛽𝑠,𝑙,𝑗), 𝑙 ∈ Z,
𝑗 = 1, 𝛾, continuously depend on 𝑠 ∈ 𝐼𝑆 and, moreover, they are separated from the observation
point 𝑥̃𝑑(𝑠) by a distance at least 𝐷. Hence, the functions 𝐵̃3,𝑙(𝑑, 𝑠)𝑓 , 𝑙 ∈ Z, are continuous on
the set 𝐼𝐷 × 𝐼𝑆, and the function 𝐺̃3(𝑥)𝑓 , in its turn, is continuous on the set Ω𝐷.

Since, in accordance with definitions (4.11) and (4.12) the identities 𝐺̂2(𝑥̃(𝑠)) = 0 and

𝐺̂(𝑥̃(𝑠)) = 𝐺̂1(𝑥̃(𝑠)) + 𝐺̃3(𝑥̃(𝑠)), 𝑠 ∈ 𝐼𝑆, hold, identities (4.17) imply identities (4.15) are
valid. The proof is complete

5. Approximate solutions to boundary integral equations

and boundary value problems

We employ semi-analytic approximations of DLP obtained in the previous section for ap-
proximate solving BIE (2.4). In the space 𝐻𝐿 we define the operators Ĝ: (Ĝ𝑓)𝑙 := 𝐺̂(𝑥̃(𝑠𝑙))𝑓 ,

𝑓 ∈ 𝐻𝐿, 𝑙 = −𝐿− 1, 𝐿, as well as the operators Ĝ± := ±2−1 + Ĝ. By Theorem 4.2, the
operators Ĝ± are grid approximations of the operators of BIE (2.4) on the grid with nodes

𝑥̃(𝑠𝑙). Similarly to the operators Ĝ, in the space 𝐻𝐿 we define the operators G̈, G̈𝑖, 𝑖 = 1, 3,

Ĝ, Ĝ1, G̃3. Then G̈ = G̈1 + G̈3, Ĝ = Ĝ1 + G̃3.

Theorem 5.1. Let 𝜕Ω ∈ 𝐶2𝛾+1, 𝛾 ⩾ 2, 𝛾, 𝐿/2 ∈ N. Then the operators Ĝ± [𝐻𝐿] are

invertible for sufficiently large 𝐿 and the inverse operators Ĝ−1
± [𝐻𝐿] are equibounded.

Proof. Let 𝑓 ∈ 𝐻𝐿. By a bounded invertibility of the operators G± [𝐶(𝜕Ω)] (see Corollary 3.1)
we have the estimates⃦⃦⃦

G± P̈𝐿𝑓
⃦⃦⃦
𝐶(𝜕Ω)

⩾ 𝑐−1

⃦⃦⃦
P̈𝐿𝑓

⃦⃦⃦
𝐶(𝜕Ω)

⩾ 𝑐−1 ‖𝑓‖𝐻𝐿
, 𝑐−1 :=

⃦⃦
G−1

±
⃦⃦−1

. (5.1)

We note that 𝑔 = −𝑎0(𝜌20)𝑏̂. By Corollary 2.1 the derivatives 𝜕𝑠𝑏̂ and 𝜕𝑠𝜌0 are continuous on
the set Θ. This is in view of formula (2.5) the derivative 𝜕𝑠𝑎0(𝜌

2
0) is continuous on the set Θ

and in view of estimate (2.8) (for 𝑗 = 0) we have the inequality

max
−𝐿−1⩽𝑙⩽𝐿

sup
𝑠∈[𝑠𝑙,𝑠𝑙+1]

⃒⃒⃒
G̈(𝑥̃(𝑠𝑙))𝑓 −G(𝑥̃(𝑠))P̈𝐿𝑓

⃒⃒⃒
⩽ 𝑐′𝑐Λ,0 ‖𝑓‖𝐻𝐿

ℎ, (5.2)

where 𝑐′ := 2𝑆 sup
(𝑠,𝑠′)∈Θ

|𝜕𝑠𝑔(𝑠, 𝑠′)|.
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Let ℎ ⩽ 1. Employing estimates (2.8) for 𝑗 = 1, 2 instead of (2.9), similarly to inequalities
(4.13), (4.14), under the condition ℎ ⩽ 1 we obtain the following inequalities:⃦⃦⃦

Ĝ1𝑓 − G̈1𝑓
⃦⃦⃦
𝐻𝐿

⩽ 𝑐′1 ‖𝑓‖𝐻𝐿
ℎ,

⃦⃦⃦
G̃3𝑓 − G̈3𝑓

⃦⃦⃦
𝐻𝐿

⩽ 𝑐′3 ‖𝑓‖𝐻𝐿
ℎ, (5.3)

where

𝑐′1 := 𝐴1𝑐
3
ℎ𝑐𝜔

[︀
𝑐1,3𝑐Λ,0 + (3𝑐1,2𝑐0,0 + 3𝑐1,1𝑐0,1 + 𝑐1,0𝑐0,2)𝑐Λ,1 + 3(𝑐1,1𝑐

2
0,0 + 𝑐1,0𝑐0,1𝑐0,0)𝑐Λ,2

]︀
,

𝑐′3 := 2𝑆(𝛾!)4 [(2𝛾)!]−3 (2𝛾 + 1)−1 [𝑐3,2𝛾𝑐Λ,0 + 2𝛾𝑐3,2𝛾−1𝑐Λ,1 + 𝛾 (2𝛾 − 1)𝑐3,2𝛾−2𝑐Λ,2] .

Let ℎ ⩽ 3−1𝑐−1/max{𝑐′, 𝑐′1 + 𝑐′3}, and ℎ ⩽ 1. Then by inequalities (5.1)–(5.3) for all 𝑓 ∈ 𝐻𝐿

we have the estimates
⃦⃦⃦
Ĝ±𝑓

⃦⃦⃦
𝐻𝐿

⩾ 3−1𝑐−1 ‖𝑓‖𝐻𝐿
, which mean that the operators Ĝ± [𝐻𝐿]

are invertible and the inverse operators Ĝ−1
± are equibounded:

⃦⃦⃦
Ĝ−1

±

⃦⃦⃦
⩽ 3/𝑐−1. The proof is

complete.

