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PERTURBATION METHOD FOR

STRONGLY ELLIPTIC SECOND ORDER SYSTEMS

WITH CONSTANT COEFFICIENTS

A.O. BAGAPSH

Abstract. We consider a classical Dirichlet problem for a strongly elliptic second order
system with constant coefficients in Jordan domains in the plane. We show that the solution
of the problem can be represented as a functional series in the powers of the parameter
governing the deviation of the operator of the system from the Laplacian. This series
converges uniformly in the closure of the domain under the assumption that the boundary
of the domain and the given boundary function satisfy sufficient regularity conditions: the
composition of the boundary function with the trace of a conformal mapping of the unit
circle on the domain belongs to the Hölder class with the exponent exceeding 1/2.
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1. Introduction

In this work we consider a system of differential equations(︂
𝐴
𝜕2

𝜕𝑥2
+ 2𝐵

𝜕2

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2

𝜕𝑦2

)︂(︂
𝑢
𝑣

)︂
=

(︂
0
0

)︂
(1.1)

for real-valued functions 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) of real variables 𝑥 and 𝑦 with constant real matrices
of the coefficients 𝐴, 𝐵, 𝐶 of size 2× 2. We study such systems of elliptic type. In accordance
with the definition by Petrovskii [1], this means that

det(𝐴𝜉2 + 2𝐵𝜉𝜂 + 𝐶𝜂2) ̸= 0 as (𝜉, 𝜂) ∈ R2 ∖ (0, 0).

We introduce a complex-valued function 𝑓 = 𝑢+ 𝑖𝑣 of a complex variable 𝑧 = 𝑥+ 𝑖𝑦 and an
operator of system (1.1)

𝐿𝑓 =

(︂
𝐴
𝜕2

𝜕𝑥2
+ 2𝐵

𝜕2

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2

𝜕𝑦2

)︂(︂
𝑢
𝑣

)︂
.

A classical formulation of the Dirichlet problem for such operator in a Jordan domain is as
follows.

Problem 1.1. Let 𝛺 be a Jordan domain with a boundary 𝛤 . Given a boundary function
ℎ ∈ 𝐶(𝛤 ), find a function 𝑓 ∈ 𝐶(𝛺) ∩ 𝐶2(𝛺) such that 𝐿𝑓 = 0 in 𝛺 and 𝑓 |𝛤 = ℎ.
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The study of the solvability of the Dirichlet problem led to selecting a subclass of strongly
elliptic systems, which were defined in several ways; we shall make use of a definition from [2],
in accordance with which we need

det(𝐴𝛼 + 2𝛽𝐵 + 𝛾𝐶) ̸= 0 as 𝛽2 − 𝛼𝛾 < 0.

It is equivalent to the well-known definition by Vishik [3].
The form of system (1.1) and its belonging to the class of elliptic or strongly elliptic systems

are preserved under three classes of non-degenerate transformations: 1) linear change of the
variables (𝑥, 𝑦); 2) linear change of sought functions (𝑢, 𝑣); 3) linear combinations of equations
of system. At the same time, a specially chosen series of such transformations followed by
the summation of the first of the obtained equations with the second one multiplied by the
imaginary unit 𝑖 allows us to reduce each elliptic system (1.1) to a complex equation

(𝜕𝜕 + 𝜏𝜕2)𝑔(𝑧) + 𝜎(𝜏𝜕𝜕 + 𝜕2)𝑔(𝑧) = 0 (1.2)

for a complex-valued function 𝑔 of a complex variable 𝑧 = 𝑥 + 𝑖𝑦 with only two parameters
𝜏 ∈ [0, 1) and 𝜎 ∈ [0, 1) ∪ (1,∞], see [4], [5]. Here

𝜕 =
𝜕

𝜕𝑧
=

1

2

(︂
𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑦

)︂
, 𝜕 =

𝜕

𝜕𝑧
=

1

2

(︂
𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦

)︂
are the Cauchy-Riemann operators in the new coordinate system. As 𝜎 = ∞ we adopt that
equation (1.2) becomes

(𝜏𝜕𝜕 + 𝜕2)𝑔(𝑧) = 0.

In the case of the strong ellipticity we have 𝜎 ∈ [0, 1).
Let us mention several well-known particular cases of equation (1.2). As 𝜏 = 𝜎 = 0, we get

a complex-valued Laplace equation ∆𝑔(𝑧) = 4𝜕𝜕𝑔(𝑧) = 0, while for 𝜏 = 0, 𝜎 = ∞ this is the

Bitsadze equation 𝜕
2
𝑔(𝑧) = 0 [6]. For 𝜏 = 0 there arises a planar isotropic Lamé equations of

the elasticity theory written in the complex form 𝜕𝜕𝑔(𝑧) + 𝜎𝜕2𝑓(𝑧) = 0 and the parameter 𝜎
is related with the Poisson coefficient 𝑝 by the relation 𝜎 = 1/(3 − 4𝑝), see [7], [8]. Since, as
it is known [7], 𝑝 ∈ (0, 1/2), and hence, 𝜎 ∈ (1/3, 1), corresponding system (1.2) is strongly
elliptic. If 𝜎 = 0, we get a system called skew-symmetric, which can be written as the equation
𝑎𝑔𝑥𝑥 + 2𝑏𝑔𝑥𝑦 + 𝑐𝑔𝑦𝑦 = 0 with complex-valued coefficients 𝑎, 𝑏, 𝑐.
Equation (1.2) can be regarded as perturbation of the Laplace equations in two parameters

𝜏 and 𝜎 and in the case of the strong ellipticity these parameters are relatively small: 𝜏, 𝜎 ∈
[0, 1). In order to stress this fact, we make one more final transformation of equation (1.2) by
separating the Laplacian from the rest of the equation:

