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QUADRATURE FORMULA FOR NORMAL DERIVATIVE

OF DOUBLE LAYER POTENTIAL

E.H. KHALILOV

Abstract. Looking for a solution to the Dirichlet and Neumann boundary value problems
for the Helmholtz equation in the form of a combination of simple and double layer poten-
tials, the considered boundary value problems are reduced to a curvilinear integral equation
depending on the operators generated by the simple and double layer potentials and by
their normal derivative. It is known that the latter operators are weakly singular integral
ones. However, a counterexample constructed by Lyapunov shows that for the double layer
potential with continuous density, the derivative, generally speaking, does not exist, that is,
the operator generated by the normal derivative of the double layer potential is a singular
integral operator.

Since in many cases it is impossible to find exact solutions to integral equations, it is of
interest to study an approximate solution of the obtained integral equations. In its turn, in
order to find an approximate solution, it is necessary, first of all, to construct quadrature
formulas for the simple and double layer potentials of the and for their normal derivatives.
In this work we prove the existence theorem for the normal derivative of the double layer
potential and we provide a formula for its calculation. In addition, we develop a new method
for constructing a quadrature formula for a singular curvilinear integral and on the base
of this we construct a quadrature formula for the normal derivative of the double layer
potential and we estimate the error.

Keywords: quadrature formulas, singular integral, double layer potential, Hankel function,
Lyapunov curve.
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1. Introduction and formulation of problem

It is known that in a two-dimensional space, searching for a solution to the Dirichlet and
Neumann boundary value problems for the Helmholtz equation ∆𝑢+ 𝑘2𝑢 = 0 in the form of a
combination of potentials of a simple and double layer, the considered boundary value problems
are reduced to an integral equation (see [1, Ch. III]) depending on the operator generated by
the normal derivative of the double layer potential:

(𝑇𝜌) (𝑥) = 2
𝜕

𝜕𝜈 (𝑥)

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕𝜈 (𝑦)
𝜌 (𝑦) 𝑑𝐿𝑦, 𝑥 = (𝑥1, 𝑥2) ∈ 𝐿. (1.1)

Here ∆ is the Laplace operator, 𝑘 is a wave number and Im 𝑘 ⩾ 0, 𝐿 ⊂ R2 is a simple closed
Lyapunov curve, 𝜌(𝑦) is a continuous function on the curve 𝐿, 𝜈(𝑦) is the outward unit normal
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at the point 𝑦 ∈ 𝐿, and Φ(𝑥, 𝑦) is the fundamental solution of the Helmholtz equation, that is,

Φ(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
1

2𝜋
ln

1

|𝑥− 𝑦|
as 𝑘 = 0,

𝑖

4
𝐻

(1)
0 (𝑘 |𝑥− 𝑦|) as 𝑘 ̸= 0,

where by |𝑥− 𝑦| we denote the Euclidean distance between the points 𝑥 and 𝑦; 𝐻
(1)
0 is the

Hankel function of zero order and first kind defined by the formula 𝐻
(1)
0 (𝑧) = 𝐽0 (𝑧) + 𝑖𝑁0 (𝑧),

𝐽0 (𝑧) =
∞∑︁

𝑚=0

(−1)𝑚

(𝑚!)2

(︁𝑧
2

)︁2𝑚
is the Bessel function of zero order,

𝑁0 (𝑧) =
2

𝜋

(︁
ln

𝑧

2
+ 𝐶

)︁
𝐽0 (𝑧) +

∞∑︁
𝑚=1

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1

(𝑚!)2

(︁𝑧
2

)︁2𝑚
is the Neumann function of zero order, see [2, Ch. XIII], while 𝐶 = 0.57721 . . . is the Euler
constant. It should be mentioned that a counterexample constructed by Lyapunov, see [3, Ch.
II] shows that, generally speaking, the double layer potential does not have a derivative.
Since in many cases it is impossible to find exact solutions of integral equations, it is in-

teresting to study approximate solutions of the obtained integral equations. In order to find
an approximate solution, it is necessary, first of all, to construct quadrature formulas for the
simple layer potential and double layer potential and for their normal derivatives. We note that
in work [4], by using the asymptotic formula for the Hankel functions of the first kind and zero
order, a quadrature formula was constructed for the simple layer potential and double layer
potential, which does not allow to determine the rate of convergence of these quadrature for-
mulas. However, in work [5], in a more practical way, quadrature formulas for the simple layer
potential and double layer potential were constructed, and in work [6] a quadrature formula was
constructed for the normal derivative of the simple layer potential and estimates for the errors
of the constructed quadrature formulas were given. In addition, in works [7], [8] quadrature
formulas were constructed for the normal derivative of the logarithmic simple layer potential
and double layer potential and there were studied approximate solutions of the integral equa-
tions of the external Dirichlet boundary value problem and the mixed boundary value problem
for the Laplace equation in two-dimensional space. In works [9], [10] a new method was pro-
posed for constructing a cubature formula for the normal derivative of the acoustic double layer
potential and the collocation method was justified for integral equations of external boundary
value problems of Dirichlet and Neumann for the Helmholtz equation in three-dimensional
space. However, it is known that in the three-dimensional space the fundamental solution of
the Helmholtz equation reads as

Φ𝑘(𝑥, 𝑦) =
exp (𝑖𝑘 |𝑥− 𝑦|)

4𝜋 |𝑥− 𝑦|
, 𝑥, 𝑦 ∈ R3, 𝑥 ̸= 𝑦,

which strictly differs from the fundamental solution of the Helmholtz equation in the two-
dimensional space. It also should be mentioned that in work [11], the normal derivative of
the double layer potential was considered as a hypersingular integral treated as the principal
value in the Hadamard sense and a quadrature formula for the normal derivative of the double
layer potential was constructed by the methods of subdomains under an additional condition
for the density 𝜌, see [11, Ch. XIII]. It is known that under this condition, the expression for
the normal derivative of the double layer potential can be represented in the form of a singular
integral, see [1, Ch. II], [11, Ch. IV], i.e. integral (1.1) exists in the sense of the Cauchy
principal value. In addition, it should be noted that the quadrature formula constructed in [11]
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is not practical in the sense that its coefficients are singular integrals. Therefore, considering
the normal derivative of the double layer potential as an integral in the sense of the Cauchy
principal value, a more practical way of constructing a quadrature formula for integral (1.1) is
important; our note is devoted to this issue.