Definition 5.1. We say that sequences of bounded operators {A𝑛 [𝑋 → 𝑌 ]}∞𝑛=1 and
{B𝑛 [𝑋 → 𝑌 ]}∞𝑛=1 are approximately equivalent in the uniform operator topology with the ap-
proximation order 𝑂(𝑛−𝑘), 𝑘 ∈ N, if there exists a constant 𝑐 > 0 independent of 𝑛 such that
for all 𝑛 ∈ N, 𝑓 ∈ 𝑋, the inequality holds: ‖A𝑛𝑓 −B𝑛𝑓‖𝑌 ⩽ 𝑐 𝑛−𝑘 ‖𝑓‖𝑋 .

By Theorems 4.2, 5.1, Corollary 3.1, estimates (4.9) and ‖P𝐿‖ ⩽ 1, ‖P̈𝐿‖ ⩽ 𝑐Λ,0 we obtain
the following statements.

Corollary 5.1. Let 𝜕Ω ∈ 𝐶2𝛾+1, 𝛾 ⩾ 2, 𝛾, 𝐿/2 ∈ N. Then the sequence of the operators

{Ĝ−1
± P𝐿 [𝐶

3(𝜕Ω) → 𝐻𝐿]}∞𝐿/2=1 and {P𝐿G
−1
± [𝐶3(𝜕Ω) → 𝐻𝐿]}∞𝐿/2=1 are approximately equiva-

lent in the uniform operator topology with the approximation order 𝑂(𝐿−3). As 𝐿 → ∞, the

operators P̈𝐿Ĝ
−1
± P𝐿 [𝐶3(𝜕Ω) → 𝐶(𝜕Ω)] converge in the uniform operator topology to corre-

sponding operators G−1
± [𝐶3(𝜕Ω) → 𝐶(𝜕Ω)] with the approximation order 𝑂(𝐿−3). As 𝐿→ ∞,

the operators P̈𝐿Ĝ
−1
± P𝐿 [𝐶(𝜕Ω)] converge to corresponding operators G−1

± [𝐶(𝜕Ω)] in the strong
operator topology.

Corollary 5.1 allows us to obtain grid and approximate solutions to BIE (2.4): 𝑣± :=

Ĝ−1
± P𝐿𝑤 ∈ 𝐻𝐿, 𝑣± := P̈𝐿Ĝ

−1
± P𝐿𝑤 ∈ 𝐶(𝜕Ω), respectively.

We define functionals 𝑅̂±(𝑥) := 𝐺̂(𝑥)Ĝ−1
± , 𝑥 ∈ Ω±

𝐷, as 𝑥 ∈ Ω±
𝐷 being approximations for the

resolvent functionals 𝑅±(𝑥) of problems (2.1), while as 𝑥 = 𝑥̃(𝑠), 𝑠 ∈ 𝐼𝑆, they are approxima-
tions of direct values of the functionals 𝑅±(𝑥) on the boundary 𝜕Ω. In view of Theorems 4.1,
4.2, 5.1 and Corollaries 3.1, 5.1 we get the following corollary.

Corollary 5.2. Let 𝜕Ω ∈ 𝐶2𝛾+1, 𝛾 ⩾ 2, 𝛾, 𝐿/2 ∈ N. Then the functionals 𝑅̂±(𝑥) [𝐻𝐿 → C],

𝑅̂±(𝑥)P𝐿 [𝐶(𝜕Ω) → C] are equibounded uniformly in 𝑥 ∈ Ω±
𝐷. As 𝐿 → ∞, the functionals

𝑅̂±(𝑥)P𝐿 [𝐶3(𝜕Ω) → C] converge in the uniform operator topology to corresponding functionals

𝑅±(𝑥) [𝐶
3(𝜕Ω) → C] uniformly in 𝑥 ∈ Ω±

𝐷 with the approximation order 𝑂(𝐿−3). As 𝐿 → ∞,

the functionals 𝑅̂±(𝑥)P𝐿 [𝐶(𝜕Ω) → C] converge in the strong operator topology to corresponding

functionals 𝑅±(𝑥) [𝐶(𝜕Ω) → C] uniformly in 𝑥 ∈ Ω±
𝐷.

We define functions 𝑢̂±(𝑥) := 𝑅̂±(𝑥)P𝐿𝑤 (𝑥 ∈ Ω±
𝐷) as 𝑥 ∈ Ω±

𝐷 being approximations of
solutions 𝑢±(𝑥) of problem (2.1), while as 𝑥 = 𝑥̃(𝑠), 𝑠 ∈ 𝐼𝑆, they are approximations of direct
values of the functions 𝑢±(𝑥) on the boundary 𝜕Ω. On the base of Corollary 5.2 we formulate
the main result of the present paper.

Corollary 5.3. Let 𝜕Ω ∈ 𝐶2𝛾+1, 𝛾 ⩾ 2, 𝛾, 𝐿/2 ∈ N, 𝑐 > 0. Then as 𝐿 → ∞ the functions

𝑢̂±(𝑥) converge with a cubic rate to corresponding functions 𝑢±(𝑥) (2.1) uniformly in 𝑥 ∈ Ω±
𝐷

and boundary functions 𝑤 ∈ 𝐶3(𝜕Ω) obeying the condition ‖𝑤‖𝐶3(𝜕Ω) ⩽ 𝑐. Moreover, as 𝐿 →
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∞, 𝜀 → +0, the functions 𝑅̂±(𝑥)P𝐿𝑤𝜀 converge uniformly in 𝑥 ∈ Ω±
𝐷 to the function 𝑢±(𝑥)

once ‖𝑤𝜀 − 𝑤‖𝐶(𝜕Ω) ⩽ 𝜀, 𝑤,𝑤𝜀 ∈ 𝐶(𝜕Ω).

