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BILINEAR INTERPOLATION OF PROGRAM CONTROL

IN APPROACH PROBLEM

A.A. ERSHOV

Abstract. We consider a controlled system involving a constant two-dimensional vector
parameter, the approximate value of which is reported to the controlling person only at the
moment of the start of movement. Apriori only the set of possible values of these unknown
parameter is given. For this controlled system we pose the problem on approaching the
target set at a given time. At the same time, we suppose that the controlling person
has no the ability to carry out cumbersome calculations in real time associated with the
construction of such resolving structures as reachability sets and integral funnels. Therefore,
to solve this problem, it is proposed to calculate in advance several “node” resolving controls
for parameter values, which are nodes of a grid covering a set of possible parameter values.
If at the moment of the beginning of the movement, the parameter value turns out not
coincide with any of the grid nodes, it is proposed to calculate the software control by
using linear interpolation formulas. However, this procedure can be effective only if a linear
combination of controls corresponding to the same “guide” is used in the terminology of
the N.N. Krasovsky extreme aiming method. For the possibility of effective use of linear
interpolation, it is proposed to build four “node” resolving controls for each grid node and,
in addition, to use the method of dividing the control into the main and compensating ones.
Due to the application of the latter method, the computed solvability set turns out to be
somewhat less than the actual one, but the accuracy of translating the state of the system
to the target set increases. A nonlinear generalization of the Zermelo navigation problem
is considered as an example.

Keywords: controlled system, approach problem, unknown constant parameter, bilinear
interpolation.
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1. Introduction

One of the most significant problems of control theory [1] is that the calculation of a resolving
program control (or positional strategy in differential games [2], [3]) is often associated with
cumbersome computational procedures that cannot be performed in real time. In the case
when the conditions of a problem are completely defined and known in advance, the long-term
calculation of resolving structures is not a problem, since resolving control can be built before
the controlled system starts to move. The situation changes if there are some uncertainties in
the conditions of the control problem that cannot be found out before the initial time [4]– [7].
For example, according to [8], solving a control problem with an incompletely known initial
condition consists of three stages:
1) collecting information about the system,
2) applying this information to eliminate uncertainty,
3) passage to active management.
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In this scheme, it is worth to pay an attention to the passage between the second and third
stages: after the elimination of uncertainty it is hardly possible to carry out an instantaneous
construction of resolving control during the movement of some dynamic system that has already
begun.
One can also consider, for example, a completely natural problem, when the location of

the target set for a dynamical system is not known in advance, but the situation requires an
immediate response as soon as the target set is found in the observed phase space.
Generalizing the data of the problem, by a change of variables all uncertainties in the initial

position, parameter, or location of the target set can be reduced to an indefinite multidimen-
sional parameter. In addition, in this paper, we do not dwell on the process of identifying an
uncertain parameter, but we focus on a quick response in the form of program control once this
uncertain parameter has been reported to us.
As a solution we propose to pre-build resolving controls corresponding to several values of

a constant vector parameter, and for intermediate values of the parameter, it is proposed to
use simple linear interpolation formulas. The problem is that, in the general case, a linear
combination of controls corresponding to different “guides” (according to the terminology of
N.N. Krasovsky’s extreme aiming method [9], [10]), does not give nice results. This is why we
apply a more complicated scheme on the base of splitting the control into main and compen-
sating ones.
In the present work we consider a bilinear interpolation in a two-dimensional vector param-

eter; the case of the scalar parameter was considered before in [11].

2. Formulation of problem

On a time interval [𝑡0, 𝜗], (𝑡0 < 𝜗 < ∞), we consider a controlled system⎧⎨⎩
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝛼), 𝑡 ∈ (𝑡0, 𝜗),

𝑥(𝑡0) = 𝑥(0),
(2.1)

where 𝑥(0) ∈ R𝑛 is the initial state, 𝑡 is the time, 𝑥(𝑡) ∈ R𝑛 is a phase vector of the system,
𝑢(𝑡) is a Lebesgue measurable vector function (a vector of controlling actions) with values in
a compact set 𝑃 ⊂ R𝑝, 𝑛 and 𝑝 are natural numbers, 𝛼 ∈ L is a constant parameter, L is a
compact set in R2.
We assume the following conditions.
A. The vector function 𝑓(𝑡, 𝑥, 𝑢, 𝛼) is well-defined, continuous on [𝑡0, 𝜗]×R𝑛 × 𝑃 × L and

for each bounded and closed domain Ω ⊂ [𝑡0, 𝜗]×R𝑛 there exists a constant 𝐿 = 𝐿(Ω) ∈ (0,∞)
such that

‖𝑓(𝑡, 𝑥(1), 𝑢, 𝛼)− 𝑓(𝑡, 𝑥(2), 𝑢, 𝛼)‖ ⩽ 𝐿‖𝑥(1) − 𝑥(2)‖, (𝑡, 𝑥(𝑖), 𝑢, 𝛼) ∈ Ω× 𝑃 × L , 𝑖 = 1, 2;

here ‖ · ‖ is the Euclidean norm of a vector in R𝑛.

Remark 2.1. Taking into consideration Condition A, we obtain that the modules of conti-
nuity

𝜔(3)(𝛿) = max
{︀
‖𝑓(𝑡, 𝑥, 𝑢*, 𝛼)− 𝑓(𝑡, 𝑥, 𝑢*, 𝛼)‖ :

(𝑡, 𝑥, 𝑢*, 𝛼), (𝑡, 𝑥, 𝑢
*, 𝛼) ∈ 𝐷 × 𝑃 × L , ‖𝑢* − 𝑢*‖ ⩽ 𝛿

}︀
, 𝛿 ∈ (0,∞),

𝜔(4)(𝛿) = max
{︀
‖𝑓(𝑡, 𝑥, 𝑢, 𝛼*)− 𝑓(𝑡, 𝑥, 𝑢, 𝛼*)‖ :

(𝑡, 𝑥, 𝑢, 𝛼*), (𝑡, 𝑥, 𝑢, 𝛼
*) ∈ 𝐷 × 𝑃 × L , |𝛼* − 𝛼*| ⩽ 𝛿

}︀
, 𝛿 ∈ (0,∞),

satisfy limiting relations 𝜔(𝑘)(𝛿) ↓ 0 as 𝛿 ↓ 0, 𝑘 = 3, 4.
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B. There exists 𝛾 ∈ (0,∞) such that

‖𝑓(𝑡, 𝑥, 𝑢, 𝛼)‖ ⩽ 𝛾(1 + ‖𝑥‖), (𝑡, 𝑥, 𝑢, 𝛼) ∈ [𝑡0,∞)×R𝑛 × 𝑃 × L .