2. Existence and formula for calculating normal derivative

for double layer potential

By 𝐶 (𝐿) we denote the space of all continuous functions on 𝐿 with the norm ‖𝜌‖∞ =
max
𝑥∈𝐿

|𝜌 (𝑥)|, and for a function 𝜙(𝑥) ∈ 𝐶 (𝐿) we introduce a continuity modulus of form

𝜔(𝜙, 𝛿) = 𝛿 sup
𝜏⩾𝛿

�̄�(𝜙, 𝜏)

𝜏
, 𝛿 > 0,

where �̄�(𝜙, 𝜏) = max
|𝑥−𝑦|⩽𝜏
𝑥,𝑦∈𝐿

|𝜙(𝑥)− 𝜙(𝑦)|. We note in the same way the continuity modulus for a

continuous vector function 𝜙 (𝑥) = (𝜙1 (𝑥) , 𝜙2 (𝑥)) is introduced with

|𝜙(𝑥)− 𝜙(𝑦)| =
√︁
(𝜙1(𝑥)− 𝜙1(𝑦))

2 + (𝜙2(𝑥)− 𝜙2(𝑦))
2.

Theorem 2.1. Let 𝐿 ⊂ R2 be a simple closed Lyapunov curve, 𝜌 (𝑥) be a continuously

differentiable function on 𝐿 and

diam𝐿∫︁
0

𝜔 (grad 𝜌, 𝑡)

𝑡
𝑑𝑡 < +∞.

Then the double layer potential

𝑊 (𝑥) =

∫︁
𝐿

𝜕Φ (𝑥, 𝑦)

𝜕𝜈 (𝑦)
𝜌 (𝑦) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

possesses on 𝐿 the normal derivative and

𝜕𝑊 (𝑥)

𝜕𝜈 (𝑥)
=

∫︁
𝐿

𝜕𝑉 (𝑥, 𝑦)

𝜕𝜈 (𝑥)
𝜌 (𝑦) 𝑑𝐿𝑦

− 1

𝜋

∫︁
𝐿

(𝑥− 𝑦, 𝜈 (𝑦)) (𝑥− 𝑦, 𝜈 (𝑥))

|𝑥− 𝑦|4
(𝜌 (𝑦)− 𝜌 (𝑥)) 𝑑𝐿𝑦

+
1

2𝜋

∫︁
𝐿

(𝜈 (𝑦) , 𝜈 (𝑥))

|𝑥− 𝑦|2
(𝜌 (𝑦)− 𝜌 (𝑥)) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿

(2.1)

and ⃒⃒⃒⃒
𝜕𝑊 (𝑥)

𝜕𝜈 (𝑥)

⃒⃒⃒⃒
⩽ 𝑀1

⎛⎝‖𝜌‖∞ + ‖grad 𝜌‖∞ +

diam𝐿∫︁
0

𝜔 (grad 𝜌, 𝑡)

𝑡
𝑑𝑡

⎞⎠ for all 𝑥 ∈ 𝐿.

Here by (𝑎, 𝑏) we denote the scalar product in 𝑎 and 𝑏 and diam𝐿 = sup
𝑥,𝑦∈𝐿

|𝑥− 𝑦| and

𝑉 (𝑥, 𝑦) =

(︂
𝑖

4
− 𝐶

2𝜋
− 1

2𝜋
ln

𝑘 |𝑥− 𝑦|
2

)︂
(𝑦 − 𝑥, 𝜈 (𝑦))

∞∑︁
𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!

1Hereinafter by 𝑀 we denote positive constants, which are different in various inequalities.
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− (𝑦 − 𝑥, 𝜈 (𝑦))
∞∑︁

𝑚=1

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚+1 (𝑚− 1)!𝑚!

− 1

2𝜋
(𝑦 − 𝑥, 𝜈 (𝑦))

∞∑︁
𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚 (𝑚!)2
.

Moreover, the first and second terms, the integrals in (2.1) are weakly-singular, while the last

integral exists in the sense of the Cauchy principal value, that is,∫︁
𝐿

(𝜈 (𝑦) , 𝜈 (𝑥))

|𝑥− 𝑦|2
(𝜌 (𝑦)− 𝜌 (𝑥)) 𝑑𝐿𝑦 = lim

𝜖→+0

∫︁
𝐿∖𝐿𝜖(𝑥)

(𝜈 (𝑦) , 𝜈 (𝑥))

|𝑥− 𝑦|2
(𝜌 (𝑦)− 𝜌 (𝑥)) 𝑑𝐿𝑦,

where 𝐿𝜖 (𝑥) is the part of the curve 𝐿 located inside the circle of the radius 𝜖 centered at the

point 𝑥 ∈ 𝐿.

