УДК 517.55

О ПРОСТРАНСТВАХ ГЕЛЬФАНДА-ШИЛОВА

А.В. ЛУЦЕНКО, И.Х. МУСИН, Р.С. ЮЛМУХАМЕТОВ

Аннотация. В работе, следуя схеме построения пространств Гельфанда-Шилова S_{α} и S^{β} , с помощью семейства $\mathcal{M} = \{\mathcal{M}_{\nu}\}_{\nu=1}^{\infty}$ раздельно радиальных весовых функций \mathcal{M}_{ν} в \mathbb{R}^{n} определены два пространства быстро убывающих бесконечно дифференцируемых функций в \mathbb{R}^{n} . Одно из них — пространство $\mathcal{S}_{\mathcal{M}}$ — внутренний индуктивный предел счетно-нормированных пространств

$$S_{\mathcal{M}_{\nu}} = \left\{ f \in C^{\infty}(\mathbb{R}^{n}) : \|f\|_{m,\nu} = \sup_{\substack{x \in \mathbb{R}^{n}, \beta \in \mathbb{Z}_{+}^{n}, \\ \alpha \in \mathbb{Z}_{+}^{n} : |\alpha| \leq m}} \frac{|x^{\beta}(D^{\alpha}f)(x)|}{\mathcal{M}_{\nu}(\beta)} < \infty, \ m \in \mathbb{Z}_{+} \right\}.$$

Аналогичным образом, исходя из нормированных пространств

$$\mathcal{S}_m^{\mathcal{M}_{\nu}} = \left\{ f \in C^{\infty}(\mathbb{R}^n) : \rho_{m,\nu}(f) = \sup_{x \in \mathbb{R}^n, \alpha \in \mathbb{Z}_+^n} \frac{(1 + \|x\|)^m |(D^{\alpha}f)(x)|}{\mathcal{M}_{\nu}(\alpha)} < \infty \right\},\,$$

где $m \in \mathbb{Z}_+$, вводится пространство $\mathcal{S}^{\mathcal{M}}$. Показано, что при определенных естественных условиях на весовые функции преобразование Фурье устанавливает изоморфизм между пространствами $\mathcal{S}_{\mathcal{M}}$ и $\mathcal{S}^{\mathcal{M}}$.

Ключевые слова: пространства Гельфанда-Шилова, преобразование Фурье, выпуклые функции.

Mathematics Subject Classification: 46F05, 46A13, 42B10

Введение

В середине 1950-х годов были введены в рассмотрение семейства пространств типа S бесконечно дифференцируемых функций в \mathbb{R}^n , ставшие, наряду с пространством Шварца, одним из центральных объектов теории обобщенных функций, теории дифференциальных уравнений в частных производных и нашедшие значительные применения в теории псевдодифференциальных операторов, частотно-временном анализе. Их изучение началось с работ Г.Е. Шилова [1], И.М. Гельфанда и Г.Е. Шилова [2]-[4]. Они характеризовали пространства типа S в терминах преобразования Фурье функций и затем полученное описание применили для исследования единственности задачи Коши дифференциальных уравнений в частных производных и их систем.

Существенное развитие теория пространств типа S получила в работах М.А. Соловьева в ходе изучения проблем нелокальной теории поля. В частности, им было получено [5, раздел 4] описание образа преобразования Фурье пространства $S_b(\mathbb{R}^n)$, состоящего из

A.V. Lutsenko, I.Kh. Musin, R.S. Yulmukhametov, On Gelfand-Shilov spaces.

[©] Луценко А.В., Мусин И.Х., Юлмухаметов Р.С. 2023.

Работа первого автора поддержана Российским научным фондом (проект 21-11-00168), работа второго автора выполнена в рамках реализации программы развития Научно-образовательного математического центра Приволжского федерального округа (соглашение № 075-02-2023-950), работа третьего автора выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (код научной темы FMRS-2022-0124).

Поступила 31 марта 2023 г.

функций $f \in C^{\infty}(\mathbb{R}^n)$, удовлетворяющих при некоторых C>0 и $\mu>0$, зависящих от f и $\alpha\in\mathbb{Z}^n_+$, неравенствам

$$|x^{\beta}(D^{\alpha}f)(x)| \le C_{\alpha}\mu^{|\beta|}b_{|\beta|}, \quad x \in \mathbb{R}^n, \quad \beta \in \mathbb{Z}_+^n,$$

где, как обычно, для мультииндекса $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}_+^n$, $|\beta| = \beta_1 + \dots + \beta_n$, при условии, что монотонно неубывающая последовательность $(b_k)_{k=0}^{\infty}$ чисел $b_k > 0$ удовлетворяет условию: существуют числа B > 0 и h > 0 такие, что

$$b_{k+1} \le Bh^k b_k, \quad k = 0, 1, \dots$$

Одна из целей данной заметки — обобщить этот результат на более широкий класс пространств Γ ельфанда-Шилова такого типа.

1. Пространства $\mathcal{S}_{\mathcal{M}}$ и $\mathcal{S}^{\mathcal{M}}$. Основные результаты.

Пусть $\mathcal{M} = \{\mathcal{M}_{\nu}\}_{\nu=1}^{\infty}$ — произвольное семейство функций $\mathcal{M}_{\nu} : \mathbb{Z}_{+}^{n} \to \mathbb{R}$ таких, что для любого $\nu \in \mathbb{N}$:

 (i_1) существуют числа $a_1 = a_1(\nu) > 0$, $a_2 = a_2(\nu) > 0$ такие, что

$$\mathcal{M}_{\nu}(\alpha) \ge a_1 a_2^{|\alpha|}, \quad \alpha \in \mathbb{Z}_+^n;$$

$$i_2$$
) $\lim_{|\alpha| \to +\infty} \frac{\mathcal{M}_{\nu+1}(\alpha)}{\mathcal{M}_{\nu}(\alpha)} = +\infty.$