Remark 2.2. By an admissible control 𝑢(𝑡) we mean a Lebesgue measurable on [𝑡0, 𝜗] vector
function with the values in 𝑃 . Conditions A and B ensure that for each admissible control
𝑢(𝑡), there exists a corresponding motion 𝑥(𝑡) being a solution of system (2.1) in the class
of absolutely continuous functions [12, Sect. 2.1]. Here the derivative 𝑥̇(𝑡) is treated in the
generalized sense and it obeys the Newton-Leibnitz formula, see, for instance, [13, Ch. 2, Sect.
4].

Remark 2.3. By Condition B there exists some sufficiently large domain Ω ⊂ [𝑡0, 𝜗]×R𝑛,
which apriori contains all possible motions of system (2.1) together with all auxiliary construc-
tions for constructing resolving control. In what follows we employ exactly this domain Ω and
a corresponding Lipschitz constant 𝐿 = 𝐿(Ω).

C. A vectorgram of velocities 𝐹 (𝑡, 𝑥, 𝛼) = 𝑓(𝑡, 𝑥, 𝑃, 𝛼) = {𝑓(𝑡, 𝑥, 𝑢, 𝛼) : 𝑢 ∈ 𝑃} is a convex set
in R𝑛 for all (𝑡, 𝑥, 𝛼) ∈ [𝑡0, 𝜃]×R𝑛 × L .
We denote by 𝐵𝑝(𝑢, 𝜌) = {𝜉 ∈ R𝑝 : ‖𝜉 − 𝑢‖ ⩽ 𝜌} a closed ball in R𝑝,

𝑃 = 𝑃 (𝜌) = 𝑃 −̇𝐵𝑝(0, 𝜌) = {𝑢 ∈ R𝑝 : 𝑢+𝐵𝑝(0, 𝜌) ⊂ 𝑃}

is the restriction of the set of values of the control.
D. For all (𝑡, 𝑥, 𝛼) ∈ [𝑡0, 𝜗]×R𝑛 × L and each non-empty restriction 𝑃 the set

𝐹 (𝑡, 𝑥, 𝛼) = 𝑓(𝑡, 𝑥, 𝑃 , 𝛼) =
{︀
𝑓(𝑡, 𝑥, 𝑢, 𝛼) : 𝑢 ∈ 𝑃

}︀
is convex.
E. Let points (𝑡*, 𝑥

*) and (𝑥*, 𝑡*) belong to the domain Ω and

𝑡* = 𝑡* +∆, 𝑥* = 𝑥* +∆ · 𝑓(𝑡*, 𝑥*, 𝑢, 𝛼), ∆ > 0, 𝑢 ∈ 𝑃 (𝜌(∆)), 𝛼 ∈ L .

Moreover, let not a too large number ∆𝛼 > 0 be given. Then we can defined a function 𝜌(∆)
so that the problem {︂

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢+ 𝑤, ̃︀𝛼), 𝑡 ∈ (𝑡*, 𝑡
*),

𝑥(𝑡*) = 𝑥*, 𝑥(𝑡*) = 𝑥*

is solvable with respect to the compensator vector 𝑤 in 𝐵𝑝(0, 𝜌(∆)) and an absolutely continu-
ous 𝑥(·) for each value ̃︀𝛼 ∈ 𝐵2(𝛼,∆𝛼

√
2). At the same time, the dependence 𝑤 = 𝑤(̃︀𝛼) should

of class 𝐶2(𝐵2(𝛼,∆𝛼

√
2)) and for all ̃︀𝛼 ∈ 𝐵2(𝛼,∆𝛼

√
2) it should satisfy the inequalities⃦⃦⃦⃦

𝜕2𝑤

𝜕̃︀𝛼2
1

⃦⃦⃦⃦
⩽ 𝑀2,

⃦⃦⃦⃦
𝜕2𝑤

𝜕̃︀𝛼2
2

⃦⃦⃦⃦
⩽ 𝑀2,

⃦⃦⃦⃦
𝜕2𝑤

𝜕̃︀𝛼1𝜕̃︀𝛼2

⃦⃦⃦⃦
⩽ 𝑀2,

where a constant 𝑀2 ⩾ 0 is determined by the function 𝑓(·, ·, ·, ·), the domain Ω, and the values
∆ and ∆𝛼.

Remark 2.4. The optimal numerical method for calculating the function 𝑤 = 𝑤(̃︀𝛼) and
sufficient conditions for its convergence are unresolved issues and can be the subject of a sepa-
rate theoretical study. For the practical calculation of the compensator vector 𝑤, the following
algorithm can be proposed.
1) As an initial approximation of the compensator vector 𝑤 we choose 𝑤0 = 0.
2) With each approximation 𝑤𝑘, 𝑘 = 0, 1, 2, . . ., we associated an error ‖𝑥𝑘(𝑡

*)− 𝑥*‖, where
a grid function 𝑥𝑘(𝑡) is a numerical solution of the Cauchy problem{︂

𝑥̇𝑘(𝑡) = 𝑓(𝑡, 𝑥𝑘(𝑡), 𝑢+ 𝑤𝑘, ̃︀𝛼), 𝑡 ∈ (𝑡*, 𝑡
*),

𝑥𝑘(𝑡*) = 𝑥*.
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The solution of the Cauchy problem can be found by the Runge-Kutta method [14, Ch. 8, Sect.
2], an optimal order of which directly depends on the smoothness order of the function 𝑓(·, ·, ·)
in the first and second variables.
3) The choice of next approximations 𝑤𝑘, 𝑘 = 1, 2 . . ., can be made by the coordinate de-

scent algorithm [14, Ch. 7, §3] by the corresponding error (or by simple enumeration from
𝐵𝑝(0, 𝜌(∆))).
4) The stopping condition is a sufficiently small error ‖𝑥𝑘(𝑡

*)− 𝑥*‖.
However, since the stability of 𝑤 with respect to a small change in 𝑥* has not been studied,

then, in fact, an addition to Condition E is the assumption that we can calculate the function
𝑤 = 𝑤(̃︀𝛼) with a negligible error.

Apart of Conditions A, B, C, D, E, we specify the information conditions under which the
control of system (2.1) is made.
We assume that at the initial time 𝑡0 the person making the choice of program control 𝑢(𝑡)

is informed of some approximate value 𝛼* ∈ L of the parameter 𝛼 ∈ L with an error not
exceeding

‖𝛼* − 𝛼‖ < 𝛿𝛼. (2.2)

In addition, long before the initial moment 𝑡0 of the motion, the control person knows the
constraint itself, the compact set L and an approximate location 𝑥*(𝑡0) of the initial point
𝑥(𝑡0) with an error

‖𝑥*(𝑡0)− 𝑥(𝑡0)‖ < 𝛿𝑥. (2.3)

An additional restriction is that the control person cannot perform “heavy” calculations after
the initial moment 𝑡0 of the motion, it is necessary to build and store in a limited amount of
memory enabling program controls for all possible values of the indefinite constant parameter
𝛼 in advance by having only information about L and 𝑥*(𝑡0).
Thus, we have stipulated the information conditions.
Let 𝑀 be some compact set in R𝑛, which is the target set for system (2.1). Let us formulate

a problem of approaching 𝑀 for system (2.1).