𝜕𝜕(𝒯1,𝜎𝜏𝑔) + 𝜕2(𝒯𝜏,𝜎𝑔) = 0, (1.3)

where we have employed the operator of an affine transformation

𝒯𝛼,𝛽 := 𝛼ℐ + 𝛽𝒞, (1.4)

with, generally speaking, complex parameters 𝛼 and 𝛽 and which is expressed via the identity
operator ℐ : 𝑤 → 𝑤 and the operator of the complex conjugation 𝒞 : 𝑤 → 𝑤. If |𝛼| ≠ |𝛽|, then
the inverse operator

𝒯 −1
𝛼,𝛽 =

1

|𝛼|2 − |𝛽|2
𝒯𝛼,−𝛽

is well-defined. The norm of operator (1.4) as of a mapping from C into C is equal to ‖𝒯𝛼,𝛽‖ =
|𝛼|+ |𝛽|.
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Assuming that equation (1.3) is strongly elliptic, we replace the sought function 𝑔 by 𝑓 =
𝒯1,𝜎𝜏𝑔 (which is a non-degenerate transform in this case) and we rewrite equation (1.3) in the
form

ℒ𝑓 := 𝜕𝜕𝑓 + 𝜕2(𝑇𝑓) = 0, (1.5)

where

𝑇 = 𝒯𝜏,𝜎𝒯 −1
1,𝜎𝜏 =

𝜏(1− 𝜎2)ℐ + 𝜎(1− 𝜏 2)𝒞
1− 𝜎2𝜏 2

.

Equation (1.5) is the Laplace equation perturbed by the operator 𝑇 with the norm

‖𝑇‖ =
𝜏 + 𝜎

1 + 𝜎𝜏
,

which turns out to be strictly less than one in the considered strongly elliptic system as 𝜏, 𝜎 ∈
[0, 1). We introduce a normalized operator

𝑇0 = ‖𝑇‖−1𝑇 = 𝒯𝛼0,𝛽0 ,

where

𝛼0 =
𝜏(1− 𝜎2)

(𝜏 + 𝜎)(1− 𝜎𝜏)
, 𝛽0 =

𝜎(1− 𝜏 2)

(𝜏 + 𝜎)(1− 𝜎𝜏)
,

and by means of this operator we rewrite (1.5) to a final form

ℒ𝑓 = 𝜕𝜕𝑓 + ‖𝑇‖𝜕2(𝑇0𝑓) = 0. (1.6)

In this equation, a small parameter is ‖𝑇‖ < 1.

2. Perturbation method

In order to solve the Dirichlet problem, we apply a perturbation method with respect to the
quantity ‖𝑇‖, the matter of which is to seek the solution 𝑓 as the series

𝑓 =
∞∑︁
𝑛=0

𝑓𝑛‖𝑇‖𝑛, (2.1)

where the functions 𝑓𝑛 are determined by substituting expansion (2.1) into the equation ℒ𝑓 = 0
and equating to zero the coefficients at the like powers of ‖𝑇‖; here we let 𝑓0|𝛤 = ℎ and 𝑓𝑛|𝛤 = 0
for 𝑛 ⩾ 1.
Thus, we obtain the following boundary value problems for successive determining of func-

tions 𝑓𝑛:

𝜕𝜕𝑓0 = 0 in 𝛺, 𝑓0|𝛤 = ℎ (2.2)

and

𝜕𝜕𝑓𝑛 = −𝜕2(𝑇0𝑓𝑛−1) in 𝛺, 𝑓𝑛|𝛤 = 0 (2.3)

for 𝑛 ⩾ 1.
Let 𝜔 : D → 𝛺 be some conformal mapping of the unit circle D := {𝑧 ∈ C : |𝑧| < 1} onto

the domain 𝛺. In the case of a Jordan domain 𝛺 by the Caratheodory theorem the mapping
𝜔 is continued to a homomorphism of closed domains D and 𝛺, so that 𝜔 ∈ 𝐶(D). For further
purposes it is convenient to transform problems (2.2) and (2.3) into the circle D by means of
the introduced conformal mapping. Let

𝐹 = 𝑓 ∘ 𝜔, 𝐻 = ℎ ∘ 𝜔, 𝐹𝑛 = 𝑓𝑛 ∘ 𝜔.

Then

ℒ𝑓 =
1

|𝜔′|2

[︂
𝜕𝜕𝐹 + ‖𝑇‖𝜕

(︂
𝜔′

𝜔′𝜕(𝑇0𝐹 )

)︂]︂
=: ℳ𝐹. (2.4)
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It follows from (2.1), (2.2) and (2.3) that

𝐹 =
∞∑︁
𝑛=0

𝐹𝑛‖𝑇‖𝑛, (2.5)

where

𝜕𝜕𝐹0 = 0 in D, 𝐹0|T = 𝐻 (2.6)

and

𝜕𝜕𝐹𝑛 = −𝜕
(︂
𝜔′

𝜔′𝜕(𝑇0𝐹𝑛−1)

)︂
in 𝛺, 𝐹𝑛|T = 0 (2.7)

for 𝑛 ⩾ 1. In the case of a sufficiently regular function 𝐹𝑛−1 for a fixed 𝑛 by means of the Green
function

𝐺(𝜁, 𝑧) =
2

𝜋
log

⃒⃒⃒⃒
𝜁 − 𝑧

1− 𝜁𝑧

⃒⃒⃒⃒
(2.8)

for the operator 𝜕𝜕 in the circle D we can write solutions to problems (2.6) and (2.7):

