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NUMERICAL SOLUTION OF INITIAL-BOUNDARY VALUE
PROBLEMS FOR A MULTI-DIMENSIONAL
PSEUDOPARABOLIC EQUATION

M.Kh. BESHTOKOV

Abstract. We consider initial boundary value problems for a multi-dimensional pseu-
doparabolic equation with Dirichlet boundary conditions of a special form. For an approx-
imate solution of the considered problems, the multi-dimensional pseudoparabolic equation
is reduced to an integro-differential equation with a small parameter. It is shown that as
the small parameter tends to zero, the solution of the corresponding modified problem con-
verges to the solution of the original problem. For each of the problems we construct a
locally one-dimensional difference scheme following A.A. Samarskii. The main idea is to
reduce the transition from a layer to a layer to the sequential solving a number of one-
dimensional problems in each of the coordinate directions. Using the maximum principle,
we obtain apriori estimates, which imply the uniqueness, stability, and convergence of the
solution of a locally one-dimensional difference scheme in the uniform metric. We construct
an algorithm for numerical solving of the modified problem with conditions of a special
form.

Keywords: pseudoparabolic equation, moisture transfer equation, integro-differential
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and convergence
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1. INTRODUCTION

It is well known that boundary value problems for pseudoparabolic equations arise in study-
ing fluid filtration in fractured-porous media [I]-[3], soil moisture movements [4]-[6], when
describing heat and mass transfer [7]-[10], wave processes and many other areas.

Boundary value problems for various classes of third order equations were studied in [11]-
[16]. In [17], a wide range of results was obtained on initial and initial-boundary value problems
for strongly nonlinear equations of pseudo-parabolic type, as well as issues of local solvability,
conditions for the destruction of solutions, and global solvability in time. Boundary value
problems with a general A.A. Samarskii nonlocal condition for high-order pseudoparabolic
equations were studied in [18].

From the point of view of numerical implementation, the passage from the one-dimensional
case to the multi-dimensional case causes significant difficulties. The difficulty lies in the es-
sential increase in the amount of computation that occurs when moving from one-dimensional
problems to the multi-dimensional ones. In this regard, the problem of constructing economical
difference schemes for the numerical solution of multidimensional problems becomes topical.

In this paper, we consider initial-boundary value problems for a multi-dimensional pseu-
doparabolic equation with variable coefficients. The aim of the work is to construct and study

M.KH. BESHTOKOV, NUMERICAL SOLUTION OF INITIAL-BOUNDARY VALUE PROBLEMS FOR A MULTIDIMEN-
SIONAL PSEUDOPARABOLIC EQUATION.

© BesHTOKOV M.KH. 2023.

Submitted July 26, 2022.

13


https://doi.org/10.13108/2023-15-3-13

14 M.Kh. BESHTOKOV

the convergence of an approximate solution of each of the problems posed with time approxima-
tion based on locally one-dimensional splitting schemes [19], [20]. The main difficulty lies in the
need to split not only the first operator, but also the operator at the time derivative; therefore,
the construction of splitting schemes is achieved by passing to a time-nonlocal problem and its
parabolic regularization. The study of stability and convergence is carried out according to the
method of A.A. Samarsky [2I]. Using the maximum principle for solving the corresponding
problem, an apriori estimate in the uniform metric is obtained, from which the uniqueness and
stability of the solution follow, and convergence is proved. An algorithm for the numerical
solution of a modified problem with boundary conditions of a special type is constructed using
a recursive formula for fast calculation in the multi-dimensional case.

This paper is a continuation of the author’s series of papers [22]-[26] devoted to the study
of local and nonlocal boundary value problems for generalized pseudoparabolic equations with
variable coefficients.

2. FORMULATION OF DIRICHLET INITIAL BOUNDARY VALUE PROBLEM
In the cylinder Q; = G x [0, T], the base of which is a p-dimensional rectangle parallelepiped
G= {x: (1,29, ..., 2p) 1 0 < o <y k= 1,2,...,p}

with the boundary I', G = G + I, we consider the following problem

ou )
% Lu+ aaLu + f(z,t), (x,t) € Qr, (2.1)
U\qu(x,t), 0<t<T, (2.2)
u(z,0) = up(z), r€CG G=G+T, (2.3)
where
p
0 ou ou
=2 b =50 T Fymi —1,2,...
u ; kU; LU Bzt (@k(x,t) 8:@) +rk($,t)axk qr(z,t)u, k=1,2,... p,
U(I7t) S 04,2 (@T) ) @k($7t) S 0371 (GT) , Tk(x,t),qk(q;7t)7 f([E,t) c 02,1 (@T) 7 (24)
Or qr Tk
< < Ok Gk TE| _ |
0 <o < Oulz,t), anlz,t) Sery il < e ‘ 50 5 3| S Concr, co = const >0

C™™ is the class of functions continuous together with its partial derivatives of order m in x
and of order n in t and Qr = G x (0,7, a > 0.

We transform equation by multiplying both sides of by ieét, replacing then t by
¢ and integrating the obtained expression in £ from 0 to ¢. This gives the equation

Bu = Lu+ f(x,t), (2.5)
where
1 1
Bu = — / e aOuede,  fla,t) =~ / e T f(w, ©)dE — e v Lug(w), o >0.
a «
0 0

In the same domain, instead of problem (2.2)), (2.3), (2.5)), we consider the following problem

with a small parameter ¢

885; + Buf = Lu® + f(Lt), (x,t) € Qr, (2.6)
ulpr = p(x,t), 0<t<T, (2.7)

u®(x,0) = up(x), =€Gq, (2.8)
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where ¢ = const > 0.

Since as t = 0 the initial conditions for equation and coincide, in the vicinity of
t = 0 the derivative u has no singularity of boundary layer type [27], |28].

We are going to show that u* — w in some norm as ¢ — 0. We denote Z = u®* — u and

substitute u® = Z 4+ u into problem ([2.6)—(2.8)):

D Br= LT, () eQr (2.9
=0, 0<t<T, (2.10)
Z(x,0) =0, red, G=G+T, (2.11)

where f(z,t) = —5%.

Lemma 2.1. For each absolutely continuous on [0,T] function v(t) the inequality holds:
1
v(t)Bo(t) > 581)2@), (2.12)

where

Bu =

1
o}

t
/eclx(tg)ué: dg, a > 0.
0

Proof. We rewrite inequality (2.12)) in the form

t t
1 1 1
v(t)Bv — 515’212(75) =v(t)— /e_clv(t_T)deT ~ 5 e a(t=) (v?), dr

_L /tezw")3 /e;(t”v (T)dr| dn
2a J, on T
0
. 2
:i /e (=g (1)dr
200 T
0
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Thus,
1
v(t)Bu(t) > 581)2(25).
The proof is complete. O

In order to obtain an apriori estimate, we use the energy inequalities method. We calculate
the scalar product of equation (2.9) with Z:

(52) + (B25) = (Z s (@e0g-).2)
(Zrkxt ) (quxt ) (7(35,75),5),

where the scalar product and the norm read as

Ik
(w.0) = [wvds, oGO = ol = [ P ol = [ o0 dn
0

Then by M;, i = 1,2,... we denote positive constants depending only on the input data in
the considered problem.
Using Lemma we transform the integrals involved in identity (2.13):

0z .\ €0 .
(<52) = Stk (2.14)
p
( z 2) ( ZBz z) = Zszdw— Z/%Bédw
Py Ja

G g=1

g 1 p Uk
== ZBzdxy | do’ > — / (/ BZ*dx ) dx’ 2.15
p;/,(/g ez 5 [ ([ B 219

1 < i A TN 1,
32 [ Bl d' = 32 S BlaIE = 351215
k=1"G k=1
p ~ p ~ 2
0 8z 0z
— ™ e - <_
(;a ( k)»»’?) ;/G@k(%t)(axk) dr < —cg

G = {JI/ = (21,%2, ..., Tp1, Ty 1, - - -, Tp) 1 0 <7 < lk},

de' = dxydas . . drg_1dxg ... dxy.

