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DIRECT AND INVERSE THEOREMS OF

APPROXIMATION THEORY IN LEBESGUE SPACES

WITH MUCKENHOUPT WEIGHTS

O.L. VINOGRADOV

Abstract. In this work we establish direct and inverse theorems of approximation theory
in Lebesgue spaces 𝐿𝑝,𝑤 with Muckenhoupt weights 𝑤 on the axis and on a period. The
classical definition of the modulus of continuity can be meaningless in weighted spaces.
Therefore, as the modules of continuity, including non-integer order, we use the norms of
powers of deviation of Steklov means. The properties of these quantities are derived, some of
which are similar to the properties of usual modules of continuity. In addition to the direct
and inverse theorems, we obtain equivalence relations between the modules of continuity
and the 𝐾- and 𝑅-functionals.

The proofs are based on estimates for the norms of convolution operators and they do not
employ a maximal function. This allows us to establish the results for all 𝑝 ∈ [1,+∞) not
excluding the case 𝑝 = 1. Previously used methods that employed the maximal function
in one form or another are unsuitable for 𝑝 → 1. In addition, by the convolution-based
approach we can obtain results simultaneously in the periodic and non-periodic case. With
rare exceptions, constants are not specified explicitly, but their dependence on parameters is
always tracked. All constants in the estimates depend on [𝑤]𝑝 (Muckenhoupt characteristics
of weight 𝑤), and there is no other dependence on 𝑤 and 𝑝. The norms of convolution
operators are estimated explicitly in terms of [𝑤]𝑝. The methods of this work can be
applied to prove direct and inverse theorems in more general functional spaces.

Keywords: best approximations, modules of continuity, Muckenhoupt weights, convolu-
tion.
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1. Introduction

1.1. Survey of results. A lot of works were devoted to extending the classical theorems
of approximation theory [1] from 𝐿𝑝 spaces to more general function spaces. We mention a
few of them [2]– [7], which are directly related to the topic of this article, i.e., the Lebesgue
spaces 𝐿𝑝,𝑤 with Muckenhoupt weights 𝑤. In a number of works, these questions were studied
in more general weighted spaces, including 𝐿𝑝,𝑤 as a special case (Orlicz and Lorentz spaces,
Lebesgue spaces with a variable exponent), see, for instance, [8], [9] and the references in [7], [9].
In the mentioned works there were considered spaces of periodic functions (except for [3]) and

the case 𝑝 > 1. The constants in the estimates depended on [𝑤]𝑝, which is the Muckenhoupt
characteristic of the weight 𝑤 ∈ 𝐴𝑝, and on 𝑝. Due to the dependence of the constants on 𝑝, the
results in this form can not be extended to the case 𝑝 = 1 even if 𝑤 ∈ 𝐴1. Thus, the theorems
in the classical, i.e., in the weightless case are not consequences of these estimates.
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This situation is not due to the essence of the matter, but because of the methods of proof,
such as the use of the maximal function, the boundedness of the Hilbert transform, approxi-
mations using Fourier sums and other methods that are unsuitable for 𝑝 → 1. Instead of this
we show that the direct and inverse theorems can be obtained as consequences of bounds for
the norms of convolution operators with symmetrically decreasing kernels.
An approach to estimating convolutions without using a maximal function was employed in

original works of Rosenblum [10] and Muckenhoupt [11]. Then it was developed in a series
of papers by Nakhman and Osilenker [12]– [15] in connection with linear summation methods
for Fourier series of periodic functions. The results in [12]– [15] are true for all 𝑝 ∈ [1,+∞),
but the constants in the estimates (at least in the formulations) also depend on 𝑝. Cases of
different exponents, two-weight, multidimensional and vector-valued generalizations, studied in
these sources, are not considered in this work.
With rare exceptions, we do not specify constants explicitly, but we always control their

dependence on parameters. All constants in the estimates depend on [𝑤]𝑝, and there is no
other dependence on 𝑤 and 𝑝. Moreover, we use a unified approach and obtain results both for
the periodic and non-periodic cases.

1.2. Notation. In what follows C, R, R+, Z, N are the sets of complex, real, nonnegative
real, integer and natural numbers, respectively; T = [−𝜋, 𝜋]. If otherwise is not implied by
the context, the spaces of functions can be both real and complex. At a point of removable
discontinuity a function is defined by continuity, otherwise we let 0

0
= 0. Equivalent functions

are identified. The symbol 𝐶(𝛼, 𝛽, . . .) denotes quantities depending only on the specified
parameters and which do not necessarily coincide even within the same formula. A non-negative
measurable almost everywhere finite and almost everywhere positive function is called a weight.
If 𝑝 ∈ [1,+∞), 𝑤 is a weight, then 𝐿𝑝,𝑤(R) is the space of functions summable on R with 𝑝th
degree and weight 𝑤; this space is equipped with norm

‖𝑓‖𝑝,𝑤 =

⎛⎝∫︁
R

|𝑓 |𝑝𝑤

⎞⎠1/𝑝

.

In the same way we define the space of 2𝜋-periodic functions 𝐿𝑝,𝑤(T). The norm in this space
is introduced in the same way and the weight 𝑤 is supposed to be 2𝜋-periodic. The symbol
𝐿𝑝,𝑤 stands for 𝐿𝑝,𝑤(R) or 𝐿𝑝,𝑤(T). The notation 𝐿𝑝,𝑑𝜇 has a similar meaning. We omit the
unit weight in the notation and write simply 𝐿𝑝, ‖𝑓‖𝑝, etc.
Next, E𝜎 and E𝜎−0 are the sets of entire functions of exponential type at most 𝜎 and less

than 𝜎 respectively,

𝒜𝜎(𝑓)𝑝,𝑤 = inf
𝑔∈E𝜎

‖𝑓 − 𝑔‖𝑝,𝑤

is the best approximation of the function 𝑓 ∈ 𝐿𝑝,𝑤 by functions from E𝜎 in the space 𝐿𝑝,𝑤; the
value 𝒜𝜎−0(𝑓)𝑝,𝑤 is determined similarly. In the periodic case, 𝒜𝜎(𝑓) coincides with 𝐸⌊𝜎⌋(𝑓)
(⌊𝜎⌋ is the integer part of a number 𝜎), which is the best approximation of 𝑓 by trigonometric
polynomials of degree at most 𝜎.
The function 𝐹 : R → [0,+∞] is said to decrease symmetrically if it is even and decreases

on R+. If 𝐾 : R → C, then 𝐾* denotes a bell-shaped majorant of the function 𝐾, that is, a
symmetrically decreasing function such that |𝐾| ⩽ 𝐾*. Byℛ we denote the set of symmetrically
decreasing functions summable on R, and the symbol ℛ* stands for the set of functions with a
summable bell-shaped majorant.
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Let 𝜒𝐸 be the characteristic function of a set 𝐸,

𝑆ℎ𝑓(𝑥) =
1

ℎ

ℎ/2∫︁
−ℎ/2

𝑓(𝑥− 𝑡) 𝑑𝑡, 𝑆ℎ,𝜏𝑓(𝑥) = 𝑆ℎ𝑓(𝑥+ 𝜏)

be the two-sided and shifted first order Steklov function for a function 𝑓 with a step ℎ > 0;
then 𝑆ℎ,ℎ

2
𝑓 is the one-sided Steklov function. As usually, if 𝑈 is an operator, then 𝑈𝑚 is its

𝑚th power, 𝑈0 = 𝐼 is the identity operator.
The convolution and the Fourier transform are normalized by the identities

𝑓 * 𝑔(𝑥) =
∫︁
R

𝑓(𝑥− 𝑡)𝑔(𝑡) 𝑑𝑡, ℱ𝑓(𝑦) =

∫︁
R

𝑓(𝑡)𝑒−𝑖𝑦𝑡 𝑑𝑡.

Under such normalization ℱ(𝑓 * 𝑔) = ℱ𝑓 · ℱ𝑔.

2. Convolutions in weighted spaces

2.1. Estimates for convolutions in terms of Muckenhoupt characteristics. For a
given weight 𝑤 on R we denote

[𝑤]𝑝 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup
𝑄

⎧⎨⎩
(︃

1
|𝑄|

∫︀
𝑄

𝑤

)︃(︃
1
|𝑄|

∫︀
𝑄

𝑤− 1
𝑝−1

)︃𝑝−1
⎫⎬⎭ , 𝑝 ∈ (1,+∞),

sup
𝑄

{︃(︃
1
|𝑄|

∫︀
𝑄

𝑤

)︃(︂
ess inf
𝑡∈𝑄

𝑤(𝑡)

)︂−1
}︃
, 𝑝 = 1,

where the suprema are taken over all possible segments inR and |𝑄| is the length of a segment𝑄.
If [𝑤]𝑝 < +∞, then the weight 𝑤 is said to satisfy the Muckenhoupt condition 𝐴𝑝 or to belong to
the Muckenhoupt class 𝐴𝑝. The properties of Muckenhoupt weights can be found in [16], [17].
According to the Hölder inequality, the function 𝑝 ↦→ [𝑤]𝑝 decreases, whence classes 𝐴𝑝 expand
as 𝑝 increases.
Most of the applications of Muckenhoupt weights are related to maximal functions and

singular integral operators, however these questions play no role in this work. The only property
of Muckenhoupt weights that is important for us is the estimate

‖𝑓 *𝐾‖𝑝,𝑤 ⩽ 𝐵‖𝐾‖1‖𝑓‖𝑝,𝑤, 𝐾 ∈ ℛ, 𝑓 ∈ 𝐿𝑝,𝑤, (2.1)

where a constant 𝐵 depend only on [𝑤]𝑝.
The following characteristic property of the Muckenhoupt weights is well-known [17,

Sect. 5.2.1]. Let 𝜇 be a Borel measure on R, 𝑝 ∈ [1,+∞), 𝐾 ∈ ℛ, 𝐾𝜀(𝑡) = 1
𝜀
𝐾( 𝑡

𝜀
). If for

all 𝑓 ∈ 𝐿𝑝,𝑑𝜇 the inequality

‖𝑓 *𝐾𝜀‖𝑝,𝑑𝜇 ⩽ 𝐵‖𝐾‖1‖𝑓‖𝑝,𝑑𝜇 (2.2)

holds with a constant 𝐵 independent on 𝜀, then 𝑑𝜇(𝑥) = 𝑤(𝑥) 𝑑𝑥, where 𝑤 ∈ 𝐴𝑝. And vice
versa, if 𝑤 ∈ 𝐴𝑝 and 𝑑𝜇(𝑥) = 𝑤(𝑥) 𝑑𝑥, then inequality (2.2) holds with a constant𝐵 independent
of 𝐾 and 𝜀.
We denote

𝐵𝑝[𝑤] = sup
𝑓∈𝐿𝑝,𝑤,𝐾∈ℛ

‖𝑓 *𝐾‖𝑝,𝑤
‖𝐾‖1‖𝑓‖𝑝,𝑤

.