Определим пространство $S_{\mathcal{M}}$, следуя схеме построения пространства Гельфанда-Шилова S_{α} [3, Глава 4]. Для любых $\nu \in \mathbb{N}$ и $m \in \mathbb{Z}_+$ пусть

$$S_{m,\mathcal{M}_{\nu}} = \left\{ f \in C^{m}(\mathbb{R}^{n}) : ||f||_{m,\nu} = \sup_{\substack{x \in \mathbb{R}^{n}, \beta \in \mathbb{Z}_{+}^{n}, \\ \alpha \in \mathbb{Z}_{+}^{n} : |\alpha| \leq m}} \frac{|x^{\beta}(D^{\alpha}f)(x)|}{\mathcal{M}_{\nu}(\beta)} < \infty \right\}.$$

Положим $\mathcal{S}_{\mathcal{M}_{\nu}} := \bigcap_{m=0}^{\infty} \mathcal{S}_{m,\mathcal{M}_{\nu}}$. Класс $\mathcal{S}_{\mathcal{M}_{\nu}}$ — непустой: он содержит финитные функции с носителем в $[-a_2,a_2]^n$. Снабдим $\mathcal{S}_{\mathcal{M}_{\nu}}$ топологией, определяемой семейством норм $\|\cdot\|_{m,\nu}$ $(m \in \mathbb{Z}_+)$. В силу условия i_2) пространство $\mathcal{S}_{\mathcal{M}_{\nu}}$ непрерывно вложено в $\mathcal{S}_{\mathcal{M}_{\nu+1}}$ для каждого $\nu \in \mathbb{N}$. Положим $\mathcal{S}_{\mathcal{M}} := \bigcup_{\nu=1}^{\infty} \mathcal{S}_{\mathcal{M}_{\nu}}$. С обычными операциями сложения и умножения на комплексные числа $\mathcal{S}_{\mathcal{M}}$ — линейное пространство. Наделим $\mathcal{S}_{\mathcal{M}}$ топологией внутреннего индуктивного предела [6, c. 589] пространств $\mathcal{S}_{\mathcal{M}_{\nu}}$.

Определим пространство $\mathcal{S}^{\mathcal{M}}$. По $\nu \in \mathbb{N}$, $m \in \mathbb{Z}_+$ введем пространство

$$\mathcal{S}_m^{\mathcal{M}_{\nu}} = \left\{ f \in C^{\infty}(\mathbb{R}^n) : \rho_{m,\nu}(f) = \sup_{x \in \mathbb{R}^n, \alpha \in \mathbb{Z}_+^n} \frac{(1 + ||x||)^m |(D^{\alpha}f)(x)|}{\mathcal{M}_{\nu}(\alpha)} < \infty \right\}.$$

Эквивалентная топология в $\mathcal{S}_m^{\mathcal{M}_{
u}}$ может быть введена с помощью норм

$$q_{m,\nu}(f) = \sup_{\substack{x \in \mathbb{R}^n, \alpha \in \mathbb{Z}_+^n, \\ \beta \in \mathbb{Z}_+^n : |\beta| \le m}} \frac{|x^{\beta}(D^{\alpha}f)(x)|}{\mathcal{M}_{\nu}(\alpha)}.$$

Очевидно, нормированное пространство $\mathcal{S}_{m+1}^{\mathcal{M}_{\nu}}$ непрерывно вложено в $\mathcal{S}_{m}^{\mathcal{M}_{\nu}}$. Пусть $\mathcal{S}^{\mathcal{M}_{\nu}}:=\bigcap_{m=0}^{\infty}\mathcal{S}_{m}^{\mathcal{M}_{\nu}}$. Наделим пространство $\mathcal{S}^{\mathcal{M}_{\nu}}$ топологией, определяемой семейством норм $\rho_{m,\nu}$ $(m\in\mathbb{Z}_{+})$. Ввиду условия i_{2}) $\mathcal{S}^{\mathcal{M}_{\nu}}$ непрерывно вложено в $\mathcal{S}^{\mathcal{M}_{\nu+1}}$. Положим $\mathcal{S}^{\mathcal{M}}:=\bigcup_{\nu=1}^{\infty}\mathcal{S}^{\mathcal{M}_{\nu}}$. В $\mathcal{S}^{\mathcal{M}}$ введем топологию внутреннего индуктивного предела пространств

 $\mathcal{S}^{\mathcal{M}_{\nu}}$. Пространство $\mathcal{S}^{\mathcal{M}}$ построено по аналогии с пространством Гельфанда-Шилова S^{β} [3, глава 4].

Будем придерживаться следующего определения преобразования Фурье \hat{f} функции $f \in S(\mathbb{R}^n)$:

$$\hat{f}(x) = \frac{1}{(\sqrt{2\pi})^n} \int_{\mathbb{R}^n} f(\xi) e^{i\langle x, \xi \rangle} d\xi, \quad x \in \mathbb{R}^n.$$

Справедлива следующая

Теорема 1.1. Пусть семейство \mathcal{M} таково, что для любого $\nu \in \mathbb{N}$:

 i_3) существует число $d_{\nu} > 0$ такое, что для всех $\alpha \in \mathbb{Z}_+^n$, $\beta \in \mathbb{Z}_+^n \cap [0,1]^n$

$$\mathcal{M}_{\nu}(\alpha + \beta) \leq d_{\nu} \mathcal{M}_{\nu+1}(\alpha);$$

 $i_4)$ каково бы ни было $m \in \mathbb{N}$ существует число $d_{\nu,m} > 0$ такое, что

$$\mathcal{M}_{\nu+1}(\alpha) \ge d_{\nu,m} \mathcal{M}_{\nu}(\alpha) \prod_{k=1}^{n} (1+\alpha_k)^m, \quad \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n.$$

Тогда отображение $\mathcal{F}: f \in S_{\mathcal{M}} \to \hat{f}$ устанавливает изоморфизм между пространствами $S_{\mathcal{M}}$ и $S^{\mathcal{M}}$.

Следствие 1.1. В предположениях Теоремы 1.1 преобразование Фурье устанавливает изоморфизм между пространствами $\mathcal{S}^{\mathcal{M}}$ и $\mathcal{S}_{\mathcal{M}}$.