Problem 1. To determine the existence of an admissible program control 𝑢(𝑡) that transfers
the motion 𝑥(𝑡) of system (2.1) at time 𝜗 to a small neighborhood 𝑀 , and, in the case of a
positive answer, to construct it.

3. Algorithm of solving problem on approaching 1

We denote by Ω(𝛿)(·) a mapping, which “decimates” the set, that is, with each bounded set

𝐴 ⊂ R𝑘, 𝑘 ∈ N, it associates a finite set ̃︀𝐴 = Ω(𝛿)(𝐴) consisting possibly from a smaller number
of its points and having the property:

𝑑(𝐴, ̃︀𝐴) ⩽ 𝛿,

where 𝑑(𝐴, ̃︀𝐴) is the Hausdorff distance between 𝐴 and ̃︀𝐴. The methods for constructing such

“decimated” set ̃︀𝐴 are given in [15].

We denote ̃︀𝑃 = Ω(Δ𝑢)(𝑃 ), where ∆𝑢 > 0 is a sufficiently small constant chosen by the
condition of optimality between the accuracy and computational performance, 𝑃 is restriction
of the control from Condition E.
We introduce a mapping 𝑋(Δ) : R×R× 2Ω × L ↦→ 2Ω acting by rule:

𝑋(Δ)(𝑡*, 𝑡*, ̃︀𝑋*, 𝛼) =
⋃︁

𝑥∈ ̃︀𝑋*

{𝑥+ (𝑡* − 𝑡*)𝑓(𝑡*, 𝑥, ̃︀𝑃 , 𝛼)}

=
⋃︁

𝑥∈ ̃︀𝑋*

⋃︁
𝑢∈ ̃︀𝑃

{𝑥+ (𝑡* − 𝑡*)𝑓(𝑡*, 𝑥, 𝑢, 𝛼)}.
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After introducing the necessary notation, we formulate a numerical method for solving prob-
lem 1 in the form of two algorithms. The first algorithm is for computing produced before the
system starts moving, and the second algorithm is applied directly during the movement.

Algorithm 3.1.

1) We choose a sufficiently large natural number 𝑁 and introduce a uniform partition Γ =
{𝑡0, 𝑡1, 𝑡2, . . . , 𝑡𝑖, . . . , 𝑡𝑁 = 𝜗} time interval [𝑡0, 𝜗] with a diameter ∆ = ∆(Γ), which satisfies the
relations

∆ = 𝑡𝑖+1 − 𝑡𝑖 = 𝑁−1 · (𝜗− 𝑡0), 𝑖 = 0, 𝑁 − 1.

2) Denote by ∆𝛼 > 0 a sufficiently small constant satisfying Condition E for ∆ = ∆(Γ).
In addition, from Condition E we determine the function 𝜌(∆) and the control restriction
𝑃 = 𝑃 (𝜌(∆)).

3) As a finite subset of ̃︁L ⊂ L , we choose a set of vectors {𝛼(𝑗)}𝑁𝛼
𝑗=1 such that each 𝛼 ∈ L is

inside “its” square 𝛼(𝑗,−,−)𝛼(𝑗,−,+)𝛼(𝑗,+,−)𝛼(𝑗,+,+) with four vertices 𝛼(𝑗,±,±) = (𝛼
(𝑗)
1 ±∆𝛼/2, 𝛼

(𝑗)
2 ±

∆𝛼/2).
4) We choose a sufficiently small constant ∆𝑥 > 0 and for all 𝑗 = 1, 𝑁𝛼 we define the sets̃︀𝑋0 = {𝑥(0)}, ̃︀𝑋𝑘(𝛼

(𝑗)) = Ω(Δ𝑥)(𝑋(Δ)(𝑡𝑘, 𝑡𝑘−1, ̃︀𝑋𝑘−1, 𝛼
(𝑗)), 𝑘 = 1, 𝑁.

While constructing finite sets ̃︀𝑋𝑘(𝛼
(𝑗)), 𝑘 = 1, 𝑁 , 𝑗 = 1, 𝑁𝛼, for each point 𝑥(𝑘,𝑗) ∈ ̃︀𝑋𝑘(𝛼

(𝑗))

we remember a “parent” point 𝑥(𝑘−1,𝑗) ∈ ̃︀𝑋𝑘−1(𝛼
(𝑗)) and a control 𝑢(𝑘,𝑗) = const, for which the

relation holds:

𝑥(𝑘,𝑗) = 𝑥(𝑘−1,𝑗) +∆ · 𝑓(𝑡𝑘−1, 𝑥
(𝑘−1,𝑗), 𝑢(𝑘,𝑗), 𝛼(𝑗)).

5) If for all 𝛼(𝑗) ∈ ̃︁L the distance

𝜌(𝑀, ̃︀𝑋𝑁(𝛼
(𝑗))) = min{‖𝑥− 𝑦‖ : 𝑥 ∈ 𝑀, 𝑦 ∈ ̃︀𝑋𝑁(𝛼

(𝑗))} > ∆𝑥,

we then conclude that it is impossible to construct the resolving program control mapping the
motion of system (2.1) to the target set 𝑀 at a moment 𝜗 with an appropriate accuracy by our
method and we complete the solving the approach problem.

If for all 𝛼(𝑗) ∈ ̃︁L the distance

𝜌(𝑀, ̃︀𝑋𝑁(𝛼
(𝑗))) = min{‖𝑥− 𝑦‖ : 𝑥 ∈ 𝑀, 𝑦 ∈ ̃︀𝑋𝑁(𝛼

(𝑗))} ⩽ ∆𝑥,

we then conclude that problem 1 is solvable for each 𝛼 ∈ L realized in the system.