In view of identities 𝑢̂±(𝑥) = 𝐺̂(𝑥)𝑣±, P̈𝐿𝑣± = 𝑣± and Theorem 4.3, Corollaries 5.1, 5.3 and
formula (4.6) we obtain the following statement.

Corollary 5.4. Let 𝜕Ω ∈ 𝐶2𝛾+1, 𝛾 ⩾ 2, 𝛾, 𝐿/2 ∈ N, 𝑐 > 0. Then under the condition
𝑤 ∈ 𝐶(𝜕Ω) the functions 𝑢̂±(𝑥) are continuous on the corresponding sets Ω±

𝐷 and they can be

extended to continuous functions on the closures Ω±
𝐷 by means of limits convergent uniformly

in 𝑠 ∈ 𝐼𝑆:

𝑢̂±(𝑥̃±0(𝑠)) := lim
𝑑→±0

𝑢̂±(𝑥̃𝑑(𝑠)) = ±2−1𝑣±(𝑠) + 𝑢̂±(𝑥̃(𝑠)).

As 𝐿 → ∞, the functions 𝑢̂±(𝑥̃±0(𝑠)) converge to the corresponding boundary functions 𝑤(𝑠)
with a cubic rate uniformly in 𝑠 ∈ 𝐼𝑆 and functions 𝑤 ∈ 𝐶3(𝜕Ω) obeying the condition

‖𝑤‖𝐶3(𝜕Ω) ⩽ 𝑐. Moreover, as 𝐿 → ∞, 𝜀 → +0, the functions 𝑅̂±(𝑥̃±0(𝑠))P𝐿𝑤𝜀 converge to
the functions 𝑤(𝑠) uniformly in 𝑠 ∈ 𝐼𝑆 if ‖𝑤𝜀 − 𝑤‖𝐶(𝜕Ω) ⩽ 𝜀, 𝑤,𝑤𝜀 ∈ 𝐶(𝜕Ω).

6. Absence of uniform convergence of approximations for

double layer potential while using standard quadrature formulas

In this section we examine the reasons for the occurrence of the boundary layer effect in the
case of DLP. As it has been noted in the Introduction, SGQFs are traditionally used to calculate
the DLP in the domain Ω. Computational experiments show that the rate of convergence of
approximate solutions to problems (2.1) decreases significantly in the vicinity of the boundary
𝜕Ω. We relate this phenomenon with the lack of uniform convergence of such approximations
for DLP in the vicinity of the boundary of the domain.
The absence of uniform convergence of approximations of the functionals 𝐺̈(𝑥)P𝐿 in the

vicinity of the boundary is quite obvious in cases when the point 𝑥̃(𝑠), the projection of the
observation point 𝑥 = 𝑥̃𝑑(𝑠) onto the curve 𝜕Ω, can coincide with one of the SGQF nodes for

arbitrarily large values of 𝐿. For example, consider the approximations 𝐺̆(𝑥) of the functionals
𝐺̈(𝑥), 𝑥 = 𝑥̃𝑑(𝑠), 𝑠 ∈ 𝐼𝑆, 𝑑 ∈ 𝐼𝐷, made exclusively on the basis of SGQF:

𝐺̆(𝑥)𝑓 := 2−1ℎ
𝐿∑︁

𝑙=−𝐿−1

𝛾∑︁
𝑗=1

𝜔𝑗 𝐵̈(𝑑, 𝑠, 𝑠𝑙,𝑗)𝑓, 𝑠𝑙,𝑗 := 2−1(𝑠𝑙 + 𝑠𝑙+1) + 2−1ℎ𝑧𝑗, 𝑓 ∈ 𝐻𝐿.

By identities (2.5), (2.6) and 𝜙6(𝑠, 𝑠) = −1 we have 𝑔(𝑥̃𝑑(𝑠), 𝑠) ∼ 𝑑−1 → ∞ as 𝑑 → 0 for
fixed 𝑠 ∈ 𝐼𝑆. This is why the absolute values of 𝐵̈(𝑑, 𝑠𝑙,𝑗, 𝑠𝑙,𝑗)𝑓 grow unboundedly as 𝑑 → 0,

𝑓(𝑠𝑙,𝑗) ̸= 0 (𝑓 := P̈𝐿𝑓) for fixed 𝐿. Since 𝐵̈(𝑑, 𝑠𝑙,𝑗, 𝑠
′)𝑓 are continuous in 𝑑 ∈ 𝐼𝐷 for fixed

𝑠′ ̸= 𝑠𝑙,𝑗, the absolute values of 𝐺̆(𝑥̃𝑑(𝑠𝑙,𝑗))𝑓 also grow unboundedly as 𝑑 → 0, 𝑓(𝑠𝑙,𝑗) ̸= 0 for
fixed 𝐿. Let 𝑓 ∈ 𝐶3(𝜕Ω) and 𝑓(𝑠) ̸= 0 for some 𝑠 ∈ 𝐼𝑆. Then according to estimate (4.9)

for sufficiently large 𝐿 there exists 𝑠𝑙,𝑗 depending on 𝐿 such that 𝑓(𝑠𝑙,𝑗) ̸= 0 (𝑓 := P̈𝐿P𝐿𝑓).

Therefore, a uniform in (𝑑, 𝑠) ∈ 𝐼𝐷 × 𝐼𝑆 convergence of approximating functions 𝐺̆ (𝑥̃𝑑(𝑠))P𝐿𝑓
to exact function 𝐺(𝑥̃𝑑(𝑠))𝑓 as 𝐿 → ∞ is impossible since exact functions 𝐺(𝑥̃𝑑(𝑠))𝑓 can be

extended to continuous ones on the sets Ω±
𝐷 by means of identities (4.5).