Замечание 1.1. Если $(b_k)_{k=0}^{\infty}$ — монотонно неубывающая последовательность чисел $b_k > 0$ таких, что при некоторых B > 0 и h > 1, $b_{k+1} \le Bh^k b_k$ для всех $k \in \mathbb{Z}_+$, то семейство $\{h^{\nu n|\alpha|}b_{|\alpha|}\}_{\nu=1}^{\infty}$ удовлетворяет условиям $i_1) - i_4$). В этом случае пространство $\mathcal{S}_{\mathcal{M}}$ совпадает с пространством $S_b(\mathbb{R}^n)$.

Замечание 1.2. Если монотонно неубывающая последовательность $(b_k)_{k=0}^{\infty}$ чисел $b_k>0$ такова, что $\lim_{k\to\infty}\left(\frac{b_{k+1}}{b_k}\right)^{\frac{1}{k}}=1$, то семейство $\{(\sigma-2^{-\nu})^{|\alpha|}b_{|\alpha|}\}_{\nu=1}^{\infty}$, где $\sigma>0$, удовлетворяет условиям $i_1)-i_4$).

Далее, пусть \mathcal{H} — произвольное семейство неотрицательных функций h_{ν} в \mathbb{R}^{n} таких, что для любого $\nu \in \mathbb{N}$:

 H_1) $h_{\nu}(x) = h_{\nu}(|x_1|, \dots, |x_n|), \ x = (x_1, \dots, x_n) \in \mathbb{R}^n;$

 H_2) существуют числа $Q_1=Q_1(
u)>0,\,Q_2=Q_2(
u)>0$ такие, что

$$h_{\nu}(x) \le \sum_{1 \le j \le n: x_j \ne 0} x_j \ln \frac{x_j}{Q_1} + Q_2, \ x = (x_1, \dots, x_n) \in [0, \infty)^n;$$

 H_3) $\lim_{x \to \infty} (h_{\nu}(x) - h_{\nu+1}(x)) = +\infty.$

Отметим, что функции $\mathcal{M}_{\nu}(\alpha) = \alpha! e^{-h_{\nu}(\alpha)}$, $\alpha \in \mathbb{Z}_{+}^{n}$, где $h_{\nu} \in \mathcal{H}$, удовлетворяют требованиям i_{1}) и i_{2}), предъявляемым к функциям семейства \mathcal{M} . Таким образом, если $\mathcal{M} = \{\alpha! e^{-h_{\nu}(\alpha)}\}_{\nu \in \mathbb{N}}$, то пространство $\mathcal{S}_{\mathcal{M}}$ состоит из функций $f \in C^{\infty}(\mathbb{R}^{n})$, для которых при некотором $\nu \in \mathbb{N}$ для любого $\alpha \in \mathbb{Z}_{+}^{n}$ найдется число $K_{\alpha} > 0$ такое, что

$$|x^{\beta}(D^{\alpha}f)(x)| \le K_{\alpha}\beta!e^{-h_{\nu}(\beta)}, \quad x \in \mathbb{R}^n, \quad \beta \in \mathbb{Z}_+^n,$$

а пространство $\mathcal{S}^{\mathcal{M}}$ — из функций $f\in C^{\infty}(\mathbb{R}^n)$, для которых при некотором $\nu\in\mathbb{N}$ для любого $\beta\in\mathbb{Z}^n_+$ найдется число $L_{\beta}>0$ такое, что для всех $\alpha\in\mathbb{Z}^n_+$

$$|x^{\beta}(D^{\alpha}f)(x)| \le L_{\beta}\alpha! e^{-h_{\nu}(\alpha)}, \quad x \in \mathbb{R}^n.$$

Чтобы выделить этот частный случай семейства \mathcal{M} пространство $\mathcal{S}_{\mathcal{M}}$ будем обозначать через $\mathbb{S}_{\mathcal{H}}$, пространство $\mathcal{S}^{\mathcal{M}_{\nu}}$ — через $\mathbb{S}(h_{\nu})$, пространство $\mathcal{S}^{\mathcal{M}}$ — через $\mathbb{S}^{\mathcal{H}}$.

Тогда из Теоремы 1.1 имеем еще одно следствие.

Следствие 1.2. Пусть семейство \mathcal{M} состоит из функций $\mathcal{M}_{\nu}(\alpha) = \alpha! e^{-h_{\nu}(\alpha)}$, $\alpha \in \mathbb{Z}_{+}^{n}$, где функции $h_{\nu} \in \mathcal{H}$ удовлетворяют дополнительным условиям:

 H_4) для любого $\nu \in \mathbb{N}$ существует число $\tau_{\nu} > 0$ такое, что для всех $x = (x_1, \dots, x_n) \in [0, \infty)^n, y \in [0, 1]^n$

$$h_{\nu}(x+y) - h_{\nu+1}(x) \ge \sum_{k=1}^{n} \ln(1+x_k) - \tau_{\nu};$$

 H_5) для любых $\nu, m \in \mathbb{N}$ существует число $\tau_{\nu,m} > 0$ такое, что для всех $x = (x_1, \dots, x_n) \in [0, \infty)^n, y \in [0, 1]^n$

$$h_{\nu}(x) - h_{\nu+1}(x) \ge m \sum_{k=1}^{n} \ln(1+x_k) - \tau_{\nu,m}.$$

Тогда отображение $\mathcal{F}: f \in \mathbb{S}_{\mathcal{H}} \to \hat{f}$ устанавливает изоморфизм между пространствами $\mathbb{S}_{\mathcal{H}}$ и $\mathbb{S}^{\mathcal{H}}$.

Действительно, условие H_4) гарантирует выполнение условия i_3), а условие H_5) — выполнение условия i_4).

Следствие 1.3. Пусть семейство \mathcal{M} состоит из функций $\mathcal{M}_{\nu}(\alpha) = \alpha! e^{-h_{\nu}(\alpha)}$, $\alpha \in \mathbb{Z}_+^n$, где неубывающие по каждой переменной на $[0,\infty)^n$ функции $h_{\nu} \in \mathcal{H}$ удовлетворяют условию H_5).