Proof. By straightforward calculations we find that

𝜕Φ (𝑥, 𝑦)

𝜕𝜈 (𝑦)
=

𝑖

4

(︂
𝜕𝐽0 (𝑘 |𝑥− 𝑦|)

𝜕𝜈 (𝑦)
+ 𝑖

𝜕𝑁0 (𝑘 |𝑥− 𝑦|)
𝜕𝜈 (𝑦)

)︂
,

where

𝜕𝐽0 (𝑘 |𝑥− 𝑦|)
𝜕𝜈 (𝑦)

= (𝑦 − 𝑥, 𝜈 (𝑦))
∞∑︁

𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!

and

𝜕𝑁0 (𝑘 |𝑥− 𝑦|)
𝜕𝜈 (𝑦)

=
2

𝜋

(︂
ln

𝑘 |𝑥− 𝑦|
2

+ 𝐶

)︂
𝜕𝐽0 (𝑘 |𝑥− 𝑦|)

𝜕𝜈 (𝑦)
+

2 (𝑦 − 𝑥, 𝜈 (𝑦))

𝜋 |𝑥− 𝑦|2
𝐽0 (𝑘 |𝑥− 𝑦|)

+ (𝑦 − 𝑥, 𝜈 (𝑦))
∞∑︁

𝑚=1

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!
.

Then the expression 𝑊 (𝑥) can be represented as

𝑊 (𝑥) =

∫︁
𝐿

(︂
(𝑥− 𝑦, 𝜈 (𝑦))

2𝜋 |𝑥− 𝑦|2
+ 𝑉 (𝑥, 𝑦)

)︂
𝜌 (𝑦) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿.

It was shown in work [12] that if the function 𝜌 (𝑥) is continuously differentiable on 𝐿 and

diam𝐿∫︁
0

𝜔 (grad 𝜌, 𝑡)

𝑡
𝑑𝑡 < +∞,

then the function

𝑊0 (𝑥) =
1

2𝜋

∫︁
𝐿

(𝑥− 𝑦, 𝜈 (𝑦))

|𝑥− 𝑦|2
𝜌 (𝑦) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

possesses on 𝐿 the normal derivative and

𝜕𝑊0 (𝑥)

𝜕𝜈 (𝑥)
=− 1

𝜋

∫︁
𝐿

(𝑥− 𝑦, 𝜈 (𝑦)) (𝑥− 𝑦, 𝜈 (𝑥))

|𝑥− 𝑦|4
(𝜌 (𝑦)− 𝜌 (𝑥)) 𝑑𝐿𝑦

+
1

2𝜋

∫︁
𝐿

(𝜈 (𝑦) , 𝜈 (𝑥))

|𝑥− 𝑦|2
(𝜌 (𝑦)− 𝜌 (𝑥)) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿

(2.2)
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and ⃒⃒⃒⃒
𝜕𝑊0 (𝑥)

𝜕𝜈 (𝑥)

⃒⃒⃒⃒
⩽ 𝑀

⎛⎝‖𝜌‖∞ + ‖grad 𝜌‖∞ +

diam𝐿∫︁
0

𝜔 (grad 𝜌, 𝑡)

𝑡
𝑑𝑡

⎞⎠ , ∀𝑥 ∈ 𝐿,

when the last integral in identity (2.2) exists in the sense of the Cauchy principal value.
Since [13, Ch. V]

|(𝑥− 𝑦, 𝜈 (𝑥))| ⩽ 𝑀 |𝑥− 𝑦|1+𝛼 , ∀𝑥, 𝑦 ∈ 𝐿, (2.3)

then taking into consideration the inequalities

|𝐽0 (𝑘 |𝑥− 𝑦|)| =

⃒⃒⃒⃒
⃒

∞∑︁
𝑚=0

(−1)𝑚

(𝑚!)2

(︂
𝑘 |𝑥− 𝑦|

2

)︂2𝑚
⃒⃒⃒⃒
⃒ ⩽

∞∑︁
𝑚=0

(|𝑘| 𝑑𝑖𝑎𝑚𝐿)2𝑚

4𝑚 (𝑚!)2
, ∀𝑥, 𝑦 ∈ 𝐿, (2.4)

and ⃒⃒⃒⃒
⃒

∞∑︁
𝑚=1

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!

⃒⃒⃒⃒
⃒

⩽
∞∑︁

𝑚=1

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
|𝑘|2𝑚 (𝑑𝑖𝑎𝑚𝐿)2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!
, ∀𝑥, 𝑦 ∈ 𝐿,

(2.5)

we obtain that

|𝑉 (𝑥, 𝑦)| ⩽ 𝑀 |𝑥− 𝑦| , ∀𝑥, 𝑦 ∈ 𝐿.

Therefore, the function

𝑊1 (𝑥) =

∫︁
𝐿

𝑉 (𝑥, 𝑦) 𝜌 (𝑦) 𝑑𝐿𝑦, 𝑥 ∈ 𝐿,

possesses the normal derivative on 𝐿 and

𝜕𝑊1 (𝑥)

𝜕𝜈 (𝑥)
=

∫︁
𝐿

𝜕𝑉 (𝑥, 𝑦)

𝜕𝜈 (𝑥)
𝜌 (𝑦) 𝑑𝐿𝑦

=
1

2𝜋

∫︁
𝐿

(𝑦 − 𝑥, 𝜈 (𝑥)) (𝑦 − 𝑥, 𝜈 (𝑦))

|𝑥− 𝑦|2
∞∑︁

𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!
𝜌 (𝑦) 𝑑𝐿𝑦

−
∫︁
𝐿

(︂
𝑖

4
− 𝐶

2𝜋
− 1

2𝜋
ln

𝑘 |𝑥− 𝑦|
2

)︂
(𝜈 (𝑦) , 𝜈 (𝑥))

·
∞∑︁

𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!
𝜌 (𝑦) 𝑑𝐿𝑦

+

∫︁
𝐿

(︂
𝑖

4
− 𝐶

2𝜋
− 1

2𝜋
ln

𝑘 |𝑥− 𝑦|
2

)︂
(𝑦 − 𝑥, 𝜈 (𝑦))