Then 𝐵𝑝[𝑤] is the smallest independent on 𝐾 constant 𝐵 in inequality (2.1). This definition
immediately implies the inequality

‖𝑓 *𝐾‖𝑝,𝑤 ⩽ 𝐵𝑝[𝑤]‖𝐾*‖1‖𝑓‖𝑝,𝑤, 𝐾 ∈ ℛ*, 𝑓 ∈ 𝐿𝑝,𝑤. (2.3)
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Many classical kernels, such as Steklov, Fejér, Rogosinski, Vallée Poussin, Poisson and other
kernels, belong to ℛ*.
In the weightless case 𝑤 ≡ 1 there is a well-known estimate

‖𝑓 *𝐾‖𝑝 ⩽ ‖𝐾‖1‖𝑓‖𝑝, 𝐾 ∈ 𝐿1(R), 𝑓 ∈ 𝐿𝑝,

which coincides with (2.3) for 𝐾 ∈ ℛ. However if 𝐾 ∈ ℛ* ∖ ℛ, then ‖𝐾*‖1 can be essentially
greater than ‖𝐾‖1.
Let us give an example. Let 𝜏 ∈ R, ℎ > 0, 𝐾 = 1

ℎ
𝜒(−𝜏−ℎ/2,−𝜏+ℎ/2) be a shifted first order

Steklov kernel. Then 𝐾* = 1
ℎ
𝜒(−|𝜏 |−ℎ/2,|𝜏 |+ℎ/2). Hence,

‖𝐾*‖1 = 1 +
2|𝜏 |
ℎ

,

which is large if the shift |𝜏 | is large in comparison with the step ℎ. In particular, for the one-
sided Steklov kernel (𝜏 = ℎ/2) the passage to the bell-shaped majorant increases the 𝐿1-norm
twice.
We note that for a fixed 𝜏 ̸= 0 the family of operators {𝑆ℎ,𝜏}ℎ>0 is not bounded in spaces 𝐿𝑝,𝑤

that are not closed under shifts. Indeed, let us take a function 𝑓 ∈ 𝐿𝑝,𝑤 such that 𝑓 ⩾ 0 and
𝑓(· + 𝜏) /∈ 𝐿𝑝,𝑤. Then 𝑆ℎ,𝜏𝑓 → 𝑓(· + 𝜏) for ℎ → 0+ almost everywhere and by the Fatou
theorem

lim
ℎ→0+

∫︁
R

(︀
𝑆ℎ,𝜏𝑓(𝑥)

)︀𝑝
𝑤(𝑥) 𝑑𝑥 ⩾

∫︁
R

𝑓𝑝(𝜏 + 𝑥)𝑤(𝑥) 𝑑𝑥 = +∞.

Hence, the entire family of operators {𝑆ℎ,𝜏}𝜏∈R,ℎ>0 is not bounded.
In the following lemma we estimate the constants 𝐵𝑝[𝑤] by the Muckenhoupt characteristics.

Lemma 2.1. Let 𝑝 ∈ [1,+∞), 1
𝑝
+ 1

𝑞
= 1, 𝑤 ∈ 𝐴𝑝. Then

𝐵𝑝[𝑤] ⩽ 2min{ 1
𝑝
, 1
𝑞
}[𝑤]1/𝑝𝑝 . (2.4)

If, in addition, 𝑤 ∈ 𝐴1, then 𝐵𝑝[𝑤] ⩽ 𝐵
1/𝑝
1 [𝑤] and

𝐵1[𝑤] = sup
ℎ>0

ess sup
𝑡∈R

𝑆ℎ𝑤(𝑡)

𝑤(𝑡)
⩽ [𝑤]1. (2.5)

Proof. 1. We first prove the lemma for the spaces 𝐿𝑝,𝑤(R). We denote

𝑄𝑥 = [𝑥− 1/2, 𝑥+ 1/2], 𝑄 = 𝑄0.

Without loss of generality we can suppose that 𝑓 ⩾ 0. It is sufficient to show estimate (2.1)
for the kernel 𝐾 = 𝜒𝑄. Indeed, since the value [𝑤]𝑝 remains the same under scaling, the
proven is true for Steklov kernels 𝐾 = 1

ℎ
𝜒[−ℎ/2,ℎ/2], and then for linear combinations of Steklov

kernels with positive coefficients. In the general case, we approximate the kernel 𝐾 ∈ ℛ by an
increasing sequence of such linear combinations and pass to the limit by the Levy theorem.
1.1. For each weight 𝜆 by the Hölder inequality we have

(𝑓 * 𝜒𝑄)
𝑝(𝑥) =

⎛⎝∫︁
𝑄𝑥

𝑓

⎞⎠𝑝

⩽

⎛⎝∫︁
𝑄𝑥

𝑓𝑝𝑤𝜆

⎞⎠⎛⎝∫︁
𝑄𝑥

𝑤−𝑞/𝑝𝜆−𝑞/𝑝

⎞⎠𝑝/𝑞

.
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Integrating in 𝑥 and switching the integration order, we find∫︁
R

(𝑓 * 𝜒𝑄)
𝑝(𝑥)𝑤(𝑥) 𝑑𝑥 ⩽

∫︁
R

⎛⎝∫︁
𝑄𝑥

𝑓𝑝(𝑡)𝑤(𝑡)𝜆(𝑡) 𝑑𝑡

⎞⎠⎛⎝∫︁
𝑄𝑥

𝑤−𝑞/𝑝𝜆−𝑞/𝑝

⎞⎠𝑝/𝑞

𝑤(𝑥) 𝑑𝑥

=

∫︁
R

𝑓𝑝(𝑡)𝑤(𝑡)𝜆(𝑡)𝐼(𝑡) 𝑑𝑡,

(2.6)

where

𝐼(𝑡) =

∫︁
𝑄𝑡

⎛⎝∫︁
𝑄𝑥

𝑤−𝑞/𝑝𝜆−𝑞/𝑝

⎞⎠𝑝/𝑞

𝑤(𝑥) 𝑑𝑥.

1.2. Let 𝑝 ∈ [2,+∞). We let 𝜆 = 1. By the definition of the quantity [𝑤]𝑝 we have

𝐼(𝑡) =

∫︁
𝑄𝑡

⎛⎝∫︁
𝑄𝑥

𝑤−𝑞/𝑝

⎞⎠𝑝/𝑞

𝑤(𝑥) 𝑑𝑥 ⩽ [𝑤]𝑝

∫︁
𝑄𝑡

⎛⎝∫︁
𝑄𝑥

𝑤

⎞⎠−1

𝑤(𝑥) 𝑑𝑥.

We denote by 𝑄−
𝑡 the left and by 𝑄+

𝑡 the right half of the segment 𝑄𝑡. If 𝑥 ∈ 𝑄±
𝑡 , then 𝑄𝑥 ⊃ 𝑄±

𝑡 .
This is why

∫︁
𝑄𝑡

⎛⎝∫︁
𝑄𝑥

𝑤

⎞⎠−1

𝑤(𝑥) 𝑑𝑥 ⩽
∫︁
𝑄−

𝑡

⎛⎜⎝∫︁
𝑄−

𝑡

𝑤

⎞⎟⎠
−1

𝑤(𝑥) 𝑑𝑥+

∫︁
𝑄+

𝑡

⎛⎜⎝∫︁
𝑄+

𝑡

𝑤

⎞⎟⎠
−1

𝑤(𝑥) 𝑑𝑥 = 2,

and hence 𝐼(𝑡) ⩽ 2[𝑤]𝑝. Substituting this estimate into (2.6), we get the desired fact.

1.3. Let 𝑝 ∈ (1, 2] and 𝜆(𝑡) =

(︃∫︀
𝑄𝑡

𝑤−𝑞/𝑝

)︃𝑝/𝑞

. As above, partitioning the segment 𝑄𝑥 into

two halves, we find ∫︁
𝑄𝑥

𝑤−𝑞/𝑝𝜆−𝑞/𝑝 =

∫︁
𝑄𝑥

𝑤−𝑞/𝑝(𝑢)

⎛⎝∫︁
𝑄𝑢

𝑤−𝑞/𝑝

⎞⎠−1

𝑑𝑢 ⩽ 2.

Therefore,

𝜆(𝑡)𝐼(𝑡) ⩽ 2𝑝/𝑞𝜆(𝑡)

∫︁
𝑄𝑡

𝑤(𝑥) 𝑑𝑥 ⩽ 2𝑝/𝑞[𝑤]𝑝.

It remains to substitute this estimate into (2.6).
1.4. Let 𝑤 ∈ 𝐴1. We are going to prove inequality (2.5). We denote its middle part by 𝐶[𝑤].

For all ℎ > 0 we have

‖𝑆ℎ𝑓‖1,𝑤 =

∫︁
R

1

ℎ

𝑥+ℎ/2∫︁
𝑥−ℎ/2

𝑓(𝑡) 𝑑𝑡𝑤(𝑥) 𝑑𝑥

=

∫︁
R

𝑓(𝑡)

⎛⎜⎝1

ℎ

𝑡+ℎ/2∫︁
𝑡−ℎ/2

𝑤(𝑥) 𝑑𝑥

⎞⎟⎠ 𝑑𝑡 ⩽ 𝐶[𝑤]

∫︁
R

𝑓(𝑡)𝑤(𝑡) 𝑑𝑡.

This implies the inequality 𝐵1[𝑤] ⩽ 𝐶[𝑤] and its sharpness. The estimate 𝐶[𝑤] ⩽ [𝑤]1 is
obvious.
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The estimate 𝐵𝑝[𝑤] ⩽ 𝐵
1/𝑝
1 [𝑤] follows from the Hölder inequality

(𝑓 *𝐾)𝑝 ⩽ ‖𝐾‖𝑝/𝑞1 (𝑓𝑝 *𝐾)

or from the interpolation Riesz-Thorin theorem.
2. In order to prove the lemma in the periodic case, we need to make just some minor changes.