𝐹0(𝑧) =
1

2𝑖

∫︁
T
𝜕𝜁𝐺(𝜁, 𝑧)ℎ(𝜁)𝑑𝜁, 𝐹𝑛(𝑧) = −

∫︁
D
𝐺(𝜁, 𝑧)𝜕

(︃
𝜔′(𝜁)

𝜔′(𝜁)
𝜕(𝑇0𝐹𝑛−1(𝜁))

)︃
𝑑𝜇, (2.9)

𝑛 ⩾ 1, where 𝜇 is the Lebesgue measure.
We define the operators

𝒫 [𝜙(𝑧)] :=
1

2𝑖

∫︁
T
𝜕𝜁𝐺(𝜁, 𝑧)𝜙(𝜁)𝑑𝜁, 𝒦[𝜙(𝑧)] :=

∫︁
D
𝜕𝜁𝐺(𝜁, 𝑧)𝜙(𝜁)𝑑𝜇

and

𝒦𝜕[𝜙(𝑧)] := p.v.

∫︁
D
𝜕𝑧𝜕𝜁𝐺(𝜁, 𝑧)𝜙(𝜁)𝑑𝜇, 𝒦𝜕[𝜙(𝑧)] := p.v.

∫︁
D
𝜕𝑧𝜕𝜁𝐺(𝜁, 𝑧)𝜙(𝜁)𝑑𝜇,

where 𝒫 is defined on the class of functions 𝐶(T), while the others are defined on 𝐿𝑝(D) and
two latter integrals are treated in the sense of the principal value. In what follows, for the sake
of brevity, we omit the notation p.v. By formula (2.8) we obtain

𝒫 [𝜙(𝑧)] =
1

2𝜋

∫︁
T

(︂
1

𝜁 − 𝑧
+

𝑧

1− 𝜁𝑧

)︂
𝜙(𝜁)𝑑𝜁,

𝒦[𝜙(𝑧)] =
1

𝜋

∫︁
D

(︂
1

𝜁 − 𝑧
+

𝑧

1− 𝜁𝑧

)︂
𝜙(𝜁)𝑑𝜇

(2.10)

and

𝒦𝜕[𝜙(𝑧)] =
1

𝜋

∫︁
D

𝜙(𝜁)𝑑𝜇

(𝜁 − 𝑧)2
, 𝒦𝜕[𝜙(𝑧)] =

1

𝜋

∫︁
D

𝜙(𝜁)𝑑𝜇

(1− 𝜁𝑧)2
− 𝜙(𝑧). (2.11)

In terms of the introduced operators, formulas (2.9) for constructing the functions 𝐹𝑛 can be
written as

𝐹0 = 𝒫 [ℎ], 𝐹𝑛 = 𝒦[(𝜔′/𝜔′)𝜕(𝑇0𝐹𝑛−1)], 𝑛 ⩾ 1. (2.12)

At the same time,

𝜕𝐹𝑛 = 𝒦𝜕[(𝜔′/𝜔′)𝜕(𝑇0𝐹𝑛−1)], 𝜕𝐹𝑛 = 𝒦𝜕[(𝜔
′/𝜔′)𝜕(𝑇0𝐹𝑛−1)], 𝑛 ⩾ 1.

We also introduce the notations for partial sums of series (2.1) and (2.5), respectively:

𝑠𝑚 =
𝑚∑︁

𝑛=0

𝑓𝑛‖𝑇‖𝑛, 𝑆𝑚 =
𝑚∑︁

𝑛=0

𝐹𝑛‖𝑇‖𝑛. (2.13)

In this work we prove the following convergence theorem.
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Theorem 2.1. Let the Jordan domain 𝛺 and a function ℎ defined on its boundary 𝛤 be
such that ℎ ∘𝜔 ∈ 𝐶𝛼(T) as 1/2 < 𝛼 < 1, where 𝜔 is some conformal mapping of the unit circle
D onto 𝛺. Then for each value ‖𝑇 || ∈ [0, 1) series (2.1) with the functions 𝑓𝑛 = 𝐹𝑛 ∘ 𝜔−1,
where 𝐹𝑛 are defined in (2.12) converges in the norm of the space 𝐶(𝛺) to a function 𝑓 ∈ 𝐶(𝛺)
solving the equation ℒ𝑓 = 0 in 𝛺 and coinciding with ℎ on 𝛤 .

The condition ℎ ∘ 𝜔 ∈ 𝐶𝛼(T), 𝛼 ∈ (1/2, 1), holds, for instance, if ℎ ∈ 𝐶𝛽(Γ) and 𝜔 ∈ 𝐶𝛾(T),
where 𝛽𝛾 = 𝛼 ∈ (1/2, 1). Indeed, in this case,

|ℎ ∘ 𝜔(𝑧1)− ℎ ∘ 𝜔(𝑧2)| ⩽ [ℎ]𝛼|𝜔(𝑧1)− 𝜔(𝑧2)|𝛽 ⩽ [ℎ]𝛽[𝜔|T]𝛽𝛾 |𝑧1 − 𝑧2|𝛽𝛾,

where

[𝜙]𝛼 := sup
𝜁1 ̸=𝜁2

|𝜙(𝜁1)− 𝜙(𝜁2)|
|𝜁1 − 𝜁2|𝛼

.