· (𝑥− 𝑦, 𝜈 (𝑥))
∞∑︁

𝑚=2

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−4

22𝑚−2 (𝑚− 2)!𝑚!
𝜌 (𝑦) 𝑑𝐿𝑦

+

∫︁
𝐿

(𝜈 (𝑦) , 𝜈 (𝑥))
∞∑︁

𝑚=1

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚+1 (𝑚− 1)!𝑚!
𝜌 (𝑦) 𝑑𝐿𝑦

−
∫︁
𝐿

(𝑥− 𝑦, 𝜈 (𝑥)) (𝑦 − 𝑥, 𝜈 (𝑦))
∞∑︁

𝑚=2

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1 𝑘2𝑚 |𝑥− 𝑦|2𝑚−4

22𝑚 (𝑚− 2)!𝑚!
𝜌 (𝑦) 𝑑𝐿𝑦
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+
1

2𝜋

∫︁
𝐿

(𝜈 (𝑦) , 𝜈 (𝑥)) (𝑦 − 𝑥, 𝜈 (𝑦))
∞∑︁

𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚 (𝑚!)2
𝜌 (𝑦) 𝑑𝐿𝑦

− 1

2𝜋

∫︁
𝐿

(𝑥− 𝑦, 𝜈 (𝑥)) (𝑦 − 𝑥, 𝜈 (𝑦))
∞∑︁

𝑚=2

(−1)𝑚 (𝑚− 1) 𝑘2𝑚 |𝑥− 𝑦|2𝑚−4

22𝑚−1 (𝑚!)2
𝜌 (𝑦) 𝑑𝐿𝑦

and ⃒⃒⃒⃒
𝜕𝑉 (𝑥, 𝑦)

𝜕𝜈 (𝑥)

⃒⃒⃒⃒
⩽ 𝑀 |ln |𝑥− 𝑦|| , ∀𝑥, 𝑦 ∈ 𝐿. (2.6)

This yields ⃒⃒⃒⃒
𝜕𝑊1 (𝑥)

𝜕𝜈 (𝑥)

⃒⃒⃒⃒
⩽ 𝑀 ‖𝜌‖∞ , ∀𝑥 ∈ 𝐿.

The proof is complete.

3. Quadrature formula for normal derivative of double layer potential

Suppose that the curve 𝐿 is given by the parametric equation 𝑥 (𝑡) = (𝑥1 (𝑡) , 𝑥2 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏].
We partition the segment [𝑎, 𝑏] into 𝑛 > 2𝑀0 (𝑏− 𝑎) /𝑑 equal parts:

𝑡𝑝 = 𝑎+
(𝑏− 𝑎) 𝑝

𝑛
, 𝑝 = 0, 𝑛,

where 𝑀0 = max
𝑡∈[𝑎,𝑏]

√︁
(𝑥′

1 (𝑡))
2 + (𝑥′

2 (𝑡))
2 < +∞, see [14, Ch. VI]) and 𝑑 is the standard basis,

see [13, Ch. V]). As nodes we take 𝑥 (𝜏𝑝), 𝑝 = 1, 𝑛, where 𝜏𝑝 = 𝑎+ (𝑏−𝑎) (2𝑝−1)
2𝑛

. Then the curve
𝐿 is partitioned into elementary parts:

𝐿 =
𝑛⋃︁

𝑝=1

𝐿𝑝, where 𝐿𝑝 = {𝑥 (𝑡) : 𝑡𝑝−1 ⩽ 𝑡 ⩽ 𝑡𝑝} .

It is known that [15]
(1) ∀𝑝 ∈ {1, 2, . . . , 𝑛}: 𝑟𝑝(𝑛) ∼ 𝑅𝑝(𝑛), where

𝑟𝑝 (𝑛) = min {|𝑥 (𝜏𝑝)− 𝑥 (𝑡𝑝−1)| , |𝑥 (𝑡𝑝)− 𝑥 (𝜏𝑝)|} ,
𝑅𝑝 (𝑛) = max {|𝑥 (𝜏𝑝)− 𝑥 (𝑡𝑝−1)| , |𝑥 (𝑡𝑝)− 𝑥 (𝜏𝑝)|} ,

and the writing 𝑎 (𝑛) ∼ 𝑏 (𝑛) means that 𝐶1 ⩽ 𝑎(𝑛)
𝑏(𝑛)

⩽ 𝐶2, where 𝐶1 and 𝐶2 are positive

constants independent of 𝑛.
(2) ∀𝑝 ∈ {1, 2, . . . , 𝑛} : 𝑅𝑝 (𝑛) ⩽ 𝑑/2;
(3) ∀𝑝, 𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑟𝑗 (𝑛) ∼ 𝑟𝑝 (𝑛) ;
(4) 𝑟 (𝑛) ∼ 𝑅 (𝑛) ∼ 1

𝑛
, where 𝑅 (𝑛) = max

𝑝=1, 𝑛
𝑅𝑝 (𝑛), 𝑟 (𝑛) = min

𝑝=1, 𝑛
𝑟𝑝 (𝑛).

In what follows such partition is called a partition of the curve 𝐿 into regular elementary
parts. The following lemma holds.

Lemma 3.1 ([15]). There exist constants 𝐶 ′
0 > 0 and 𝐶 ′

1 > 0 independent of 𝑛, such that

for all 𝑝, 𝑗 ∈ {1, 2, . . . , 𝑛}, 𝑗 ̸= 𝑝, and for all 𝑦 ∈ 𝐿𝑗 the inequalities

𝐶 ′
0 |𝑦 − 𝑥 (𝜏𝑝)| ⩽ |𝑥 (𝜏𝑗)− 𝑥 (𝜏𝑝)| ⩽ 𝐶 ′

1 |𝑦 − 𝑥 (𝜏𝑝)|

hold true.