Let the function 𝑓 and the weight 𝑤 be 2ℓ-periodic. We recall that we still have 𝐾 ∈ 𝐿1(R)
and the convolution is defined as an integral over the entire axis. Then in formula (2.6) the
external integrals are taken over [−ℓ, ℓ] and the identity

ℓ∫︁
−ℓ

∫︁
𝑄𝑥

𝑔(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥 =

ℓ∫︁
−ℓ

∫︁
𝑄𝑡

𝑔(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

is used; this identity is true if a function 𝑔 is 2𝑙-periodic with respect to both variables. In this
way we obtain estimate (2.4) for the kernel 𝐾 = 𝜒𝑄. By scaling we see that if inequality (2.4)
is true for the kernel 𝐾 and the functions 𝑓 and 𝑤 with the period 2ℓ, then it is true for the
kernel 𝐾ℎ = 1

ℎ
𝐾( ·

ℎ
) and the functions 𝑓(ℎ·) and 𝑤1/ℎ = ℎ𝑤(ℎ·) of the period 2ℓ/ℎ. Since

[𝑤1/ℎ]𝑝 = [𝑤]𝑝 and ℓ is arbitrary, we obtain (2.4) for all Steklov kernels. The proof can be
completed in the same way.

Sharp constants in the weight inequalities (2.1) are unknown. In [10], for the first time, a
criterion was obtained for the boundedness of some convolution operators in the spaces 𝐿𝑝,𝑤(T),
including those with Steklov, Poisson and Fejér kernels. Muckenhoupt [11] showed that this
criterion is equivalent to Condition 𝐴𝑝. In [11] inequality (2.1) was obtained for the Steklov

means in 𝐿𝑝,𝑤(R) with the constant 3
2
·31/𝑝[𝑤]1/𝑝𝑝 , and in 𝐿𝑝,𝑤(T) with the constant 3 ·61/𝑝[𝑤]1/𝑝𝑝 .

Then inequality (2.1) for Poisson integrals was derived from it without specifying a constant.
Inequality (2.1) in 𝐿𝑝,𝑤(T) for kernels of class ℛ* was obtained in [14] and [15] with a two-

sided estimate 𝐵𝑝[𝑤] ≍ 𝐶(𝑝)[𝑤]
1/𝑝
𝑝 . The observation that inequality (2.1) for the Steklov means

implies an inequality with the same constant for all kernels 𝐾 ∈ ℛ is implicitly present in [17].

Analysis of Stein’s reasoning leads to the upper bound 𝐵𝑝[𝑤] ⩽ 21+
1
𝑝 [𝑤]

1/𝑝
𝑝 . The same book

contains also the lower bound 𝐵𝑝[𝑤] ⩾ 1
2
[𝑤]

1/𝑝
𝑝 . From the proof in [15, Thm. 1] the same

lower bound follows. In [18, Lm. 2.18] inequality (2.1) was proved for the Steklov means

in 𝐿𝑝,𝑤(R) with a constant of the form 𝐶(𝑝)[𝑤]
1/𝑝
𝑝 and it was noted that the exponent 1/𝑝,

generally speaking, cannot be reduced. We also mention an obvious lower bound 𝐵𝑝[𝑤] ⩾ 1.
In [14], [15], [17], [18] there are also multidimensional and two-weight generalizations, which we
do not discuss here.

Corollary 2.1. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝐾 ∈ ℛ*, 𝑓 ∈ 𝐿𝑝,𝑤, 𝜎 > 0. Then

𝒜𝜎(𝑓 *𝐾)𝑝,𝑤 ⩽ 𝐵𝑝[𝑤] inf
𝐾𝜎∈E𝜎

‖(𝐾 −𝐾𝜎)
*‖1𝒜𝜎(𝑓)𝑝,𝑤 ⩽ 𝐵𝑝[𝑤]‖𝐾*‖1𝒜𝜎(𝑓)𝑝,𝑤.

In this inequality 𝒜𝜎 and E𝜎 can be replaced by 𝒜𝜎−0 and E𝜎−0.

Proof. The right inequality is trivial and we are going to prove only the left one. For all
functions 𝑓𝜎 ∈ E𝜎 ∩ 𝐿𝑝,𝑤 and 𝐾𝜎 ∈ E𝜎 ∩ℛ* we have

𝒜𝜎(𝑓 *𝐾)𝑝,𝑤 = 𝒜𝜎

(︀
(𝑓 − 𝑓𝜎) * (𝐾 −𝐾𝜎)

)︀
𝑝,𝑤

.

It remains to use estimate (2.3) and pass to the infimum over 𝑓𝜎 and 𝐾𝜎 on the right hand
side. The inequality for 𝒜𝜎−0 can be proved in the same way. The proof is complete.
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2.2. Estimates for bell-shaped majorant. In applications the kernel𝐾 is usually given in
terms of the Fourier transform and can depend on the parameters. In order to apply Lemma 2.1
we need to know whether the kernel 𝐾 possesses a summable bell-shaped majorant and we need
to be able to estimate its 𝐿1-norm. Some estimates are collected in the following lemma.

Lemma 2.2. Let

𝐾(𝑡) = 2𝜋ℱ−1𝜙(𝑡) =

∫︁
R

𝜙(𝑦)𝑒𝑖𝑡𝑦 𝑑𝑦.

1. If 𝜙 ∈ 𝐿1(R), then |𝐾(𝑡)| ⩽ ‖𝜙‖1.
2. Assume that 𝑠 − 1 ∈ N, there exists an absolutely continuous derivative 𝜙(𝑠−2) and the

functions 𝜙, . . . , 𝜙(𝑠−1) tend to zero at infinity. If the variation of 𝜙(𝑠−1) (we denote it by
‖𝑑𝜙(𝑠−1)‖1) is finite, then |𝐾(𝑡)| ⩽ |𝑡|−𝑠‖𝑑𝜙(𝑠−1)‖1. In particular, if 𝜙(𝑠−1) is absolutely contin-
uous and 𝜙(𝑠) ∈ 𝐿1(R), then |𝐾(𝑡)| ⩽ |𝑡|−𝑠‖𝜙(𝑠)‖1.

3. Let

𝜙(𝑦) = 𝑐(𝑖𝑦)−𝛼 + 𝜙1(𝑦) (2.7)

or

𝜙(𝑦) = 𝑐|𝑦|−𝛼 + 𝜙1(𝑦), (2.8)

where 𝑐 ∈ C, 𝛼 ∈ (0, 1), 𝜙1 ∈ 𝐿1(R). Then respectively

|𝐾(𝑡)| ⩽ 𝜋|𝑐|
Γ(𝛼) cos 𝛼𝜋

2

|𝑡|𝛼−1 + ‖𝜙1‖1

or

|𝐾(𝑡)| ⩽ 2𝜋|𝑐|
Γ(𝛼)

|𝑡|𝛼−1 + ‖𝜙1‖1.

Proof. The first statement is obvious, the second can be obtained by integrating by parts. The
third statement is implied by the identities∫︁

R

|𝑦|−𝛼𝑒𝑖𝑡𝑦 𝑑𝑦 =
𝜋

Γ(𝛼) cos 𝛼𝜋
2

|𝑡|𝛼−1,

∫︁
R

(𝑖𝑦)−𝛼𝑒𝑖𝑡𝑦 𝑑𝑦 =

{︃
2𝜋
Γ(𝛼)

𝑡𝛼−1, 𝑡 > 0,

0, 𝑡 < 0.

It follows from Lemma 2.1 that all functions 𝑓 from the classes 𝐿𝑝,𝑤 are locally summable
and ∫︁

R

|𝑓(𝑡)|
(1 + 𝑡2)

𝑑𝑡 < +∞.

This is why we can speak about their Fourier transforms in the space of tempered distribu-
tions 𝒮 ′.
Let 𝛼 > 0, 𝜃 ∈ R. The Weyl-Nagy derivative of order (𝛼, 𝜃) of a function 𝑓 ∈ 𝐿𝑝,𝑤 is defined

in terms of the Fourier images by the identity

ℱ𝑓 (𝛼,𝜃)(𝑦) = 𝑒𝑖
𝜃𝜋
2

sign 𝑦|𝑦|𝛼ℱ𝑓(𝑦). (2.9)

It is easy to check that as 𝛼 ∈ N, we have 𝑓 (𝛼,𝛼) = 𝑓 (𝛼), 𝑓 (𝛼,𝛼−1) = ̃︀𝑓 (𝛼), where ̃︀𝑓 is a
trigonometrically conjugate with 𝑓 function, see Section 4. For a non-integer 𝛼 > 0 the first
identity is used as the definition of the derivative of order 𝛼.



DIRECT AND INVERSE THEOREMS OF APPROXIMATION THEORY . . . 49

Let us show that identity (2.9) makes sense in the space 𝒮 ′. In the weightless case this was
done in [19]. We write

𝑒𝑖
𝜃𝜋
2

sign 𝑦|𝑦|𝛼 = (1 + 𝑦2)𝛽 · 𝑒
𝑖 𝜃𝜋

2
sign 𝑦|𝑦|𝛼

(1 + 𝑦2)𝛽
.

For sufficiently large 𝛽 the factor 𝑒𝑖
𝜃𝜋
2 sign 𝑦 |𝑦|𝛼
(1+𝑦2)𝛽

is the Fourier transform of the function from ℛ*.

This can be easily confirmed by integrating by parts and Lemma 2.2. This is why it defines a
convolution operator from 𝐿𝑝,𝑤 into 𝐿𝑝,𝑤. A multiplication for an infinitely smooth tempered
function (1+𝑦2)𝛽 is a continuous operation in 𝒮 ′. This is why identity (2.9) determines a linear
continuous operator from 𝐿𝑝,𝑤 into 𝒮 ′.

By the symbols 𝑊
(𝛼,𝜃)
𝑝,𝑤 we denote the Weyl-Nagy classes, that is, the sets of functions 𝑓

in 𝐿𝑝,𝑤 such that 𝑓 (𝛼,𝜃) ∈ 𝐿𝑝,𝑤. In the periodic case, in defining them, we need not distributions
since identity (2.9) can be treated as equality of Fourier coefficients. As 𝜃 = 𝛼 we obtain the

Sobolev classes 𝑊
(𝛼)
𝑝,𝑤 = 𝑊

(𝛼,𝛼)
𝑝,𝑤 .

The set 𝑊
(𝛼,𝜃)
𝑝,𝑤 with the norm

‖𝑓‖𝑝,𝑤 + ‖𝑓 (𝛼,𝜃)‖𝑝,𝑤
is a Banach space. This can be proved in the standard way as for the Sobolev spaces.