Theorem 2.1 is an extension of a similar result obtained in [9] for a skew-symmetric strongly
elliptic system being a particular case of a considered here system corresponding to 𝜎 = 0.
We note that not all considered here elliptic systems (1.2) possess an energy functional, by

means of which a variational reformulation of the Dirichlet problem is possible; this reformula-
tion is a base for the proof of the Lebesgue theorem on the general solvability of the Dirichlet
problem in a simply-connected domain, see [10]. System of canonical form (1.2) possesses an
energy functional, which is an integral over the domain of the quadratic form of the first deriva-
tives only as 𝜎 > 𝜏 ; such systems are called symmetrizable, see [8]. This fact is the reason why
the issue on the solvability of the Dirichlet problem for general strongly elliptic systems (1.1)
in simply-connected or at least in Jordan domains with arbitrary continuous boundary data is
open.
At present the most advance in the issue on solvability of Problem 1.1 is a result by Verchota

and Vogel [11], which establishes the general solvability of the Dirichlet problem in domains
with piece-wise smooth Lipschitz boundaries for arbitrary continuous boundary data. In our
Theorem 2.1 the boundary function are taken from a narrower Hölder class but the domain can
belong to a wider class in comparison with [11].

3. Proof of convergence of perturbation method

Lemma 3.1. If 𝜙 ∈ 𝐶𝛼(T), where 1/2 < 𝛼 < 1, then 𝒫 [𝜙] ∈ 𝑊 1
𝑝 (D) with an arbitrary

exponent 0 < 𝑝 < (2(1− 𝛼))−1.

Proof. Let 𝜓 = 𝒫𝜙. Since 𝜙 ∈ 𝐶(T), by the property of the Poisson integral we have 𝜓 ∈ 𝐶(D)
and hence 𝜓 ∈ 𝐿𝑝(D). Let us prove the 𝐿𝑝-integrability of the first derivatives. We represent
the function 𝜓 as a sum 𝜓(𝑧) = 𝜓1(𝑧)+𝜓2(𝑧) of holomorphic and antiholomorphic components

𝜓1(𝑧) =
1

2𝜋𝑖

∫︁
T

𝜙(𝜁)𝑑𝜁

𝜁 − 𝑧
, 𝜓2(𝑧) =

1

2𝜋𝑖

∫︁
T

𝜙(𝜁)𝑑𝜁

𝜁 − 𝑧
− 1

2𝜋

∫︁
T
𝜙(𝜁)|𝑑𝜁|.

By Privalov theorem [12] for the Cauchy type integrals, the belonging 𝜙 ∈ 𝐶𝛼(T) for 1/2 <
𝛼 < 1 implies that 𝜓1 ∈ 𝐶2𝛼−1(D). We denote 𝑇 (𝑧, 𝑟) := {𝜁 ∈ C : |𝜁 − 𝑧| = 𝑟} ⊂ D. By the
Cauchy formula

𝜓1(𝑧) =
1

2𝜋𝑖

∫︁
𝑇 (𝑧,𝑟)

𝜓1(𝜁)𝑑𝜁

𝜁 − 𝑧

we find

𝜕𝜓(𝑧) = 𝜓′
1(𝑧) =

1

2𝜋𝑖

∫︁
𝑇 (𝑧,𝑟)

𝜓1(𝜁)𝑑𝜁

(𝜁 − 𝑧)2
=

1

2𝜋𝑖

∫︁
𝑇 (𝑧,𝑟)

𝜓1(𝜁)− 𝜓1(𝑧)

(𝜁 − 𝑧)2
𝑑𝜁,
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which implies the estimate

|𝜕𝜓(𝑧)| ⩽ 1

2𝜋𝑖

∫︁
𝑇 (𝑧,𝑟)

|𝜓1(𝜁)− 𝜓1(𝑧)|
|𝜁 − 𝑧|2

|𝑑𝜁| ⩽ 1

2𝜋𝑖

∫︁
𝑇 (𝑧,𝑟)

𝑐𝛼|𝜁 − 𝑧|2𝛼−1

|𝜁 − 𝑧|2
|𝑑𝜁| = 𝑐𝛼

𝑟2(1−𝛼)
,

where 𝑐𝛼 = sup𝜁 ̸=𝑧 |𝜓1(𝜁)− 𝜓1(𝑧)|/|𝜁 − 𝑧|2𝛼−1. Passing to the limit as 𝑟 → (1− |𝑧|), we obtain

|𝜕𝜓(𝑧)| ⩽ 𝑐𝛼(1− |𝑧|)2(𝛼−1),

see also [13] or [14]. This means that 𝜕𝜓 ∈ 𝐿𝑝(D) if 2(1−𝛼)𝑝 < 1. In the same way we establish

the 𝐿𝑝-integrability of the derivative 𝜕𝜓 = 𝜓′
2 under the same condition for 𝑝. The proof is

complete.

We consider the Beurling operator

ℬ𝜙(𝑧) := 1

𝜋

∫︁
C

𝜙(𝜁)𝑑𝜇

(𝜁 − 𝑧)2
, (3.1)

which by Calderon-Zygmund theorem [15] is a bounded mapping of the space 𝐿𝑝(C) into itself
for each 𝑝 ∈ (1,∞). By ‖ℬ‖𝑝 we denote its norm as of the mapping 𝐿𝑝(C) → 𝐿𝑝(C) and in
the same way we denote the norms of the operators acting in 𝐿𝑝(𝑈) for an arbitrary domain
𝑈 . For further purposes an essential fact is that ‖ℬ‖𝑝 → 1 as 𝑝→ 2, see [16], [17].

Proposition 3.1. Operators (2.10), (2.11) possess the following properties:
(i) 𝒦 : 𝐿𝑝(D) → 𝐿𝑝(D) is bounded as 𝑝 > 1;
(ii) 𝒦𝜕 : 𝐿𝑝(D) → 𝐿𝑝(D) is bounded as 𝑝 > 1 and ‖𝒦𝜕‖𝑝 = ‖ℬ‖𝑝 → 1 as 𝑝→ 2;
(iii) 𝒦𝜕 : 𝐿𝑝(D) → 𝐿𝑝(D) is bounded as 𝑝 > 1 and ‖𝒦𝜕‖𝑝 → 1 as 𝑝→ 2.