(2.13)

%
ox

—~

2.16)

’
0

where

We estimate the terms in the right hand side by means of Cauchy e-inequality:

(met ) /Zrkxt—zdx—Z/rkxt—zdx

(2.17)
Cg < 2 d
< oG .
_ ) 1 .
(f(z,1),2) < 4_51||f||8 +€1||ZH§- (2.18)
Taking into consideration transformations (2.14)—(2.18)), by (2.13) we obtain the inequality

2

oz

S0 1212+ LB1s1e + (co - <0) (eo—e— 2 22 < 72 (2.19)
2 g¢ N0 T g TIEIO AT R0 o U0 T 4gy ) THOS g T TI0] '
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We transform the second term in the left hand side of (2.19)) as

t

t
1 _1 1 1 _1
Bzl; = [ 00 (ald), de = SlElE - o [ R Oliae 20

0 0

and in view of (|2.20) we find:

Choosing ¢g = g1 = %0 and ¢y < ¢, by (2.19

2

t
0z N - -
|52]. + et < on [z e+ aaz 221)
0

HZHO

We integrate (2.21) in 7 from 0 to t:

t T

. s oz i t

Al + | (||z||%+”a— )dr<M1 [ar [1zacs s, [7gar. @22
0 Zlo ) ) 0

We estimate the first term in the right hand side of (2.22). Then we rewrite (2.22)) as

t
Y < M, / Ydr + MyF, (2.23)
0
where
t t _
v [egar P [

Owing to Gronwall’s lemma |29, Ch. TI, Sect. 1, Lm. 1.1], by (2.23) we obtain the estimate
g||z||2+/ e+ 1200 dr < M/ Fizar = [ 24 ar = o), @20

0 ooz ||, ’ o T eI o], T S

where M depends only on the input data of problem 1)1)

Apriori estimate (2.24)) implies the convergence of u® to u as € — 0 in the norm
112 SN2 0 115012 oz ||?
12117 = ellzllo + 12120, + || 52

t
1230, = [ al3dr
0

if u; is a bounded sufficiently smooth function. This is why for small £ the solution of problem
(2.6)—(2.8)) is treated as an approximate solution of the Dirichlet initial boundary value problem
for a multi-dimensional pseudoparabolic equation (2.1)—(2.3)).

Y

27Qt

where

3. LOCALLY ONE-DIMENSIONAL DIFFERENCE SCHEME

We choose a spatial grid uniformly in each direction Oxj with steps hy =

i l
Wy {x,gk)—z‘khk:ik—o,L...,Nk, hy =~ k—1,2,...,p}, o =[] an.

On the segment [0, 7] we introduce the grid
.k T . :
O,t]+ j+]—? T, T=—, J=0,1,...,50—1, k=1,2,....,p¢,
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involving, together with the nodes t; = j, fictitious nodes ¢, x, £ =1,2,...,p— 1. We denote

e
by w. the set of the nodes in the grid @/, for which ¢ > 0.
With equation (2.6) we associate a chain of p “one-dimensional” equations; in order to do
this, we rewrite equation (2.6)) in the form

p €
kausz(), £u° _58u + Bu — Lypu® — fi,
p Ot

where fr(z,t), k =1,2,...,p, are arbitrary functions possessing the same smoothness as f(z,t)
p

and satisfying the condition Y fr = f
=1

On each semi-interval Ay = <t]+k Ltk } k=1,2,...,p, we subsequently solve the prob-

lems
Lyday =0, ze€G, tely, k=1,2,...,p, Yy = p(x,t) as zely, (3.1)
letting
Vy(a,0) = uo(x), V)@, t5) = Vi (2, 1),

ﬁ(k)(l’,tj+ >_Q9k’ 1)<7j+ )7 k:2737”'7p7 j:0717"’7j0_17

I is the set of boundary points in the direction . The function J(t;11) = U (tj41) is called
a solution of this problem as t = ¢;;.
Let us find a discrete analogue of Bu:

tj+§
1 pj+k sy,
- / <J+k £>u§d§— Z/ a(t+% £>u(x7§)dg
0
pa+k s . 6) R - 3
3 / 557 (alad) + i, €)(6 - D) de
(3.2)
pj+k 1
=<t k—s t k—s+1 i
= (e - * )ut—
s=1
R R e P
O s e, e - e
s=1 Yts—1
where
sy —u'r - . Ou 0%u -
ur = 7 , t:t%_%, U_E, (7 w, ts;1<€<§
p
We estimate the second term in the right hand side of (3.2)):
pjtk pj+k s

_Z/‘S’ B J+" 5) (xg)(g—td§<_—MZ/p J+k §>d£
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where |i(z,£)| < M.
Thus,

1 pj+k T N .

L +5 d R 4 — 1. .

a/ ug ¢ = g ( —e >ut +O<p) (3.3)
0

Similarly to [20, Ch. VI, Sect. 1, Item 10], for equation (3.1)) with index k& we obtain a
monotone scheme of second order of approximation in hy, for which the maximum principle
holds for all 7 and hy, k = 1,2,...,p. In order to do this, we consider equation (3.1 for a fixed

k with a perturbed operator Ly:

oy 1 ~
E— —819(;9 Lkﬁ(k) + fx, t e Ay, k=1,2,...,p, (3.4)
p Ot
where
~ 0 819(@ 619(k) 1
Ly = —_— t t — H =
kU (k) Xk@xk (@k(xa ) o + 1i(z, 1) O @ (z, 1)V ), Xk 1+ R,

and Ry, = O.E’)hkM is a Raynolds difference number.

O
In view of (3.3, we replace each of equations (3.4 by a scheme on Ay, k=1,2,....p:

€ ] . m—i—k it kst b=
S (T et )
~ ok k1 ik
=A; (Ukyﬁp +(1— Jk)yj+kpl> + goi P € wy, (3.5)
k . .
]+ ”th_:u 3:0717"'7]0_17
y(z,0) = uo(z ),

where o, are arbitrary parameters, v, is the set of all boundary nodes in the direction of xy,

s—1

. . . — . L s_Yyr -y
r €Wy =13 = (i1h1,...,i,h,) € G, i, =0,1,..., Vg, thM ) Y = ——=
p
~ ik i+ j +5 ik
Ay = <akyi ,,) bl T s —dytr, ay = Ol ),
Tk

Iy

r=0.5(rg + |rx]) =0, . = 0.5(ry — [ri]) <0, b = o0
k

T - i+
bk:@_kk’ Tk:rl—:_f'rkudk:qk(xvf)a gpj+p:fk(l‘7l?>,
uﬁ%:,u(x,ﬂ, f:tj+1/27 k:172a"'7p'

4. ERROR IN APPROXIMATION BY LOCALLY ONE-DIMENSIONAL SCHEME

We proceed to studying the error of approximation by locally one-dimensional scheme and
we are going to make sure that each equation (3.5)) with index k& does not approximate equation
, but the sum of errors of approximations ¢ = ¢y + ¥ + ... + 1, tends to zero as 7 and
|h| tend to zero.

