УДК 517.53

О ЛИНЕЙНЫХ НЕПРЕРЫВНЫХ ФУНКЦИОНАЛАХ В НЕКОТОРЫХ ПРОСТРАНСТВАХ АНАЛИТИЧЕСКИХ В КРУГЕ ФУНКЦИЙ

Е.Г. РОДИКОВА

Аннотация. Вопрос об описании линейных непрерывных функционалов на пространствах аналитических функций изучается с середины 20 вв. Исторически первой была найдена структура линейных непрерывных функционалов пространств Харди H^p при $p \geq 1$ в работе А. Тейлора в 1951 г. В пространствах $H^p(0 эта задача была$ решена П. Дюреном, Б. Ромбергом и А. Шилдсом в 1969 г. Отметим, что при доказательстве использовалась оценка коэффициентных мультипликаторов в этих пространствах. В статье, развивая метод, предложенный в работе П. Дюрена и др., получено описание линейных непрерывных функционалов плоских классов Привалова и классов типа Неванлинны-Джрбашяна. Рассматриваемые классы обобщают хорошо известные в научной литературе плоские классы Неванлинны. Идея доказательства основного результата заключается в следующем: вопрос о нахождении общего вида линейного непрерывного функционала сводится к отысканию вида произвольного коэффициентного мультипликатора, действующего из исследуемого пространства в пространство ограниченных аналитических функций. Последняя задача в упрощенном виде может быть сформулирована так: на какие множители нужно домножить тейлоровские коэффициенты функций из исследуемого класса, чтобы они стали тейлоровскими коэффициентами некоторой ограниченной аналитической функции.

Ключевые слова: пространства Привалова, классы Неванлинны-Джрбашяна, линейные непрерывные функционалы, коэффициентные мультипликаторы.

Mathematics Subject Classification: Primary 30H99, Secondary 32C15, 46E10.

1. Введение

Пусть $\mathbb C$ — комплексная плоскость, D — единичный круг на $\mathbb C$, H(D) — множество всех функций, аналитических в D, для произвольной функции $f \in H(D)$ обозначим $M(r,f) = \max_{|z|=r} |f(z)|$, 0 < r < 1, через T(r,f) обозначим характеристику P. Неванлинны функции f (см. [2]):

$$T(r, f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln^{+} |f(re^{i\theta})| d\theta, \quad 0 < r < 1.$$

При всех значениях параметра 0 введем в рассмотрение классы Харди в круге:

$$H^p := \left\{ f \in H(D) : \sup_{0 < r < 1} \int_{-\pi}^{\pi} |f(re^{i\varphi})|^p d\varphi < +\infty \right\},$$

 H^{∞} — класс ограниченных аналитических в D функций.

E.G. Rodikova, On continuous linear functionals in some spaces of functions analytic in a disk.

[©] Родикова E.Г. 2023.

Поступила 18 июля 2022 г.

При всех $0 < q < +\infty$ определим класс Привалова Π_q :

$$\Pi_q = \left\{ f \in H(D) : \sup_{0 < r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\ln^+ |f(re^{i\theta})| \right)^q d\theta < +\infty, \right\}$$

где $\ln^+ a = \max(\ln a, 0), a > 0.$

Впервые классы Π_q были введены И.И. Приваловым в [3]. При q=1 класс Привалова совпадает с хорошо известным в научной литературе классом функций ограниченного вида или классом Р. Неванлинны N [2]. Справедлива цепочка включений:

$$H^{\infty} \subset H^{p}\left(p > 0\right) \subset \Pi_{q}\left(q > 1\right) \subset N \subset \Pi_{q}\left(0 < q < 1\right).$$

При всех $0 < q < +\infty$ введем также в рассмотрение класс

$$\tilde{\Pi}_q = \left\{ f \in H(D) : \int_0^1 \int_{-\pi}^{\pi} \left(\ln^+ |f(re^{i\theta})| \right)^q d\theta dr < +\infty \right\}.$$

Будем называть его плоским классом И.И. Привалова или классом И.И. Привалова по площади. Класс $\tilde{\Pi}_q$ является обобщением хорошо известного плоского класса Р. Неванлинны и при q=1 совпадает с ним. Отметим, что пространства $\tilde{\Pi}_q$ возникают естественным образом при исследовании вопросов дифференцирования в классах И.И. Привалова (см. [16]).