If for some 𝛼(𝑗) ∈ ̃︁L
𝜌(𝑀, ̃︀𝑋𝑁(𝛼

(𝑗))) = min{‖𝑥− 𝑦‖ : 𝑥 ∈ 𝑀, 𝑦 ∈ ̃︀𝑋𝑁(𝛼
(𝑗))} ⩽ ∆𝑥,

while for other 𝛼(𝑗) ∈ ̃︁L this inequality is not satisfied, then we can not provide a solution to
problem 1 with an appropriate accuracy for the provided value of the parameter 𝛼.
6) For each 𝑗 = 1, 𝑁𝛼 we choose one point 𝑥(𝑁,𝑗) ∈ ̃︀𝑋𝑁(𝛼

(𝑗)) among the nearests to 𝑀 . We
can assume that if our algorithm is not over at Step 5), then 𝜌(𝑥(𝑁,𝑗),𝑀) ⩽ ∆𝑥, 𝑗 = 1, 𝑁𝛼. For
each 𝑗 = 1, 𝑁𝛼 we denote by 𝑥(𝑘,𝑗) and 𝑢(𝑘,𝑗) exactly the points and constant controlling vectors,
which led us to 𝑥(𝑁,𝑗).
7) For each 𝑗 = 1, 𝑁𝛼 and 𝑘 = 1, 𝑁 , in accordance with Remark 2.4, we solve four bound-

ary value problems for constant compensator vectors 𝑤(𝑘,𝑗,±,±) ∈ 𝐵𝑝(0, 𝜌(∆)) and absolutely
continuous functions 𝑥(𝑘,𝑗,±,±)(𝑡):{︃

𝑥̇(𝑘,𝑗,±,±)(𝑡) = 𝑓(𝑡, 𝑥(𝑘,𝑗,±,±)(𝑡), 𝑢(𝑘,𝑗) + 𝑤(𝑘,𝑗,±,±), 𝛼(𝑗,±,±)), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘),

𝑥(𝑘,𝑗,±,±)(𝑡𝑘−1) = 𝑥(𝑘−1,𝑗), 𝑥(𝑘,𝑗,±,±)(𝑡𝑘) = 𝑥(𝑘,𝑗).
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8) With each 𝛼(𝑗) ∈ ̃︁L we associated four piece-wise constant “node” controls

𝑢(𝑗,±,±)(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢(1,𝑗) + 𝑤(1,𝑗,±,±), 𝑡 ∈ [𝑡0, 𝑡1),

. . .

𝑢(𝑘,𝑗) + 𝑤(𝑘,𝑗,±,±), 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘),

. . .

𝑢(𝑁,𝑗) + 𝑤(𝑁,𝑗,±,±), 𝑡 ∈ [𝑡𝑁−1, 𝑡𝑁 ].

(3.1)

Remark 3.1. At Step 3) of algorithm 3.1, one can choose a slightly smaller set ̃︁L , allowing
moreover some 𝛼 ∈ L points to be located slightly outside “their” squares with vertices 𝛼(𝑗,−,−),
𝛼(𝑗,−,+), 𝛼(𝑗,+,−) and 𝛼(𝑗,+,+). However, in doing so, we must require that, first, Condition E
be satisfied in the same neighborhood of the square 𝛼(𝑗,−,−)𝛼(𝑗,−,+)𝛼(𝑗,+,−)𝛼(𝑗,+,+), and secondly,
for such 𝛼 = 𝑐1𝑐2𝛼

(𝑗,−,−,) + (1 − 𝑐1)𝑐2𝛼
(𝑗,+,−,) + 𝑐1(1 − 𝑐2)𝛼

(𝑗,−,+,) + (1 − 𝑐1)(1 − 𝑐2)𝛼
(𝑗,+,+,) all

inclusions

𝑐1𝑐2𝑤
(𝑘,𝑗,−,−,)+(1−𝑐1)𝑐2𝑤

(𝑘,𝑗,+,−,)+𝑐1(1−𝑐2)𝑤
(𝑘,𝑗,−,+,)+(1−𝑐1)(1−𝑐2)𝑤

(𝑘,𝑗,+,+,) ∈ 𝐵𝑝(0, 𝜌(∆))

to be true for 𝑘 = 1, 𝑁 .

Algorithm 3.2.

1) By the approximate value 𝛼* obtained at the moment 𝑡0, we determine the corresponding

𝛼(𝑗) ∈ ̃︁L according to the distribution that was defined at Step 3) of Algorithm 3.1.
2) We represent the vector 𝛼* as a linear combination of the vectors 𝛼(𝑗,−,−,), 𝛼(𝑗,−,+,), 𝛼(𝑗,+,−,),

𝛼(𝑗,+,+,) as follows:

𝛼* = 𝑐1𝑐2𝛼
(𝑗,−,−,) + (1− 𝑐1)𝑐2𝛼

(𝑗,+,−,) + 𝑐1(1− 𝑐2)𝛼
(𝑗,−,+,) + (1− 𝑐1)(1− 𝑐2)𝛼

(𝑗,+,+,),

where 0 ⩽ 𝑐1 ⩽ 1, 0 ⩽ 𝑐2 ⩽ 1, except for the case described in Remark 3.1.
3) As the initial resolving program control we use the function

𝑢̂(𝑡) = 𝑐1𝑐2𝑢
(𝑗,−,−,)(𝑡)+(1−𝑐1)𝑐2𝑢

(𝑗,+,−,)(𝑡)+𝑐1(1−𝑐2)𝑢
(𝑗,−,+,)(𝑡)+(1−𝑐1)(1−𝑐2)𝑢

(𝑗,+,+,)(𝑡). (3.2)

4. Estimate for error

Lemma 4.1. Assume that we are given constants 𝑐1, 𝑐2 ∈ R, points 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 =
(𝑥2, 𝑦2) and R

2, and a function 𝑓 : R2 → R𝑛, 𝑓 ∈ 𝐶2(R2), all second derivatives of which are
bounded by some constant 𝑚2 > 0, that is,⃦⃦⃦𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2

⃦⃦⃦
⩽ 𝑚2,

⃦⃦⃦𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2

⃦⃦⃦
⩽ 𝑚2,

⃦⃦⃦𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦

⃦⃦⃦
⩽ 𝑚2.

Then⃦⃦
𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑐2𝑦1 + (1− 𝑐2)𝑦2)− 𝑐1𝑐2𝑓(𝑥1, 𝑦1)− (1− 𝑐1)𝑐2𝑓(𝑥2, 𝑦1)

− 𝑐1(1− 𝑐2)𝑓(𝑥1, 𝑦2)− (1− 𝑐1)(1− 𝑐2)𝑓(𝑥2, 𝑦2)
⃦⃦

⩽
3

2

⃒⃒
𝑐2(1− 𝑐2)

⃒⃒
𝑚2(𝑦2 − 𝑦1)

2

+
3

2

⃒⃒
𝑐1(1− 𝑐1)𝑐2

⃒⃒
𝑚2(𝑥2 − 𝑥1)

2

+
3

2

⃒⃒
𝑐1(1− 𝑐1)(1− 𝑐2)

⃒⃒
𝑚2(𝑥2 − 𝑥1)

2.