We shall calculate o, = 1, k = 1,2,...,p. Let u = u(z,t) be a solution of problem ,
and yH% is a solution of difference scheme 1) A characteristics of sharpness of locally one-

dimensional scheme is the difference y/+* — /! = 27+, We compare intermediate values i’ »
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with w7 = u (=, tiyx ) letting St = y’ e — s, Substituting /T = 2T + /75 into
difference equation (3 , we get:
e g+ 1
]—)Zz P + — B Z p = AkZJ+P —|—¢ (41)
Lk
Zel,, =0, z(z,0)=0, (4.2)
where
i+ j+E 1pj+k Lt s to k—s+1 £ j+k
wkp Aku3+;_‘_¢ p__Z( i+ a i+ )up__uf p,
P P
T’Z 2 e Z
s=1

pot p k=1
in the form 1, = wk + ik, where

4k
p

0 0 Jt3 P .
Introducing the notation v, = <Lku + fr — S —Bu) and observing that > ¢, =0
Jj+
k

p
if > fx = f, we represent ¢ = ¢
k=1

Y = <Akuj+§ - Lk:u]—i_%) + Wﬁp - i“ - —BﬂtH% — ~Buwtz ) — iui—+p e
p p P p Ot

It is clear that wk = O(h} + 7) since each of the schemes 1) of the index k approximates
a corresponding equation (3.4)) in the usual sense. Thus, locally one-dimensional scheme ([3.5))

possesses a total approximation

*

=0 +7),  U=0(1), Y =0,

Y= Ziﬂk Z (%-Hﬂk)

k=1 k=1

I
S«
Ea
I
S
=
[\
+
2

5. STABILITY OF LOCALLY ONE-DIMENSIONAL SCHEME

To solve difference scheme (3.5) by means of the maximum principle [20, Ch. IV, Sect. 2,
Item 1], we obtain an apriori estimate in the uniform metrics expressing the stability of locally
one-dimensional scheme by initial data and the right hand side. In order to do this, we represent

the solution of problem ({3.5) as the sum
y=y-+uv,

where 7 is the solution of homogeneous equations (3.5) with inhomogeneous boundary and
initial conditions

(5.1)
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and v is the solution of inhomogeneous equations subject to boundary and initial conditions:

Lk pitk 1 _1 k
S (6 g atﬁk;ﬂ) = K+l
p P = (5.2)
Uj+%‘7h,k =0, v(z,0) = 0.

We are going to obtain an estimate for y. In order to do this, we write equation (.1 in a
canonical form. At the point P = P(z;,,t;, x) we have
p

1 T 3. Ak g i A g b*ai b*ai k
{;<€+1_6;p)+xk k,k+1+Xk k,k+ k Ukiip+1 O k’k+d}yfk+

h2 hi hy. hy,
_ XinOkigt1 5 Xk e n i Qg1 _+E  bpagg, i+t
hg yszrl 12 i — gl h Yip+1 — h Yin
1 1 ‘ 1 E—1 ) 1 1 ) 1 1 k—2 (53)
—5t1 —ota | _Jj+= —3t1 —3tl2 -3tz | g+
+-let+1l—=2e “p4e Py " +—le “P =2 P te 0|y "
T T
]_ —lt_ k—2 —lt, k—1 7it_ k 1 1 _lt- k—1 7lt- k
tod e T —2e TYTE e T yziJr; e "I —e )

In [20, Ch. 1V, Sect. 2, Item 1] the maximum principle was proved and apriori estimates for
the solution of grid equation of general form

APy(P)= Y B(PQWQ) +F(P), PeQ  yP)=unP) as PeS, (54)
QeT!(P)

where P, @) are the nodes of the grid Q + S, T/(P) is the neighbourhood of the node P not
containing the node P itself. The coefficients A(P), B(P, Q) in (.4) satisfy the conditions

AP)>0, B(P,Q)>0, DP)=AP)- > B(PQ) >0. (5.5)

QEY'(P)
For a given x € wy, t' € w. by P(z,t') we denote a node in the (p 4+ 1)-dimensional grid
Q= wp, X w!, by S we denote the boundary of Q consisting of the nodes P(x,0) as x € @, and

the nodes P (x,tj+

We see that the coefficients of equation 1} at the point P = P (xl-k,tﬁﬁ) satisfy the
p

conditions (5.5)) and D(P) = 0.
It follows from Theorem 3 |21, Ch. V, Addendum, Sect. 2, Item 2| that the solution of

problem (5.1 satisfies the estimate
I7lle < lluwlle + max_[lu(z, )lle,, (5.6)

>asthrEEw;andxewh,kforallk:1,2,...,p,j:0,1,...,j0.
p

where [ly[lc = max|y|, [ly[lc, = max|y].
TEWR TEYH
We proceed to estimating the function v. We rewrite equation (5.2)) in the form
1 _1 ko Ltk
(et ) SR

Uj+% |’Yh,k

(5.7)
=0, v(z,0) =0,

where
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We transform equation (5.7)) to a canonical form

j+E
+dy| o P
h? h? I I, k] Vi

{— e+1—e ° 5 + Xig Uk ig+1 + X, @k iy, T kitl  Of Ak,
-

1 i+ J+E b+ak» j+k b an: +k
— . . P i . p k Jip+1 J P k kﬂ«k Vi »
= hi [szakﬂk—"_lvik—‘rl + sza/kﬂkv’ik—l] —hk /Uik-i-l — hk Uik—l + @(P

),

k
]+;

where

P T Uk
k k 1 1 k—2
_J+5 Ity —at1 —at2 It
Vo =T rme Ty
pj+k—2
1 _ét + s _itv+k—s+l £ s—1
_ = E e 5 e J - vP — . P
- Tk ik
s=1

Let us check the assumptions of Theorem 4 [21, Ch. V, Addendum, Sect. 2, Item 2|:

/ 1 _1T
D(P(k?)> :A(P(k))— Z B(P(@,Q)I;(&-l-l—e (’p)—i-dk
QEY,(P) (5.8)

where

P(k) = P(x,tj+%), A(P(@) > 0, B(P(k), Q) >0 for all Q € TZ—D Q € T;f

Then we obtain

where

Y —Y T
(o)) 5
Y. is the set of nodes @ = Q(&,tx) € T p(asy): Tio1 is the set of nodes Q = Q& ty1) €
T/

(P(

(ll',tk_l)).

On the base of Theorem 3 [2I, Ch. V, Addendum, Sect. 2, Item 2|, by (5.8) we obtain

_17\2
Lk T itk 5+<1_6 ”) k=1
[V le € ——= 1% "l + [ e (5.9)

1z
et+l—e e» e+l—e e»
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Lk
Let us estimate H@;f” llc, where

_j"r* j+% 1 _étl —ét
<,0k _Spk +—1e p
T
2

pj+k_ 1 s s—1
_ l (e_c‘tJJrk_g tj+k_;+l> <U2‘p — P )
T k k
s=1
itk 1 _1 _ 1y
J k=1 Lk
=y, P 4+ = <€ alit i e ° J+p) U?k (510)
T
1 —ot. k=2 k—1 -1 1
+_ a g+ _26 0‘]+7_i_6 0‘]+p ,UZP_'_
T
1 —L¢

Since the expression in round brackets are positive, by (5.10) we obtain the estimate

k 1 —lt1 ltz /8
- A a Z 7'+
9L Pl < Do Ple 7 (%% =) o max 0o, )
By means of (5.11]) and (5.9)) we find
. §l+s
nax max v 7| < max max || qu%Hc—k% max max ||gok+"||c. (5.12)
<j'<j 0<s<k 0<j’'<j 0<s<k—1 €+ 1—¢ ap 0<j’'<j 0<s<k

Summing up (5.12) first over k£ = 1,2,...,p and then over j/ = 0,1,...,7, we obtain the

estimate
p

o e e (5.13)

I Hle < [v°lle + Z

where v = al

P
Estimates (5.6) and (5.13) imply a final one:

Iy e <11yl + o pax [p(, HCWLZ max ||’ "7 ¢ (5.14)

g T 0<s<k
—|-’V k=1

Thus, the following theorem holds true.