Proof. Property (i) is implied by the fact that the kernel of the integral operator 𝒦 consists of
the sum of two kernels with a weak singularity.
(ii) Let 𝜙 ∈ 𝐿𝑝(D), 𝑝 > 1. Then 𝒦𝜕 𝜙 = ℬ𝜙1, where the function 𝜙1 coincides with 𝜙 in the

circle D and vanishes outside D so that ‖𝜙1‖𝐿𝑝(C) = ‖𝜙‖𝐿𝑝(D). Therefore, ‖𝒦𝜕‖𝑝 = ‖ℬ‖𝑝.
(iii) In the integral for 𝒦𝜕 from formula (2.11) we make the change 𝜉 = 1/𝜁 and we obtain

𝒦𝜕[𝜙(𝑧)] =
1

𝜋

∫︁
C∖D

𝜙(1/𝜉)

𝜉2
· 𝑑𝜇

(𝜉 − 𝑧)2
− 𝜙(𝑧) = ℬ[𝜙2(𝑧)]− 𝜙(𝑧), (3.2)

where 𝜙2(𝑧) = 𝜙(1/𝑧)/𝑧2 as 𝑧 ∈ C ∖ D and 𝜙2(𝑧) = 0 as 𝑧 ∈ D. Making the inverse change
𝜁 = 1/𝜉, we find

‖𝜙2‖𝐿𝑝(D) =

(︂∫︁
C∖D

|𝜙2(𝜉)|𝑝𝑑𝜇
)︂ 1

𝑝

=

(︂∫︁
D
|𝜉|2𝑝−4 · |𝜙(𝜁)|𝑝𝑑𝜇

)︂ 1
𝑝

⩽ ‖𝜙‖𝐿𝑝(D)

as 𝑝 ⩾ 2 with the identity as 𝑝 = 2. Then it follows from (3.2) that

‖𝒦𝜕 𝜙‖𝐿𝑝(D) ⩽ (‖ℬ‖𝑝 + 1)‖𝜙‖𝐿𝑝(D),

that is, 𝒦𝜕 : 𝐿𝑝(D) → 𝐿𝑝(D) is bounded as 𝑝 > 1.
We are going to find ‖𝒦𝜕‖2. First let 𝜙 be an arbitrary test function from the class 𝐶2

0(D) of
twice continuously differentiable in C compactly supported functions supp𝜙 ⊂ 𝐷𝑟 := {|𝑧| < 𝑟},
where 𝑟 ∈ (0, 1). Then 𝒦[𝜙(𝑧)] ∈ 𝐶(D), see [16]. By (2.10) we have:

𝒦[𝜙(𝑧)] =
1− |𝑧|2

𝜋

∫︁
supp(𝜙)

𝜙(𝜁)𝑑𝜇(𝜁)

(𝜁 − 𝑧)(1− 𝜁𝑧)
,

and for |𝑧| > 𝑟 we find

|𝒦[𝜙(𝑧)]| ⩽ 1− |𝑧|2

𝜋(|𝑧| − 𝑟)(1− 𝑟|𝑧|)

∫︁
𝐷𝑟

|𝜙(𝜁)|𝑑𝜇(𝜁) → 0 (3.3)
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as |𝑧| → 1. Since 𝜙(𝑧) = 0 and 𝒦[𝜙(𝑧)] = 0 as 𝑧 ∈ T, integrating by parts several times, we
obtain

‖𝒦𝜕 𝜙‖2𝐿2(D) =

∫︁
D

𝜕

𝜕𝑧
𝒦[𝜙(𝑧)] · 𝜕

𝜕𝑧
𝒦[𝜙(𝑧)]𝑑𝜇(𝑧) = −

∫︁
D
𝒦[𝜙(𝑧)]

𝜕2

𝜕𝑧𝜕𝑧
𝒦[𝜙(𝑧)]𝑑𝜇(𝑧)

=

∫︁
D
𝒦[𝜙(𝑧)]

𝜕𝜙(𝑧)

𝜕𝑧
𝑑𝜇(𝑧) = −

∫︁
D
𝜙(𝑧)

𝜕

𝜕𝑧
𝒦[𝜙(𝑧)]𝑑𝜇(𝑧)

= −
∫︁
D
𝜙(𝑧)

(︃
1

𝜋

∫︁
D

𝜙(𝜁)𝑑𝜇(𝜁)

(1− 𝜁𝑧)2
− 𝜙(𝑧)

)︃
𝑑𝜇(𝑧)

= ‖𝜙‖2𝐿2(D) −
1

𝜋

∫︁
D

∫︁
D

𝜙(𝑧)𝜙(𝜁)

(1− 𝜁𝑧)2
𝑑𝜇(𝜁)𝑑𝜇(𝑧).