Proof. We expand the function 𝑓(𝜉, 𝜂) into the Taylor series with respect to the first variable at
the points 𝑥1 and 𝑥2 with the remainder in an integral form and substitute 𝜉 = 𝑐1𝑥1+(1−𝑐1)𝑥2

into these expansions. This gives the identities

𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝜂) =𝑓(𝑥1 + (1− 𝑐1)(𝑥2 − 𝑥1), 𝜂)
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=𝑓(𝑥1, 𝜂) + (1− 𝑐1)(𝑥2 − 𝑥1) ·
𝜕𝑓(𝑥1, 𝜂)

𝜕𝑥1

+

𝑐1𝑥1+(1−𝑐1)𝑥2∫︁
𝑥1

(𝑐1𝑥1 + (1− 𝑐1)𝑥2 − 𝑡)
𝜕2𝑓(𝑡, 𝜂)

𝜕𝑡2
𝑑𝑡,

𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝜂) =𝑓(𝑥2 + 𝑐1(𝑥1 − 𝑥2), 𝜂)

=𝑓(𝑥2, 𝜂) + 𝑐1(𝑥1 − 𝑥2)
𝜕𝑓(𝑥2, 𝜂)

𝜕𝑥2

+

𝑐1𝑥1+(1−𝑐1)𝑥2∫︁
𝑥2

(𝑐1𝑥1 + (1− 𝑐1)𝑥2 − 𝑡)
𝜕2𝑓(𝑡, 𝜂)

𝜕𝑡2
𝑑𝑡,

which imply⃒⃒
𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝜂)− 𝑐1𝑓(𝑥1, 𝜂)− (1− 𝑐1)𝑓(𝑥2, 𝜂)

⃒⃒
=

⃒⃒
𝑐1
(︀
𝑓(𝑥1 + (1− 𝑐1)(𝑥2 − 𝑥1), 𝜂)− 𝑓(𝑥1, 𝜂)

)︀
+ (1− 𝑐1)

(︀
𝑓(𝑥2 + 𝑐1(𝑥1 − 𝑥2))𝑓(𝑥2, 𝜂)

)︀⃒⃒
=

⃒⃒⃒⃒
𝑐1(1− 𝑐1)(𝑥2 − 𝑥1)

𝑥2∫︁
𝑥1

𝜕2𝑓(𝑡, 𝜂)

𝜕𝑡2
𝑑𝑡+ 𝑐1

𝑐1𝑥1+(1−𝑐1)𝑥2∫︁
𝑥1

(𝑐1𝑥1 + (1− 𝑐1)𝑥2 − 𝑡)
𝜕2𝑓(𝑡, 𝜂)

𝜕𝑡2
𝑑𝑡

+ (1− 𝑐1)

𝑐1𝑥1+(1−𝑐1)𝑥2∫︁
𝑥2

(𝑐1𝑥1 + (1− 𝑐1)𝑥2 − 𝑡)
𝜕2𝑓(𝑡, 𝜂)

𝜕𝑡2
𝑑𝑡

⃒⃒⃒⃒

⩽

⃒⃒⃒⃒
𝑐1(1− 𝑐1)𝑚2(𝑥2 − 𝑥1)

2 + 𝑐1𝑚2
(1− 𝑐1)

2(𝑥2 − 𝑥1)
2

2
+ (1− 𝑐1)𝑚2

𝑐21(𝑥2 − 𝑥1)
2

2

⃒⃒⃒⃒
=

3

2
|𝑐1(1− 𝑐1)|𝑚2(𝑥2 − 𝑥1)

2.

Substituting 𝜂 = 𝑦1 and 𝜂 = 𝑦2 into this inequality, we get:⃦⃦
𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑦1)− 𝑐1𝑓(𝑥1, 𝑦1)− (1− 𝑐1)𝑓(𝑥2, 𝑦1)

⃦⃦
⩽

3

2
|𝑐1(1− 𝑐1)|𝑚2(𝑥2 − 𝑥1)

2, (4.1)⃦⃦
𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑦2)− 𝑐1𝑓(𝑥1, 𝑦2)− (1− 𝑐1)𝑓(𝑥2, 𝑦2)

⃦⃦
⩽

3

2
|𝑐1(1− 𝑐1)|𝑚2(𝑥2 − 𝑥1)

2. (4.2)

Similarly, expanding the function 𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝜂) with respect to the second variable
and substituting 𝜂 = 𝑐2𝑦1 + (1− 𝑐2)𝑦2, we obtain the inequality⃦⃦

𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑐2𝑦1 + (1− 𝑐2)𝑦2)

− 𝑐2𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑦1)− (1− 𝑐2)𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑦2)
⃦⃦

⩽
3

2
|𝑐2(1− 𝑐2)|𝑚2(𝑦2 − 𝑦1)

2.

(4.3)

Using inequalities (4.1), (4.2) and (4.3), we estimate the difference⃦⃦
𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑐2𝑦1 + (1− 𝑐2)𝑦2)

− 𝑐1𝑐2𝑓(𝑥1, 𝑦1)− (1− 𝑐1)𝑐2𝑓(𝑥2, 𝑦1)− 𝑐1(1− 𝑐2)𝑓(𝑥1, 𝑦2)− (1− 𝑐1)(1− 𝑐2)𝑓(𝑥2, 𝑦2)
⃦⃦

⩽
⃦⃦
𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑐2𝑦1 + (1− 𝑐2)𝑦2)− 𝑐2𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑦1)

− (1− 𝑐2)𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑦2)
⃦⃦

+
⃦⃦
𝑐2𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑦1)− 𝑐1𝑐2𝑓(𝑥1, 𝑦1)− (1− 𝑐1)𝑐2𝑓(𝑥2, 𝑦1)

⃦⃦
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+
⃦⃦
(1− 𝑐2)𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑦2)− 𝑐1(1− 𝑐2)𝑓(𝑥1, 𝑦2)− (1− 𝑐1)(1− 𝑐2)𝑓(𝑥2, 𝑦2)

⃦⃦
⩽

3

2

⃒⃒
𝑐2(1− 𝑐2)

⃒⃒
𝑚2(𝑦2 − 𝑦1)

2

+
3

2

⃒⃒
𝑐1(1− 𝑐1)𝑐2

⃒⃒
𝑚2(𝑥2 − 𝑥1)

2 +
3

2

⃒⃒
𝑐1(1− 𝑐1)(1− 𝑐2)

⃒⃒
𝑚2(𝑥2 − 𝑥1)

2.

This completes the proof.

Corollary 4.1. If, under the assumption of Lemma 4.1, we additionally restrict 0 ⩽ 𝑐1 ⩽ 1,
0 ⩽ 𝑐2 ⩽ 1, then⃦⃦

𝑓(𝑐1𝑥1 + (1− 𝑐1)𝑥2, 𝑐2𝑦1 + (1− 𝑐2)𝑦2)− 𝑐1𝑐2𝑓(𝑥1, 𝑦1)− (1− 𝑐1)𝑐2𝑓(𝑥2, 𝑦1)

− 𝑐1(1− 𝑐2)𝑓(𝑥1, 𝑦2)− (1− 𝑐1)(1− 𝑐2)𝑓(𝑥2, 𝑦2)
⃦⃦
⩽

3

8
𝑚2‖𝑃2 − 𝑃1‖2.