Theorem 5.1. Let conditions be satisfied, then locally one-dimensional scheme
1s stable in the initial data and the right hand side and the solution of problem obeys

estimate ([5.14).

6. UNIFORM CONVERGENCE OF LOCALLY ONE-DIMENSIONAL SCHEME

In order to use the property
p
k=1

similar to [20, Ch. IX, Sect. 3, Item 8|, we represent the solutions of problems for errors

(4.1)—(4.2) as the sum

where gy, K =1,2,...,p, are determined by the conditions

Lk
j+5

m+k 1
€ j+k “ati k=s > e
_77Z i Z ( —e it PH) =Yk T E WLt Ynk n(z,0) =0. (6.1)



24 M.Kh. BESHTOKOV

The function v is determined by the conditions
j+k
I L iy A W ~
—vi— e Z e CIH e CarERt vf = Moy + Ui,
p p s=1

U(k)|7h,k = —N(k), 2)(1:7 0) =0,
where B . B .
Uk =k + My, ok = 0(hg + 7).
Let us show that

nj+§:O( T ) k=1,2,....,p, j=0,1,2,...,jo—1.
E+nT

For the sake of simplicity we consider a two-dimensional case (p = 2). We first let j = 0 and
consider the first layer (0,¢;]. Then problem (6.1)) becomes

k
15 k ]. j : _étk—s _itk—s—kl s ©

Letting k£ = 1, we obtain

For k = 2 we get

1 _1 1 _1 o
%T]tl + 5 (e at% — e_ét1> ,'7{2 + _ (1 —e CVt%) 7’]{1 = 77Z}2, (64)

Summing expressions (6.3) and (6.4), we find:

1 T = T = T
E7715l + = (1 - e‘éf) g+ = (e_%f — e‘é7> n;+ = (1 - e‘éf) nt = 0.

8%_1_
g T Ty

2
This yields

= T —— . 65
1 e+1—e a2 e+T (6.5)
By (6.3) we find
1 T o T T
2 = — = = — . 66
K g+1—e—i%w1 €+77w1 8+77w2 (6.6)

Taking into consideration (6.6), by (6.5) have
_0 T _0 72
T \e+qr)’] = (e +~7)2 )"

Suppose that as j = n, the condition

N

Ui

1

soptplts . pgntl =0 T . 6.7
n2:,n,n T2, .., (5+77 (6.7)

holds. Basing on this condition, we are going to show a similar condition holds also for j = n+1.
In order to do this we write equation (6.1) for j=n+1,p=2:

. 1 2(n+1)+k 1 1

in?"'l"'i 4= E (e&tn+1+kﬁf5 _ eatn+1+L§ﬂ> n
t

2 2 g

Letting k£ = 1 in (6.8), we find

- s 2(n+1)+1 . )
n+3 Z -5t 1—s -5t 2-s 5 9
_/,75 2 + _ e a nt+l14 7 —e a ntlt = ,',I; — Q/)1~
2 2 -

S=

*hole

=y, k=12 (6.8)
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We transform this identity as

]_ 1T
- (1 — eia§>
T

(1 _ eﬁg) e B ERTg (1 _ e,ﬁ) et

(6.9)
T 13 13 ¢
+<1_6_‘1‘2+—1T>nn+1_(1+ 17)77”4_g = 1.
I —e @2 I —e @2
We consider separately the expressions in square brackets and rewrite as
n-‘,—%
€ c T 19
(1 + —”> VREIRS (1 —eTat 4 —17) max |n°| Z eTa
l—e a2 l—e a2/ j<s<ntl g
and therefore,
3 1-— 6704% + 1 il% T
e L < max 9’| < max [p°|=0 . 6.10
|7] | A 1 + 1+L% %<S<n+1 |77 | h %Ssgn-ﬁ—l |T] | €+ T ( )
e

Taking into consideration 1) 1) and a sufficient boundedness of the coefficients as 77%, nt
T
oo, "3 we find: g2 = O (

Now we let k& =2 in (6.8):

E+T

. 1 2t ‘

n+2 — L2 — L4355\ 5 7

DI G e L
s=1

+(L—ead)e a4 (1 e at)eazy ! (6.11)

Lot [ (1t etorbrgd 4 (1 et ) byt

(6.12)
-1ir € n+1 Lr nygd € n+2
+({l-ee2t+t—F " —e'p 2 = (14— |7 = 0.
1—ea” 1—e¢ ot
Then by (6.12) we obtain
1 n n+ts n T
7727771,77+l,n+2,n+2=0<5+w>- (6.13)

Hence, identity (6.13) is satisfied for each value j. In the same way we also show that

anr];:O( . )7 k:1727"'7p7 j:OaL"'?jO_l'
eE+T
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To estimate the solution of problem ([6.2) we employ Theorem

P
T il s
max |]w],+P
E+nT Pt 0<s<k

J
. . k
[ e < max [l T le, + > c-
0<j/+ £ <j+1

§'=0

*u

If there exist continuous in Q, derivatives 545 k # U, then
Oy 02

Ay = — A A (Prgr + ..+ 1by) = O < T ) ,

T+¢ E+T

ay are known constants. Then by estimate (6.14]) we find:

J D
| le (5+7¢ ;)54—77; Fle T

e )
E+yT 4T E+NT

h? T
M + ,  h = max hy.
e+71  (e+71)? 1<k<p

N

This yields

) ) ) h? T
Jj+1 < J+1 + J+1 :O + .
40 < ¥ e + 10 le =0 (2 +

Thus, the following theorem is true.

(6.14)

Theorem 6.1. Let problem 7(@ possesses a unique continuous solution u(x,t) in Qp

for all values € and there exist continuous in QQp deriwvatives
0%u ot Bu 0 f
ot?’ 0202’ dx2ot’ oz’

1 <k, v<p, k # v, a >0,

and conditions hold. Then the solution of difference scheme uniformly converges to

the solution of differential problem 7(@ at the rate

(L) Wmolern. r=o(E+n).

e+71  (e+71)?

where € 15 a small parameter, a > 0.

7. INITIAL BOUNDARY VALUE PROBLEM WITH SPECIAL CONDITIONS

Instead of boundary conditions (22.2]) we consider ones of form

Oy, + &% = B_k($)@ — p—g(z, 1), 2, =0, 0

ot
0 (Oruy, ou
- (Gkuxk + @%) = ﬁJrk(x)a - :quk(xa t)> Ty = lka 0

N
~
N
~

N
~
N
~

where
0 < co < Pan(z) <, 7:(0,1) >0, ri(lk, ) <0,

(7.1)

(7.2)

Bk = B(0,2"), B = B(lg, 2, p—y = p(0,2',t), pyr = p(ly, ', t) are continuous functions.
Similar problems for the pseudoparabolic equation arise while regulating the salt regime of

soils, when the desalinization of the upper layer is achieved by draining the water layer from

the surface of the flooded for some time plot [8]. If there is a water layer of a constant thickness
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h on the field surface, then at the upper boundary in view of the fractality of the soil medium,
the condition

Oc Oc 0%c
"ot = Paz T aies

should be imposed, where c is the salt concentration in soil solution, D is the diffusion coefficient,
A, h = const > 0.