При всех $\alpha > -1$, $0 < q < +\infty$ рассмотрим также классы S^q_{α} :

$$S_{\alpha}^{q} = \left\{ \int_{0}^{1} (1-r)^{\alpha} T^{q}(r,f) dr < +\infty \right\}.$$

Классы S^q_{α} были введены и исследованы в [11] Ф.А. Шамояном, они обобщают широко известные классы Неванлинны-Джрбашяна (см. [2]).

Используя неравенство Гёльдера, нетрудно доказать, что

$$\tilde{\Pi}_q \subset S_0^q$$
 при $q > 1$,

И

$$\tilde{\Pi}_q \supset S_0^q$$
 при $0 < q < 1$.

В данной работе исследуются линейные непрерывные функционалы пространств $\tilde{\Pi}_q$ и S^q_α . Понятие линейного непрерывного функционала (сокр. ЛНФ) играет большую роль в функциональном анализе. Вопрос об описании ЛНФ на пространствах аналитических функций изучается с середины 20 вв. Исторически первой была найдена структура ЛНФ пространств Харди H^p при $p \geq 1$ в работе А. Тейлора в 1951 г. ([17]). В пространствах H^p (0 < p < 1), которые, в отличие от случая $p \geq 1$, не являются банаховыми, они только F-пространства, ЛНФ были описаны П. Дюреном, Б. Ромбергом и А. Шилдсом в 1969 г. (см. [12]). Отметим, что при доказательстве использовалась оценка коэффициентных мультипликаторов в этих пространствах. В 1973 году, опираясь на работу [12], Н. Янагиара в [18] нашел общий вид ЛНФ в пространствах Смирнова. В 1999 г., развивая метод, предложенный Янагиара, Р. Мештрович и А.В. Субботин описали ЛНФ на пространствах Привалова при всех q > 1 (см. [1]).

Мы распространили последний из упомянутых результатов на плоские классы Привалова и классы S^q_{α} . Идея доказательства основного результата заключается в следующем: вопрос о нахождении общего вида ЛНФ на пространствах Привалова сводится к отысканию вида произвольного коэффициентного мультипликатора, действующего из исследуемого пространства в пространство ограниченных аналитических функций.

Для изложения результатов работы введем дополнительные определения и обозначения.

Пусть X и Y — некоторые классы аналитических в единичном круге D функций.

Определение 1.1. Последовательность комплексных чисел $\Lambda = \{\lambda_k\}_{k=1}^{+\infty}$ называется коэффициентным мультипликатором из класса X в класс Y, если для произвольной функции $f \in X$, $f(z) = \sum\limits_{k=0}^{+\infty} a_k z^k,$ функция $\Lambda(f)(z) = \sum\limits_{k=0}^{+\infty} \lambda_k a_k z^k \in Y$. Обозначается CM(X,Y).

Статья организована следующим образом: в следующей части работы мы сформулируем и докажем вспомогательные утверждения, используемые при доказательстве основного результата, а в третьей части докажем основной результат.

2. Формулировка вспомогательных утверждений

При доказательстве результатов работы используется аналог теоремы Мергеляна в исследуемых пространствах.

Теорема 2.1 ([4]). Если $f \in S^q_\alpha$, то

$$\ln^{+} M(r, f) = o\left(\frac{1}{(1-r)^{\frac{\alpha+1}{q}+1}}\right), \quad r \to 1-0,$$
 (2.1)

причём оценка (2.1) неулучшаема, т.е. для любой положительной функции $\omega(r)$, 0 < r < 1, такой что $\omega(r) = o(1)$, $r \to 1-0$, существует функция $f \in S^q_\alpha$, такая что

$$\ln^{+} M(r, f) \neq O\left(\frac{\omega(r)}{(1-r)^{\frac{\alpha+1}{q}+1}}\right), \quad r \to 1-0.$$