2.3. Inequalities for convolution operators. Let us describe the scheme of applying Lem-
mas 2.1 and 2.2. Let the operators 𝑈 and 𝑉 with the values in the space 𝐿𝑝,𝑤 be defined in
terms of the Fourier transforms as multipliers:

ℱ𝑈𝑓(𝑦) = 𝑢(𝑦)ℱ𝑓(𝑦), ℱ𝑉 𝑓(𝑦) = 𝑣(𝑦)ℱ𝑓(𝑦). (2.10)

We need to estimate ‖𝑈𝑓‖𝑝,𝑤 via ‖𝑉 𝑓‖𝑝,𝑤. If the function

𝜙 =
𝑢

𝑣
or 𝜙 =

𝑢

𝑣
− 1 (2.11)

is the Fourier transform of a function 𝐾 ∈ ℛ*, then

𝑈𝑓 = 𝑉 𝑓 *𝐾 or 𝑈𝑓 = 𝑉 𝑓 + 𝑉 𝑓 *𝐾
and the estimate holds:

‖𝑈𝑓‖𝑝,𝑤 ⩽ 𝐵𝑝[𝑤]‖𝐾*‖1‖𝑉 𝑓‖𝑝,𝑤 (2.12)

or

‖𝑈𝑓‖𝑝,𝑤 ⩽
(︀
1 +𝐵𝑝[𝑤]‖𝐾*‖1

)︀
‖𝑉 𝑓‖𝑝,𝑤 ⩽ 𝐵𝑝[𝑤]

(︀
1 + ‖𝐾*‖1

)︀
‖𝑉 𝑓‖𝑝,𝑤, (2.13)

respectively. In the second case for the sake of brevity and uniformity we increase the term 1
to 𝐵𝑝[𝑤]. By means of Lemma 2.2 we can confirm that 𝐾* ∈ 𝐿1(R) and track the dependence
of the norm ‖𝐾*‖1 on the parameters; the normalization in Lemma 2.2 differs by the factor 2𝜋.
Statements 1 and 3 of Lemma 2.2 are to be applied for small 𝑡, while Statement 2 is to be
applied for large 𝑡.
Let us clarify in more details how to combine the inequalities for the convolutions. Let

𝑈𝑓 = 𝑉 𝑓 + 𝑉 𝑓 *𝐾1, 𝑉 𝑓 = 𝑊𝑓 +𝑊𝑓 *𝐾2. (2.14)

Then

‖𝑈𝑓‖𝑝,𝑤 ⩽
(︀
1 +𝐵𝑝[𝑤]‖𝐾*

1‖1
)︀
‖𝑉 𝑓‖𝑝,𝑤, (2.15)

‖𝑉 𝑓‖𝑝,𝑤 ⩽
(︀
1 +𝐵𝑝[𝑤]‖𝐾*

2‖1
)︀
‖𝑊𝑓‖𝑝,𝑤. (2.16)

The substitution of (2.16) into (2.15) gives

‖𝑈𝑓‖𝑝,𝑤 ⩽
(︀
1 +𝐵𝑝[𝑤]‖𝐾*

1‖1
)︀(︀
1 +𝐵𝑝[𝑤]‖𝐾*

2‖1
)︀
‖𝑊𝑓‖𝑝,𝑤. (2.17)
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However, if instead we combine convolution representations (2.14), we obtain

𝑈𝑓 = 𝑊𝑓 +𝑊𝑓 * (𝐾1 +𝐾2 +𝐾1 *𝐾2),

‖𝑈𝑓‖𝑝,𝑤 ⩽
(︀
1 +𝐵𝑝[𝑤]‖(𝐾1 +𝐾2 +𝐾2 *𝐾1)

*‖1
)︀
‖𝑊𝑓‖𝑝,𝑤

⩽
(︀
1 +𝐵𝑝[𝑤](‖𝐾*

1‖1 + ‖𝐾*
2‖1 + ‖(𝐾2 *𝐾1)

*‖1)
)︀
‖𝑊𝑓‖𝑝,𝑤.

Since the convolution of symmetrically decreasing functions decreases symmetrically, the func-
tion 𝐾*

2 *𝐾*
1 is a bell-shaped majorant for 𝐾2 *𝐾1. This yields

‖𝑈𝑓‖𝑝,𝑤 ⩽
(︀
1 +𝐵𝑝[𝑤](‖𝐾*

1‖1 + ‖𝐾*
2‖1 + ‖𝐾*

1‖1‖𝐾*
2‖1)

)︀
‖𝑊𝑓‖𝑝,𝑤. (2.18)

The constant in inequality (2.18) is generally speaking less than in (2.17) since 𝐵𝑝[𝑤] is not
squared. In the weightless case, when 𝐵𝑝[𝑤] = 1, this difference disappears.
Similarly, inequalities (2.12) are combined with each other and with (2.13) without taking

the square of 𝐵𝑝[𝑤].

3. Deviations of Steklov means as modules of continuity

3.1. Modification of modules of continuity. Generally speaking, the spaces 𝐿𝑝,𝑤 are not
closed with respect to shifts: the belonging 𝑓 ∈ 𝐿𝑝,𝑤 does not imply 𝑓(· + 𝑡) ∈ 𝐿𝑝,𝑤. This is
why the classical definition of the modulus of continuity can make no sense for weighted spaces.
Instead of the modules of continuity, in the literature there were used quantities constructed
by averaging:

Ω
(1)
2𝛼 (𝑓, ℎ)𝑝,𝑤 = sup

0⩽𝑢𝑗 ,𝑡⩽ℎ

⃦⃦⃦⃦
⃦
(︂ ⌊𝛼⌋∏︁

𝑗=1

(𝐼 − 𝑆𝑢𝑗
)

)︂
(𝐼 − 𝑆𝑡)

𝛼−⌊𝛼⌋𝑓

⃦⃦⃦⃦
⃦
𝑝,𝑤

,

Ω
(2)
2𝛼 (𝑓, ℎ)𝑝,𝑤 = sup

0⩽𝑢⩽ℎ

⃦⃦
(𝐼 − 𝑆𝑢)

𝛼𝑓
⃦⃦
𝑝,𝑤

,

Ω(3)
𝛼 (𝑓, ℎ)𝑝,𝑤 = sup

0⩽𝑢⩽ℎ

⃦⃦⃦⃦
⃦⃦1𝑢

𝑢∫︁
0

|∆𝛼
𝑡 𝑓(·)| 𝑑𝑡

⃦⃦⃦⃦
⃦⃦
𝑝,𝑤

,

where ∆𝛼
𝑡 𝑓 is the usual forward difference. The modulus Ω(1) was employed, for instance,

in [2], [4]– [7], the modulus Ω(2) was used in [2], [7], [9], and the modulus Ω(3) was used
in [3], [8]. In these formulas 𝛼 > 0 is not necessary integer.
Let 𝑝 ∈ (1,+∞), 𝐿𝑝,𝑤 = 𝐿𝑝,𝑤(T), 𝛼 ∈ N. In [2], there was proved the equivalence of the

modulus Ω
(1)
2𝛼 to the corresponding 𝐾-functional, see Theorem 4.6 below. In [3] the same was

done for the modulus Ω
(3)
𝛼 , as well as in the spaces 𝐿𝑝,𝑤 on an arbitrary segment. In [7] this was

done for the modulus Ω
(2)
2𝛼 and this implied that Ω

(1)
2𝛼 , Ω

(2)
2𝛼 and Ω

(3)
2𝛼 are mutually equivalent.

For non-integer 𝛼 this result was extended for Ω
(1)
2𝛼 in [6] and formulated for Ω

(2)
2𝛼 in [7], see the

comments in Section 5 in this work. The constants in the mentioned estimates depend on 𝛼, 𝑝
and [𝑤]𝑝.
As it is known, [20, Ch. 8], in the weightless case for all 𝑟 ∈ N, 𝑝 ∈ [1,+∞) and 𝑓 ∈ 𝐿𝑝 the

relations hold:

sup
0⩽𝑢⩽ℎ

⃦⃦
(𝐼 − 𝑆𝑟

𝑢)𝑓
⃦⃦
𝑝
≍
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)𝑓
⃦⃦
𝑝
≍ 𝜔2(𝑓, ℎ)𝑝,

sup
0⩽𝑢⩽ℎ

⃦⃦(︀
𝐼 − 𝑆𝑟

𝑢,𝑢
2

)︀
𝑓
⃦⃦
𝑝
≍
⃦⃦(︀

𝐼 − 𝑆𝑟
ℎ,ℎ

2

)︀
𝑓
⃦⃦
𝑝
≍ 𝜔1(𝑓, ℎ)𝑝,

where 𝜔𝑗 are the classical modules of continuity and the constants depend only on 𝑟. We stress
that for the equivalence to the first order modulus of continuity one needs the one-sided Steklov
function.
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Next we define a family of quantities of the type Ω
(1)
𝛼 and Ω

(2)
𝛼 based on deviations of Steklov

means of any order, not just of first order and we shall establish their properties. We shall show
that if we omit taking the supremum, we get an equivalent quantity. The estimates are valid
for all 𝑝 ∈ [1,+∞), and the constants depend on [𝑤]𝑝 and other parameters, but not on 𝑝. The

modulus Ω
(3)
𝛼 is not discussed in this work.

For all 𝑘 ∈ N and ℎ > 0 by the symmetric decreasing of the Steklov kernels we have

‖𝑆𝑘
ℎ𝑓‖𝑝,𝑤 ⩽ 𝐵𝑝[𝑤]‖𝑓‖𝑝,𝑤. (3.1)

In weightless spaces 𝐿𝑝 the norms of the Steklov operators are equal to 1 and this allows us
to define the 𝛼th power of the deviations 𝐼 − 𝑆𝑟

ℎ and 𝐼 − 𝑆𝑟
ℎ,ℎ

2

(𝑟 ∈ N) for each 𝛼 > 0, not

necessarily integer, by the identities

(𝐼 − 𝑆𝑟
ℎ)

𝛼 =
∞∑︁
𝑘=0

(−1)𝑘𝐶𝑘
𝛼𝑆

𝑟𝑘
ℎ , (3.2)

(︀
𝐼 − 𝑆𝑟

ℎ,ℎ
2

)︀𝛼
=

∞∑︁
𝑘=0

(−1)𝑘𝐶𝑘
𝛼𝑆

𝑟𝑘
ℎ,ℎ

2

. (3.3)

Estimate (3.1) allows to adopt identity (3.2) as the definition in the weighted spaces 𝐿𝑝,𝑤.
Indeed, the series on the right hand side converges absolutely in the operator norm and this
implies the correctness of the definition and the estimate⃦⃦

(𝐼 − 𝑆𝑟
ℎ)

𝛼
⃦⃦
⩽ 1 +

∞∑︁
𝑘=1

|𝐶𝑘
𝛼|𝐵𝑝[𝑤] ⩽ 1 +

(︀
2⌈𝛼⌉ − 1

)︀
𝐵𝑝[𝑤].