1
We transform conditions 1} by multiplying both sides of 1) by —eit, replacing t by &
o
and integrating the obtained expression in £ from 0 to ¢:

ou

O(x,t)=— = B_jpu — pi_g(z, 1), x, =0, 0<t<T,
Dy (7.3)
—@k(.ilﬁ,t)aa?u = B+ku — /7_,_]4;(1',75), T — lk, 0 < t < T,
k

where
Bal0,',6) = FHAT) [ mseaZo 1 g a

ot
0

Bir(ly, © )/te (t—¢) 8u

Biru(l, o', €) = I, 7', €) d€,

o 815(

0
t

~ 1 1 ¢
a0, 8) = & [ A (0.0 ) + e (e, 010, ),
0
t

- 1 1 _t
M-&-k’(l?x/?t) = a/e i(t €)M+a<17l’/75) d§ —€ a@],c(x,O)Uf)(l,lL‘/)
0

In the same domain, instead of problem (2.3)), (2.5), (7.3) we consider problem (2.6), (2.8)

with the small parameter € with boundary conditions

ou®

Or(z,t)m—

k(x7 )8.Tk

ou® _

—@k(l‘,t)ax = B+ku5 - M+k($,t), T = lk, 0 < t < T,
k

= B,kue - ﬁ,k(l’,t), T = 0, 0 < t < T,
(7.4)

where ¢ = const > 0.
We are going to show that u* — w in some norm as ¢ — 0. We denote Z = u* — u and

substitute v = Z 4+ u into problem ({2.6), (2.8), (7.4). Then we obtain problem (2.9), (2.11))

with boundary conditions

@k(:c,t)% = B,k,%, T = 0, 0 < t < T,
e (7.5)
P .
—@k(l‘ t)au = B+k2, T = lk, 0 < t < T.
T

Since

Z @kl’t j

da’ —Z/ (g, o' 6) By z(l, o', t) — 2(0, 2, 6) B_i2(0, 2’ t))d
Z/, (5+k (b, 2’ ~2(lk,x b+ B- (0 ') 20,2/ t)) d’
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o3 2 t 03 2
" (Ha_ +qu§>+M;2 / (Ha_ +II2HS) i
0 0

reproducing arguing (2.13)—(2.24)), by (2.13)) for the solution of problem (£2.9)), (2.11)), (7.5) we

obtain the estimate
t
) dr < Mg/ IF|2dr = &2 M3/
0

Sz + / (n 12+ \

This apriori estimate implies the convergence of u° to u as € — 0 in the norm

oul|?
or

dr. (7.6)

212 = <l + B, + | 5
27Qt

if u; is a bounded sufficiently smooth function. This is why for a small €, the solution of problem
2.6), (2-8), (7-4) is taken as an approximate solution of initial boundary value problem of a

multi-dimensional pseudoparabolic equation (2.1), (7.1), (2.3) .

8. CONSTRUCTION OF LOCALLY ONE-DIMENSIONAL SCHEME

On each semi-interval Ay = (t [ ] k=1,2,...,p, we subsequently solve problems

1 -
Ly = %1915 + ;Bﬁ(k) — L9y — fr =0, reG, tely, k=1,2,....p, (81)

o
@k(x7 t) a;k) = B,k(l', t)ﬁ(k) - M*k(gx t)v xp =0,
5 D (8.2)
- @k<x7 ) oL T B-&-k(l’ t)ﬁ(k’) - :U“—i-k(xat)7 Ty = lky
letting at the same time
Vay(@,0) =uo(z),  Jay(@,t;) =dp)(z,t;),  j=0,1,....50—1, 53)
ﬁ(k)( ) ]+ ) :ﬁ(k—l)(x7tj+%)7q k:2737"'7p .
We call the function ﬁ(tjﬂ) = Y (p)(tj41) a solution of this problem as t = t;;.
We replace problem (8.1)—(8.3) by the following difference scheme on Ay :
I +E 1 pitk lt *ét. —s 3
_yj_p+_z(€ iy m,ﬁl)ytp
p P4 (8.4)
k=1 j+E
_Ak Uky +(1_Uk)y] >+90k ;T € Wh, ]{5:1,2,---,17,
. ‘+E _
ag ?Jiko =B_iyo © —Fiok, =0,
» k (8.5)
oMy T — Bt — T —1
yxk Ny = +kyNk = Btky Tk = Uk
y(x,0) =up(z), k=1,2,...,p, (8.6)
where
+k
i+t B (0,2) R ~1t Lt kesen) :
B_kyo = D € - * 8 ya[y
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j+k
~ity p§a : ;twf ~atyy kst —at
M:':k- = € —€ P Hxk | T, t; +e P @ku0< )

s=0

Conditions ) have approximation order O(hy). Let us increase the approximation order
to O(h}) on solutlons of equation (8.1 . for some k.

Since
Wy _ €9+ 1 P
Or—— =a; "9 yve, 0 — 0.5h; | =0 + =By — t)—— t O(h?
k D2 A "V (k)z,0 k D t+p (k) i(z, )axk + qr(z, ) — fx 0+ (hg),
then
k
(aél"') + O.5hk7“k70> ’191:0
1pj+k R . s+1
— 0.5h ]32 (e AT e ot )m —0. 5hk °9, + gz, O — (8.7)
s=1 0

itk
= Byl ¥ — Fi_ + O(h2) + O(hyr).

In (8.7) we neglect the terms of smallness order O(h;), O(hyT), then replacing 9 by v, we
obtain

g O5h '+ _ +k +E 3
0-5hk§yt,0 + "By " = “’”ymk p—d gy " — By T+ [y (8.8)
Similarly for z; = [, we obtain:
3 05hk j+E (N j+k 4k +k
05hk5yt1\] + TBTyNkp = —alg k)y:ck N, d+kyNk — BJrkyNk + //JJrk? (89)

where
a\t = o™ +0.5hre, Al = o™ — 05N, dog = 0.5hdy,
diy = 0.5hkd;(gNk), Pk = fi— + 0.5hg fr0, Pk = fgk + 050y fr N, -
Thus, a difference analogue of problems , , reads as

]%yt + %BTyﬂﬁ R k=12 p, (8.10)
y(z,0) = up(x), (8.11)
where
(/N\ky = Xk (akyfk) + b+a(+1 Yz, + by aryz, — diy, Tk € Why,,
Ry — WlhkA’;y _ ap " )yzk,o —Oi—;’fo — B—kyo7 =0,
- 51h Aty = — ( )ywk N +0dgzyzvk + B+kyNk o = .
\@.k, ' T € Why, '
Q) = OiLSfl:k’ o =0,
H+k =1
L 0.5
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9. APPROXIMATION ERROR OF LOCALLY ONE-DIMENSIONAL SCHEME

Lk
We consider the error of boundary conditions in difference scheme 1) denoting 2" » =

Lk Lk . .
y’*» — /. We write boundary condition at z, = 0 as

0. 5hkpyt0 L2 ih‘“ B = aly s —dal — Bl 05hfio +ps (9.1)
Then substituting o = 2 £ Wity into , we obtain
O.5hk5zt,0 + 050 szgﬁ :le(:k) i:g — J_kzéJrk — B_ kzg+k —d_ ku]OJri — B_ kuéJrk
_ o.5hk§ut,0 OOk g I @M 0.5y fo + ke

To the right hand side of the obtained expression we add and deduct the expression
; € 1 i*3
05hkw7k = 05hk <Lku + fk — — Ut — —Bu)

p p

0
Then

e j+& 1 i+ e 7 +E
'@D—k :0~5hk (fko — _UZO — BT é ) + d’(glk)uik 0 d p
p p
1 it

+ p_ — 0.5hy (Lku + fr — %Ut — ]—QBU + O5hk'¢;-k
0

.