The quantity deducted from ‖𝜙‖2𝐿2(D) is equal to

1

𝜋

∫︁
D

∫︁
D

𝜙(𝑧)𝜙(𝜁)

(1− 𝜁𝑧)2
𝑑𝜇(𝜁)𝑑𝜇(𝑧) =

∞∑︁
𝑛=0

(𝑛+ 1)
1

𝜋

∫︁
D

∫︁
D
𝜙(𝑧)𝜙(𝜁)𝑧𝑛𝜁

𝑛
𝑑𝜇(𝜁)𝑑𝜇(𝑧)

=
∞∑︁
𝑛=0

(𝑛+ 1)
1

𝜋

⃒⃒⃒⃒∫︁
D
𝜙(𝑧)𝑧𝑛𝑑𝜇(𝑧)

⃒⃒⃒⃒2
⩾ 0,

and this is why

‖𝒦𝜕 𝜙‖𝐿2(D) ⩽ ‖𝜙‖𝐿2(D)

and the identity is achieved at the functions 𝜙 ∈ 𝐶2
0(D), for which

∫︀
D 𝜙(𝑧)𝑧

𝑛𝑑𝜇(𝑧) = 0 as
𝑛 = 0, 1, . . . . Approximating the functions from 𝐿𝑝(D) by the functions from the class 𝐶2

0(D),
we obtain the same estimate. Thus, ‖𝒦𝜕‖2 = 1. The norm ‖𝒦𝜕‖𝑝 is well-defined for all
𝑝 > 1. Then the Riesz-Thorin theorem [16], which states that the quantity log ‖𝒦𝜕‖𝑝 is a
convex function of the variable 1/𝑝, implies the continuity of this quantity with respect to 𝑝.
Therefore, ‖𝒦𝜕‖𝑝 → 1 as 𝑝→ 2. The proof is complete.

Proof of Theorem 2.1. Step 1. First we are going to establish the convergence of series (2.5)
with the first partial derivatives in the norm of the space 𝐿𝑝(D). It follows from Lemma 3.1
that the function 𝐹0 = 𝒫 [ℎ] belongs to the Sobolev space 𝑊 1

𝑝 (D) as 𝑝 < (2(1−𝛼))−1. Suppose
that 𝐹𝑛−1 ∈ 𝐿𝑝(D), 𝑝 > 2, for some index 𝑛. Then

𝜕𝐹𝑛 = 𝒦𝜕[(𝜔′/𝜔′)(𝛼0𝜕𝐹𝑛−1 + 𝛽0𝜕𝐹𝑛−1)], 𝜕𝐹𝑛 = 𝒦𝜕[(𝜔
′/𝜔′)(𝛼0𝜕𝐹𝑛−1 + 𝛽0𝜕𝐹𝑛−1)]

in the sense of distributions, see [16]. Employing these relations and applying Proposition 3.1
as well as the identity |𝛼0|+ |𝛽0| = 1, by formula (2.12) we deduce estimates

‖𝜕𝐹𝑛‖𝐿𝑝(D) ⩽ ‖𝒦𝜕‖𝑝 max{‖𝜕𝐹𝑛−1‖𝐿𝑝(D), ‖𝜕𝐹𝑛−1‖𝐿𝑝(D)},
‖𝜕𝐹𝑛‖𝐿𝑝(D) ⩽ ‖𝒦𝜕‖𝑝 max{‖𝜕𝐹𝑛−1‖𝐿𝑝(D), ‖𝜕𝐹𝑛−1‖𝐿𝑝(D)},

which imply

‖𝐷𝐹𝑛‖𝐿𝑝(D) ⩽ ‖𝒟𝒦‖𝑝 · ‖𝐷𝐹𝑛−1‖𝐿𝑝(D), (3.4)

where

‖𝐷𝐹𝑛‖𝐿𝑝(D) := max{‖𝜕𝐹𝑛‖𝐿𝑝(D), ‖𝜕𝐹𝑛‖𝐿𝑝(D)}, ‖𝒟𝒦‖𝑝 := max{‖𝒦𝜕‖𝑝, ‖𝒦𝜕‖𝑝}.

By (2.12) this yields

‖𝐹𝑛‖𝐿𝑝(D) ⩽ ‖𝒦‖𝑝 · ‖𝐷𝐹𝑛−1‖𝐿𝑝(D) ⩽ ‖𝒦‖𝑝 · ‖𝒟𝒦‖𝑛−1
𝑝 · ‖𝐷𝐹0‖𝐿𝑝(D). (3.5)
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Estimate (3.5) proves that under the condition ‖𝒟𝒦‖𝑝 · ‖𝑇‖ < 1 series (2.5) converges to its
sum 𝐹 ∈ 𝐿𝑝(D) and

‖𝐹‖𝐿𝑝(D) =

⃦⃦⃦⃦
⃦

∞∑︁
𝑛=0

𝐹𝑛‖𝑇‖𝑛
⃦⃦⃦⃦
⃦
𝐿𝑝(D)

⩽ ‖𝐹0‖𝐿𝑝(D) +
∞∑︁
𝑛=1

‖𝐹𝑛‖𝐿𝑝(D) · ‖𝑇‖𝑛

⩽ ‖𝐹0‖𝐿𝑝(D) +
∞∑︁
𝑛=1

‖𝒦‖𝑝 · ‖𝒟𝒦‖𝑛−1
𝑝 · ‖𝐷𝐹0‖𝐿𝑝(D) · ‖𝑇‖𝑛

= ‖𝐹0‖𝐿𝑝(D) +
‖𝒦‖𝑝 · ‖𝑇‖

1− ‖𝒟𝒦‖𝑝 · ‖𝑇‖
‖𝐷𝐹0‖𝐿𝑝(D).

(3.6)

Estimate (3.4) also proves that the first partial derivatives of series (2.5) converge to corre-
sponding derivatives of the function 𝐹 in the same norm:

‖𝐷𝐹‖𝐿𝑝(D) ⩽
‖𝐷𝐹0‖𝐿𝑝(D)

1− ‖𝒟𝒦‖𝑝 · ‖𝑇‖
, (3.7)

where

‖𝐷𝐹‖𝐿𝑝(D) := max{‖𝜕𝐹‖𝐿𝑝(D), ‖𝜕𝐹‖𝐿𝑝(D)}.