Тогда отображение $\mathcal{F}: f \in \mathbb{S}_{\mathcal{H}} \to \hat{f}$ устанавливает изоморфизм между пространствами $\mathbb{S}_{\mathcal{H}}$ и $\mathbb{S}^{\mathcal{H}}$.

Представляется интересным рассмотрение случая, когда все функции семейства ${\cal H}$ удовлетворяют условию

$$H_6$$
) $\lim_{x\to\infty}\frac{h_{\nu}(x)}{\|x\|}=+\infty \ (\|x\|-\text{евклидова норма }x\in\mathbb{R}^n).$

Дело в том, что в этом случае какова бы ни была функция f из $\mathbb{S}^{\mathcal{H}}$ для любого $\varepsilon>0$ можно найти число $c_{\varepsilon}(f)>0$ такое, что

$$|(D^{\alpha}f)(x)| \le c_{\varepsilon}(f)\varepsilon^{|\alpha|}\alpha!, \quad x \in \mathbb{R}^n, \quad \alpha \in \mathbb{Z}^n_+,$$

и, следовательно, f допускает (единственное) продолжение до целой функции в \mathbb{C}^n . Через F_f обозначим указанное продолжение, а через \mathcal{A} — отображение: $f \in \mathbb{S}^{\mathcal{H}} \to F_f$. Естественным образом возникает задача описания образа $\mathbb{S}^{\mathcal{H}}$ при отображении \mathcal{A} . Ее решение получено при дополнительных условиях на \mathcal{H} (Теорема 1.2). Приведем ряд определений и обозначений, встречающихся в формулировке и доказательстве Теоремы 1.2. Для произ-

вольной функции $g: \mathbb{R}^n \to (-\infty, +\infty)$ такой, что $\lim_{x \to \infty} \frac{g(x)}{\|x\|} = +\infty$ через g^* и \tilde{g} обозначим функции, заданные в \mathbb{R}^n по правилу:

$$g^*(x) = \sup_{\alpha \in \mathbb{Z}^n} (\langle \alpha, x \rangle - g(\alpha)), \quad x \in \mathbb{R}^n,$$

$$\tilde{g}(x) = \sup_{y \in \mathbb{R}^n} (\langle x, y \rangle - g(y)), \quad x \in \mathbb{R}^n.$$

Функция \tilde{g} называется преобразованием Юнга-Фенхеля функции g [7]. Теперь для каждого $\nu \in \mathbb{N}$ определим функцию φ_{ν} в \mathbb{R}^{n} , полагая

$$\varphi_{\nu}(x) = h_{\nu}^*(\ln^+ |x_1|, \dots, \ln^+ |x_n|), \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n,$$

где $\ln^+ t = 0$ при $t \in [0,1)$ и $\ln^+ t = \ln t$ при $t \in [1,\infty)$. Так как выпуклая в \mathbb{R}^n функция h_{ν}^* принимает конечные значения, то она непрерывна в \mathbb{R}^n [8, §11]. Значит, функция φ_{ν}

непрерывна в \mathbb{R}^n . Очевидно, ее сужение на $[0,\infty)^n$ не убывает по каждой переменной. Ввиду условия H_2) при некотором $Q_3 = Q_3(\nu) > 0$ справедливо неравенство

$$\varphi_{\nu}(x) \ge \frac{Q_1}{e} \sum_{k=1}^n |x_k| - Q_3, \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Благодаря условиям H_6) и H_3)

$$\lim_{x \to \infty} (h_{\nu+1}^*(x) - h_{\nu}^*(x)) = +\infty.$$

Следовательно,

$$\lim_{x \to \infty} (\varphi_{\nu+1}(x) - \varphi_{\nu}(x)) = +\infty. \tag{1.1}$$

Далее, для произвольных $\nu \in \mathbb{N}$ и $m \in \mathbb{Z}_+$ введем пространство

$$\mathcal{P}_m(\varphi_{\nu}) = \left\{ f \in H(\mathbb{C}^n) : p_{\nu,m}(f) = \sup_{z \in \mathbb{C}^n} \frac{|f(z)|(1+||z||)^m}{e^{\varphi_{\nu}(Im\,z)}} < \infty \right\}.$$

Очевидно, пространство $\mathcal{P}_{m+1}(\varphi_{\nu})$ непрерывно вложено в $\mathcal{P}_{m}(\varphi_{\nu})$. Пусть $\mathcal{P}(\varphi_{\nu})$ есть пересечение пространств $\mathcal{P}_{m}(\varphi_{\nu})$. Снабдим $\mathcal{P}(\varphi_{\nu})$ топологией проективного предела пространств $\mathcal{P}_{m}(\varphi_{\nu})$. В силу (1.1) пространство $\mathcal{P}(\varphi_{\nu})$ непрерывно вложено в $\mathcal{P}(\varphi_{\nu+1})$. Обозначим семейство $\{\varphi_{\nu}\}_{\nu=1}^{\infty}$ через Φ . Пусть $\mathcal{P}(\Phi) := \bigcup_{\nu=1}^{\infty} \mathcal{P}(\varphi_{\nu})$. Наделим $\mathcal{P}(\Phi)$ топологией внутреннего индуктивного предела пространств $\mathcal{P}(\varphi_{\nu})$. В разделе 4 доказана следующая

Теорема 1.2. Пусть функции семейства \mathcal{H} являются выпуклыми и, помимо условия H_6), удовлетворяют условиям:

 H_7) каково бы ни было a > 0 существует число $l_{\nu,a} > 0$ такое, что

$$h_{\nu+1}(x+y) \le h_{\nu}(x) + l_{\nu,a}, \quad x \in [0,\infty)^n, \quad y \in [0,a]^n;$$

 H_8) для любого $\nu \in \mathbb{N}$ найдется число $s \in \mathbb{N}$, что

$$\sum_{|\alpha| \ge 0} e^{h_{\nu+s}(\alpha) - h_{\nu}(\alpha)} < \infty.$$

Тогда отображение $\mathcal A$ устанавливает изоморфизм между пространствами $\mathbb S^{\mathcal H}$ и $\mathcal P(\Phi)$.