Here ⌈𝛼⌉ = min{𝑛 ∈ Z : 𝑛 ⩾ 𝛼}. The convergence of the operator series in (3.3) is not obvious.
This is why we use another way and define the operators (𝐼 − 𝑆𝑟

ℎ)
𝛼 and (𝐼 − 𝑆𝑟

ℎ,ℎ
2

)𝛼 in terms of

the Fourier transforms.
We write the Fourier transforms of the Steklov kernels:

ℱ𝑆ℎ𝑓(𝑦) =
2

ℎ𝑦
sin

ℎ𝑦

2
ℱ𝑓(𝑦), ℱ𝑆ℎ,ℎ

2
𝑓(𝑦) =

𝑒𝑖ℎ𝑦 − 1

𝑖ℎ𝑦
ℱ𝑓(𝑦).

For the functions 𝑓 ∈ 𝐿𝑝 this gives

(𝐼 − 𝑆𝑟
ℎ)

𝛼𝑓 = 𝑓 + 𝑓 *𝐾, ℱ𝐾(𝑦) =

(︂
1−

(︂
2

ℎ𝑦
sin

ℎ𝑦

2

)︂𝑟)︂𝛼

− 1, (3.4)

(︀
𝐼 − 𝑆𝑟

ℎ,ℎ
2

)︀𝛼
𝑓 = 𝑓 + 𝑓 *𝐾, ℱ𝐾(𝑦) =

(︂
1−

(︂
𝑒𝑖ℎ𝑦 − 1

𝑖ℎ𝑦

)︂𝑟)︂𝛼

− 1. (3.5)

By Lemma 2.2 we have 𝐾 ∈ ℛ*. This is why identities (3.4) and (3.5) define linear continuous
operators in the spaces 𝐿𝑝,𝑤, that is,⃦⃦

(𝐼 − 𝑆𝑟
ℎ)

𝛼𝑓
⃦⃦
𝑝,𝑤

,
⃦⃦(︀

𝐼 − 𝑆𝑟
ℎ,ℎ

2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]‖𝑓‖𝑝,𝑤. (3.6)

At the same time, definitions (3.2) and (3.4) are equivalent.

3.2. Properties of modified modules of continuity. In the next theorem we collect the
properties of the powers of the deviations of the Steklov means, some of which are similar to
the properties of the usual modules of continuity. In the weightless case these properties follow
from the comparison principle for linear operators [20, Ch. 8].
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Theorem 3.1. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝑓 ∈ 𝐿𝑝,𝑤, 𝑟,𝑚 ∈ N, ℎ > 0, 0 < 𝛽 ⩽ 𝛼. Then⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟,𝑚, 𝛼)𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑚

ℎ )𝛼𝑓
⃦⃦
𝑝,𝑤

, (3.7)⃦⃦(︀
𝐼 − 𝑆𝑟

ℎ,ℎ
2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟,𝑚, 𝛼)𝐵𝑝[𝑤]
⃦⃦(︀

𝐼 − 𝑆𝑚
ℎ,ℎ

2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

, (3.8)⃦⃦
(𝐼 − 𝑆𝑟

𝜆ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼, 𝜆)𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

, (3.9)⃦⃦(︀
𝐼 − 𝑆𝑟

𝜆ℎ,𝜆ℎ
2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼, 𝜆)𝐵𝑝[𝑤]
⃦⃦(︀

𝐼 − 𝑆𝑟
ℎ,ℎ

2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

; (3.10)

in (3.9) and (3.10) the constants are bounded in 𝜆 on each segment;

1

𝐶(𝑟, 𝑘)𝐵𝑝[𝑤]

⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝑘𝑓
⃦⃦
𝑝,𝑤

⩽
⃦⃦(︀

𝐼 − 𝑆𝑟
ℎ,ℎ

2

)︀2𝑘
𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝑘)𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝑘𝑓
⃦⃦
𝑝,𝑤

, 𝑘 ∈ N.

(3.11)

Moreover, if 𝑓 ∈ 𝑊
(2𝛽,0)
𝑝,𝑤 , then⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛽)𝐵𝑝[𝑤]ℎ
2𝛽
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼−𝛽𝑓 (2𝛽,0)

⃦⃦
𝑝,𝑤

(3.12)

and, in particular, as 𝛽 = 𝛼,⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]ℎ
2𝛼
⃦⃦
𝑓 (2𝛼,0)

⃦⃦
𝑝,𝑤

, (3.13)

and if 𝑓 ∈ 𝑊
(𝛽)
𝑝,𝑤 , then⃦⃦(︀

𝐼 − 𝑆𝑟
ℎ,ℎ

2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛽)𝐵𝑝[𝑤]ℎ
𝛽
⃦⃦(︀

𝐼 − 𝑆𝑟
ℎ,ℎ

2

)︀𝛼−𝛽
𝑓 (𝛽)

⃦⃦
𝑝,𝑤

(3.14)

and, in particular, as 𝛽 = 𝛼,⃦⃦(︀
𝐼 − 𝑆𝑟

ℎ,ℎ
2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]ℎ
𝛼
⃦⃦
𝑓 (𝛼)

⃦⃦
𝑝,𝑤

. (3.15)

Proof. All relations in the theorem can be proved by the same way described in Section 2.3.
In each case we write the functions 𝑢, 𝑣 and 𝜙 from representations (2.10) and (2.11) and we
clarify how Lemma 2.2 is employed. We recall that 𝐾 = ℱ−1𝜙.
First of all we note that the constants are independent of ℎ since for different ℎ the inequalities

are obtained one from another by scaling. This is why we can suppose that ℎ = 1.
1. Inequality (3.7). We have

𝑢(𝑦) =

(︂
1−

(︂
2

𝑦
sin

𝑦

2

)︂𝑟)︂𝛼

, 𝑣(𝑦) =

(︂
1−

(︂
2

𝑦
sin

𝑦

2

)︂𝑚)︂𝛼

,

𝜙 = 𝑢
𝑣
−1. If 𝑟 > 1 and𝑚 > 1, then the function 𝜙 is summable together with all its derivatives.

If 𝑚 > 𝑟 = 1 or 𝑟 > 𝑚 = 1, then

𝜙(𝑦) = ±𝛼
2

𝑦
sin

𝑦

2
+ 𝜙1(𝑦),

where the function 𝜙1 is summable together with all its derivatives.
2. Inequality (3.8). We have

𝑢(𝑦) =

(︂
1−

(︂
𝑒𝑖𝑦 − 1

𝑖𝑦

)︂𝑟)︂𝛼

, 𝑣(𝑦) =

(︂
1−

(︂
𝑒𝑖𝑦 − 1

𝑖𝑦

)︂𝑚)︂𝛼

,

𝜙 = 𝑢
𝑣
−1. If 𝑟 > 1 and𝑚 > 1, then the function 𝜙 is summable together with all its derivatives.

If 𝑚 > 𝑟 = 1 or 𝑟 > 𝑚 = 1, then

𝜙(𝑦) = ±𝛼
𝑒𝑖𝑦 − 1

𝑖𝑦
+ 𝜙1(𝑦),

where the function 𝜙1 is summable together with all its derivatives.
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3. Inequality (3.9). We have

𝑢(𝑦) =

(︂
1−

(︂
2

𝜆𝑦
sin

𝜆𝑦

2

)︂𝑟)︂𝛼

, 𝑣(𝑦) =

(︂
1−

(︂
2

𝑦
sin

𝑦

2

)︂𝑟)︂𝛼

,

𝜙 = 𝑢
𝑣
− 1. In view of inequality (3.7) it is sufficient to prove (3.9) for a single value of 𝑟,

for instance, for 𝑟 = 2. Then the function 𝜙 is summable together with all its derivatives and
𝐿1-norms of the derivatives depend continuously on 𝜆.
4. Inequality (3.10). We have

𝑢(𝑦) =

(︂
1−

(︂
𝑒𝑖𝜆𝑦 − 1

𝑖𝜆𝑦

)︂𝑟)︂𝛼

, 𝑣(𝑦) =

(︂
1−

(︂
𝑒𝑖𝑦 − 1

𝑖𝑦

)︂𝑟)︂𝛼

,

𝜙 = 𝑢
𝑣
− 1. In view of inequality (3.8) it is sufficient to show (3.10) for a single value of 𝑟,

for instance, for 𝑟 = 2. Then the function 𝜙 is summable together with all its derivatives and
𝐿1-norms of the derivatives depend continuously on 𝜆.
5. Inequality (3.11). In view of inequalities (3.7) and (3.8) it is sufficient to prove (3.11) for

𝑟 = 2. We have

𝑢(𝑦) =

(︂
1−

(︂
𝑒𝑖𝑦 − 1

𝑖𝑦

)︂𝑟)︂2𝑘

, 𝑣(𝑦) =

(︂
1−

(︂
2

𝑦
sin

𝑦

2

)︂𝑟)︂𝑘

.

The functions 𝑢
𝑣
− 1 and 𝑣

𝑢
− 1 taken as 𝜙 are summable together with all its derivatives.

6. Inequalities (3.12). We have

𝑢(𝑦) =

(︂
1−

(︂
2

𝑦
sin

𝑦

2

)︂𝑟)︂𝛽

, 𝑣(𝑦) = |𝑦|2𝛽, 𝜙 =
𝑢

𝑣
.

It is clear that it is sufficient to consider 𝛽 ∈ (0, 1/2). The function 𝜙 is represented in form (2.8)
and have summable derivatives. By Statements 2 and 3 of Lemma 2.2 we obtain 𝐾* ∈ 𝐿1(R).
7. Inequality (3.14). We have

𝑢(𝑦) =

(︂
1−

(︂
𝑒𝑖𝑦 − 1

𝑖𝑦

)︂𝑟)︂𝛽

, 𝑣(𝑦) = (𝑖𝑦)𝛽, 𝜙 =
𝑢

𝑣
.

It is clear that it is sufficient to consider 𝛽 ∈ (0, 1). The function 𝜙 is represented in form (2.7)
and have summable derivatives. By Statements 2 and 3 of Lemma 2.2 we obtain 𝐾* ∈ 𝐿1(R).
The proof is complete.