Estimates (3.6) and (3.7) yield the convergence of series (2.5) in the norm of the Sobolev space
𝑊 1

𝑝 (D):

lim
𝑚→∞

‖𝐹 − 𝑆𝑚‖𝑊 1
𝑝 (D) = 0. (3.8)

By the Sobolev embedding theorem [18], 𝑊 1
𝑝 (D) ⊂ 𝐶(D) as 1 − 2/𝑝 > 0, or 𝑝 > 2, and this

embedding is compact. Hence, since 𝐹 ∈ 𝑊 1
𝑝 (D), then 𝐹 ∈ 𝐶(D) and 𝑓 = 𝐹 ∘ 𝜔−1 ∈ 𝐶(𝛺).

By the compactness of the embedding, series (2.5), and hence series (2.1) converge uniformly
in D and 𝛺, respectively.
Step 2. Now we are going to show that the function 𝑓 = 𝐹 ∘ 𝜔−1 solves equation ℒ𝑓 = 0 in

the domain 𝛺. First we shall show this identity in the generalized sense.
Let 𝜑 be an arbitrary test function from the class 𝐶2

0(D) and

⟨𝑔|𝜑⟩ :=
∫︁
C

𝑔(𝑧)𝜑(𝑧)𝑑𝜇

is the action of the distribution 𝑔 on a function 𝜑. We have:

⟨𝐹𝑛|𝜕𝜕𝜑⟩ =
∫︁
D
𝜕𝜕𝜑(𝑧)𝑑𝜇(𝑧)

∫︁
D
𝜕𝜁𝐺(𝜁, 𝑧)

𝜔′(𝜁)

𝜔′(𝜁)
𝜕(𝑇0𝐹𝑛−1(𝜁))𝑑𝜇(𝜁)

=

∫︁
D

𝜔′(𝜁)

𝜔′(𝜁)
𝜕(𝑇0𝐹𝑛−1(𝜁))𝑑𝜇(𝜁)𝜕𝜁

∫︁
D
𝐺(𝜁, 𝑧)𝜕𝜕𝜑(𝑧)𝑑𝜇(𝑧)

=

∫︁
D

𝜔′(𝜁)

𝜔′(𝜁)
𝜕(𝑇0𝐹𝑛−1(𝜁))𝜕𝜑(𝜁)𝑑𝜇(𝜁) = ⟨(𝜔′/𝜔′)𝜕(𝑇0𝐹𝑛−1)|𝜕𝜑⟩.
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This implies the identity 𝜕𝜕𝐹𝑛 = −𝜕[(𝜔′/𝜔′)𝜕(𝑇0𝐹𝑛−1)] of the generalized derivatives in D. By
(2.4) this implies the following chain of identities for the generalized functions

|𝜔′|2ℒ𝑠𝑚 =
𝑚∑︁

𝑛=0

(︂
𝜕𝜕𝐹𝑛 + ‖𝑇‖𝜕

(︂
𝜔′

𝜔′𝜕(𝑇0𝐹𝑛)

)︂)︂
‖𝑇‖𝑛

= 𝜕𝜕𝐹0 +
𝑚∑︁

𝑛=1

(︂
𝜕𝜕𝐹𝑛 + 𝜕

(︂
𝜔′

𝜔′𝜕(𝑇0𝐹𝑛−1)

)︂)︂
‖𝑇‖𝑛 + 𝜕

(︂
𝜔′

𝜔′𝜕(𝑇0𝐹𝑚)

)︂
‖𝑇‖𝑚+1

= 𝜕

(︂
𝜔′

𝜔′𝜕(𝑇0𝐹𝑚)

)︂
‖𝑇‖𝑚+1,

that is, for each function 𝜙 ∈ 𝐶2
0(𝛺), using the function 𝜑 := 𝜙 ∘ 𝜔 ∈ 𝐶2

0(D), we can write

⟨ℒ𝑠𝑚 |𝜙⟩ = ⟨𝜕
[︀
(𝜔′/𝜔′)𝜕(𝑇0𝐹𝑚)

]︀
|𝜑⟩ · ‖𝑇‖𝑚+1 = −⟨𝜕(𝑇0𝐹𝑚) | (𝜔′/𝜔′)𝜕𝜑⟩ · ‖𝑇‖𝑚+1.

Then

⟨ℒ𝑓 |𝜙⟩ := ⟨𝑓 |ℒ𝜙⟩ = ⟨𝑓 − 𝑠𝑚|ℒ𝜙⟩+ ⟨𝑠𝑚|ℒ𝜙⟩
= ⟨𝐹 − 𝑆𝑚|ℳ𝜑⟩ − ⟨𝜕(𝑇0𝐹𝑚)|(𝜔′/𝜔′)𝜕𝜑⟩ · ‖𝑇‖𝑚+1.

We let 1/𝑝 + 1/𝑞 = 1. Applying the Hölder inequality and taking into consideration relations
(3.4) and (3.8), we get:

|⟨ℒ𝑓 |𝜙⟩| ⩽ ‖𝐹 − 𝑆𝑚‖𝐿𝑝(D) · ‖ℳ𝜑‖𝐿𝑞(D) + ‖𝐷𝐹𝑚‖𝐿𝑝(D) · ‖𝜕𝜑‖𝐿𝑞(D) · ‖𝑇‖𝑚+1

⩽ ‖𝐹 − 𝑆𝑚‖𝐿𝑝(D) · ‖ℳ𝜑‖𝐿𝑞(D) + ‖𝐷𝐹0‖𝐿𝑝(D) · ‖𝜕𝜑‖𝐿𝑞(D) · ‖𝒟𝒦‖𝑚𝑝 · ‖𝑇‖𝑚+1 → 0

as 𝑚→ ∞ and ‖𝒟𝒦‖𝑝 ·‖𝑇‖ < 1. Thus, ⟨ℒ𝑓 |𝜙⟩ = 0, that is, the function 𝑓 solves the equation
ℒ𝑓 = 0 in 𝛺 in the generalized sense. By the ellipticity of this equation and the Weyl lemma,
it is satisfied also in the classical sense.
Step 3. It remains to show that 𝑓 |Γ = ℎ. It follows from estimates (3.4) and (3.5) that