Теорема 2.2 ([4]). Если $f(z) = \sum_{k=0}^{+\infty} a_k z^k - p \pi \partial$ Тейлора функции f(z), $f \in S^q_{\alpha}$, то

$$\ln^{+}|a_{k}| = o\left(k^{\frac{\alpha+q+1}{\alpha+2q+1}}\right), \quad k \to +\infty.$$
(2.2)

Оценка (2.2) неулучшаема, т.е. для любой положительной последовательности $\{\delta_k\}$, $\delta_k = o(1), k \to +\infty$, существует функция $f \in S^q_\alpha$, такая что

$$\ln^+|a_k| \neq O\left(\delta_k k^{\frac{\alpha+q+1}{\alpha+2q+1}}\right), \quad k \to +\infty.$$

Теорема 2.3 ([9]). *Если* $f \in \tilde{\Pi}_q$, *mo*

$$\ln^+ M(r, f) = o((1 - r)^{-2/q}), \quad r \to 1 - 0.$$
 (2.3)

Оценка (2.3) неулучшаема, т.е. для любой положительной функции $\omega(r), \ 0 < r < 1, \ makoй что <math>\omega(r) = o(1), \ r \to 1-0, \ cyществует функция \ f \in \tilde{\Pi}_q, \ makas \ что$

$$\ln^+ M(r, f) \neq O(\omega(r)(1 - r)^{-2/q}), \quad r \to 1 - 0.$$

Теорема 2.4 ([9]). Если $f(z) = \sum_{k=0}^{+\infty} a_k z^k - p$ яд Тейлора функции f(z), $f \in \tilde{\Pi}_q$, то

$$\ln^+|a_k| = o\left(k^{\frac{2}{2+q}}\right), \quad k \to +\infty. \tag{2.4}$$

Оценка (2.4) неулучшаема, т.е. для любой положительной последовательности $\{\delta_k\}$, $\delta_k = o(1), \quad k \to +\infty,$ существует функция $f \in \tilde{\Pi}_q$, такая что

$$\ln^+|a_k| \neq O\left(\delta_k k^{\frac{2}{2+q}}\right), \quad k \to +\infty.$$

Введём в пространствах $\tilde{\Pi}_q$ и S^q_{α} при всех q>0 метрики:

$$\rho_{\tilde{\Pi}_q}(f,g) = \left(\int_0^1 \int_{-\pi}^{\pi} \ln^q \left(1 + |f(re^{i\theta}) - g(re^{i\theta})|\right) d\theta dr\right)^{\alpha_q/q}, \quad f,g \in \tilde{\Pi}_q;$$
 (2.5)

$$\rho_{S_{\alpha}^{q}}(f,g) = \left(\int_{0}^{1} (1-r)^{\alpha} \left(\int_{-\pi}^{\pi} \ln\left(1+|f(re^{i\theta})-g(re^{i\theta})|\right) d\theta\right)^{q} dr\right)^{\alpha_{q}/q}, \quad f,g \in S_{\alpha}^{q}, \tag{2.6}$$

где $\alpha_q = \min(q, 1)$.

Классы $\tilde{\Pi}_q$ и S^q_α являются линейными пространствами, покажем, что они образуют F-пространства относительно введенных метрик (см. [6], [9]).

Напомним, что метрическое пространство (X, ρ) является F-пространством, если [10]

- а) $\rho(f,g) = \rho(f-g,0)$ (инвариантность относительно сдвигов);
- б) (X, ρ) полное метрическое пространство;
- в) Если $f, f_n \in X$ и $\rho(f_n, f) \to 0, n \to +\infty$, то $\rho(\beta f_n, \beta f) \to 0, n \to +\infty$ для любого $\beta \in \mathbb{C}$ (непрерывность умножения на скаляр по векторному аргументу);
- г) Если β_n , $\beta \in \mathbb{C}$ и $\beta_n \to \beta$, $n \to +\infty$, то $\rho(\beta_n f, \beta f) \to 0$, $n \to +\infty$ для любой функции $f \in X$ (непрерывность умножения по скалярному аргументу).

Для доказательства вспомогательных утверждений нам понадобится следующая легко устанавливаемая, но полезная оценка:

Лемма 2.1. Для любых $a \ge 0$, $b \ge 0$ справедливо неравенство $(a+b)^q \leqslant (a^q+b^q)$ при $0 < q \leqslant 1$ $u \ (a+b)^q \leqslant 2^q (a^q+b^q)$ при q > 1.