В силу этих двух теорем справедливо следующее утверждение.

Теорема 1.3. Пусть функции семейства \mathcal{H} являются выпуклыми и удовлетворяет условиям H_5) — H_7). Тогда отображение \mathcal{AF} устанавливает изоморфизм между пространствами $\mathbb{S}_{\mathcal{H}}$ и $\mathcal{P}(\Phi)$.

2. Вспомогательный результат

При доказательстве Теоремы 1.2 понадобится Следствие из следующего утверждения.

Предложение 2.1. Пусть функции семейства \mathcal{H} удовлетворяют условиям H_6) и H_7), $m \in \mathbb{N}$ произвольно и $\tilde{m} = (m, \dots, m) \in \mathbb{N}^n$. Тогда для любого $\nu \in \mathbb{N}$

$$h_{\nu+1}^*(x) \ge h_{\nu}^*(x) + \langle x, \tilde{m} \rangle - l_{\nu,m}, \quad x \in \mathbb{R}_+^n,$$

 $rde\ l_{\nu,m}$ то же, что и в условии H_7).

Доказательство. Пусть $m \in \mathbb{N}$ и $x \in \mathbb{R}^n_+$. Тогда

$$h_{\nu+1}^*(x) = \sup_{\alpha \in \mathbb{Z}^n} (\langle x, \alpha \rangle - h_{\nu+1}(\alpha)) = \sup_{\alpha \in \mathbb{Z}_+^n} (\langle x, \alpha \rangle - h_{\nu+1}(\alpha))$$
$$\geq \sup_{\alpha \geq \tilde{m}} (\langle x, \alpha \rangle - h_{\nu+1}(\alpha)) = \sup_{\alpha \in \mathbb{Z}_+^n} (\langle x, \alpha + \tilde{m} \rangle - h_{\nu+1}(\alpha + \tilde{m})).$$

Далее, пользуясь условием H_7) на \mathcal{H} , имеем

$$h_{\nu+1}^*(x) \ge \langle x, \tilde{m} \rangle + \sup_{\alpha \in \mathbb{Z}_+^n} (\langle x, \alpha \rangle - h_{\nu}(\alpha)) - l_{\nu,m}$$

= $\langle x, \tilde{m} \rangle + \sup_{\alpha \in \mathbb{Z}^n} (\langle x, \alpha \rangle - h_{\nu}(\alpha)) - l_{\nu,m} = h_{\nu}^*(x) + \langle x, \tilde{m} \rangle - l_{\nu,m}.$

В условиях Предложения 2.1 справедливо

Следствие 2.1. Для любых $\nu, m \in \mathbb{N}$

$$\varphi_{\nu}(x) + m \ln(1 + ||x||) \le \varphi_{\nu+1}(x) + b_{\nu,m} > 0, \quad x \in \mathbb{R}^n,$$

 $\varepsilon \partial e \ b_{\nu,m} = l_{\nu,m} + 2mn \ln 2.$

3. Доказательство Теоремы 1.1

Покажем вначале, что отображение \mathcal{F} действует из $\mathcal{S}_{\mathcal{M}}$ в $\mathcal{S}^{\mathcal{M}}$. Пусть $g \in \mathcal{S}_{\mathcal{M}}$. Тогда $g \in \mathcal{S}_{\mathcal{M}_{\nu}}$ для некоторого $\nu \in \mathbb{N}$. Поэтому каково бы ни было $m \in \mathbb{Z}_+$ для всех $\gamma \in \mathbb{Z}_+^n$ с $|\gamma| \leq m$, $\mu \in \mathbb{Z}_+^n$, $x \in \mathbb{R}^n$ справедливо неравенство

$$|x^{\mu}(D^{\gamma}g)(x)| \le ||g||_{m,\nu} \mathcal{M}_{\nu}(\mu).$$
 (3.1)

Покажем, что $\hat{g} \in \mathcal{S}^{\mathcal{M}}$. Пусть $\xi \in \mathbb{R}^n$, $\alpha = (\alpha_1, \dots, \alpha_n)$, $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}_+^n$ произвольны. Положим $\kappa_s := \min(\alpha_s, \beta_s)$ для $s = 1, \dots, n$ и $\kappa := (\kappa_1, \dots, \kappa_n)$. Так как

$$(i\xi)^{\beta}(D^{\alpha}\hat{g})(\xi) = \frac{(-1)^{|\beta|}}{(\sqrt{2\pi})^n} \int_{\mathbb{R}^n} \sum_{i \in \mathbb{Z}^n : j \le \kappa} C^j_{\beta}(D^{\beta-j}g)(x) (D^j(ix)^{\alpha}) e^{i\langle x, \xi \rangle} dx,$$

ТО

$$|\xi^{\beta}(D^{\alpha}\hat{g})(\xi)| \le \frac{1}{(\sqrt{2\pi})^n} \sum_{j \in \mathbb{Z}_+^n : j \le \kappa} C_{\beta}^j \int_{\mathbb{R}^n} |(D^{\beta - j}g)(x)| |D^j(x^{\alpha})| \, dx. \tag{3.2}$$

Согласно [5], если $u \in S(\mathbb{R}^n)$, то при любых $\mu, j \in \mathbb{Z}_+^n$ справедливо неравенство

$$\int_{\mathbb{R}^n} |D^j(x^\mu)| |u(x)| \, dx \le \sqrt{2} \int_{\mathbb{R}^n} |x^\mu| |(D^j u)(x)| \, dx. \tag{3.3}$$

Пользуясь им, из неравенства (3.2) получим, что

$$|\xi^{\beta}(D^{\alpha}\hat{g})(\xi)| \le \frac{\sqrt{2}}{(\sqrt{2\pi})^n} \sum_{j \in \mathbb{Z}_+^n: j \le \kappa} C_{\beta}^j \int_{\mathbb{R}^n} |x^{\alpha}(D^{\beta}g)(x)| \, dx. \tag{3.4}$$