It is obvious that there exists a natural number 𝑛0 such that

(𝑅 (𝑛))
1

1+𝛼 ⩽ min {1, 𝑑/2} , ∀𝑛 > 𝑛0.
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Let

𝑄𝑙 =
{︁
𝑗 | 1 ⩽ 𝑗 ⩽ 𝑛, |𝑥 (𝜏𝑙)− 𝑥 (𝜏𝑗)| > (𝑅 (𝑛))

1
1+𝛼

}︁
and

𝑉𝑛 (𝑥, 𝑦) =

(︂
𝑖

4
− 𝐶

2𝜋
− 1

2𝜋
ln

𝑘 |𝑥− 𝑦|
2

)︂
(𝑦 − 𝑥, 𝜈 (𝑦))

𝑛∑︁
𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!

− (𝑦 − 𝑥, 𝜈 (𝑦))
𝑛∑︁

𝑚=1

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚+1 (𝑚− 1)!𝑚!

− 1

2𝜋
(𝑦 − 𝑥, 𝜈 (𝑦))

𝑛∑︁
𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚 (𝑚!)2
.

By straightforward calculations we find:

𝜕𝑉𝑛 (𝑥, 𝑦)

𝜕𝜈 (𝑥)
=

1

2𝜋

(𝑦 − 𝑥, 𝜈 (𝑥)) (𝑦 − 𝑥, 𝜈 (𝑦))

|𝑥− 𝑦|2
𝑛∑︁

𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!

−
(︂
𝑖

4
− 𝐶

2𝜋
− 1

2𝜋
ln

𝑘 |𝑥− 𝑦|
2

)︂
(𝜈 (𝑦) , 𝜈 (𝑥))

𝑛∑︁
𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚−1 (𝑚− 1)!𝑚!

+

(︂
𝑖

4
− 𝐶

2𝜋
− 1

2𝜋
ln

𝑘 |𝑥− 𝑦|
2

)︂
(𝑦 − 𝑥, 𝜈 (𝑦))

· (𝑥− 𝑦, 𝜈 (𝑥))
𝑛∑︁

𝑚=2

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−4

22𝑚−2 (𝑚− 2)!𝑚!

+ (𝜈 (𝑦) , 𝜈 (𝑥))
𝑛∑︁

𝑚=1

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚+1 (𝑚− 1)!𝑚!

− (𝑥− 𝑦, 𝜈 (𝑥)) (𝑦 − 𝑥, 𝜈 (𝑦))
𝑛∑︁

𝑚=2

(︃
𝑚∑︁
𝑙=1

1

𝑙

)︃
(−1)𝑚+1 𝑘2𝑚 |𝑥− 𝑦|2𝑚−4

22𝑚 (𝑚− 2)!𝑚!

+
1

2𝜋
(𝜈 (𝑦) , 𝜈 (𝑥)) (𝑦 − 𝑥, 𝜈 (𝑦))

𝑛∑︁
𝑚=1

(−1)𝑚 𝑘2𝑚 |𝑥− 𝑦|2𝑚−2

22𝑚 (𝑚!)2

− 1

2𝜋
(𝑥− 𝑦, 𝜈 (𝑥)) (𝑦 − 𝑥, 𝜈 (𝑦))

𝑛∑︁
𝑚=2

(−1)𝑚 (𝑚− 1) 𝑘2𝑚 |𝑥− 𝑦|2𝑚−4

22𝑚−1 (𝑚!)2
.

The following theorem holds true.

Theorem 3.1. Let 𝐿 ⊂ R2 be a simple closed Lyapunov curve with the exponent 0 < 𝛼 ⩽ 1,
𝜌(𝑥) be a continuously differentiable function on 𝐿 and

diam𝐿∫︁
0

𝜔(grad 𝜌, 𝑡)

𝑡
𝑑𝑡 < +∞.

Then the expression

(𝑇𝑛𝜌) (𝑥 (𝜏𝑙)) =
2 (𝑏− 𝑎)

𝑛

𝑛∑︁
𝑗=1
𝑗 ̸=𝑙

𝜕𝑉𝑛 (𝑥 (𝜏𝑙) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑙))

√︁
(𝑥′

1 (𝜏𝑗))
2 + (𝑥′

2 (𝜏𝑗))
2 𝜌 (𝑥 (𝜏𝑗))
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− 2 (𝑏− 𝑎)

𝜋 𝑛

𝑛∑︁
𝑗=1
𝑗 ̸=𝑙

(𝑥 (𝜏𝑙)− 𝑥 (𝜏𝑗) , 𝜈 (𝑥 (𝜏𝑗))) (𝑥 (𝜏𝑙)− 𝑥 (𝜏𝑗) , 𝜈 (𝑥 (𝜏𝑙)))

|𝑥 (𝜏𝑙)− 𝑥 (𝜏𝑗)|4

·
√︁
(𝑥′

1 (𝜏𝑗))
2 + (𝑥′

2 (𝜏𝑗))
2 (𝜌 (𝑥 (𝜏𝑗))− 𝜌 (𝑥 (𝜏𝑙)))

+
𝑏− 𝑎

𝜋 𝑛

∑︁
𝑗∈𝑄 𝑙

(𝜈 (𝑥 (𝜏𝑗)) , 𝜈 (𝑥 (𝜏𝑙)))

|𝑥 (𝜏𝑗)− 𝑥 (𝜏𝑙)|2
√︁
(𝑥′

1 (𝜏𝑗))
2 + (𝑥′

2 (𝜏𝑗))
2 (𝜌 (𝑥 (𝜏𝑗))− 𝜌 (𝑥 (𝜏𝑙)))

at the nodes 𝑥 (𝜏𝑙), 𝑙 = 1, 𝑛, is a quadrature formula for (𝑇𝜌) (𝑥) and the following estimates

hold:

max
𝑙=1, 𝑛

|(𝑇𝜌) (𝑥 (𝜏𝑙))− (𝑇𝑛𝜌) (𝑥 (𝜏𝑙))| ⩽ 𝑀

[︃
‖𝜌‖∞ 𝑛−𝛼 + ‖grad 𝜌‖∞ 𝑛− 𝛼

1+𝛼

+

𝑛
− 1

1+𝛼∫︁
0

𝜔(grad 𝜌, 𝑡)