Лемма 2.2. Относительно введенной метрики S^q_{α} образует F-пространство, причем сходимость по метрике (2.6) этого пространства не слабее равномерной сходимости на компактных подмножествах D.

Доказательство. Проведем для случая $0 < q \leqslant 1$. Случай q > 1 рассматривается аналогично.

- а) $\rho(f,g)=\rho(f-g,0)$ очевидно.
- б) Докажем, что S^q_{α} полное метрическое пространство.

Пусть $\{f_n(z)\}$ — произвольная фундаментальная последовательность из класса S^q_{α} , то есть для любого $\varepsilon>0$ существует номер $N(\varepsilon)>0$, такой что для всех n, m>N выполняется $\rho(f_n,f_m)<\varepsilon$. Покажем, что она сходится к некоторой функции $f\in S^q_{\alpha}$. Сначала докажем, что из фундаментальности последовательности $\{f_n\}$ в S^q_{α} следует ее равномерная сходимость внутри круга D. Ввиду субгармоничности функции $u(z)=\ln(1+|f_n(z)-f_m(z)|)$ в D, имеем:

$$\ln(1 + |f_n(re^{i\varphi}) - f_m(re^{i\varphi})|)
\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{R^2 - r^2}{R^2 - 2rR\cos(\theta - \varphi) + r^2} \ln\left(1 + |f_n(Re^{i\theta}) - f_m(Re^{i\theta})|\right) d\theta
\leq \frac{1}{2\pi} \frac{R + r}{R - r} \int_{-\pi}^{\pi} \ln\left(1 + |f_n(Re^{i\theta}) - f_m(Re^{i\theta})|\right) d\theta, \quad 0 < r < R < 1, \quad \varphi \in [-\pi, \pi].$$

Откуда получаем:

$$(R-r)^q \left(\ln(1+|f_n(re^{i\varphi})-f_m(re^{i\varphi})|)\right)^q \leqslant \frac{1}{\pi^q} \left(\int_{-\pi}^{\pi} \ln\left(1+|f_n(Re^{i\theta})-f_m(Re^{i\theta})|\right) d\theta\right)^q.$$

Далее умножим обе части неравенства на $(1-R)^{\alpha}$ и, зафиксировав $r \in [0,1)$, проинтегрируем по $R \in \left[\frac{1+r}{2},1\right)$:

$$\int_{\frac{1+r}{2}}^{1} (1-R)^{\alpha} (R-r)^{q} \left(\ln(1+|f_{n}(re^{i\varphi}) - f_{m}(re^{i\varphi})|) \right)^{q} dR$$

$$\leq \frac{1}{\pi^{q}} \int_{\frac{1+r}{2}}^{1} (1-R)^{\alpha} \left(\int_{-\pi}^{\pi} \ln\left(1+|f_{n}(Re^{i\theta}) - f_{m}(Re^{i\theta})|\right) d\theta \right)^{q} dR.$$

Учитывая, что подынтегральная функция — неотрицательная, получим, что правая часть неравенства мажорируется метрикой $\rho(f_n, f_m)$, поэтому:

$$\left(\ln(1+|f_n(re^{i\varphi})-f_m(re^{i\varphi})|)\right)^q \int_{\frac{1+r}{2}}^1 (1-R)^{\alpha} (R-r)^q dR \leqslant \frac{1}{\pi^q} \rho(f_n, f_m),$$

откуда имеем:

$$\ln(1+|f_n(re^{i\varphi})-f_m(re^{i\varphi})|) \le \frac{c_{\alpha,q}}{(1-r)^{(\alpha+1+q)/q}}(\rho(f_n,f_m))^{1/q},$$

при всех $0 < r < 1, \varphi \in [-\pi, \pi]$. И окончательно:

$$|f_n(re^{i\varphi}) - f_m(re^{i\varphi})| \to 0, \quad n, m \to +\infty,$$

при всех $0 < r < 1, \varphi \in [-\pi, \pi]$.