:a,gmuijo Al = Bl 4 g — 0.5k (et F £ 0.5heth g + O(her)

k

Ay 0 ou\tr ik E k
— Oy + 0.5hy—— <@k “) + 050l 8 — 0.5hedyouy * — By ¥

oxy, oxy, 0wy, *

0 o o A :
+ M — 05hk (a <@kaxk> —+ Tka_xk — qku)o —+ 05hk’¢,k -+ O(hi) + O(hkT)
oultr jt+k

Oy —— — By + 0.5ht0_g + O(h2) + O(hy7).
k

=0

+ pk

By boundary conditions (7.5)) the expression in the square brackets vanishes. This is why

Yop =050t g + U, g = O(h2 +7) + O(hyT).

Thus,
0.5h

8 -k o *
0.5hz0+ — T AT g, iy = 05kt + Uy (9.2)
Similarly as z, = [, we have

€ 0.5h i+ ik o *
0-5hk1—32t71v,€ + TkBT 5\[ = Af27T +ahy, Vi = 0.5k + Vs

P (9.3)
Yar=0(1), > tur=0,  thup=O0(h}+7)+O0(lur).
k=
Thus, for the error 275 we obtain the problem
e ity 1 j+E 5
—2; P+ =B, Th = At ~|—\I/ (9.4)
p
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where
-
Ak, Tp € Wy,
1 3 wku Ty € Why, »
A e
1 Yok, @k =l
A, T = I,
L 0.5, * B
p
be=0(1), D =0, Y= Zwk = Zwk O(Ih+7), =0 (h+7),
k=1
o o * p o
Yar = O0(1),  Pur = 05ty + ar, = O(RE 4 7), > ik =0.
k=1

10. STABILITY OF LOCALLY ONE-DIMENSIONAL SCHEME

In order to solve scheme (8.10)), (8.11)), we are going to obtain an apriori estimate in the grid
norm C. We rewrite (8.10), (8.11)) as

pj+k
g ]+% 1 *étj+kfs 7itj+kfs+l %
Yy C - e Po—e Y

b P (10.1)
j+E JHE ik j+E
=Xk (aky;pk p) + b}:aéﬂ)ym P by, t — Ak 0 P Ty € Wy,
Tk
€ j+k 1pj+k -1t s Lt s s
D S G T
s=1
10.2
I T 102
:ak Yor0 — d_ryy * — B_ryy n H—k
0.5h;, 0.5k
k] pith L T s
R (e e
s=1
. . (10.3)
_ ay g yxk Nk + d—l—kyNk + B—i—kyNk Uik
0.5hy, 0.5h;°
y(x,0) = ugp(x). (10.4)

We study the stability of difference scheme (10.1)—(10.4) by means of the maximum principle
[21, Ch. V, Addendum, Sect. 2, Ttem 2|. We ﬁrst obtain an apriori estimate for (| - -
and for this we represent the solution of problem (10.1)—(10.4) as the sum y =y + v, where
7 is the solution of homogeneous equations with inhomogeneous boundary conditions

(10.2)—(10.3) and homogeneous initial conditions ([10.4):

pj+k
]+% 1 _étj+k—s _étj+k—s+1 -
Yy - E e Po—e 7o) Yg

3
p V2 —

(10.5)
— J"'% b+ p b d fj+
=Xk | OkYz, + yazk + akyxk kY P, Xk € Why,

Tp



32 M.Kh. BESHTOKOV

and v is a solution of inhomogeneous equations ([10.1)) with homogeneous boundary conditions

(10.2)—(10.3) and inhomogeneous initial conditions ((10.4):

pj+k
€ j+§ 1 _itH_kfs —étj+kfs+1 z
_Ut _'_ - & ’ P —€ P /Ut_
p p
s=1 (10.6)

ity L e N R
=Xk <akvg—ck ) +bla, v, P b apvz, T — div" e o P, T € Wy
Tk

Let us estimate y. In order to do this, we reduce boundary conditions for equation (10.5) to

canonical form at the points P = P(xo,t;, ), P = P(zn,,t;, ) and check the assumptions of
P p

Theorem 3 in |21, Ch. V, Addendum, Sect. 2, Item 2| taking into consideration the positivity

of the expressions in round brackets.

At the point P = P(x;,, thr%) we have

1 _1lr XipOk,ipg+1 | XipQk,i b;fak irl by Ak,
A P = | — ( 1 — aP) k Uk k sk k ’ _ k ) d > 07
(P) L Frlme )Ty T T, e

+ —
Xika’k,ik-‘rl bikakvik“!‘l X’ikak,ik bikakvik
B(P,Q) = + ; - ;
(P.Q) { hi I h? I

_1nN\2| 1| —iny —at2 —ats
5+<1—e w) ;—le “P =2 “P4e TP
T

Nl= A

D(P)=dy > co > 0,

while at the point P = P(xo,t,, ) we get
P

— (1)
a e 1 _11\?2 _k _11\2
B(P,Q) =4 &5 | =4 = (1-e75F) (1-e =) |:
(F.Q) {05@ L+T © ") T s ’
-1 _ 1T (1 _1T>2 —k _ 1T ( _1T>2
— ap — ap ap — @ p
_Te ¢ 0.5hk76 © ’ ’
(1 —1¢ ._ A\ 2 _ _1 _ A\ 2
(1 -1t k=1 _17\2 —k -1t k1 _1r\?2
_ “ Ity 1 — ap> @ j+ <1_ ap> >O
7° ( c + 0.5h),T ¢ } ’

Bk (0) —k
DP)= ———+d, > ——— > — >0;
(P) 0.5hap T 0.5hxap = Ilxp

and, at the point P = P(xNk,tj+%),
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B(P.Q) ={0§gih; E - % (1-e#5) + O@; (1-e4F) }

I T T 2 T T
le_éE (1—6_é;> —I——BM 6_55 1—e éE
05hk7'

—2t ko _11\2 Bk  —=t. _1lz
7'6 ’ ( ecr)t 0.5hk7'6 ’ ’

1 =1t ps _17)\?2 -1t w
—e " (1—6 ap) +—ﬁ+k e "

K 0.5hyT
Bk (N} Bk 2¢9
DP) = ———+d, " >—"—>—>0.
(P) 0.5hap + 0.5hrap = Ixp

Thus, on the base of Theorem 3 in |21, Ch. V, Addendum, Sect. 2, Item 2|, for y we get the
estimate:

17 le < S M max Ak, e, + Nz, e, ) , (10.7)
where
M = const h= h = = .
const > 0, max hy, lyle =maxlyl, |lyllc, = max|y|

We proceed to estimating the function v. Reproducing arguing (5.7)—(5.13)), we easily confirm
that v satisfies estimate (5.14)).
Thus, estimates (5.14) and ([10.7)) imply a final one:

Iy lle <le’lle + M max (A, )le, + [z, )llc,)

J p e
T +2
+) max [|lg, [l
J

— e+ fyT 0<s<k

(10.8)

Thus, the following theorem holds true.

Theorem 10.1. Let conditions be satisfied. Then locally one-dimensional scheme
(8.10)), (8.11)) is stable in the initial data and the right hand side and the solution of prob-

lem :8.1@]), obeys estimate .