Продолжим оценку (3.4), следуя [5, с. 371]. А именно:

- 1) представляем $\int_{\mathbb{R}^n} |x^{\alpha}(D^{\beta}g)(x)| dx$ в виде суммы 2^n интегралов по непересекающимся подмножествам \mathbb{R}^n , описываемых n неравенствами вида $|x_k| \leq 1$ или $|x_k| > 1$;
- 2) в интегралах по множествам, в описании которых участвует неравенство $|x_k| > 1$, умножаем и делим подынтегральное выражение на x_k^2 . Тогда из (3.4), пользуясь неравенством (3.1), получим, что

$$|\xi^{\beta}(D^{\alpha}\hat{g})(\xi)| \leq \frac{(\sqrt{2})^{3n+1}}{(\sqrt{\pi})^n} 2^{|\beta|} ||g||_{|\beta|,\nu} \sup_{\substack{\omega = (\omega_1, \dots, \omega_n) \in \mathbb{Z}_+^n : \\ \omega_j \leq 2, j = 1, \dots, n}} \mathcal{M}_{\nu}(\alpha + \omega).$$

Отсюда, благодаря условию i_3) на \mathcal{M} , имеем

$$|\xi^{\beta}(D^{\alpha}\hat{g})(\xi)| \le C_1 ||g||_{|\beta|,\nu} 2^{|\beta|} \mathcal{M}_{\nu+2}(\alpha),$$

где $C_1=\frac{(\sqrt{2})^{3n+1}}{(\sqrt{\pi})^n}d_{\nu}d_{\nu+1}$. Но тогда для любого $k\in\mathbb{Z}_+$ можно найти постоянную $C_2>0$ такую, что

$$(1 + \|\xi\|)^k |(D^{\alpha}\hat{g})(\xi)| \le C_2 \|g\|_{k,\nu} \mathcal{M}_{\nu+2}(\alpha), \quad \alpha \in \mathbb{Z}_+^n.$$
(3.5)

Следовательно, $\hat{g} \in \mathcal{S}^{\mathcal{M}_{\nu+2}}$. Итак, $\hat{g} \in \mathcal{S}^{\mathcal{M}}$. В силу неравенства (3.5)

$$\rho_{k,\nu+2}(\hat{g}) \le C_2 \|g\|_{k,\nu}, \quad g \in \mathcal{S}_{\mathcal{M}_{\nu}}, \quad k \in \mathbb{Z}_+.$$

Отсюда следует, что отображение \mathcal{F} действует из $S_{\mathcal{M}}$ в $\mathcal{S}^{\mathcal{M}}$ непрерывно. Очевидно, линейное отображение \mathcal{F} действует из $\mathcal{S}_{\mathcal{M}}$ в $\mathcal{S}^{\mathcal{M}}$ инъективно.

Покажем, что \mathcal{F} — отображение «на». Пусть $F \in \mathcal{S}^{\mathcal{M}}$. Тогда $F \in \mathcal{S}^{\mathcal{M}_{\nu}}$ для некоторого $\nu\in\mathbb{N}$. Поэтому каково бы ни было $m\in\mathbb{Z}_+$ для всех $\gamma\in\mathbb{Z}_+^n,\,x\in\mathbb{R}^n$

$$(1 + ||x||)^m |(D^{\gamma} F)(x)| \le \rho_{m,\nu}(F) \mathcal{M}_{\nu}(\gamma). \tag{3.6}$$

Положим $f(x) := \hat{F}(-x), x \in \mathbb{R}^n$. Тогда для любых $\alpha = (\alpha_1, \dots, \alpha_n), \beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}_+^n$ $\xi \in \mathbb{R}^n$

$$(i\xi)^{\beta}(D^{\alpha}f)(\xi) = \frac{(-1)^{|\alpha|}}{(\sqrt{2\pi})^n} \int_{\mathbb{R}^n} D^{\beta}(F(x)(ix)^{\alpha}) e^{-i\langle x,\xi\rangle} dx.$$

То есть,

$$(i\xi)^{\beta}(D^{\alpha}f)(\xi) = \frac{(-1)^{|\alpha|}}{(\sqrt{2\pi})^n} \int_{\mathbb{R}^n} \sum_{j \in \mathbb{Z}_n^n : j < \kappa} C_{\beta}^j(D^{\beta-j}F)(x) (D^j(ix)^{\alpha}) e^{-i\langle x, \xi \rangle} dx,$$

где $\kappa := (\kappa_1, \dots, \kappa_n), \ \kappa_s := \min(\alpha_s, \beta_s)$ для $s = 1, \dots, n$. Отсюда следует, что

$$|\xi^{\beta}(D^{\alpha}f)(\xi)| \le \frac{1}{(\sqrt{2\pi})^n} \sum_{j \in \mathbb{Z}_+^n : j \le \kappa} C_{\beta}^j \int_{\mathbb{R}^n} |(D^{\beta-j}F)(x)| |D^j(x^{\alpha})| dx.$$

Пользуясь неравенством (3.3), имеем

$$|\xi^{\beta}(D^{\alpha}f)(\xi)| \leq \frac{\sqrt{2}}{(\sqrt{2\pi})^n} \sum_{j \in \mathbb{Z}_+^n : j \leq \kappa} C_{\beta}^j \int_{\mathbb{R}^n} |(D^{\beta}F)(x)| |x^{\alpha}| \, dx.$$

Отсюда получим, что

$$|\xi^{\beta}(D^{\alpha}f)(\xi)| \leq \frac{\sqrt{2}}{(\sqrt{2\pi})^n} \sum_{j \in \mathbb{Z}_+^n: j \leq \kappa} C_{\beta}^j \int_{\mathbb{R}^n} |(D^{\beta}F)(x)| (1 + ||x||)^{|\alpha|} dx.$$