We consider approximations 𝐺̃(𝑥̃𝑑(𝑠)) of the functionals 𝐺̈(𝑥̃𝑑(𝑠)) made exclusively on the
base of SGQF in such a way that the point 𝑥̃(𝑠) cannot coincide with any of the nodes of SGQF.
In order to do this, we introduce approximations of the functionals 𝐺̈1−2(𝑥) := 𝐺1−2(𝑥)P̈𝐿

[𝐻𝐿 → C], where 𝐺1−2(𝑥) := 𝐺1(𝑥) +𝐺2(𝑥), by using SGQF 𝛾′ nodes:

𝐺̃1−2(𝑥)𝑓 :=
3𝐿+2∑︁

𝑙=−3𝐿−2

ℎ𝑠,𝑙

𝛾′∑︁
𝑗=1

𝜔𝑗 𝐵̈
′(𝑑, 𝑠, 𝑠+ 𝛼𝑠,𝑙,𝑗)𝑓.
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Here

𝑥 = 𝑥̃𝑑(𝑠), 𝑑 ∈ 𝐼𝐷, 𝑠 ∈ 𝐼𝑆, 𝑓 ∈ 𝐻𝐿, 𝛼𝑠,𝑙,𝑗 := 𝛼̄𝑠,𝑙 + ℎ𝑠,𝑙𝑧𝑗,

𝛼̄𝑠,𝑙 := 2−1 (𝛼𝑠,𝑙 + 𝛼𝑠,𝑙+1) , ℎ𝑠,𝑙 := 2−1 (𝛼𝑠,𝑙+1 − 𝛼𝑠,𝑙) ;

𝐵̈′(𝑑, 𝑠, 𝑠′) := 𝐵̈(𝑑, 𝑠, 𝑠′), if 𝑠 ̸= 𝑠′, 𝐵̈′(𝑑, 𝑠, 𝑠) := 0.

We observe that the sum over 𝑙 = −3𝐿− 2, 3𝐿+ 2 can be replaced by sum over 𝑙 ∈ Z since all
additional terms vanish (ℎ𝑠,𝑙 = 0) for all 𝑠 ∈ 𝐼𝑆 even if Σ′

𝑠 = −𝑆, Σ′′
𝑠 = 𝑆.

We let 𝐺̃(𝑥) := 𝐺̃1−2(𝑥) + 𝐺̃3(𝑥). The approximations 𝐺̃(𝑥) differ from the approximations

𝐺̂(𝑥) only by the fact that for calculating the functionals 𝐺̈1−2(𝑥), instead of exact integration
in the variable 𝜌, SGQF are used.

Theorem 6.1. Let 𝜕Ω ∈ 𝐶2. Then the function 𝐺̃(𝑥̃𝑑(𝑠))𝑓 is continuous on the set 𝑑 ∈ 𝐼𝐷
for all fixed 𝑠 ∈ 𝐼𝑆, 𝐿/2 ∈ N, 𝑓 ∈ 𝐻𝐿.

Proof. We fix 𝑠 ∈ [𝑠𝑘, 𝑠𝑘+1) (−𝐿 − 1 ⩽ 𝑘 ⩽ 𝐿), 𝐿/2 ∈ N, 𝑓 ∈ 𝐻𝐿. Since SGQFs are fomrulas
of open kind, see [26, Ch. 3, Sect. 5, Item 1], then 𝑧𝑗 ̸= ±1, 𝑗 = 1, 𝛾, and the point 𝑥̃(𝑠)
coincides with none of the SGQF nodes 𝑥̃(𝑠+𝛼𝑠,𝑙,𝑗) except for 𝑥̃(𝑠+𝛼𝑠,𝑘,𝑗) if ℎ𝑠,𝑘 = 0, but then

𝐵̈′(𝑑, 𝑠, 𝑠+ 𝛼𝑠,𝑘,𝑗)𝑓 := 0 as 𝑑 ∈ 𝐼𝐷. The derivative 𝑑𝜉𝑠(𝜎)/𝑑𝜎 is positive and continuous on the
set Ξ𝑠, see Lemma 2.1, and 𝛼𝑠,𝑙,𝑗 ∈ Ξ𝑠 . Therefore, we can determine the constant 𝑐𝑠 > 0, which
the smallest of the distances from the points 𝑥̃𝑑(𝑠) (𝑑 ∈ 𝐼𝐷) to the nodes of SGQF 𝑥̃(𝑠+ 𝛼𝑠,𝑙,𝑗)
(𝑙 ̸= 𝑘 if ℎ𝑠,𝑘 = 0). Namely, taking into consideration that 𝛼𝑠,𝑙,1 < 𝛼𝑠,𝑙,2 < . . . < 𝛼𝑠,𝑙,𝛾, the
following formulas hold:

𝑐𝑠 :=

{︃
min {−𝜉𝑠(𝛼𝑠,𝑘,𝛾), 𝜉𝑠(𝛼𝑠,𝑘+1,1)}

(︀
𝑠 ∈ (𝑠𝑘, 𝑠𝑘+1)

)︀
,

min {−𝜉𝑠(𝛼𝑠,𝑘−1,𝛾), 𝜉𝑠(𝛼𝑠,𝑘+1,1)} (𝑠 = 𝑠𝑘).

This is why all functions 𝐵̈(𝑑, 𝑠, 𝑠 + 𝛼𝑠,𝑙,𝑗)𝑓 , 𝑙 ∈ Z, 𝑗 = 1, 𝛾, and as a consequence, the

function, 𝐺̃1−2(𝑥̃𝑑(𝑠))𝑓 are continuous in 𝑑 ∈ 𝐼𝐷. It was shown in Theorem 4.3 that the
function 𝐺̃3(𝑥̃𝑑(𝑠))𝑓 is also continuous on the set 𝐼𝐷. The proof is complete.