Theorem 4.1. Let system (2.1) satisfy Conditions A, B, C, D, E, and let it be controlled
under the information conditions listed in Section 2. And let, while solving problem 1 at Step
5) of Algorithm 3.1, the existence of an admissible resolving control is established, and then,
using Algorithm 3.2, program control 𝑢̂(𝑡) generating motion 𝑥̂(𝑡) is constructed. Then

𝜌(𝑥̂(𝜗),𝑀) ⩽ ∆𝑥 + 𝛿𝑥𝑒
𝐿(𝜗−𝑡0) +

𝜔(3)
(︁3
8
𝑀2∆

2
𝛼

)︁
+ 𝜔(4)(𝛿𝛼)

𝐿

(︀
𝑒𝐿(𝜗−𝑡0) − 1

)︀
.

Proof. In accordance with Step 3) of Algorithm 3.1 there exists a number 𝑗 ∈ {1, . . . , 𝑁𝛼} such
that

𝛼* = 𝑐1𝑐2𝛼
(𝑗,−,−,) + (1− 𝑐1)𝑐2𝛼

(𝑗,+,−,) + 𝑐1(1− 𝑐2)𝛼
(𝑗,−,+,) + (1− 𝑐1)(1− 𝑐2)𝛼

(𝑗,+,+,),

where 0 ⩽ 𝑐1 ⩽ 1, 0 ⩽ 𝑐2 ⩽ 1.
By 𝑥̂(𝑡) we denote the motion of system (2.1) corresponding to the control

𝑢̂(𝑡) = 𝑐1𝑐2𝑢
(𝑗,−,−,)(𝑡) + (1− 𝑐1)𝑐2𝑢

(𝑗,+,−,)(𝑡) + 𝑐1(1− 𝑐2)𝑢
(𝑗,−,+,)(𝑡) + (1− 𝑐1)(1− 𝑐2)𝑢

(𝑗,+,+,)(𝑡),

exact value of the parameter 𝛼 and initial state 𝑥(𝑡0). We note that under our notations
𝑥̂(𝑡0) = 𝑥(𝑡0) is the exact initial state of system.
By construction

𝜌(𝑥(𝜗),𝑀) ⩽ ∆𝑥. (4.4)

Under our notation estimate (2.3) is

‖𝑥̂(𝑡0)− 𝑥(𝑡0)‖ = ‖𝑥(𝑡0)− 𝑥*(𝑡0)‖ ⩽ 𝛿𝑥. (4.5)

By Condition E there exists some ideal compensator vector 𝑤(1,𝑗) ∈ 𝐵𝑝(0, 𝜌(∆)) such that
the state of system 𝑥(𝑡0) under the action of a constant control 𝑢(1,𝑗) + 𝑤(1,𝑗) on the segment
[𝑡0, 𝑡1) and under the parameter 𝛼* is moved to the point 𝑥(𝑡1) over some trajectory 𝑥(𝑡). For
further purposes, by 𝑥(𝑡) we denote entire trajectory of system (2.1) passing through the points
𝑥(𝑡0), 𝑥(𝑡1), . . . , 𝑥(𝑡𝑁) under the action of piece-wise constant control 𝑢(𝑡) = 𝑢(𝑘,𝑗) + 𝑤(𝑘,𝑗),
𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), 𝑘 = 1, 𝑁 .
However, according to Algorithm 3.2, instead of the ideal compensator vector 𝑤(1,𝑗) we use

the compensator vector

𝑤̂(1,𝑗) = 𝑐1𝑐2𝑤
(1,𝑗,−,−,) + (1− 𝑐1)𝑐2𝑤

(1,𝑗,+,−,) + 𝑐1(1− 𝑐2)𝑤
(1,𝑗,−,+,) + (1− 𝑐1)(1− 𝑐2)𝑤

(1,𝑗,+,+,).

Since it is a convex combination 𝑤(1,𝑗,−,−), 𝑤(1,𝑗,−,+), 𝑤(1,𝑗,+,−) and 𝑤(1,𝑗,+,+), it also belongs to
𝐵𝑝(0, 𝜌(∆)). By Corollary 4.1, the estimate holds:

‖𝑤̂(1,𝑗) − 𝑤(1,𝑗)‖ ⩽
3

8
𝑀2∆

2
𝛼.
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Since, according to formulas (3.1) and (3.2),

𝑢̂(𝑡) = 𝑢(1,𝑗) + 𝑤̂(1,𝑗), 𝑡 ∈ [𝑡0, 𝑡1),

then

‖𝑢̂(𝑡)− 𝑢(𝑡)‖ = ‖𝑤̂(1,𝑗) − 𝑤(1,𝑗)‖ ⩽
3

8
𝑀2∆

2
𝛼, 𝑡 ∈ [𝑡0, 𝑡1).

Similarly, for each 𝑘 = 1, 𝑁 by Condition E there exists some ideal compensator vector 𝑤(𝑘,𝑗) ∈
𝐵𝑝(0, 𝜌(∆)) such that the state of system 𝑥(𝑡𝑘−1) under the action of a constant control 𝑢(𝑡) =
𝑢(𝑘,𝑗) + 𝑤(𝑘,𝑗) on the segment [𝑡𝑘−1, 𝑡𝑘) and under 𝛼 = 𝛼* maps the point 𝑥(𝑡𝑘) along the
trajectory 𝑥(𝑡). However, by Algorithm 3.2 on the segment [𝑡𝑘−1, 𝑡𝑘) we use the control

𝑢̂(𝑡) = 𝑣(𝑘,𝑗) + 𝑤̂(𝑘,𝑗) =𝑣(𝑘,𝑗) + 𝑐1𝑐2𝑤
(1,𝑗,−,−,) + (1− 𝑐1)𝑐2𝑤

(1,𝑗,+,−,)

+ 𝑐1(1− 𝑐2)𝑤
(1,𝑗,−,+,) + (1− 𝑐1)(1− 𝑐2)𝑤

(1,𝑗,+,+,),

for which, by Corollary 4.1, the estimate holds:

‖𝑢̂(𝑡)− 𝑢(𝑡)‖ = ‖𝑤̂(𝑘,𝑗) − 𝑤(𝑘,𝑗)‖ ⩽
3

8
𝑀2∆

2, 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), 𝑘 = 1, 𝑁. (4.6)