𝑡
𝑑𝑡

]︃

if 0 < 𝛼 < 1 and

max
𝑙=1, 𝑛

|(𝑇𝜌) (𝑥 (𝜏𝑙))− (𝑇𝑛𝜌) (𝑥 (𝜏𝑙))| ⩽ 𝑀

[︃
‖𝜌‖∞ ln𝑛

𝑛
+

‖grad 𝜌‖∞√
𝑛

+

1/
√
𝑛∫︁

0

𝜔(grad 𝜌, 𝑡)

𝑡
𝑑𝑡

]︃

if 𝛼 = 1.

Proof. It was proved in work [16] that if the function 𝜌(𝑥) is continuously differentiable on 𝐿
and

diam𝐿∫︁
0

𝜔(grad 𝜌, 𝑡)

𝑡
𝑑𝑡 < +∞,

then the expression(︂
𝜕𝑊0

𝜕𝜈

)︂𝑛

(𝑥 (𝜏𝑙)) =− 𝑏− 𝑎

𝜋 𝑛

𝑛∑︁
𝑗=1
𝑗 ̸=𝑙

(𝑥 (𝜏𝑙)− 𝑥 (𝜏𝑗) , 𝜈 (𝑥 (𝜏𝑗))) (𝑥 (𝜏𝑙)− 𝑥 (𝜏𝑗) , 𝜈 (𝑥 (𝜏𝑙)))

|𝑥 (𝜏𝑙)− 𝑥 (𝜏𝑗)|4

·
√︁

(𝑥′
1 (𝜏𝑗))

2 + (𝑥′
2 (𝜏𝑗))

2 (𝜌 (𝑥 (𝜏𝑗))− 𝜌 (𝑥 (𝜏𝑙)))

+
𝑏− 𝑎

2𝜋 𝑛

∑︁
𝑗∈𝑄 𝑙

(𝜈 (𝑥 (𝜏𝑗)) , 𝜈 (𝑥 (𝜏𝑙)))

|𝑥 (𝜏𝑗)− 𝑥 (𝜏𝑙)|2

·
√︁

(𝑥′
1 (𝜏𝑗))

2 + (𝑥′
2 (𝜏𝑗))

2 (𝜌 (𝑥 (𝜏𝑗))− 𝜌 (𝑥 (𝜏𝑙)))

at the nodes 𝑥 (𝜏𝑙), 𝑙 = 1, 𝑛, is a quadrature formula for the integral 𝜕𝑊0(𝑥)
𝜕𝜈(𝑥)

and the following

estimates hold:

max
𝑝=1, 𝑛

⃒⃒⃒⃒
𝜕𝑊0 (𝑥 (𝜏𝑙))

𝜕𝜈 (𝑥 (𝜏𝑙))
−
(︂
𝜕𝑊0

𝜕𝜈

)︂𝑛

(𝑥 (𝜏𝑙))

⃒⃒⃒⃒
⩽ 𝑀

[︃
‖𝜌‖∞ 𝑛−𝛼 + ‖grad 𝜌‖∞ 𝑛− 𝛼

1+𝛼
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+

𝑛
− 1

1+𝛼∫︁
0

𝜔(grad 𝜌, 𝑡)

𝑡
𝑑𝑡

]︃
if 0 < 𝛼 < 1 and

max
𝑝=1, 𝑛

⃒⃒⃒⃒
𝜕𝑊0 (𝑥 (𝜏𝑙))

𝜕𝜈 (𝑥 (𝜏𝑙))
−
(︂
𝜕𝑊0

𝜕𝜈

)︂𝑛

(𝑥 (𝜏𝑙))

⃒⃒⃒⃒
⩽ 𝑀

[︃
‖𝜌‖∞ ln𝑛

𝑛
+

‖grad 𝜌‖∞√
𝑛

+

1/
√
𝑛∫︁

0

𝜔(grad 𝜌, 𝑡)

𝑡
𝑑𝑡

]︃
if 𝛼 = 1.
Now let us show that the expression(︂

𝜕𝑊1

𝜕𝜈

)︂𝑛

(𝑥 (𝜏𝑝)) =
𝑏− 𝑎

𝑛

𝑛∑︁
𝑗=1
𝑗 ̸=𝑝

𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

√︁
(𝑥′

1 (𝜏𝑗))
2 + (𝑥′

2 (𝜏𝑗))
2 𝜌 (𝑥 (𝜏𝑗))

at the nodes 𝑥 (𝜏𝑝), 𝑝 = 1, 𝑛, is a quadrature formula for the integral 𝜕𝑊1(𝑥)
𝜕𝜈(𝑥)

. It is easy to see

that

𝜕𝑊1 (𝑥 (𝜏𝑝))

𝜕𝜈 (𝑥 (𝜏𝑝))
−
(︂
𝜕𝑊1

𝜕𝜈

)︂𝑛

(𝑥 (𝜏𝑝)) =

∫︁
𝐿𝑝

𝜕𝑉 (𝑥 (𝜏𝑝) , 𝑦)

𝜕𝜈 (𝑥)
𝜌 (𝑦) 𝑑𝐿𝑦

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑝

∫︁
𝐿𝑗

(︂
𝜕𝑉 (𝑥 (𝜏𝑝) , 𝑦)

𝜕𝜈 (𝑥 (𝜏𝑝))
− 𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

)︂
𝜌 (𝑦) 𝑑𝐿𝑦

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑝

∫︁
𝐿𝑗

𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))
(𝜌 (𝑦)− 𝜌 (𝑥 (𝜏𝑗))) 𝑑𝐿𝑦

+
𝑛∑︁

𝑗=1
𝑗 ̸=𝑝

𝑡𝑗∫︁
𝑡𝑗−1

𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

·
(︂√︁

(𝑥′
1 (𝑡))

2 + (𝑥′
2 (𝑡))

2 −
√︁

(𝑥′
1 (𝜏𝑗))

2 + (𝑥′
2 (𝜏𝑗))

2

)︂
𝜌 (𝑥 (𝜏𝑗)) 𝑑𝑡.