Under the assumption 𝜕Ω ∈ 𝐶𝑛+1, for each closed domain Ω′ ⊂ Ω𝐷 we can define the
constants

𝑐1−2,𝑗 := sup
𝑥∈Ω′, 𝑠′∈𝐼𝑆

⃒⃒
𝜕𝑗𝑠′𝑔(𝑥, 𝑠

′)
⃒⃒
, 𝑗 = 0, 𝑛

and to make sure that as 𝑥 ∈ Ω′, there hold the estimate⃦⃦⃦
𝐺̃(𝑥)

⃦⃦⃦
⩽ 2𝑆𝑐Λ,0 (𝑐1−2,0 + 𝑐3,0)

and ⃒⃒⃒
𝐺̃(𝑥)P𝐿𝑓 − 𝐺̈(𝑥)P𝐿𝑓

⃒⃒⃒
⩽ (𝑐1−2 + 𝑐3) ‖𝑓‖𝐶2(𝜕Ω) ℎ

2𝛾′
(𝜕Ω ∈ 𝐶2𝛾′+1),

where

𝑐1−2 := 2𝑆 (𝛾′!)
4 ⧸︀[︀

(2𝛾′)!
]︀3⧸︀

(2𝛾′ + 1)
[︀
𝑐1−2,2𝛾′ 𝑐Λ,0+2𝛾′𝑐1−2,2𝛾′−1𝑐

′
Λ,1+ 𝛾′(2𝛾′− 1)𝑐1−2,2𝛾′−2𝑐

′
Λ,2

]︀
.

Similarly to Theorems 4.1, 4.2 and Corollary 4.1, we obtain the following statement.

Theorem 6.2. Let 𝜕Ω ∈ 𝐶2𝛾+1 ∩𝐶2𝛾′+1, 𝛾, 𝛾′ ⩾ 2, 𝛾, 𝛾′, 𝐿/2 ∈ N and Ω′ be a closed subset
of the domain Ω𝐷. Then the functionals 𝐺̃(𝑥) [𝐻𝐿 → C], 𝐺̃(𝑥)P𝐿 [𝐶(𝜕Ω) → C] are equibounded
uniformly in 𝑥 ∈ Ω′. As 𝐿→ ∞, the functionals 𝐺̃(𝑥)P𝐿 [𝐶3(𝜕Ω) → C] converge in the uniform
operator topology to the corresponding functionals 𝐺(𝑥) [𝐶3(𝜕Ω) → C] uniformly in 𝑥 ∈ Ω′ with
the approximation order 𝑂(𝐿−3). As 𝐿 → ∞, the functionals 𝐺̃(𝑥)P𝐿 [𝐶(𝜕Ω) → C] converge
in the strong operator topology to the corresponding functionals 𝐺(𝑥) [𝐶(𝜕Ω) → C] uniformly
in 𝑥 ∈ Ω′.
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The properties of approximations 𝐺̃(𝑥) on the boundary 𝜕Ω were studied in the following
theorem.

Theorem 6.3. Let 𝜕Ω ∈ 𝐶2𝛾+1, 𝛾 ⩾ 2, 𝛾, 𝛾′, 𝐿/2 ∈ N. Then the functionals 𝐺̃(𝑥) [𝐻𝐿 →
C], 𝐺̃(𝑥)P𝐿 [𝐶(𝜕Ω) → C] are equibounded uniformly in 𝑥 ∈ 𝜕Ω. As 𝐿 → ∞, the functionals
𝐺̃(𝑥)P𝐿 [𝐶3(𝜕Ω) → C] converge in the uniform operator topology to corresponding functionals
𝐺(𝑥) [𝐶3(𝜕Ω) → C] uniformly in 𝑥 ∈ 𝜕Ω with the approximation order 𝑂(𝐿−2 ln𝐿−1). As
𝐿 → ∞, the functionals 𝐺̃(𝑥)P𝐿 [𝐶(𝜕Ω) → C] converge to the corresponding functionals 𝐺(𝑥)
[𝐶(𝜕Ω) → C] in the strong operator topology uniformly in 𝑥 ∈ 𝜕Ω.

Proof. We have the identity 𝑔 = −𝑎̃0𝑏̃, where

𝑔(𝑠, 𝜎) := 𝑔(𝑠, 𝑠+ 𝜎), 𝑎̃0(𝑠, 𝜎) := 𝑎0(𝜌
2
0),

𝜌0(𝑠, 𝜎) := 𝜌0(𝑠, 𝑠+ 𝜎), 𝑏̃(𝑠, 𝜎) := 𝑏̂(𝑠, 𝑠+ 𝜎).

By Corollary 2.1, the derivatives 𝜕𝑗𝜎 𝑏̃, 𝜕
𝑗
𝜎𝜌0, 𝑗 = 0, 2, are continuous on the set 𝐼𝑆 × 𝐼𝑆. In view

of formula (2.5), the functions 𝑎̃0, 𝜕𝜎𝑎̃0 are continuous on the set 𝐼𝑆 × 𝐼𝑆, while the function
𝜕2𝜎𝑎̃0 can be represented as the sum 𝑎̃1 ln𝜎

2 + 𝑎̃2, where the functions 𝑎̃𝑖(𝑠, 𝜎), 𝑖 = 1, 2, are
continuous on 𝐼𝑆 × 𝐼𝑆. Therefore, the functions 𝑔0 := 𝑔, 𝑔1 := 𝜕𝜎𝑔0 are continuous on the set
𝐼𝑆 × 𝐼𝑆, while the function 𝜕

2
𝜎𝑔 can be represented as the sum 𝑔2 ln𝜎

2+ 𝑔3, where the functions
𝑔𝑗(𝑠, 𝜎), 𝑗 = 2, 3, are continuous on 𝐼𝑆 × 𝐼𝑆. We define the constants: 𝑐1,𝑗 := sup

(𝑠,𝜎)∈𝐼𝑆×𝐼𝑆

|𝑔𝑗|,

𝑗 = 0, 3. By the estimate
⃦⃦⃦
𝐺̃(𝑥̃(𝑠))