11. UNIFORM CONVERGENCE OF LOCALLY ONE-DIMENSIONAL SCHEME

We represent a solution for error (9.4)), (9.5) as the sum

itk

2 =V e, A =2, (11.1)
where 7)) are determined by conditions (§6.1)), while the function v, is determined by the
conditions

€ j+k 1pj+k -1t s Lt kst 2 ~ *
51}{ P _'_]_) (6 U e it ) Uzp = Ak’l)(k) + U, Ty € Wp,, (112)
s=1
050k +E 0.5k TX 7“1t o, —Lt s ~
pk: U;"‘P + ;. k Z <e alitigs e “ G4l p+1> UZP — A;U(k) + U, x, =0, (11,3)
s=1
0.5hpe g+t 05k T/ —e s i ) : -
pngZer + ; k Z (6 aljrhpe e H’“p“) v{ - A,J{v(k) + U, xp =1, (11.4)
s=1

v(x,0) =0, (11.5)
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where
{IvfikZAfmk)ﬂ-\Ifik, (Iv/k:\I/+Kk77(k), \P:O(hi—l—T), \Ifik:O(hz+T>.
To estimate the solution of problem (11.2)—(11.5) we employ Theorem taking into con-
sideration that 17" = O <sfw)= k=1,2,...p. =01, .. jo—1:

p

J
Vs < M max ity + Z max |07 5 11.6
o e <M 7 Hle, + 3 TS s 8l (s

In there exist continuous in the closed domain ()7 derivatives

0*u *u Pu 0 f
a 9 1 < k:7 < bl k: Y
o 912022 oot 0x) VSP v
then
~ T ~ [ o T T
Ao = — A(\y xy):o A =0 ,
kT)(k) s Wak E\Wgr1 +...+ Y, (5 n 77) & N(k) Py

where a; are known constants. Then by (11.6) we obtain

. h
[+ e < M +—— ), h= maxh.
T g T £ SKSP
+ (T +¢)? 1<k<

Therefore,

, . . h T
e <t e+ [0 e =0 + .
1 e < Il + 17 e (T+€ CEE

Thus, the following theorem holds true.

Theorem 11.1. Let problem (-) (@ (-) possesses a unique continuous solution
u(z,t) in Qp for all values € and there exists continuous in Qr derivatives

0%u o*u u 0 f

o2’ 02022 dx2ot’ ox?’
and conditions (W (-) holds. Then the solution of scheme (u m converges uni-
formly to the solution of problem (2.6 (-) (@ (w at the rate

h T 9
O(T+5+(T+5)Q>’ h=o(r +e¢), T =0((T +¢)°),
where € 1s a small parameter, o > 0.

Corollary 11.1. If ¢ = 7%, then the solution of schemes , and , for all
a > 0w view of , converges uniformly to the solution of the original problem at the
rate O (ﬁ—i + 71720 4 7'5>, where 0 < § < %

1 <k, v < p, k # v, a >0,

Remark 11.1. The obtained results hold also for the case when G is a domain of a compli-
cated shaped obeying two conditions in [20, Ch.IX, Sect. 3, Item 5|. Then estimates and
respectively become

Iy e Sluolle + max llu(z, ©)le,
Xty
, (11.7)

gl & 7 A
+ max + E max 1l &
0<t'<ty; € + YT 5+77' 0< <k




NUMERICAL SOLUTION OF INITIAL-BOUNDARY VALUE PROBLEMS ... 35

1y Ml <lluolle + M max (||a—r(z, t)llc, + [|ar(, )] c,)

0<t'<j7
x J p
7|51 « - Oj+ (11.8)
c
+ max n + E n max 1l &
0<t'<tj € + YT €+T O<s<k
J v §'=0 v k=1
itk j+E
where @, ", ¢, 7 are determined by the conditions
gtk Pk, T € W, R Pk, T € Wh,
» = * ' = o
k 0, € wy, k 0, z € wy,

so that @ + ¢ = @ as x € wy,. That is, Py is non-zero only at near-boundary nodes, W is
some connected subset of the set w, and w is a completement of w to w, where

h = max hy, lyllc = max|yl, lyllc, = max|yl,
el = max [e], lelle: = max o]
xe wh TEW

Remark 11.2. The operator

«

t
Bu = l/e—;(t—é)@ d¢
0

as o = 1777 becomes a Caputo-Fabrizion fractional derivative [30]:
t
— 2 (t—¢€) ou

Otu:ﬁ e = 8—£d£, 0<y<l.

12.  ALGORITHM OF NUMERICAL SOLUTION

For a numerical solving of differential problem (2.1)), (7.1)), (2.3) we write calculation formulas
(0 <z <, k=1,2, p=2) and in order to do this, we rewrite problem (2.1)), (7.1, (2.3)) as

p=2:

ou 0 ou 0 ou
ot = (O 0500 )+ g (Ol e D50)
0? ou 0? ou ou
il - 12.1
a@t@xl (61($1ax27t)a ) +a8t0 (62(x17x27t)8x2> +T1($1ax27t>8x1 ( )
0
+ ro(2q, 29, t)% — qi(x1, 22, )u(z1, T2, 1) — qo(@1, 2, t)u(21, 22, 1) + f(21, 22, ),
2
( (9 8(@1%1) 8U
- M= -, = M= - < < T7
@18 o + o B_1(x,t) 5 1 1(z, 1), x1 =0, 0<t
ou 0 (O1uy, ou
(@18331 “ ( 8115 >> :B—i—l(x,t)E_H-}-l(l',t), wlzlla O<t<T7 (12 2)
ou 9 (Oquy,) ou '
_ ou — <t <
@28 o + « ot /B—Q(xvt) ot M—?(xat)7 o) 07 O\t\Ta
ou 0 (Oquy, ou
\ (6281,2 o ( ;t >> :ﬁ+2($,t>a—ﬂ+2($,t), x22127 0<t<T7
u(z1, 9, 0) = ugp(z1, 22). (12.3)

We consider a grid

n* =iy, k=12, ti=jn  ik=01...N,
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. . I+ . .
We introduce one fractional step tj+% =t; +0.57. By yf-hi‘; we denote a grid function:

k

yll,lg = y p = y(llhlaZQhQ; (] + O 5k?) ) k? = 172

We write a locally one-dimensional scheme:

( 2 g 2]—1—1 1, . ~ )
y id + = Z ( alirlze —e QH%)yf :Aly”5+901,
JHL it 23+2 (124)
— 2 _ 1y 3 s ~ .
L — ¥ +35 Z ( —e “it% > Yl = Aoy + g,
i+ hoot )y ioho, t
Yo,is = %11(12 2, j+%)y17,~2 + M11<22 2, j+%)7
1 . j+l .
le,QiQ = s112(1aho, tj%)leil@ + N12(12h27tj+%)7 (12.5)
yﬁol = (’i1h1,tj+1)yfl+,11 + pon (irha, tjga),
\yf;”]{b = sy(irha, tj-i‘l)yzj:]ifzfl + pioa(i1h, i),
Ui iy = uo(ithy, iz, ha), (12.6)
where
-k k )
Ay @wg)w+a++n el —dy k=12,
2j+k—1
1 —lt. —s —lt. c—s s —lt. iy k=1
Spkzé Z (6 a]JrkT —e a]+k2+1) f2 —e ag+% <yijxl +yj:fjx22 )
s=1

Let us provide calculation formulas for the solution of problem m*m

At the first step we find the solution y“ 2. In order to do this, for each value i, =1, N, — 1
we solve the problem