In other words, estimate (4.6) holds on entire segment [𝑡0, 𝜗]. We also recall that the value
𝛼* of the parameter 𝛼 is known with the accuracy 𝛿𝛼, see (2.2).
Thus, taking into consideration (4.5), (4.6) and (2.2) for 𝑡 ∈ [𝑡0, 𝜗] we obtain the following

integral estimate for the mismatch of movements:

‖𝑥̂(𝑡)− 𝑥(𝑡)‖ ⩽

⃦⃦⃦⃦
𝑥̂(𝑡0) +

𝑡∫︁
𝑡0

𝑓(𝜏, 𝑥̂(𝜏), 𝑢̂(𝜏), 𝛼) 𝑑𝜏 − 𝑥(𝑡0)−
𝑡∫︁

𝑡0

𝑓(𝜏, 𝑥(𝜏), 𝑢𝑗(𝜏), 𝛼
*) 𝑑𝜏

⃦⃦⃦⃦

⩽‖𝑥̂(𝑡0)− 𝑥(𝑡0)‖+
𝑡∫︁

𝑡0

(︀
‖𝑓(𝜏, 𝑥̂(𝜏), 𝑢̂(𝜏), 𝛼)− 𝑓(𝜏, 𝑥(𝜏), 𝑢̂(𝜏), 𝛼)

+ 𝑓(𝜏, 𝑥(𝜏), 𝑢̂(𝜏), 𝛼)− 𝑓(𝜏, 𝑥(𝜏), 𝑢(𝜏), 𝛼)

+ 𝑓(𝜏, 𝑥(𝜏), 𝑢(𝜏), 𝛼)− 𝑓(𝜏, 𝑥(𝜏), 𝑢(𝜏), 𝛼*)‖
)︀
𝑑𝜏

⩽𝛿𝑥 +

𝑡∫︁
𝑡0

𝐿‖𝑥̂(𝜏)− 𝑥(𝜏)‖ 𝑑𝜏 +

𝑡∫︁
𝑡0

𝜔(3)
(︀
𝑢̂(𝜏)− 𝑢(𝜏)

)︀
𝑑𝜏 +

𝑡∫︁
𝑡0

𝜔(4)(𝛼− 𝛼*) 𝑑𝜏

⩽𝛿𝑥 + 𝐿

𝑡∫︁
𝑡0

‖𝑥̂(𝜏)− 𝑥(𝜏)‖ 𝑑𝜏 + (𝑡− 𝑡0) · 𝜔(3)
(︁3
8
𝑀2∆

2
𝛼

)︁
+ (𝑡− 𝑡0) · 𝜔(4)(𝛿𝛼).

This by a strong Grönwall lemma [16, Ch. 1, Sect. 2] implies that

‖𝑥̂(𝜗)− 𝑥(𝜗)‖ ⩽ 𝛿𝑥𝑒
𝐿(𝜗−𝑡0) +

𝜔(3)
(︁3
8
𝑀2∆

2
𝛼

)︁
+ 𝜔(4)(𝛿𝛼)

𝐿

(︀
𝑒𝐿(𝜗−𝑡0) − 1

)︀
. (4.7)

Relations (4.4) and (4.7) imply the statement of the theorem.

Remark 4.1. For modified Algorithm 3.1, in accordance with Remark 3.1 and using
Lemma 4.1 we can obtain a weaker estimate

𝜌(𝑥̂(𝜗),𝑀) ⩽ ∆𝑥 + 𝛿𝑥𝑒
𝐿(𝜗−𝑡0)

+
𝑒𝐿(𝜗−𝑡0) − 1

𝐿

(︁
𝜔(3)

(︁3
2

(︀⃒⃒
𝑐2(1− 𝑐2)

⃒⃒
+
⃒⃒
𝑐1(1− 𝑐1)𝑐2

⃒⃒
+
⃒⃒
𝑐1(1− 𝑐1)(1− 𝑐2)

⃒⃒)︀
𝑀2∆

2
𝛼

)︁
+ 𝜔(4)(𝛿𝛼)

)︁
.
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5. Example

As an example we consider a nonlinear generalization of navigation Zermelo problem. On
the segment [𝑡0, 𝜗] = [0, 2] we consider a controlled problem{︃

𝑥̇(𝑡) = 𝑠(𝑥(𝑡)) + 𝑢(𝑡), 𝑡 ∈ (0, 2),

𝑥(0) = 𝑥(0) = (0, 0),
(5.1)

where 𝑡 is the time, 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) is the phase variable, 𝑠(𝑥) = (𝑠1(𝑥), 𝑠2(𝑥)) =(︀
sin(𝑥2), cos(𝑥1)

)︀
is a vector function, 𝑥(0) is the initial state of system, 𝑢(𝑡) is a Lebesgue

measurable vector function with values in the circle 𝑃 = {𝑢 = (𝑢1, 𝑢2) : 𝑢2
1 + 𝑢2

2 ⩽ 1}, which
is a vector of controlling actions.
The problem is to quickly present a program control 𝑢(𝑡), 𝑡 ∈ [𝑡0, 𝜗], which would translate

the motion 𝑥(𝑡) of controlled system (5.1) from the initial point 𝑥(0) to a small neighborhood of
the point 𝑥(𝑓), the coordinates of which are given to us at the initial moment 𝑡0 = 0. However,

we know in advance that 𝑥(𝑓) belongs to the circle 𝐵2
(︁
(1, 2),

1

2

)︁
.

In this section, we demonstrate the operation of Algorithms 3.1 and 3.2 for solving our
problem and model the accuracy of hitting the system motion (5.1) the target set at the final
time 𝜗 = 2. For simplicity, all measurements are considered to be exact, that is, 𝛿𝛼 = 0 and
𝛿𝑥 = 0.
Thus, to move the uncertainty in the target set into an unknown parameter, we introduce

a constant parameter 𝛼 = (𝛼1, 𝛼2) =
(︁1
2
(𝑥

(𝑓)
1 − 1),

1

2
(𝑥

(𝑓)
2 − 2)

)︁
and make the change of the

phase variable 𝜉 = 𝑥− 𝑡𝛼. After such change of variables system (5.1) becomes{︃
𝜉(𝑡) = −𝛼 + 𝑠

(︀
𝜉(𝑡) + 𝑡𝛼

)︀
+ 𝑢(𝑡), 𝑡 ∈ (0, 2),

𝜉(0) = 𝑥(0) = (0, 0).
(5.2)

Here the target set is the point 𝜉(𝑓) = (1, 2), while the unknown vector parameter 𝛼 takes an

arbitrary value in L = 𝐵2
(︁
(0, 0),

1

4

)︁
.

For such transformed problem we execute Algorithm 3.1.
1) We choose 𝑁 = 2, then Γ = {𝑡0 = 0, 𝑡1 = 1, 𝑡0 = 2}.