⃦⃦⃦
⩽ 2𝑆𝑐Λ,0 (𝑐1,0 + 𝑐3,0), which is true for each 𝑠 ∈ 𝐼𝑆, and by

the inequality ‖P𝐿‖ ⩽ 1 the functionals 𝐺̃(𝑥) [𝐻𝐿 → C], 𝐺̃(𝑥)P𝐿 [𝐶(𝜕Ω) → C] are bounded
uniformly in 𝑥 ∈ 𝜕Ω.
Let 𝑥 = 𝑥̃(𝑠) (𝑠 ∈ 𝐼𝑆), 𝑓 ∈ 𝐶3(𝜕Ω), 𝑓 := P̈𝐿P𝐿𝑓 , ℎ < min{𝑆−1, 𝑒−1}. Employing the Taylor

formula with a remainder in the integral form [27, Sect. 318] and the formulas [26, Ch. 3,
Sect. 5, Subsect. 1]

𝛾′∑︁
𝑗=1

𝜔𝑗 = 2,

𝛾′∑︁
𝑗=1

𝜔𝑗(𝛼𝑠,𝑙,𝑗 − 𝛼̄𝑠,𝑙) = 0, 𝜔𝑗 > 0

and

⋃︁
𝑙∈Z

[𝛼𝑠,𝑙, 𝛼𝑠,𝑙+1] = Ξ𝑠, |Ξ𝑠| ⩽ 2𝑆,
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we obtain the estimates⃒⃒⃒
𝐺̃1−2(𝑥)P𝐿𝑓− 𝐺̈1−2(𝑥)P𝐿𝑓

⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒⃒ 3𝐿+2∑︁
𝑙=−3𝐿−2

⎛⎜⎝ 𝛼𝑠,𝑙+1∫︁
𝛼𝑠,𝑙

𝑔(𝑠, 𝜎)𝑓(𝑠+ 𝜎) 𝑑𝜎

−ℎ𝑠,𝑙
𝛾′∑︁
𝑗=1

𝜔𝑗 𝑔(𝑠, 𝛼𝑠,𝑙,𝑗)𝑓 (𝑠+ 𝛼𝑠,𝑙,𝑗)

)︃⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒⃒⃒ 3𝐿+2∑︁
𝑙=−3𝐿−2

⎡⎢⎣ 𝛼𝑠,𝑙+1∫︁
𝛼𝑠,𝑙

𝜎∫︁
𝛼̄𝑠,𝑙

𝜕2𝜁

(︁
𝑔(𝑠, 𝜁)𝑓(𝑠+ 𝜁)

)︁
(𝜎 − 𝜁) 𝑑𝜁 𝑑𝜎

−ℎ𝑠,𝑙
𝛾′∑︁
𝑗=1

𝜔𝑗

𝛼𝑠,𝑙,𝑗∫︁
𝛼̄𝑠,𝑙

𝜕2𝜁

(︁
𝑔(𝑠, 𝜁)𝑓(𝑠+ 𝜁)

)︁
(𝛼𝑠,𝑙,𝑗 − 𝜁) 𝑑𝜁

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒

⩽ 2𝑆
(︀
𝑐1ℎ

2 lnℎ−2 + 𝑐2ℎ
2
)︀
‖𝑓‖𝐶2(𝜕Ω) .

(6.1)

Here

𝑐1 := 2𝑐1,2𝑐Λ,0, 𝑐2 :=
(︀
(−4 ln 2 + 4)𝑐1,2 + 𝑐1,3

)︀
𝑐Λ,0 + 2𝑐1,1𝑐

′
Λ,1 + 𝑐1,0𝑐

′
Λ,2.

While obtaining inequalities (6.1), we have employed the following estimates:⃒⃒⃒⃒
⃒⃒⃒ 𝜎∫︁
𝛼̄𝑠,𝑙

ln 𝜁−2 𝑑𝜁

⃒⃒⃒⃒
⃒⃒⃒ ⩽ max

⎧⎨⎩
2ℎ∫︁
0

ln 𝜁−2 𝑑𝜁, 2−1ℎ sup
𝜁∈[ℎ , 𝑆]

⃒⃒
ln 𝜁−2

⃒⃒⎫⎬⎭ = 2ℎ ln(2ℎ)−2 + 4ℎ,

where 𝜎 ∈ [𝛼𝑠,𝑙, 𝛼𝑠,𝑙+1]. Together with estimates (4.14), (4.10), estimates (6.1) prove the uni-

form in 𝑥 ∈ 𝜕Ω convergence of the functionals 𝐺̃(𝑥)P𝐿 [𝐶3(𝜕Ω) → C] in the uniform operator
topology with the approximation order 𝑂(ℎ2 lnℎ). Taking into consideration the equibound-
edness of the set of functionals 𝐺̃(𝑥)P𝐿 [𝐶(𝜕Ω) → C], 𝑥 ∈ 𝜕Ω, estimates (4.8), (6.1) and the
density of the set 𝐶3(𝜕Ω) in the space 𝐶(𝜕Ω) we also obtain uniform in 𝑥 ∈ 𝜕Ω strong operator
convergence of functionals 𝐺̃(𝑥)P𝐿 [𝐶(𝜕Ω) → C]. The proof is complete.

Corollary 6.1. Let 𝜕Ω ∈ 𝐶2𝛾′+1 ∩ 𝐶2𝛾+1, 𝛾, 𝛾′ ⩾ 2, 𝛾, 𝛾′, 𝐿/2 ∈ N. Then as 𝐿 → ∞, for
fixed 𝑠 ∈ 𝐼𝑆, 𝑑0 ∈ (0, 𝐷] there is no uniform in |𝑑| ∈ (0, 𝑑0] convergence of the functionals
𝐺̃(𝑥̃𝑑(𝑠))P𝐿 [𝐶(𝜕Ω) → C] to the corresponding functionals 𝐺(𝑥̃𝑑(𝑠)) [𝐶(𝜕Ω) → C] in the strong
operator topology.