Ayl —C L Bl = —F o< <N
(21722)2121 1,i2 1(11712)2/11 29 1(11722)21114—1 192 1(i17i2)7 1 1,
j+3 . 1 .
yo,zf = %11<22h27tj+%)y171’22 + M11(22h27tj+%), (12.7)
+3 : +3 .
y?\th = %12(22h27tj+%)y?\[131,i2 + p12(ighs, thr%)a
where
_ (%1)i1,i2(a1)i17i2 B (bl_)h,lé(al)h,iz
Al(il i2) — 2 )
B = C)ai(@)iv, (O] iz (@1)is 41,15
1(i1,i2) — h2 + h 3
1 1

€ 1 o 1
Clinia) = Atiria) + Bl i2) + -+ = (1 —e 20‘) + _dl(h,ig)a

j+l E . 1 —it s _ét-_i
Fl(ifig) = ;?/z]'w'z + - (1 — e~ 2a ylw2 - = Z (e adm3 —e ) yt T Pliy i)
(a1)142
h1
(g | OMtBorsy (1 _ o= d5) 4 0.5k, d 2, 4 O3ue

1io T

s (izhe, 1) =
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(al)leiQ
. 1
sia(lgho,t. 1) = ,
Jt3 (a1) Ny .4 0.5h1+0641.4 T +1 ’
1.1 PMTPHLI (1 — o7 2a JT5 4 0.5hie
Pty i (1 — e ) + 0.5hdy 3, + &2

fioalinha tyy 1) + 222 (1— e %) g,

(a1’311,12 + 0.5h1+B-1,i, (1 _ 6_%) +0.5h1d-7+2

T —1L,ip

2] 1 s

B—1,iy *ét' s —=t. 1-s 5

: i—5 a’j—s5= 2

5 > ) e e Yo
S=

sy | OMAPorss (1 omd5) 4 0.5hy 2, + O3ue

T —1,i2

par(izho, tj 1) =

0.5h1¢e
+ T

~ . 5h ] B Vi T i
M+1(Z2h2atj+%) + @yg\h + = (1 - ¢ QQ) yf\flyiz

p2(igha, tj+§) =

(1) Ny ig 0.5h14+p11,i _T j+% 0.5h1¢e
otz o R (1 — e ) + 0.5hd 3, + 25s

S

25 1
Bi1,ip —ati_s “alilos 5
—= 772 — I=2 5
2 Z:l e € yt,N1
S=

(1) Ny ig 0.5h1+B+1,i T i+ 0.5hie
h1 + T (1 —¢ 2a> + O'5h1d+17i2 T

To calculate the right hand sides FIJ(ZQZ.Q), ,uﬂ_(fm), ,ujl;r(thg) on (7 + %)th layer, we need to take

into consideration the values of the sought functions y;, ;, on all previous (lower) layers because

of the term
1 1 Lt s
—=t._s Tali_l—s 5
§§:<6““~’—6 ]T>yf,
s=1

and this increases significantly the amount of calculations even for small partitions of the grid.
To avoid this, we propose a recurrent formula for fast calculations, which allows us to keep at
the previous layer the value of the mentioned sum and by the number of the operations this
does not worse than a two-layer scheme.

Thus, asp=2on j + %th layer the recurrent formula for the fast calculation, for instance,

j+3
for Fl(. .\, reads as
i1,i2)

Sits = = (1- e‘i) <yj+% - yj> +e 257
T
where
27
. 1 1 _1 s >
SOZO7 S‘j+l :éBTy]-i—% :5 <€ ;%72 — € Oé]+12 )ytp
s=0

At the second step we find the solution yffzt As in the first case, in order to do this, for each
value i1 = 1, N7 — 1 we solve the problem

Az(il,ig)yg:ilg—l - CZ(il,ig)yg:é + BQ(MZ)le‘;’FJQH — _Fg‘;{ib)’ 0<iy< Ny,
{yfjol = sean(inhy, b )yiy + i (iihe, ), (12.8)
YN, = sa(inhy, i)yl o+ piaa(inhy, tan),
where
Asiy i) = (52)ir,ia (2)iria (03 )inin (02)in iy

h2 hy ’

Baiy i) = (%2)i1,i2(a2)z‘1,i2+1 i (bg_)il,iQ(aQ)il,ﬁJrl’
. B o
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e 1 T 1
Ca(iriz) = As(iriz) T Bairia) + T * . (1 —¢€ 2o‘) ™ §d2(i1ﬂ'2)>

2]+1
1 € j+i 1 o\ g+b L)
Fg(il,ig) = T?Ju,é + - (1 —€ 2 yu zz +3 Z ( —e " ) yfz T P2(i1i0)
(a2)11,1
. ha
w01 (11hy,ti01) =
21( 171 ]+1) (a2]3i1’1 + 0.5h2tﬁ72,i1 (1 - €_i> + 0.5h2dj—;1“ + 0-57}_1287
2
(a2)i1,N2
. ho
sga(irha, i) = 0EhaT ;
i1, . B2, _T 1 .
s DR (1 o) 4 0.5l + 0

1L ) B-2,i T :
pio1 (irhy, tj) = fi—a(irhy, tjy1) + °5h25yfl,0 + =20 (1—em2a) yl
T e e (1 h) + 0.5h2d3+21“ } Qb

ha T T

2j+l 1 s

5—2 i1 *é%‘,é 7Et*,1*3 §

— 1L 2 — J=72 .2

2 ‘ € € yt,il,o
S=

© (a2)i;a1 , 05ha+B_a - j+1 0.5hoe
s+ - (1 —e2a) +0.5hod” S, + %50e=

. 15 /8 K —_— j
fga(trh, tip) + . 5h2 ?Jz]l Ny T —f : (1 —€ QQ) yglaN2

(a2)iy,N 0~5h2+5+2,1 _ j+1 0.5h
h; =+ T ; (1 — € 2a) + 0'5h2d+211 + 7'25

27+1 1
/8+221 Z ( 1y _6_at]‘155>y

(a2)11 Ny + 0. 5h2+5+2,11 (1 - e—i) + 0.5h2di:‘5111 _|_ 0.57}—125 .

T

#22(21h1, ]—i—l)

On the (j + 1)th layer the reccurent formula for the fast calculation reads as

SIt = ! (1- e‘i) (yj“ - yj+%> te 3 St

-
2 s
—s
P
2 Yi -

Each of problems (12.7)), (12.8) is solved by a sweep method [20, Ch. I, Sect. 2, Item 5.

where

1 - 124! R 1
5= gpr =13 (e

s=0

13. CONCLUSION

This work is devoted to the study of initial boundary value problems for a multi-dimensional
pseudoparabolic equation with Dirichlet boundary conditions of a special form. For an approx-
imate solution of the considered problems, the multi-dimensional pseudoparabolic equation
is reduced to an integro-differential equation with a small parameter. We show that as the
small parameter tends to zero, the solution of the corresponding modified problem converges
to the solution of the original problem. For each problem we construct a Samarsky locally one-
dimensional scheme, the main idea of which is to reduce the transition from layer to layer to a
sequential solving of a number of one-dimensional problems in each of the coordinate directions.
Using the maximum principle for each problem, we obtain apriori estimate for the solution of
a locally one-dimensional scheme in the uniform metric, and the stability and convergence of
the solution are proved. An algorithm for the numerical solution of the modified problem
with boundary conditions of a special form is constructed. In view of the fact that in order
to determine the solution on any time layer one needs to take into account the values of the
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desired function on all previous (lower) layers (in this case, the amount of calculations increases
significantly), we propose a recursive formula for fast calculation in the multi-dimensional case.
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