Таким образом, последовательность $\{f_n\}$ равномерно сходится внутри круга D к некоторой функции $f \in H(D)$. Очевидно, что $\{f_n\}$ сходится к f и по метрике пространства S^q_α . То есть имеем: для любого $\varepsilon > 0$ найдется номер N > 0, такой что для всех n > N $\rho(f_n, f) < \varepsilon$.

Докажем, что $f \in S^q_\alpha$.

$$\int\limits_0^1 (1-r)^\alpha T^q(r,f) dr \leqslant \int\limits_0^1 (1-r)^\alpha \left(\int\limits_{-\pi}^\pi \ln \left(1+|f(re^{i\theta})|\right) d\theta \right)^q dr = \rho(f,0).$$

Но при всех n>N $\rho(f,0)\leqslant \rho(f,f_n)+\rho(f_n,0)<\varepsilon+c,$ поэтому

$$\int_{0}^{1} (1-r)^{\alpha} T^{q}(r,f) dr \leqslant const.$$

Таким образом, $f \in S^q_\alpha$, и пространство S^q_α является полным.

в) Пусть $f, f_n \in S^q_\alpha$ и $\rho(f_n, f) \to 0, n \to +\infty$. Покажем, что для любого $\beta \in \mathbb{C}$ $\rho(\beta f_n, \beta f) \to 0, n \to +\infty$;

Пусть $|\beta| < 1$, тогда $\ln(1+|\beta|x) \leqslant \ln(1+x)$ при всех $x \ge 0$, и свойство сразу следует из неравенства $0 \leqslant \rho(\beta f_n, \beta f) \leqslant \rho(f_n, f)$.

При всех $|\beta| \ge 1$ и $x \ge 0$ справедлива оценка $(1+|\beta|x) \le (1+x)^{|\beta|}$, из которой сразу следует свойство в):

$$\rho(\beta f_n, \beta f) = \int_0^1 (1 - r)^{\alpha} \left(\int_{-\pi}^{\pi} \ln(1 + |\beta| \cdot |f_n(re^{i\theta}) - f(re^{i\theta})|) d\theta \right)^q dr$$

$$\leqslant \int_0^1 (1 - r)^{\alpha} \left(\int_{-\pi}^{\pi} \ln(1 + |f_n(re^{i\theta}) - f(re^{i\theta})|)^{|\beta|} d\theta \right)^q dr$$

$$\leqslant |\beta|^q \int_0^1 (1 - r)^{\alpha} \left(\int_{-\pi}^{\pi} \ln(1 + |f_n(re^{i\theta}) - f(re^{i\theta})|) d\theta \right)^q dr = |\beta|^q \rho(f_n, f).$$

г) Пусть $f \in S^q_\alpha$ и $\beta_n \to \beta$, $n \to +\infty$. Покажем, что $\rho(\beta_n f, \beta f) \to 0$, $n \to +\infty$ для любой функции $f \in S^q_\alpha$;

Оценим

$$\rho(\beta_n f, \beta f) = \int_0^1 (1 - r)^{\alpha} \left(\int_{-\pi}^{\pi} \ln(1 + |f(re^{i\theta})| |\beta_n - \beta|) d\theta \right)^q dr = J.$$

Разобьём интеграл J на две части:

$$J = \int_{0}^{r_0} \dots + \int_{r_0}^{1} \dots = J_1 + J_2.$$

Выберем $0 < r_0 < 1$ так, чтобы $J_2 < \frac{\varepsilon}{2}$, где $\varepsilon > 0$ — произвольное достаточно маленькое число. Оценим J_1 , используя оценку (2.1) из теоремы 2.1:

$$J_1 \leqslant (2\pi)^q \ln^q \left(1 + |\beta_n - \beta| \exp \frac{\delta}{(1 - r_0)^{\frac{\alpha + 1}{q} + 1}} \right) \cdot \frac{1 - (1 - r_0)^{\alpha + 1}}{\alpha + 1},$$

где $\delta > 0$ — сколь угодно маленькое число.

Поскольку $|\beta_n - \beta| \to 0$, $n \to +\infty$, то $J_1 \leqslant \frac{\varepsilon}{2}$ при $n > N(\varepsilon)$. Таким образом, г) установлено. Лемма 2.2 доказана.