Пусть $m \in \mathbb{Z}_+$ произвольно. Тогда для всех $\alpha \in \mathbb{Z}_+^n$ с $|\alpha| \leq m$

$$|\xi^{\beta}(D^{\alpha}f)(\xi)| \leq \frac{\sqrt{2}}{(\sqrt{2\pi})^n} \sum_{j \in \mathbb{Z}_+^n : j \leq \kappa} C_{\beta}^j \int_{\mathbb{R}^n} |(D^{\beta}F)(x)| (1 + ||x||)^{m+2n} \frac{dx}{\prod_{k=1}^n (1 + x_k^2)}.$$

Отсюда, воспользовавшись оценкой (3.6), имеем для любого $\alpha \in \mathbb{Z}_+^n$ с $|\alpha| \leq m$

$$|\xi^{\beta}(D^{\alpha}f)(\xi)| \leq \sqrt{2} \left(\sqrt{\frac{\pi}{2}}\right)^{n} \rho_{m+2n,\nu}(F) \mathcal{M}_{\nu}(\beta) \sum_{j \in \mathbb{Z}_{+}^{n}: j \leq \kappa} C_{\beta}^{j}$$

$$\leq \sqrt{2} \left(\sqrt{\frac{\pi}{2}}\right)^{n} \rho_{m+2n,\nu}(F) (m+1)^{n} (1+\beta_{1})^{m} \cdots (1+\beta_{n})^{m} \mathcal{M}_{\nu}(\beta).$$

Наконец, пользуясь условием i_4) на ${\cal M}$ получим, что при некотором $C_3=C_3(\nu,m)>0$ для $\alpha \in \mathbb{Z}_+^n$ с $|\alpha| \le m$ и всех $\beta \in \mathbb{Z}_+^n$

$$|\xi^{\beta}(D^{\alpha}f)(\xi)| \le C_3 \rho_{m+2n,\nu}(F) \mathcal{M}_{\nu+1}(\beta), \quad \xi \in \mathbb{R}^n. \tag{3.7}$$

Следовательно, $f \in \mathcal{S}_{\mathcal{M}_{\nu+1}}$. Значит, $f \in \mathcal{S}_{\mathcal{M}}$. Ясно, что $\hat{f} = F$. Таким образом, отображение \mathcal{F} действует из $\mathcal{S}_{\mathcal{M}}$ на $\mathcal{S}^{\mathcal{M}}$. Оценка (3.7) означает, что

$$||f||_{m,\nu+1} \le C_3 \rho_{m+2n,\nu}(F), \quad F \in \mathcal{S}^{\mathcal{M}_{\nu}}.$$

Из нее вытекает, что обратное отображение \mathcal{F}^{-1} непрерывно.

Из доказанного следует, что отображение \mathcal{F} устанавливает изоморфизм между $\mathcal{S}_{\mathcal{M}}$ и $\mathcal{S}^{\mathcal{M}}$.

4. Доказательство Теоремы 1.2

Пусть $f \in \mathbb{S}^{\mathcal{H}}$. Докажем, что $F_f \in \mathcal{P}(\Phi)$. Пусть $m \in \mathbb{Z}_+$ произвольно. Пользуясь разложением $F_f(z)$ ($z = x + iy, \, x, y \in \mathbb{R}^n$) в ряд Тейлора в точке x и тем, что $f \in \mathbb{S}(h_{\nu})$ для некоторого $\nu \in \mathbb{N}$, имеем

$$(1 + ||z||)^{m} |F_{f}(z)| \leq \rho_{m,\nu}(f) (1 + ||y||)^{m} \sum_{|\alpha| \geq 0} e^{-h_{\nu}(\alpha)} \prod_{j=1}^{n} (|y_{j}|^{+})^{\alpha_{j}}$$

$$\leq B_{\nu,s} \rho_{m,\nu}(f) (1 + ||y||)^{m} e^{t = (t_{1}, \dots, t_{n}) \in \mathbb{R}^{n}} (t_{1} \ln^{+} |y_{1}| + \dots + t_{n} \ln^{+} |y_{n}| - h_{\nu+s}(t))$$

где $B_{\nu,s}:=\sum_{|\alpha|>0}e^{h_{\nu+s}(\alpha)-h_{\nu}(\alpha)},\ s$ — из условия H_8). Следовательно,

$$(1+||z||)^m |F_f(z)| \le B_{\nu,s} \rho_{m,\nu}(f) (1+||y||)^m e^{\varphi_{\nu+s}(Im\,z)}, \quad z \in \mathbb{C}^n.$$

Из этой оценки, пользуясь Следствием 1.1, получим, что при некотором $K_{\nu,m}>0$

$$(1+||z||)^m |F_f(z)| \le K_{\nu,m} \rho_{m,\nu}(f) e^{\varphi_{\nu+s+1}(Im\,z)}, \quad z \in \mathbb{C}^n.$$

То есть,

$$p_{\nu+s+1,m}(F_f) \le K_{\nu,m}\rho_{m,\nu}(f), \quad f \in \mathbb{S}(h_{\nu}).$$

Ввиду произвольности $m \in \mathbb{Z}_+$, $F_f \in \mathcal{P}(\varphi_{\nu+s+1})$. Таким образом, $F_f \in \mathcal{P}(\Phi)$. Кроме того, последнее неравенство означает, что линейное отображение \mathcal{A} непрерывно.

Очевидно, \mathcal{A} — взаимно однозначное отображение из $\mathbb{S}^{\mathcal{H}}$ в $\mathcal{P}(\Phi)$.