Proof. Let 𝑓 ∈ 𝐶(𝜕Ω) and 𝑓(𝑠) ̸= 0 for fixed 𝑠 ∈ 𝐼𝑆. Then the function 𝑗(𝑑) := 𝐺 (𝑥̃𝑑(𝑠)) 𝑓
is continuous as 𝑑 ∈ 𝐼𝐷 and by limiting identities (4.3), it has a discontinuity at the point
𝑑 = 0: lim

𝑑→±0
𝑗(𝑑) − 𝑗(0) = ±2−1𝑓(𝑠) ̸= 0. In accordance with Theorem 6.1, the function

𝑗̃(𝑑) := 𝐺̃ (𝑥̃𝑑(𝑠))P𝐿𝑓 is continuous on the set 𝐼𝐷 and in accordance with Theorems 6.2, 6.3
we have a pointwise convergence of the approximations 𝑗̃(𝑑) to the exact function: 𝑗̃(𝑑) → 𝑗(𝑑)
as 𝐿 → ∞ for each fixed 𝑑 ∈ 𝐼𝐷. This is why for each 𝑑0 ∈ (0, 𝐷] a uniform in |𝑑| ∈ (0, 𝑑0]
convergence of the approximations 𝑗̃(𝑑) to the exact function 𝑗(𝑑) is impossible. The proof is
complete.

We define functionals 𝑅̃±(𝑥) :=
(︁
𝐺̃1−2(𝑥) + 𝐺̃3(𝑥)

)︁
Ĝ−1

± and functions 𝑢̃±(𝑥) := 𝑅̃±(𝑥)𝑤

(𝑥 ∈ Ω±), which for 𝑥 ∈ Ω± are approximations for the resolvent functionals 𝑅±(𝑥) and
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solutions 𝑢±(𝑥) of boundary value problem (2.1), while as 𝑥 = 𝑥̃(𝑠), 𝑠 ∈ 𝐼𝑆, these are approxi-
mations of direct values of the functionals 𝑅±(𝑥) and the functions 𝑢±(𝑥) on the boundary 𝜕Ω.
By Theorems 6.2, 6.3 similarly to Corollary 5.3 we obtain the following statement.

Corollary 6.2. Let 𝜕Ω ∈ 𝐶2𝛾′+1∩𝐶2𝛾+1, 𝛾, 𝛾′ ⩾ 2, 𝛾, 𝛾′, 𝐿/2 ∈ N, 𝑐 > 0, and Ω′ be a closed
subset of the domain Ω𝐷, 𝑑0 ∈ (0, 𝐷]. Then, as 𝐿 → ∞, the functions 𝑢̃±(𝑥) converge to the
corresponding solutions 𝑢±(𝑥) of boundary value problem (2.1) with a cubic rate uniformly in
𝑥 ∈ Ω′ and boundary functions 𝑤 ∈ 𝐶3(𝜕Ω) satisfying the condition ‖𝑤‖𝐶3(𝜕Ω) ⩽ 𝑐. As 𝐿→ ∞,
the functions 𝑢̃±(𝑥̃(𝑠)) converge to the corresponding functions 𝑢±(𝑥̃(𝑠)) with the approximation
order 𝑂(𝐿−2 ln𝐿−1) uniformly in 𝑠 ∈ 𝐼𝑆 and boundary functions 𝑤 ∈ 𝐶3(𝜕Ω) obeying the
condition ‖𝑤‖𝐶3(𝜕Ω) ⩽ 𝑐. Moreover, as 𝐿 → ∞, 𝜀 → +0, the functions 𝑅̃±(𝑥)P𝐿𝑤𝜀 converge
to the function 𝑢±(𝑥) uniformly in 𝑥 ∈ Ω′ and 𝑥 ∈ 𝜕Ω if ‖𝑤𝜀 − 𝑤‖𝐶(𝜕Ω) ⩽ 𝜀, 𝑤,𝑤𝜀 ∈ 𝐶(𝜕Ω).

On the base of Corollary 6.2, the limiting identities lim
𝑑→±0

𝑢±(𝑥̃𝑑(𝑠))− 𝑢±(𝑥̃(𝑠)) = ±2−1𝑣±(𝑠)

and the continuity in 𝑑 ∈ 𝐼𝐷 of the functions 𝑢̃±(𝑥̃𝑑(𝑠)) for fixed 𝑠 ∈ 𝐼𝑆, similarly to Corollary 6.1
we obtain a statement on the absence of the uniform convergence of approximate solutions 𝑢̃±(𝑥)
in the vicinity of the boundary 𝜕Ω.

Corollary 6.3. Let 𝜕Ω ∈ 𝐶2𝛾′+1 ∩𝐶2𝛾+1, 𝛾′, 𝛾 ⩾ 2, 𝛾, 𝛾′, 𝐿/2 ∈ N, 𝑑0 ∈ (0, 𝐷], 𝑤 ∈ 𝐶(𝜕Ω),
and also 𝑣±(𝑠) ̸= 0 for some 𝑠 ∈ 𝐼𝑆. Then as 𝐿 → ∞ there is no uniform in ±𝑑 ∈ (0, 𝑑0]
convergence of the functions 𝑢̃±(𝑥̃𝑑(𝑠)) to the solution 𝑢±(𝑥̃𝑑(𝑠)) of boundary value problem
(2.1).