We denote the terms in this identity by 𝛿𝑛1 (𝑥 (𝜏𝑝)), 𝛿
𝑛
2 (𝑥 (𝜏𝑝)), 𝛿

𝑛
3 (𝑥 (𝜏𝑝)) and 𝛿𝑛4 (𝑥 (𝜏𝑝)), respec-

tively.
Taking into consideration (2.6) and the formula for calculating a curvilinear integral, we

obtain:

|𝛿𝑛1 (𝑥 (𝜏𝑝))| ⩽ 𝑀 ‖𝜌‖∞

𝑅(𝑛)∫︁
0

|ln 𝜏 | 𝑑𝜏 ⩽ 𝑀 ‖𝜌‖∞ 𝑅 (𝑛) |ln𝑅 (𝑛)| .

Let 𝑦 ∈ 𝐿𝑗 and 𝑗 ̸= 𝑝. In view of Lemma 3.1 and inequality (2.3) it is obvious that

||𝑥 (𝜏𝑝)− 𝑦|𝑞 − |𝑥 (𝜏𝑝)− 𝑥 (𝜏𝑗)|𝑞| ⩽ 𝑀𝑞𝑅 (𝑛) (diam𝐿)𝑞−1 ,

|(𝜈 (𝑦) , 𝜈 (𝑥 (𝜏𝑝)))− (𝜈 (𝑥 (𝜏𝑗)) , 𝜈 (𝑥 (𝜏𝑝)))| ⩽ 𝑀(𝑅(𝑛))𝛼,

|(𝑥 (𝜏𝑝)− 𝑦, 𝜈 (𝑦))− (𝑥 (𝜏𝑝)− 𝑥 (𝜏𝑗) , 𝜈 (𝑦))| = |(𝑥 (𝜏𝑗)− 𝑦, 𝜈 (𝑦))| ⩽ 𝑀(𝑅(𝑛))1+𝛼,

|(𝑥 (𝜏𝑝)− 𝑦, 𝜈 (𝑥 (𝜏𝑝)))− (𝑥 (𝜏𝑝)− 𝑥 (𝜏𝑗) , 𝜈 (𝑥 (𝜏𝑝)))| = |(𝑥 (𝜏𝑗)− 𝑦, 𝜈 (𝑥 (𝜏𝑝)))|
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⩽ |(𝑥 (𝜏𝑗)− 𝑦, 𝜈 (𝑥 (𝜏𝑗)))|+ |(𝑥 (𝜏𝑗)− 𝑦, 𝜈 (𝑥 (𝜏𝑝))− 𝜈 (𝑥 (𝜏𝑗)))| ⩽ 𝑀 |𝑦 − 𝑥 (𝜏𝑝)|𝛼𝑅 (𝑛)

and

|ln (𝑘 |𝑥 (𝜏𝑝)− 𝑦|)− ln (𝑘 |𝑥 (𝜏𝑝)− 𝑥 (𝜏𝑗)|)| =
⃒⃒⃒⃒
ln

|𝑥 (𝜏𝑝)− 𝑥 (𝜏𝑗)|
|𝑥 (𝜏𝑝)− 𝑦|

⃒⃒⃒⃒
=

⃒⃒⃒⃒
ln

(︂
1 +

|𝑥 (𝜏𝑝)− 𝑥 (𝜏𝑗)| − |𝑥 (𝜏𝑝)− 𝑦|
|𝑥 (𝜏𝑝)− 𝑦|

)︂⃒⃒⃒⃒
⩽

⃒⃒⃒⃒
ln

(︂
1 +

|𝑥 (𝜏𝑗)− 𝑦|
|𝑥 (𝜏𝑝)− 𝑦|

)︂⃒⃒⃒⃒
⩽ 𝑀

𝑅 (𝑛)

|𝑥 (𝜏𝑝)− 𝑦|
,

where 𝑞 ∈ N. Then it follows from inequalities (2.4) and (2.5) that⃒⃒⃒⃒
𝜕𝑉 (𝑥 (𝜏𝑝) , 𝑦)

𝜕𝜈 (𝑥 (𝜏𝑝))
− 𝜕𝑉 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
⩽ 𝑀

(︂
(𝑅 (𝑛))𝛼 |ln |𝑥 (𝜏𝑝)− 𝑦||+ 𝑅 (𝑛)

|𝑥 (𝜏𝑝)− 𝑦|

)︂
.

Also taking into consideration the inequality⃒⃒⃒⃒
𝜕𝑉 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))
− 𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
⩽ 𝑀

|ln |𝑥 (𝜏𝑝)− 𝑦||
𝑛!

, (3.1)

we obtain:⃒⃒⃒⃒
𝜕𝑉 (𝑥 (𝜏𝑝) , 𝑦)

𝜕𝜈 (𝑥 (𝜏𝑝))
− 𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
⩽ 𝑀

(︂
(𝑅 (𝑛))𝛼 |ln |𝑥 (𝜏𝑝)− 𝑦||+ 𝑅 (𝑛)

|𝑥 (𝜏𝑝)− 𝑦|

+
|ln |𝑥 (𝜏𝑝)− 𝑦||

𝑛!

)︂
.