Corollary 3.1. Under the assumptions of Theorem 3.1 we have

sup
0⩽𝑢⩽ℎ

⃦⃦
(𝐼 − 𝑆𝑟

𝑢)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

,

sup
0⩽𝑢⩽ℎ

⃦⃦(︀
𝐼 − 𝑆𝑟

𝑢,𝑢
2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]
⃦⃦(︀

𝐼 − 𝑆𝑟
ℎ,ℎ

2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

.

We make some remarks on Theorem 3.1.
1. The expansion

𝐼 − 𝑆𝑚
ℎ = (𝐼 + . . .+ 𝑆𝑚−1

ℎ )(𝐼 − 𝑆ℎ)

and the symmetric decreasing of the Steklov kernels imply the estimate

‖(𝐼 − 𝑆𝑚
ℎ )𝑓‖𝑝,𝑤 ⩽

(︀
1 + (𝑚− 1)𝐵𝑝[𝑤]

)︀
‖(𝐼 − 𝑆ℎ)𝑓‖𝑝,𝑤.

2. We stress that not only estimate (3.11), but also estimates (3.7)–(3.10) are two-sided since
the opposite inequalities are obtained by switching the roles of the parameters.
3. The considered modules of continuity are equivalent:⃦⃦

(𝐼 − 𝑆ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ Ω
(2)
2𝛼 (𝑓, ℎ)𝑝,𝑤 ⩽ Ω

(1)
2𝛼 (𝑓, ℎ)𝑝,𝑤 ⩽ 𝐶(𝛼)𝐵𝑝[𝑤]

⃦⃦
(𝐼 − 𝑆ℎ)

𝛼𝑓
⃦⃦
𝑝,𝑤

.

Here the first two inequalities are obvious, and the third inequality is true by Corollary 3.1 and
Theorem 3.1.
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4. Direct and inverse theorems

4.1. Direct theorems. In order to prove direct theorems, as an approximating operator we
can employ the means of Vallée Poussin type, which are defined as follows.
We take a function 𝜂 : R→ R with the properties: 𝜂 is infinitely differentiable, even, 𝜂(𝑦) = 1

as |𝑦| ⩽ 1
2
, 𝜂(𝑦) = 0 as |𝑦| ⩾ 1. For 𝑓 ∈ 𝐿𝑝,𝑤 we define 𝑉𝜎𝑓 = 𝑓 *

(︀
ℱ−1(𝜂( ·

𝜎
))
)︀
. It is clear that

𝑉𝜎𝑓 ∈ E𝜎 and this is why

𝒜𝜎(𝑓)𝑝,𝑤 = 𝒜𝜎(𝑓 − 𝑉𝜎𝑓)𝑝,𝑤.

Theorem 4.1. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝑓 ∈ 𝐿𝑝,𝑤, 𝑟 ∈ N, 𝛼, 𝛾, 𝜎 > 0. Then

𝒜𝜎(𝑓)𝑝,𝑤 ⩽ 𝐶(𝑟, 𝛼, 𝛾)𝐵𝑝[𝑤]𝒜𝜎

(︁(︁
𝐼 − 𝑆𝑟

𝛾𝜋
𝜎

)︁𝛼
𝑓
)︁
𝑝,𝑤

, (4.1)

𝒜𝜎(𝑓)𝑝,𝑤 ⩽ 𝐶(𝑟, 𝛼, 𝛾)𝐵𝑝[𝑤]𝒜𝜎

(︁(︁
𝐼 − 𝑆𝑟

𝛾𝜋
𝜎
, 𝛾𝜋
2𝜎

)︁𝛼
𝑓
)︁
𝑝,𝑤

. (4.2)

In inequalities (4.1) and (4.2), 𝒜𝜎 can be replaced by 𝒜𝜎−0.

Proof. We let 𝑢(𝑦) = 1− 𝜂
(︀
𝑦
𝜎

)︀
,

𝑣1(𝑦) =

(︂
1−

(︂
2𝜎

𝛾𝜋𝑦
sin

𝛾𝜋𝑦

2𝜎

)︂𝑟)︂𝛼

, 𝑣2(𝑦) =

(︃
1−

(︃
𝑒

𝑖𝛾𝜋𝑦
𝜎 − 1
𝑖𝛾𝜋𝑦
𝜎

)︃𝑟)︃𝛼

.

In view of inequalities (3.7) and (3.8) it is sufficient to prove the theorem for a single value of 𝑟,
for instance, for 𝑟 = 2. Then the functions 𝜙𝑗 =

𝑢
𝑣𝑗

− 1 are summable together with all their

derivatives. By Lemma 2.2 we have 𝐾𝑗 = ℱ−1𝜙𝑗 ∈ ℛ* and the norms ‖𝐾*
𝑗 ‖1 are independent

of 𝜎. Applying Corollary 2.1, we obtain the inequalities for 𝒜𝜎. The inequalities for 𝒜𝜎−0 are
obtained by the passage to a limit. The proof is complete.

Corollary 4.1. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝛾, 𝜎 > 0, 0 < 𝛽 ⩽ 𝛼. If 𝑓 ∈ 𝑊
(2𝛽,0)
𝑝,𝑤 , then

𝒜𝜎(𝑓)𝑝,𝑤 ⩽ 𝐶(𝑟, 𝛼, 𝛽, 𝛾)𝐵𝑝[𝑤]
1

𝜎2𝛽
𝒜𝜎

(︂(︁
𝐼 − 𝑆𝑟

𝛾𝜋
𝜎

)︁𝛼−𝛽

𝑓 (2𝛽,0)

)︂
𝑝,𝑤

, (4.3)

and, in particular, as 𝛽 = 𝛼,

𝒜𝜎(𝑓)𝑝,𝑤 ⩽ 𝐶(𝛼)𝐵𝑝[𝑤]
1

𝜎2𝛼
𝒜𝜎

(︀
𝑓 (2𝛼,0)

)︀
𝑝,𝑤

, (4.4)

and if 𝑓 ∈ 𝑊
(𝛽)
𝑝,𝑤 , then

𝒜𝜎(𝑓)𝑝,𝑤 ⩽ 𝐶(𝑟, 𝛼, 𝛽, 𝛾)𝐵𝑝[𝑤]
1

𝜎𝛽
𝒜𝜎

(︂(︁
𝐼 − 𝑆𝑟

𝛾𝜋
𝜎
, 𝛾𝜋
2𝜎

)︁𝛼−𝛽

𝑓 (𝛽)

)︂
𝑝,𝑤

(4.5)

and, in particular, as 𝛽 = 𝛼,

𝒜𝜎(𝑓)𝑝,𝑤 ⩽ 𝐶(𝛼)𝐵𝑝[𝑤]
1

𝜎𝛼
𝒜𝜎

(︀
𝑓 (𝛼)

)︀
𝑝,𝑤

. (4.6)

In inequalities (4.3)–(4.6), 𝒜𝜎 can be replaced by 𝒜𝜎−0.

In order to prove this corollary, it is sufficient to compare Theorem 4.1 with inequalities
(3.12)–(3.15).
The next lemma says that if we do not focus on the constants, then the inequalities of

Bernstein and Riesz type are simple corollaries of the estimates for convolutions. We note that
the Bernstein inequality is true for a wider class of weights, see [21].
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Lemma 4.1. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝛼, 𝛾, 𝜎 > 0, 𝜃 ∈ R, 𝑇 ∈ E𝜎 ∩ 𝐿𝑝,𝑤. Then⃦⃦
𝑇 (𝛼,𝜃)

⃦⃦
𝑝,𝑤

⩽ 𝐶(𝛼, 𝜃)𝐵𝑝[𝑤]𝜎
𝛼‖𝑇‖𝑝,𝑤, (4.7)⃦⃦

𝑇 (2𝛼,0)
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼, 𝛾)𝐵𝑝[𝑤]𝜎
2𝛼
⃦⃦⃦(︁

𝐼 − 𝑆𝑟
𝛾𝜋
𝜎

)︁𝛼
𝑇
⃦⃦⃦
𝑝,𝑤

, (4.8)⃦⃦
𝑇 (𝛼)

⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼, 𝛾)𝐵𝑝[𝑤]𝜎
𝛼
⃦⃦⃦(︁

𝐼 − 𝑆𝑟
𝛾𝜋
𝜎
, 𝛾𝜋
2𝜎

)︁𝛼
𝑇
⃦⃦⃦
𝑝,𝑤

. (4.9)

Proof. Let us prove inequality (4.7). We let 𝑔1(𝑦) = 𝑒𝑖
𝜃𝜋
2

sign 𝑦|𝑦|𝛼 as 𝑦 ∈ [−1, 1]. We continue
the function 𝑔1 on R to the Fourier transform of a function 𝐾1 from ℛ*. By Lemma 2.2, such
continuation exists. Then

𝑇 (𝛼,𝜃)(𝑥) = 𝜎𝛼

∫︁
R

𝑇 (𝑥− 𝑡)𝜎𝐾1 (𝜎𝑡) 𝑑𝑡,

and by Lemma 2.1 this implies (4.7) with the constant ‖𝐾*
1‖1.

Inequalities (4.8) and (4.9) can be proved in the same way with the help of the functions

𝑔2(𝑦) = |𝑦|2𝛼
(︂
1− 2𝜎

𝛾𝜋𝑦
sin

𝛾𝜋𝑦

2𝜎

)︂−𝛼

, 𝑔3(𝑦) = (𝑖𝑦)𝛼
(︂
1− 𝑒𝑖

𝛾𝜋𝑦
2𝜎 − 1

𝑖𝛾𝜋𝑦
2𝜎

)︂−𝛼

.

The proof is complete.

Corollary 4.2. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝛼, 𝛾, 𝜎 > 0, 𝑇 ∈ E𝜎 ∩ 𝐿𝑝,𝑤. Then⃦⃦⃦(︁
𝐼 − 𝑆𝑟

𝛾𝜋
𝜎

)︁𝛼
𝑇
⃦⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤](𝛾𝜋)
2𝛼‖𝑇‖𝑝,𝑤, (4.10)⃦⃦⃦(︁

𝐼 − 𝑆𝑟
𝛾𝜋
𝜎
, 𝛾𝜋
2𝜎

)︁𝛼
𝑇
⃦⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤](𝛾𝜋)
𝛼‖𝑇‖𝑝,𝑤. (4.11)

Proof. Inequality (4.10) follows from (3.13) and (4.7) as 𝜃 = 0. Inequality (4.11) is implied by
(3.15) and (4.7) as 𝜃 = 𝛼. The proof is complete.