Лемма 2.3. Относительно введенной метрики $\tilde{\Pi}_q$ образует F-пространство, причем сходимость по метрике (2.5) этого пространства не слабее равномерной сходимости на компактных подмножествах D.

Доказательство. Пусть $0 < q \leqslant 1$, случай q > 1 доказывается аналогично.

- а) $\rho(f,g) = \rho(f-g,0)$ очевидно.
- б) Π_q полное метрическое пространство.

Пусть $\{f_n\}$ — произвольная фундаментальная последовательность из класса $\tilde{\Pi}_q$, то есть для любого $\varepsilon > 0$ существует номер $N(\varepsilon) > 0$, такой что для всех n, m > N выполняется $\rho(f_n, f_m) < \varepsilon$. Покажем, что она сходится к некоторой функции $f \in \tilde{\Pi}_q$. Заметим, что функции $\ln(1 + |f_n|)$ — субгармонические в D, поэтому справедлива оценка (см. [13, с. 144]):

$$\ln^{q}(1 + |f_{n}(Re^{i\theta}) - f_{m}(Re^{i\theta})|) \leqslant \frac{c(q)}{(1 - R)^{2}} \cdot \rho(f_{n}, f_{m}),$$

откуда

$$|f_n(Re^{i\theta}) - f_m(Re^{i\theta})| \to 0, \quad n, m \to +\infty,$$

при всех 0 < R < 1, $\theta \in [-\pi,\pi]$. Таким образом, фундаментальная последовательность $\{f_n\} \in \tilde{\Pi}_q$ равномерно сходится внутри круга D к некоторой функции $f \in H(D)$. Очевидно, что $\{f_n\}$ сходится к f и по метрике пространства $\tilde{\Pi}_q$.

Докажем, что $f \in \tilde{\Pi}_q$.

$$\int_{0}^{1} \int_{-\pi}^{\pi} (\ln^{+} |f(re^{i\theta})|)^{q} d\theta dr \leq \int_{0}^{1} \int_{-\pi}^{\pi} (\ln(1 + |f(re^{i\theta})|)^{q} d\theta dr
\leq \int_{0}^{1} \int_{-\pi}^{\pi} \ln^{q} \left(1 + |f(re^{i\theta})| - f_{n}(re^{i\theta})| + |f_{n}(re^{i\theta})| \right) d\theta dr.$$

Ввиду леммы 2.1, из последней оценки имеем:

$$\int_{0}^{1} \int_{-\pi}^{\pi} (\ln^{+} |f(re^{i\theta})|)^{q} d\theta \leqslant \int_{0}^{1} \int_{-\pi}^{\pi} \left[\ln^{q} (1 + |f(re^{i\theta}) - f_{n}(re^{i\theta})|) + \ln^{q} (1 + |f_{n}(re^{i\theta})|) \right] d\theta dr \leqslant const.$$

Значит, $\tilde{\Pi}_a$ полно

Доказательство свойств в), г) проводится аналогично лемме 2.2. Лемма доказана.

Отметим также, что F-пространства можно рассматривать как полные квазинормированные пространства.

Лемма 2.4 ([19]). Непрерывность линейного оператора квазинормированных пространств равносильна его ограниченности, то есть тому, что он ограниченные множества переводит в ограниченные.

Обозначим $f_{\zeta}(z) = f(\zeta z), \zeta \in D$.

Лемма 2.5. Пусть $f \in X$, где $X = S^q_\alpha$ или $X = \tilde{\Pi}_q$. Тогда семейство функций $\{f_\zeta(z)\}$ ограничено в X.

Доказательство. Рассмотрим η -окрестность 0, т.е. $V = \{g \in X : \rho(g,0) < \eta\}$. Выберем α' , такое что $\rho(\alpha'f,0) < \frac{\eta}{2}$.