Finally we obtain that if 0 < 𝛼 < 1, then

|𝛿𝑛2 (𝑥 (𝜏𝑝))| ⩽𝑀 ‖𝜌‖∞

⎛⎜⎝(𝑅 (𝑛))𝛼
diam𝐿∫︁
𝑟(𝑛)

|ln 𝜏 | 𝑑𝜏 +𝑅 (𝑛)

diam𝐿∫︁
𝑟(𝑛)

𝑑𝜏

𝜏
+

1

𝑛!

diam𝐿∫︁
𝑟(𝑛)

|ln 𝜏 | 𝑑𝜏

⎞⎟⎠
⩽𝑀 ‖𝜌‖∞

(︂
(𝑅 (𝑛))𝛼 +

1

𝑛!

)︂
,

and if 𝛼 = 1, then

|𝛿𝑛2 (𝑥 (𝜏𝑝))| ⩽ 𝑀 ‖𝜌‖∞
(︂
𝑅 (𝑛) |ln𝑅 (𝑛)|+ 1

𝑛!

)︂
.

Let 𝑦 ∈ 𝐿𝑗 and 𝑗 ̸= 𝑝. Since in view of Lemma 3.1 and inequalities (2.6) and (3.1) we
obviously have⃒⃒⃒⃒

𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
⩽

⃒⃒⃒⃒
𝜕𝑉 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝜕𝑉 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))
− 𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
⩽𝑀

(︃
|ln |𝑥 (𝜏𝑝)− 𝑥 (𝜏𝑗)||+

1

|𝑥 (𝜏𝑝)− 𝑦|1−𝛼 𝑛!

)︃
, ∀𝑛 ∈ N,

(3.2)

then

|𝛿𝑛3 (𝑥 (𝜏𝑝))| ⩽ 2𝜔 (𝜌,𝑅 (𝑛))
𝑛∑︁

𝑗=1
𝑗 ̸=𝑝

∫︁
𝐿𝑗

⃒⃒⃒⃒
𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
𝑑𝐿𝑦
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⩽ 2𝜔 (𝜌,𝑅 (𝑛))

∫︁
𝐿

⃒⃒⃒⃒
𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
𝑑𝐿𝑦 ⩽ 𝑀𝜔 (𝜌,𝑅 (𝑛)) .

Moreover, taking into consideration Lemma 3.1 and inequality (3.2) and⃒⃒⃒⃒√︁
(𝑥′

1 (𝑡))
2 + (𝑥′

2 (𝑡))
2 −

√︁
(𝑥′

1 (𝜏𝑗))
2 + (𝑥′

2 (𝜏𝑗))
2

⃒⃒⃒⃒
⩽ 𝑀 (𝑅 (𝑛))𝛼 , ∀𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗] ,

we obtain:

|𝛿𝑛4 (𝑥 (𝜏𝑝))| ⩽ 𝑀 ‖𝜌‖∞ (𝑅 (𝑛))𝛼
𝑛∑︁

𝑗=1
𝑗 ̸=𝑝

𝑡𝑗∫︁
𝑡𝑗−1

⃒⃒⃒⃒
𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
𝑑𝑡

⩽ 𝑀 ‖𝜌‖∞ (𝑅 (𝑛))𝛼
𝑛∑︁

𝑗=1
𝑗 ̸=𝑝

∫︁
𝐿𝑗

⃒⃒⃒⃒
𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
𝑑𝐿𝑦

⩽ 𝑀 ‖𝜌‖∞ (𝑅 (𝑛))𝛼
∫︁
𝐿

⃒⃒⃒⃒
𝜕𝑉𝑛 (𝑥 (𝜏𝑝) , 𝑥 (𝜏𝑗))

𝜕𝜈 (𝑥 (𝜏𝑝))

⃒⃒⃒⃒
𝑑𝐿𝑦 ⩽ 𝑀 ‖𝜌‖∞ (𝑅 (𝑛))𝛼 .

As a result, summing up the obtained estimates for the expressions 𝛿𝑛1 (𝑥 (𝜏𝑝)), 𝛿
𝑛
2 (𝑥 (𝜏𝑝)),

𝛿𝑛3 (𝑥 (𝜏𝑝)) and 𝛿𝑛4 (𝑥 (𝜏𝑝)) and taking into consideration relation 𝑅 (𝑛) ∼ 1
𝑛
, we see that if

0 < 𝛼 < 1, then

max
𝑝=1, 𝑛

⃒⃒⃒⃒
𝜕𝑊1 (𝑥 (𝜏𝑝))

𝜕𝜈 (𝑥 (𝜏𝑝))
−
(︂
𝜕𝑊1

𝜕𝜈

)︂𝑛

(𝑥 (𝜏𝑝))

⃒⃒⃒⃒
⩽ 𝑀

(︂
𝜔 (𝜌, 1/𝑛) + ‖𝜌‖∞

1

𝑛𝛼

)︂
,

while if 𝛼 = 1, then

max
𝑝=1, 𝑛

⃒⃒⃒⃒
𝜕𝑊1 (𝑥 (𝜏𝑝))

𝜕𝜈 (𝑥 (𝜏𝑝))
−
(︂
𝜕𝑊1

𝜕𝜈

)︂𝑛

(𝑥 (𝜏𝑝))

⃒⃒⃒⃒
⩽ 𝑀

(︂
𝜔 (𝜌, 1/𝑛) + ‖𝜌‖∞

ln𝑛

𝑛

)︂
.

Finally, summing up the constructed quadrature formulas for the integrals 𝜕𝑊0(𝑥)
𝜕𝜈(𝑥)

and 𝜕𝑊1(𝑥)
𝜕𝜈(𝑥)

in the nodes 𝑥 (𝜏𝑙), 𝑙 = 1, 𝑛, we complete the proof.
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