Direct theorem 4.1 with Lemma 4.1 allow us to specify the behavior of the constants in
estimates (3.9) and (3.10): the growth order of the constants in 𝜆 is the same as in the classical
case.

Theorem 4.2. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝑓 ∈ 𝐿𝑝,𝑤, 𝑟 ∈ N, 𝛼, 𝜆, ℎ > 0. Then⃦⃦
(𝐼 − 𝑆𝑟

𝜆ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤](1 + 𝜆2𝛼)
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

, (4.12)⃦⃦(︀
𝐼 − 𝑆𝑟

𝜆ℎ,𝜆ℎ
2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤](1 + 𝜆𝛼)
⃦⃦(︀

𝐼 − 𝑆𝑟
ℎ,ℎ

2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

. (4.13)

Proof. Let us prove (4.12). We let 𝜎 = 𝜋
ℎ
. By (4.1), (3.13) and (4.8) (as 𝛾 = 1) we have⃦⃦

(𝐼 − 𝑆𝑟
𝜆ℎ)

𝛼𝑓
⃦⃦
𝑝,𝑤

⩽
⃦⃦
(𝐼 − 𝑆𝑟

𝜆ℎ)
𝛼(𝐼 − 𝑉𝜎)𝑓

⃦⃦
𝑝,𝑤

+
⃦⃦
(𝐼 − 𝑆𝑟

𝜆ℎ)
𝛼𝑉𝜎𝑓

⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

+ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]𝜆
2𝛼
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

.

Inequality (4.13) can be proved in the same way, with the help of (4.2), (3.15) and (4.9).

Now we can refine the information on the constants in Theorem 4.1.

Corollary 4.3. The constants in inequalities (4.1) and (4.2) satisfy respectively the esti-
mates

𝐶(𝑟, 𝛼, 𝛾) ⩽ 𝐶1(𝑟, 𝛼)(1 + 𝛾−2𝛼), 𝐶(𝑟, 𝛼, 𝛾) ⩽ 𝐶1(𝑟, 𝛼)(1 + 𝛾−𝛼).
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G.I. Natanson and M.F. Timan [22] refined the Jackson inequality in spaces 𝐿𝑝(T):

𝑛

⎯⎸⎸⎷𝑛−1∏︁
𝑗=0

𝐸𝑗(𝑓)𝑝 ⩽ 𝐶(𝛼)𝜔𝛼

(︂
𝑓,

1

𝑛

)︂
𝑝

, 𝛼 ∈ N.

We write a similar refinement in the integral form.

Corollary 4.4. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝑓 ∈ 𝐿𝑝,𝑤, 𝑟 ∈ N, 𝛼, ℎ > 0. Then

exp

⎛⎝ 1

𝜎

𝜎∫︁
0

ln𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢

⎞⎠ ⩽ 𝐶(𝑟, 𝛼)(1 + 𝛾−2𝛼)𝐵𝑝[𝑤]
⃦⃦⃦(︁

𝐼 − 𝑆𝑟
𝛾𝜋
𝜎

)︁𝛼
𝑓
⃦⃦⃦
𝑝,𝑤

, (4.14)

exp

⎛⎝ 1

𝜎

𝜎∫︁
0

ln𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢

⎞⎠ ⩽ 𝐶(𝑟, 𝛼)(1 + 𝛾−𝛼)𝐵𝑝[𝑤]
⃦⃦⃦(︁

𝐼 − 𝑆𝑟
𝛾𝜋
𝜎
, 𝛾𝜋
2𝜎

)︁𝛼
𝑓
⃦⃦⃦
𝑝,𝑤

. (4.15)

Proof. Let us prove (4.14). Replacing 𝜎 by 𝑢 and 𝛾 by 𝛾𝑢
𝜎
in (4.1), we find

1

𝜎

𝜎∫︁
0

ln𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢 ⩽
1

𝜎

𝜎∫︁
0

ln

{︂
𝐶(𝑟, 𝛼)

(︂
1 +

(︁𝛾𝑢
𝜎

)︁−2𝛼
)︂
𝐵𝑝[𝑤]𝒜𝑢

(︁(︁
𝐼 − 𝑆𝑟

𝛾𝜋
𝜎

)︁𝛼
𝑓
)︁
𝑝,𝑤

}︂
𝑑𝑢

⩽

1∫︁
0

ln
(︀
1 + (𝛾𝑡)−2𝛼

)︀
𝑑𝑡+ ln

{︂
𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]

⃦⃦⃦(︁
𝐼 − 𝑆𝑟

𝛾𝜋
𝜎

)︁𝛼
𝑓
⃦⃦⃦
𝑝,𝑤

}︂
.

We have

1∫︁
0

ln
(︀
1 + (𝛾𝑡)−2𝛼

)︀
𝑑𝑡 ⩽

1∫︁
0

ln
(︀
(1 + 𝛾−2𝛼)𝑡−2𝛼

)︀
𝑑𝑡 = 2𝛼 + ln

(︀
1 + 𝛾−2𝛼

)︀
.

Taking the exponentials, we get the needed inequality. Inequality (4.15) can be proved in the
same way. The proof is complete.

4.2. Inverse theorems. As usually, inequalities of Bernstein and Riesz type imply inverse
theorems.

Theorem 4.3. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝑓 ∈ 𝐿𝑝,𝑤, 𝑟 ∈ N, 𝛼, 𝜎 > 0. Then

⃦⃦⃦(︁
𝐼 − 𝑆𝑟

𝜋
𝜎

)︁𝛼
𝑓
⃦⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]
1

𝜎2𝛼

𝜎∫︁
0

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢2𝛼,

⃦⃦⃦(︁
𝐼 − 𝑆𝑟

𝜋
𝜎
, 𝜋
2𝜎

)︁𝛼
𝑓
⃦⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]
1

𝜎𝛼

𝜎∫︁
0

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢𝛼.

Theorem 4.4. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝑓 ∈ 𝐿𝑝,𝑤, 𝛼, 𝜎 > 0, 𝜃 ∈ R and

+∞∫︁
0

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢𝛼 < +∞.
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Then 𝑓 ∈ 𝑊
(𝛼,𝜃)
𝑝,𝑤 and

⃦⃦
𝑓 (𝛼,𝜃)

⃦⃦
𝑝,𝑤

⩽ 𝐶(𝛼, 𝜃)𝐵𝑝[𝑤]

⎛⎝ +∞∫︁
0

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢𝛼

⎞⎠ ,

𝒜𝜎

(︀
𝑓 (𝛼,𝜃)

)︀
𝑝,𝑤

⩽ 𝐶(𝛼, 𝜃)𝐵𝑝[𝑤]

⎛⎝𝜎𝛼𝒜𝜎(𝑓)𝑝,𝑤 +

+∞∫︁
𝜎

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢𝛼

⎞⎠ .

Corollary 4.5. Under the assumptions of Theorem 4.4 as 𝑟 ∈ N and 𝛽 > 0 we have⃦⃦⃦⃦(︁
𝐼 − 𝑆𝑟

𝜋
𝜎

)︁𝛽
𝑓 (𝛼,𝜃)

⃦⃦⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼, 𝛽, 𝜃)𝐵𝑝[𝑤]

·

⎛⎝ 1

𝜎2𝛽

𝜎∫︁
0

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢𝛼+2𝛽 +

+∞∫︁
𝜎

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢𝛼

⎞⎠ ,

⃦⃦⃦⃦(︁
𝐼 − 𝑆𝑟

𝜋
𝜎
, 𝜋
2𝜎

)︁𝛽
𝑓 (𝛼,𝜃)

⃦⃦⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼, 𝛽, 𝜃)𝐵𝑝[𝑤]

·

⎛⎝ 1

𝜎𝛽

𝜎∫︁
0

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢𝛼+𝛽 +

+∞∫︁
𝜎

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢𝛼

⎞⎠ .

The proofs of Theorems 4.3 and 4.4 are standard, see, for instance, [1], and this is why we
omit them. Here we use inequalities (3.6) and (4.7)–(4.11). An abstract scheme for proving
inverse theorems can be found in [23].
In the periodic case the integrals on the right hand sides of the inequalities become sums.

For instance, as 𝜎 ∈ N, we have

1

𝜎2𝛼

𝜎∫︁
0

𝒜𝑢(𝑓)𝑝,𝑤 𝑑𝑢2𝛼 =
1

𝜎2𝛼

𝜎−1∑︁
𝑘=0

((𝑘 + 1)2𝛼 − 𝑘2𝛼)𝒜𝑘(𝑓)𝑝,𝑤.

The usage of integrals is convenient for the uniform formulation of inverse theorems in the
periodic and non-periodic case, see [23].
As it is known, for 𝑝 ∈ (1,+∞) the direct and inverse theorems can be refined [4]. However,

we can add no new information to these refinements since the dependence of the constants on 𝑝
in these refinements is generated not by the way of proving but by the form of the inequality.

By ̃︀𝑓 we denote the function trigonometrically conjugate with 𝑓 ; in other words, the Hilbert

transform of 𝑓 . If 𝑝 ∈ [1,+∞), 𝑓 ∈ 𝐿𝑝,𝑤, then ̃︀𝑓 can be defined as the principal value of the
integral ̃︀𝑓(𝑥) = 1

𝜋

∫︁
R

𝑓(𝑡)

𝑥− 𝑡
𝑑𝑡.

Then ̃︀𝑓(𝑥) exists and is finite for almost all 𝑥. For 𝑝 ∈ (1,+∞) we have ̃︀𝑓 ∈ 𝐿𝑝,𝑤 and moreover,
the operator of trigonometric conjugate is continuous in 𝐿𝑝,𝑤 [24], see also [17, Sect. 5.4].

For sufficiently nice functions 𝑓 , for instance, from the Schwartz class, we have ℱ ̃︀𝑓(𝑦) =
(−𝑖 sign 𝑦)ℱ𝑓(𝑦).
The proof of next Theorem 4.5 is based on the known idea of passing to a primitive, see [1,

Sect. 5.9].
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Theorem 4.5. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝑓 ∈ 𝐿𝑝,𝑤 and

+∞∫︁
1

𝒜𝑢(𝑓)𝑝,𝑤
𝑑𝑢

𝑢
< +∞. (4.16)

Then for each 𝜎 > 0 we have (𝐼 − 𝑉𝜎) ̃︀𝑓 ∈ 𝐿𝑝,𝑤 and

𝒜𝜎

(︀
(𝐼 − 𝑉𝜎) ̃︀𝑓)︀𝑝,𝑤 ⩽ 𝐶𝐵𝑝[𝑤]

⎛⎝𝒜𝜎(𝑓)𝑝,𝑤 +

+∞∫︁
𝜎

𝒜𝑢(𝑓)𝑝,𝑤
𝑑𝑢

𝑢

⎞⎠ .