 \mathcal{A} сюръективно. Действительно, пусть $F \in \mathcal{P}(\Phi)$. Тогда $F \in \mathcal{P}(\varphi_{\nu})$ для некоторого $\nu \in \mathbb{N}$. Пусть $m \in \mathbb{Z}_+$, $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n$. Пользуясь интегральной формулой Коши и неубыванием φ_{ν} по каждой переменной на $[0, \infty)^n$, получим (действуя, например, как при доказательстве Теоремы 1 в [9]), что для любого $R \in (0, \infty)^n$ и любого $x \in \mathbb{R}^n$

$$(1+||x||)^m|(D^{\alpha}F)(x)| \le \frac{\alpha!p_{\nu,m}(F)(1+||R||)^m e^{\varphi_{\nu}(R)}}{R^{\alpha}}.$$

Отсюда, пользуясь Следствием 1.1, имеем

$$(1 + ||x||)^m |(D^{\alpha}F)(x)| \le e^{b_{\nu,m}} \alpha! p_{\nu,m}(F) \frac{e^{\varphi_{\nu+1}(R)}}{R^{\alpha}}.$$

Положим для краткости $\varphi_{\nu+1}[e](r) := \varphi_{\nu+1}(e^{r_1}, \dots, e^{r_n}), \ r = (r_1, \dots, r_n) \in \mathbb{R}^n$. Тогда

$$(1 + ||x||)^{m}|(D^{\alpha}F)(x)| \leq e^{b_{\nu,m}}\alpha!p_{\nu,m}(F)\inf_{R \in (0,\infty)^{n}} \frac{e^{\varphi_{\nu+1}(R)}}{R^{\alpha}}$$

$$= \frac{e^{b_{\nu,m}}\alpha!p_{\nu,m}(F)}{\exp(\sup_{r \in \mathbb{R}^{n}} (\langle \alpha, r \rangle - \varphi_{\nu+1}[e](r)))} \leq \frac{e^{b_{\nu,m}}\alpha!p_{\nu,m}(F)}{\exp(\sup_{r \in \mathbb{R}^{n}_{+}} (\langle \alpha, r \rangle - \varphi_{\nu+1}[e](r)))}$$

$$= \frac{e^{b_{\nu,m}}\alpha!p_{\nu,m}(F)}{\exp(\sup_{r=(r_{1},\dots,r_{n}) \in \mathbb{R}^{n}_{+}} (\langle \alpha, r \rangle - h^{*}_{\nu+1}(\ln^{+}e^{r_{1}},\dots,\ln^{+}e^{r_{n}})))}$$

$$= \frac{e^{b_{\nu,m}}\alpha!p_{\nu,m}(F)}{\exp(\sup_{r \in \mathbb{R}^n_+} (\langle \alpha, r \rangle - h_{\nu+1}^*(r)))} = \frac{e^{b_{\nu,m}}\alpha!p_{\nu,m}(F)}{\exp(\sup_{r \in \mathbb{R}^n} (\langle \alpha, r \rangle - h_{\nu+1}^*(r)))}$$
$$= e^{b_{\nu,m}}\alpha!p_{\nu,m}(F) \exp(-\widetilde{h_{\nu+1}^*}(\alpha))) = e^{b_{\nu,m}}\alpha!p_{\nu,m}(F) \exp(-h_{\nu+1}(\alpha)).$$

В концовке этой оценки воспользовались тем, что в силу выпуклости функции $h_{\nu+1}$ $\widetilde{h_{\nu+1}^*}(\alpha) = h_{\nu+1}(\alpha)$ для любого $\alpha \in \mathbb{Z}^n$ согласно Предложению 1 из [10]. Из полученной оценки вытекает, что

$$\rho_{m,\nu+1}(F_{\mathbb{R}^n}) \le e^{b_{\nu,m}} p_{\nu,m}(F), \quad F \in \mathcal{P}(\varphi_{\nu}). \tag{4.1}$$

Следовательно, $F_{|\mathbb{R}^n} \in \mathbb{S}(h_{\nu+1})$. Итак, $F_{|\mathbb{R}^n} \in \mathbb{S}^{\mathcal{H}}$. Очевидно, $\mathcal{A}(F_{|\mathbb{R}^n}) = F$ и неравенство (4.1) гарантирует непрерывность отображения \mathcal{A}^{-1} . Таким образом, отображение \mathcal{A} устанавливает изоморфизм между $\mathbb{S}^{\mathcal{H}}$ и $\mathcal{P}(\Phi)$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Г.Е. Шилов. Об одной проблеме квазианалитичности // ДАН СССР. **102**:5, 893–895 (1955).
- 2. И.М. Гельфанд, Г.Е. Шилов. Преобразования Фурье быстро растущих функций и вопросы единственности решения задачи Коши // УМН. 8:6(58), 3-54 (1953).
- 3. И.М. Гельфанд, Г.Е. Шилов. Обобщенные функции (Пространства основных и обобщенных функций). М.: Физматгиз. 1958.
- 4. И.М. Гельфанд, Г.Е. Шилов. Обобщенные функции (Некоторые вопросы теории дифференциальных уравнений). М.: Физматгиз. 1958.
- 5. М.А. Соловьев. Пространственно-подобная асимптотика вакуумных средних в нелокальной теории поля // $TM\Phi$. **52**:3, 363–37 (1982).
- 6. Р. Эдвардс. Функциональный анализ. М.: Мир. 1972.
- 7. Р. Рокафеллар. Выпуклый анализ. М.: Мир. 1973.
- 8. В.С. Владимиров. *Методы теории функций многих комплексных переменных*. М.: Наука. 1964.
- 9. I.Kh. Musin. On a space of entire functions rapidly decreasing on \mathbb{R}^n and its Fourier transform // Concrete Operators. 1:2, 120–138 (2015).
- 10. А.В. Луценко, И.Х. Мусин, Р.С. Юлмухаметов. О классе периодических функций в \mathbb{R}^n // Уфимск. матем. журн. 14:4, 73–79 (2022).

Анастасия Владимировна Луценко,

ФГБОУ ВО «Уфимский университет науки и технологий»,

ул. Заки Валиди, 32,

450076, г. Уфа, Россия

E-mail: Lutsenko. AV@yandex.ru

Ильдар Хамитович Мусин,

Институт математики с ВЦ УФИЦ РАН,

ул. Чернышевского, 112,

450077, г. Уфа, Россия

E-mail: musin_ildar@mail.ru

Ринад Салаватович Юлмухаметов,

Институт математики с ВЦ УФИЦ РАН,

ул. Чернышевского, 112,

450077, г. Уфа, Россия,

ФГБОУ ВО «Уфимский университет науки и технологий»,

ул. Заки Валиди, 32,

450076, г. Уфа, Россия

E-mail: Yulmukhametov@mail.ru