Обозначим $f_r(z) = f(rz), \ 0 < r < 1.$ Очевидно, что $\rho(f, f_r) \to 0, \ r \to 1-0.$ Выберем $r_0 \leqslant r < 1$ настолько близким к 1, что $\rho(f, f_r) < \frac{\eta}{2}.$

Обозначим $f_{(\theta)}(z)=f(e^{i\theta}z), f_{r(\theta)}(z)=f_r(e^{i\theta}z)=f(re^{i\theta}z).$ Тогда

$$\rho(\alpha' f_{(\theta)}, 0) = \rho(\alpha' f, 0) < \frac{\eta}{2},$$

И

$$\rho(\alpha' f_{r(\theta)}, \alpha' f_{(\theta)}) = \rho(\alpha' f_r, \alpha' f) \leqslant \rho(f_r, f) < \frac{\eta}{2}.$$

Если $\zeta = re^{i\theta}$, то $f_{\zeta} = f_{r(\theta)}$. Для всех $r \geq r_0$ мы получим:

$$\rho(\alpha' f_{\zeta}, 0) = \rho(\alpha' f_{r(\theta)}, 0) \leqslant \rho(\alpha' f_{r(\theta)}, \alpha' f_{(\theta)}) + \rho(\alpha' f_{(\theta)}, 0) = \rho(\alpha' f_r, \alpha' f) + \rho(\alpha' f, 0) < \eta.$$

Для всех $0\leqslant r\leqslant r_0$ мы можем выбрать α'' настолько маленьким, чтобы

$$\rho(\alpha'' f_{\zeta}, 0) \leqslant \rho(\alpha'' f_{r}, 0) < \eta.$$

Далее, полагая $\alpha = \min(\alpha', \alpha'')$, получим $\{\alpha f_{\zeta}\} \subset V$.

При доказательстве основного результата используются описания коэффициентных мультипликаторов, действующих из исследуемых пространств в классы Харди.

Теорема 2.5 ([5]). Пусть $\Lambda = \{\lambda_k\}_{k=1}^{+\infty} \subset \mathbb{C}$. Для того чтобы $\Lambda = CM(S^q_{\alpha}, X)$, где $X = H^p (0 , необходимо и достаточно, чтобы$

$$|\lambda_k| = O\left(\exp\left(-c \cdot k^{\frac{\alpha+q+1}{\alpha+2q+1}}\right)\right), \quad k \to +\infty.$$

для некоторого c > 0.

Теорема 2.6 ([9]). Пусть $\Lambda = \{\lambda_k\}_{k=1}^{+\infty} \subset \mathbb{C}$. Для того чтобы $\Lambda = CM(\tilde{\Pi}_q, X)$, где $X = H^p \, (0 , необходимо и достаточно, чтобы$

$$|\lambda_k| = O\left(\exp\left(-c \cdot k^{\frac{2}{q+2}}\right)\right), \quad k \to +\infty.$$

для некоторого c > 0.

3. Доказательство основных результатов

Перейдем к формулировке основных результатов работы — дискретному описанию ЛНФ в пространствах S^q_{α} и в классах Привалова по площади. Итак, справедливы следующие утверждения:

Теорема 3.1. Любой непрерывный линейный функционал Φ над плоским классом Привалова $\tilde{\Pi}_q \ (q>0)$ определяется формулой

$$\Phi(f) = \sum_{k=0}^{+\infty} a_k b_k,\tag{3.1}$$

где $\{a_k\}$ — коэффициенты Тейлора функции $f\in \tilde{\Pi}_q$, а числа $\{b_k\}$ с условием

$$|b_k| = O\left(\exp\left(-c \cdot k^{\frac{2}{2+q}}\right)\right), \quad k \to +\infty, \quad c > 0.$$
 (3.2)

являются коэффициентами Тейлора некоторой аналитической функции в D, при этом ряд в правой части (3.1) абсолютно сходится.

Обратно, каждая последовательность $\{b_k\}$ с условием (3.2) определяет по формуле (3.1) линейный непрерывный функционал Φ над $\tilde{\Pi}_q$.

Теорема 3.2. Любой непрерывный линейный функционал Φ над пространством S^q_{α} определяется формулой

$$\Phi(f) = \sum_{k=0}^{+\infty} a_k b_k, \tag{3.3}$$

 $r \partial e$ числа $\{b_k\}$ с условием

$$|b_k| = O\left(\exp\left(-c \cdot k^{\frac{\alpha+q+1}{\alpha+2q+1}}\right)\right), \quad c > 0, \quad k \to +\infty.$$
(3.4)

являются коэффициентами Тейлора некоторой аналитической функции в $D, \{a_k\}$ — коэффициенты Тейлора функции $f \in S^q_{\alpha}$. При этом ряд в правой части (3.3) абсолютно сходится.