Proof. The function 𝑦 ↦→ 1
|𝑦|

(︀
1− 𝜂

(︀
𝑦
𝜎

)︀)︀
is the Fourier transform of some function 𝐾 ∈ ℛ*.

We let 𝐹 = 𝑓 * 𝐾. Then 𝐹 ∈ 𝐿𝑝,𝑤 and 𝐹 (1,0) = (𝐼 − 𝑉𝜎)𝑓 ∈ 𝐿𝑝,𝑤. Hence, 𝐹 ∈ 𝑊
(1,0)
𝑝,𝑤 . By

inequality (4.4),

𝐴𝑢(𝐹 )𝑝,𝑤 ⩽
𝐶𝐵𝑝[𝑤]

𝑢
𝐴𝑢(𝑓 − 𝑉𝜎𝑓)𝑝,𝑤. (4.17)

We note that 𝐴𝑢(𝑓 − 𝑉𝜎𝑓)𝑝,𝑤 = 𝐴𝑢(𝑓)𝑝,𝑤 as 𝑢 ⩾ 𝜎. By condition (4.16) we obtain

∞∫︁
0

𝐴𝑢(𝐹 )𝑝,𝑤 𝑑𝑢 < +∞.

By Theorem 4.4 (as 𝛼 = 𝜃 = 1) we have 𝐹 ∈ 𝑊
(1)
𝑝,𝑤 and hence −𝐹 ′ = (𝐼 − 𝑉𝜎) ̃︀𝑓 ∈ 𝐿𝑝,𝑤. By the

same theorem

𝒜𝜎

(︀
(𝐼 − 𝑉𝜎) ̃︀𝑓)︀𝑝,𝑤 = 𝐴𝜎(𝐹

′)𝑝,𝑤 ⩽ 𝐶𝐵𝑝[𝑤]

⎛⎝𝜎𝒜𝜎(𝐹 )𝑝,𝑤 +

+∞∫︁
𝜎

𝒜𝑢(𝐹 )𝑝,𝑤 𝑑𝑢

⎞⎠ .

It remains to apply inequality (4.17); as it has been explained in Section 2.3, while combining
the inequalities, the square of 𝐵𝑝[𝑤] is not taken. The proof is complete.

The belonging (𝐼 − 𝑉𝜎) ̃︀𝑓 ∈ 𝐿𝑝,𝑤 is meaningful only if 𝑝 = 1. However in the formulation and

proof of Theorem 4.5 the existence of ̃︀𝑓 was not used in any sense. The operator 𝑓 ↦→ (𝐼−𝑉𝜎) ̃︀𝑓
treated as a single operator is well-defined and continuous from 𝐿𝑝,𝑤 into 𝒮 ′. In terms of the
Fourier images this is the multiplication by (−𝑖 sign 𝑦)

(︀
1− 𝜂

(︀
𝑦
𝜎

)︀)︀
.

In the periodic case if 𝑓 ∈ 𝐿𝑝,𝑤(T), then Fourier series of the function (𝐼 − 𝑉𝜎) ̃︀𝑓 and the
trigonometric series conjugate to the Fourier series of 𝑓 coincide as 𝜎 < 1. This is why the

statement simplifies: ̃︀𝑓 ∈ 𝐿𝑝,𝑤(T). In the non-periodic case as 𝑝 = 1 we can not conclude this.
The example

𝑓(𝑥) =

1∫︁
0

(1− 𝑡) cos𝑥𝑡 𝑑𝑡 =
1− cos𝑥

𝑥2
,

̃︀𝑓(𝑥) = 1∫︁
0

(1− 𝑡) sin𝑥𝑡 𝑑𝑡 =
𝑥− sin𝑥

𝑥2

shows that condition (4.16) does not ensure the belonging ̃︀𝑓 ∈ 𝐿1,𝑤(R) even in the weightless

case and it is not sufficient for belonging to subtract from ̃︀𝑓 an entire function of zero type, in
particular, a constant.



DIRECT AND INVERSE THEOREMS OF APPROXIMATION THEORY . . . 59

4.3. 𝐾- and 𝑅-functionals and modules of continuity. We are going to establish the
equivalence of 𝐾- and 𝑅-functionals to the modified modules of continuity. The results of such
type in the weightless case can be found, for instance, in [25]. For the weighted spaces we refer
to [6]. We define the family of 𝐾- and 𝑅-functionals by the identities

𝐾𝛼,𝜃(𝑓, ℎ)𝑝,𝑤 = inf
𝑔∈𝑊 (𝛼,𝜃)

𝑝,𝑤

{︁
‖𝑓 − 𝑔‖𝑝,𝑤 + ℎ𝛼

⃦⃦
𝑔(𝛼,𝜃)

⃦⃦
𝑝,𝑤

}︁
,

𝑅𝛼,𝜃(𝑓, ℎ)𝑝,𝑤 = inf
𝑔∈E1/ℎ∩𝐿𝑝,𝑤

{︁
‖𝑓 − 𝑔‖𝑝,𝑤 + ℎ𝛼

⃦⃦
𝑔(𝛼,𝜃)

⃦⃦
𝑝,𝑤

}︁
.

Theorem 4.6. Let 𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝, 𝑓 ∈ 𝐿𝑝,𝑤, 𝑟 ∈ N, 𝛼, ℎ > 0. Then⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

≍ 𝐾2𝛼,0(𝑓, ℎ)𝑝,𝑤 ≍ 𝑅2𝛼,0(𝑓, ℎ)𝑝,𝑤, (4.18)⃦⃦(︀
𝐼 − 𝑆𝑟

ℎ,ℎ
2

)︀𝛼
𝑓
⃦⃦
𝑝,𝑤

≍ 𝐾𝛼,𝛼(𝑓, ℎ)𝑝,𝑤 ≍ 𝑅𝛼,𝛼(𝑓, ℎ)𝑝,𝑤. (4.19)

The constants in the estimates are of the form 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤].

Proof. We are going to prove (4.18). The inequality 𝐾 ⩽ 𝑅 is trivial. Let us prove that

𝑅2𝛼,0(𝑓, ℎ)𝑝,𝑤 ⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

.

We take 𝜎 = 1
ℎ
and write

𝑅2𝛼,0(𝑓, ℎ)𝑝,𝑤 ⩽ ‖𝑓 − 𝑉𝜎𝑓‖𝑝,𝑤 + ℎ2𝛼
⃦⃦
(𝑉𝜎𝑓)

(2𝛼,0)
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

+ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑉𝜎𝑓

⃦⃦
𝑝,𝑤

.

We have estimated the first term by inequality (4.1), and the latter by inequality (4.8). It
remains to use the boundedness of the family {𝑉𝜎}:⃦⃦

(𝐼 − 𝑆𝑟
ℎ)

𝛼𝑉𝜎𝑓
⃦⃦
𝑝,𝑤

=
⃦⃦
𝑉𝜎(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶𝐵𝑝[𝑤]
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

.

Let us prove that ⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑓
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]𝐾2𝛼,0(𝑓, ℎ)𝑝,𝑤.

For each function 𝑔 ∈ 𝑊
(2𝛼,0)
𝑝,𝑤 by inequalities (3.6) and (3.13) we have⃦⃦

(𝐼 − 𝑆𝑟
ℎ)

𝛼𝑓
⃦⃦
𝑝,𝑤

⩽
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼(𝑓 − 𝑔)

⃦⃦
𝑝,𝑤

+
⃦⃦
(𝐼 − 𝑆𝑟

ℎ)
𝛼𝑔
⃦⃦
𝑝,𝑤

⩽ 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]‖𝑓 − 𝑔‖𝑝,𝑤 + 𝐶(𝑟, 𝛼)𝐵𝑝[𝑤]ℎ
2𝛼
⃦⃦
𝑔(2𝛼,0)

⃦⃦
𝑝,𝑤

.

It remains to pass to the infimum over 𝑔.
Relation (4.19) can be proved in the same way. The proof is complete.

5. Concluding remarks

In [7], [9], [26], [27] there was used a series of close statements called transference results. We
note that paper [27] was devoted to approximation in the spaces 𝐿𝑝,𝑤(R) and involves the case
𝑝 = 1. Let us formulate one of such statements [9, Thm. 3.6] applied to the space 𝐿𝑝,𝑤(T). Let
𝑝 ∈ [1,+∞), 𝑤 ∈ 𝐴𝑝. For 𝑓 ∈ 𝐿𝑝,𝑤(T) and a simple function 𝐺 we let

𝐹𝑓,𝐺(𝑢) =

𝜋∫︁
−𝜋

𝑓(𝑢+ 𝑥)|𝐺(𝑥)| 𝑑𝑥.

If 𝑓, 𝑔 ∈ 𝐿𝑝,𝑤(T) and the inequality

sup
𝑢∈R

|𝐹𝑓,𝐺(𝑢)| ⩽ 𝐶1 sup
𝑢∈R

|𝐹𝑔,𝐺(𝑢)| (5.1)
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hods with some absolute constant 𝐶1 for all simple functions 𝐺, then the inequality

‖𝑓‖𝑝,𝑤 ⩽ 𝐶2‖𝑔‖𝑝,𝑤
also holds with some constant 𝐶2 independent of 𝑝 and 𝑤.
This statement is wrong. Indeed, let us fix 𝜏 ∈ R and take 𝑔(𝑡) = 𝑓(𝑡 + 𝜏). Then it is

obvious that inequality (5.1) becomes the identity as 𝐶1 = 1, while the quotient ‖𝑓‖𝑝,𝑤/‖𝑔‖𝑝,𝑤
can be arbitrarily large if the space 𝐿𝑝,𝑤 is not closed with respect to shift. This is why the
statements proved with the help of this trick require a different proof. Those of them concerning
the Lebesgue spaces with Muckenhoupt weights have been proved in the present work.
In conclusion we mention that the methods of the present work can be applied for proving

direct and inverse theorems in more general functional spaces. If one succeeds to establish
estimates for convolutions of type (2.1), then the results of Sections 3 and 4 are obtained
immediately. For the sake of clarity, we have restricted ourselves to the Lebesgue spaces with
Muckenhoupt weights.
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