𝐹𝑛 ∈ 𝑊 1
𝑝 (D). By the Sobolev embedding theorem as 𝑝 > 2 this implies that 𝐹𝑛 ∈ 𝐶(D). Since

the function 𝐹0 is a harmonic continuation of the boundary function 𝐻 ∈ 𝐶𝛼(T), we have
𝐹0|T = 𝐻. Other functions 𝐹𝑛 calculated by the second formula in (2.12) vanish on T: this
fact can be shown by approximating the function (𝜔′/𝜔′)𝜕(𝑇0𝐹𝑛−1) ∈ 𝐿𝑝(D), 𝑝 ∈ (1,∞), by
compactly supported functions from 𝐶2

0(D) for 𝑛 ⩾ 1 and applying then estimate (3.3).
Thus, 𝑆𝑚|T = 𝐻 for all 𝑚. The compact embedding 𝑊 1

𝑝 (D) ⊂ 𝐶(D) and convergence (3.8)
yield the uniform convergence ‖𝐹 − 𝑆𝑚‖𝐶(D) → 0 and hence 𝐹 |T = 𝑆𝑚|T = 𝐻. Therefore,

𝑓 |Γ = ℎ.
The above arguing is true under the inequalities 2 < 𝑝 < (2(1−𝛼))−1, which are compatible

owing to 𝛼 ∈ (1/2, 1). Since ‖𝒟𝒦‖𝑝 → 1 as 𝑝 → 2, for each value ‖𝑇‖ < 1 we can find a
sufficiently close to 2 value of 𝑝, under which ‖𝒟𝒦‖𝑝 · ‖𝑇‖ < 1. The proof is complete.

BIBLIOGRAPHY

1. I.G. Petrovsky. On analyticity of solutions to systems of partial differential equations // Matem.
Sborn. 5:1, 3–70 (1939). (in Russian).

2. L.K. Hua, W. Lin, C.Q. Wu. On the uniqueness of the solution of the Dirichlet problem of the

elliptic system of differential equations // Acta Math. Sinica. 15:2, 242–248 (1965). [Chin. Math.
6, 553–560 (1966).]

3. M.I. Vishik. On strongly elliptic systems of differential equations // Matem. Sborn. 29:3, 615–676
(1951). (in Russian).

4. L.K. Hua, W. Lin, C.Q. Wu. Second-order systems of partial differential equations in the plane.

Pitman Advanced Publishing Program, Boston (1985).



30 A.O. BAGAPSH

5. A.O. Bagapsh, K.Yu. Fedorovskiy. 𝐶1-approximation of functions by solutions of second-order

elliptic systems on compact sets in R2 // Trudy MIAN. 298, 42–57 (2017). [Proc. Steklov Inst.
Math. 298, 35–50 (2017).]

6. A.V. Bitsadze. On the uniqueness of the solution of the Dirichlet problem for elliptic partial

differential equations // Uspekhi Matem. Nauk. 3:6(28), 211–212 (1948).
7. L.D. Landau, E.M. Lifshitz. Course of theoretical physics. V. 7. Theory of elasticity. Nauka,

Moscow (1987). [Elsevier, Amsterdam (1986).]
8. A.O. Bagapsh, K. Yu. Fedorovskiy. On energy functionals for second order elliptic systems with

constant coefficients // Ufimskij Matem. Zhurn. 14:4, 16–28 (2022). [Ufa Math. J. 14:4, 14–25
(2022).]

9. A.O. Bagapsh. The perturbation method for the skew-symmetric strongly elliptic systems of

PDEs // Compl. Var. Ellip. Equat. 68:1, 57–66 (2023).
10. H. Lebesgue. Sur le problème de Dirichlet // Rend. Circ. Matem. Palermo. 24, 371–402 (1907).
11. G.C. Verchota, A.L. Vogel. Nonsymmetric systems on nonsmooth planar domains // Trans. Amer.

Math. Soc. 349:11, 4501–4535 (1997).
12. I.I. Privalov. On Cauchy type integrals // Dokl. Akad. Nauk. 23:9, 859–862 (1939). (in Russian).
13. P. Duren. Theory of 𝐻𝑝 spaces. Academic Press, New York (1970).
14. Ch. Pommerenke. Boundary behavior of conformal maps. Springer-Verlag, Berlin (1992).
15. A. Calderon, A. Zygmund. On the existence of certain singular integrals // Acta Math. 88,

85–139 (1952).
16. L.V. Ahlfors. Lectures on quasiconformal mappings.Van Nostrand, Princeton, New Jersey (1966).
17. M. Christ. Lectures on singular integral operators Amer. Math. Soc., Providence, RI. (1990).
18. S.L. Sobolev. Some applications of functional analysis to mathematical physics. Nauka, Moscow

(1988). (in Russian).

Astamur Olegovich Bagapsh,
Federal Research Center
“Computer Science and Control”
of the Russian Academy of Sciences,
Vavilova str. 44, bld. 2,
119333, Moscow, Russia

Saint-Petersburg State University,
14 line of Vasilievsky island, 29b,
199178, Saint-Petersburg, Russia
E-mail: a.bagapsh@gmail.com