7. Numerical experiments

Here we consider a numerical solution of problem (2.1) in the exterior of a unit circle with
the boundary function 𝑤 = cos𝜙 and the dissipation coefficient 𝑘 = 𝜋. The exact solution 𝑢̄ of
such a problem is calculated by the formula: 𝑢̄ = cos𝜙𝐾1(𝜋𝑟

′) / 𝐾1(𝜋). Here 𝜙 = 𝑠 ∈ [−𝜋, 𝜋),
𝑟′ = 1 − 𝑑 > 1, are the polar angle and radius with the pole at the center of the circle, 𝐾1(𝑧)
is the MacDonald function. For this geometry, a third of the radius of the Lyapunov circle
is 𝐷 = 2/(3𝜋); half-widths of arc lengths over which exact integration over the 𝜌 variable
is made are Σ′′

𝑠 = −Σ′
𝑠 = arcsin (2 / (3𝜋)). When calculating semi-analytic solutions 𝑢̂ (see

Corollary 5.3), the integrals in 𝜌 in expressions for 𝐺̂𝑖(𝑥), 𝑖 = 1, 2, are calculated using the
Newton-Leibniz formula. In order to do this, the series in formula (2.3) are replaced by finite
sums formed by powers of 𝑧2𝑘, 𝑘 = 0, 10. In the expressions for 𝐺̃3(𝑥) we use SGQFs with 𝛾 = 2
nodes. Approximate solutions 𝑢̃1, 𝑢̃2, 𝑢̃3 based on SGQF (see Corollary 6.2) are calculated with
the values 𝛾′ = 12, 24, 48, respectively, and 𝛾 = 2. All calculations are made with a double
precision. The solutions 𝑢̂, 𝑢̃𝑖, 𝑖 = 1, 3, 𝑢̄ are found for fixed 𝑑 ∈ [−𝐷, 0) at the points 𝑥̃𝑑(𝑠𝑙/4),
𝑠𝑙/4 = 𝑙ℎ/4, 𝑙 = −4𝐿− 4, 4𝐿+ 3, so these solutions can be considered as functions in the space
𝐻4𝐿+3. For a fixed 𝑑, we calculate the maximums of the absolute values of the errors of the
approximate solutions 𝑢̂, 𝑢̃𝑖: △𝑢̂ := ‖𝑢̂ − 𝑢̄‖𝐻4𝐿+3

, △𝑢̃𝑖 := ‖𝑢̃𝑖 − 𝑢̄ |𝐻4𝐿+3
. In Table 1, in each

main cell, we show the values of △𝑢̂, △𝑢̃1, △𝑢̃2, △𝑢̃3 in the appropriate order from the top to
bottom.
We observe that the solution 𝑢̂ has a cubic convergence rate, which is preserved even at

very small distances |𝑑| to the 𝜕Ω boundary, which is in good agreement with Corollary 5.3.
The convergence rates of solutions 𝑢̃𝑖 decrease from cubic to zero as points 𝑥 approach the
boundary 𝜕Ω at fixed sampling steps ℎ and are restored to cubic as ℎ decreases for fixed 𝑑,
which is consistent with Corollaries 6.2 and 6.3.
We made calculations, in which in order to approximate the functionals 𝐺̈1−2(𝑥), instead of

SGQF, closed-type Newton-Cotes quadrature formulas were used [26, Ch. 3, Sect. 4, Item 1].
Then, as the points 𝑥 approach the nodes of quadrature approximations, namely: as the points
𝑥̃𝑑(𝑠𝑙) approach the points 𝑥̃(𝑠𝑙) (𝑙 = −𝐿− 1, 𝐿) as 𝑑 → 0 for a fixed 𝐿, the errors △𝑢̃𝑖 grow
catastrophically.
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In conclusion we note that in a similar way, using exact integration in the variable 𝜌, approxi-
mate solutions of the internal Dirichlet problem for the Laplace equation can be obtained, since
this problem, like the Dirichlet problem for the dissipative Helmholtz equation, has a unique
solution. The corresponding approximations of the DLP were studied in work by the author
[19].

𝑑 ℎ1 = 𝜋/3 ℎ2 = 𝜋/7 ℎ3 = 𝜋/15 ℎ4 = 𝜋/31 ℎ5 = 𝜋/63

−10−2

6.60 · 10−2

6.59 · 10−2

6.60 · 10−2

6.60 · 10−2

5.87 · 10−3

6.61 · 10−3

5.87 · 10−3

5.87 · 10−3

5.72 · 10−4

5.72 · 10−4

5.72 · 10−4

5.72 · 10−4

5.60 · 10−5

5.60 · 10−5

5.60 · 10−5

5.60 · 10−5

4.90 · 10−6

4.90 · 10−6

4.90 · 10−6

4.90 · 10−6

−10−3

6.88 · 10−2

3.03 · 10−1

7.12 · 10−2

6.88 · 10−2

6.27 · 10−3

2.71 · 10−1

3.82 · 10−2

6.27 · 10−3

6.52 · 10−4

3.95 · 10−2

6.35 · 10−3

6.52 · 10−4

7.31 · 10−5

2.99 · 10−2

7.88 · 10−4

7.31 · 10−5

8.46 · 10−6

3.65 · 10−3

2.59 · 10−5

8.46 · 10−6

−10−4

6.90 · 10−2

1.05 · 100
7.58 · 10−1

1.13 · 10−1

6.31 · 10−3

1.03 · 100
7.40 · 10−1

6.72 · 10−2

6.60 · 10−4

9.36 · 10−1

4.13 · 10−1

5.45 · 10−2

7.51 · 10−5

7.20 · 10−1

9.02 · 10−2

1.47 · 10−2

8.93 · 10−6

3.64 · 10−1

5.09 · 10−2

1.29 · 10−3

−10−5

6.91 · 10−2

1.11 · 100
1.12 · 100
9.98 · 10−1

6.32 · 10−3

1.14 · 100
1.09 · 100
9.73 · 10−1

6.61 · 10−4

1.13 · 100
1.07 · 100
8.30 · 10−1

7.53 · 10−5

1.11 · 100
9.84 · 10−1

5.30 · 10−1

8.98 · 10−6

1.07 · 100
8.12 · 10−1

1.53 · 10−1

−10−15

6.91 · 10−2

1.16 · 100
1.16 · 100
1.16 · 100

6.32 · 10−3

1.16 · 100
1.16 · 100
1.16 · 100

6.61 · 10−4

1.16 · 100
1.16 · 100
1.16 · 100

7.53 · 10−5

1.16 · 100
1.16 · 100
1.16 · 100

8.98 · 10−6

1.16 · 100
1.16 · 100
1.16 · 100

Table 1
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