2) We denote ∆𝛼 =

√
2

8
. We define with a margin 𝜌(∆) =

3

4
, then 𝑃 (𝜌(∆)) = 𝐵2

(︁
(0, 0),

1

4

)︁
.

3) We choose ̃︁L = {𝛼(1) = (0, 0)}. Respectively, 𝛼(1,±,±) =
(︁
±

√
2

8
,±

√
2

8

)︁
.

4) We choose ∆𝑥 =

√
2

50
and construct the approximations of the target sets ̃︀𝑋1(𝛼

(1)) and̃︀𝑋2(𝛼
(1)), Figure 1.

5) Since 𝜌(𝜉(𝑓), ̃︀𝑋2(𝛼
(1))) < ∆𝑥, we continue the execution of Algorithm 3.1.

6) We choose 𝜉
(2,1)

= (1.0015, 2), a nearest to 𝜉(𝑓) in ̃︀𝑋2(𝛼
(1)). We observe that 𝜉

(0)
= (0, 0),

𝑢(1,1) = (0, 0), 𝜉
(1,1)

= (0, 1), 𝑢(2,1) = (0.16, 0).
7) For each 𝑘 = 1, 2 and 𝑗 = 1, in accordance with Remark 2.4, we solve four problems{︃

𝜉(𝑘,𝑗,±,±)(𝑡) = 𝑓(𝑡, 𝜉(𝑘,𝑗,±,±)(𝑡), 𝑢(𝑘,𝑗) + 𝑤(𝑘,𝑗,±,±), 𝛼(𝑗,±,±)), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘),

𝜉(𝑘,𝑗,±,±)(𝑡𝑘−1) = 𝜉
(𝑘−1,𝑗)

, 𝑥(𝑘,𝑗,±,±)(𝑡𝑘) = 𝜉
(𝑘,𝑗)

.

Their solutions are

𝑤(1,1,−,+) = (−0.70185, 0.19243), 𝑤(1,1,+,+) = (−0.3472, 0.17898),

𝑤(1,1,−,−) = (−0.56727,−0.16393), 𝑤(1,1,+,−) = (−0.21275,−0.17465),
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Figure 1. Approximations of target sets ̃︀𝑋1(𝛼
(1)) and ̃︀𝑋2(𝛼

(1)).

𝑤(2,1,−,+) = (−0.09795, 0.23763), 𝑤(2,1,+,+) = (0.26776, 0.5129),

𝑤(2,1,−,−) = (−0.09828,−0.12595), 𝑤(2,1,+,−) = (0.24169, 0.13066).

8) By formula (3.1) we find four node controls

𝑢(1,−,−)(𝑡) =

{︂
(−0.56727,−0.16393), 𝑡 ∈ [0, 1),

(0.06172,−0.12595), 𝑡 ∈ [1, 2],

𝑢(1,−,+)(𝑡) =

{︂
(−0.70185, 0.19243), 𝑡 ∈ [0, 1),

(0.06205, 0.23763), 𝑡 ∈ [1, 2],

𝑢(1,+,−)(𝑡) =

{︂
(−0.21275,−0.17465), 𝑡 ∈ [0, 1),

(0.40169, 0.13066), 𝑡 ∈ [1, 2],

𝑢(1,+,+)(𝑡) =

{︂
(−0.3472, 0.17898), 𝑡 ∈ [0, 1),

(0.42776, 0.5129), 𝑡 ∈ [1, 2].

Thus, the execution of Algorithm 3.1 is over.
Then suppose that at the initial time moment 𝑡0 = 0 we are reported the coordinates of the

target 𝑥(𝑓) =
(︁
1,

5

2

)︁
. These coordinates are associated with the parameter

𝛼* = (𝛼*
1, 𝛼

*
2) =

(︁1
2
(𝑥

(𝑓)
1 − 1),

1

2
(𝑥

(𝑓)
2 − 2)

)︁
=

(︁
0,

1

4

)︁
.

To solve the approach problem we execute Algorithm 3.2.
1) By a given 𝛼* we choose a unique 𝛼(1) = (0, 0).
2) In accordance with Remark 3.1 we represent as a non-convex linear combination

𝛼* =
1 +

√
2

2

(︁1
2
𝛼(1,−,+) +

1

2
𝛼(1,+,+)

)︁
+

1−
√
2

2

(︁1
2
𝛼(1,−,−) +

1

2
𝛼(1,+,−)

)︁
.
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3) As a sought resolving control we use the function

𝑢̂(𝑡) =
1 +

√
2

4
𝑢(1,−,+)(𝑡) +

1 +
√
2

4
𝑢(1,+,+)(𝑡) +

1−
√
2

4
𝑢(1,−,−)(𝑡) +

1−
√
2

4
𝑢(1,+,−)(𝑡)

=

{︂
(−0.55238, 0.25923), 𝑡 ∈ [0, 1),

(0.24764, 0.45250), 𝑡 ∈ [1, 2].

The found program control moves system (2.1) to the point 𝑥
(𝑓)
* = (1.122, 2.492).

The error obtained in the example is very small relative to 𝛿 = 1 and 𝛿𝛼 =
√
2/8, especially

in view of the fact that we used a non-convex linear combination for interpolation. Its value
indicates the possible fulfillment a part of Condition E on the smoothness of the dependence
of the ideal vector-compensator on the parameter 𝛼.

6. Conclusion

For simplicity of presentation, in this article we consider the case of a two-dimensional pa-
rameter, however, there are no fundamental differences from the same problem with a constant
vector parameter of an arbitrary dimension, except for certain technical difficulties in formulat-
ing and proving an analogue of Lemma 4.1, although the estimate from Corollary 4.1 is valid
for any dimension. Compared to [11], a significant simplification of the algorithm is made: in
the new algorithm a “reverse” time is not introduced and an additional “node” resolving controls
are not built for points inside the cells of partition of the set of possible values of the parameter.
We note that an inconveniently large norm of the compensator vectors 𝑤(1,1,−,+) and 𝑤(1,1,+,+)

in the analyzed example is related to the large the distance from the point 𝜉
(1,1)

to the real
motion 𝜉(1) of system (5.2), which took too much control resources to overcome. The solution
to this problem can be in replacing the Euler method by the Runge-Kutta method [17] when
constructing the points 𝑥(𝑘,𝑗), as well as to reduce ∆. However, a more significant problem is
unverifiable Condition E in the current formulation. In this regard, further research can be
aimed on finding sufficient conditions that replace Condition E, and examples of controlled
systems for which Condition E is surely satisfied. It is also necessary to explore numerical
methods for calculating functions 𝑤 = 𝑤(̃︀𝛼) in Remark 2.4.
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