Обратно, каждая последовательность $\{b_k\}$ с условием (3.4) определяет по формуле (3.3) линейный непрерывный функционал Φ над пространством S^q_{α} .

Доказательство. Докажем теорему 3.1. Пусть Φ — произвольный линейный непрерывный функционал над пространством $\tilde{\Pi}_q$. Каждой функции $f \in \tilde{\Pi}_q$ соотнесем функцию $F_{\zeta} = \Phi(f_{\zeta}), \, \zeta \in D$.

Ряд Тейлора функции $f_{\zeta}(z) = f(\zeta z) = \sum_{k=0}^{+\infty} a_k z^k \zeta^k$ сходится абсолютно и равномерно на замкнутом

единичном круге \bar{D} , следовательно, он сходится по метрике пространства Π_q , и в силу непрерывности и линейности функционала Φ , имеем:

$$F(\zeta) = \Phi(f_{\zeta}) = \lim_{N \to +\infty} \Phi\left(\sum_{k=0}^{N} a_k z^k \zeta^k\right) = \sum_{k=0}^{+\infty} a_k b_k \zeta^k, \quad \zeta \in D,$$
(3.5)

где $b_k = \Phi(z^k)$, и ряд в правой части (3.5) — сходящийся. Таким образом, $F \in H(D)$. По лемме 2.5 семейство функций $\{f_\zeta\}$ ограничено в $\tilde{\Pi}_q$, поэтому и функция F будет ограничена в D по лемме 2.4, то есть $F \in H^\infty$. Значит, по определению последовательность $\{b_k\}$ является коэффициентным мультипликатором из $\tilde{\Pi}_q$ в H^∞ , и по теореме 2.6 справедлива оценка (3.2). Далее, принимая во внимание оценку (2.4), получаем, что ряд $\sum_{k=0}^{+\infty} a_k b_k \zeta^k$ сходится абсолютно и равномерно, в силу теоремы Вейерштрасса.

Используя теорему Абеля о степенных рядах, заключаем:

$$\sum_{k=0}^{+\infty} a_k b_k = \lim_{r \to 1-0} \sum_{k=0}^{+\infty} a_k b_k r^k.$$

С другой стороны, так как $\rho_{\tilde{\Pi}_q}(f,f_r) \to 0, r \to 1-0,$ и в силу непрерывности функционала $\Phi,$ заключаем:

$$\lim_{r \to 1-0} \sum_{k=0}^{+\infty} a_k b_k r^k = \lim_{r \to 1-0} \Phi(f_r) = \Phi(f).$$

Таким образом, (3.1) доказано, то есть необходимость установлена.

Докажем обратное утверждение. Пусть последовательность комплексных чисел $\{b_k\}$ удовлетворяет условию (3.2). Принимая во внимание оценку (2.4), получаем, что ряд $\sum_{k=0}^{+\infty} a_k b_k$ абсолютно сходится для каждой функции $f = \sum_{k=1}^{+\infty} a_k z^k \in \tilde{\Pi}_q$. Поэтому функционал Φ корректно определен формулой (3.1). Он линеен, в силу линейности каждого тейлоровского коэффициента как функционала над пространством голоморфных в круге D функций. Для доказательства непрерывности представим функционал Φ в виде:

$$\Phi_N = \sum_{k=1}^N a_k b_k.$$

Линейность и непрерывность этого функционала следует из линейности и непрерывности каждого тейлоровского коэффициента как функционала над пространством голоморфных в круге D функций с топологией равномерной сходимости на компактах, а также того факта, что топология сходимости по метрике пространства $\tilde{\Pi}_q$ не слабее последней. Предел $\lim_{N\to +\infty} \Phi_N$ существует и конечен, поэтому последовательность $\{\Phi_N\}$ поточечно ограничена и, значит, равностепенно непрерывна по общему принципу равномерной ограниченности для F-пространств, а значит, непрерывен и их поточечный предел — функционал Φ . Достаточность установлена. Теорема доказана полностью.

Аналогичным образом устанавливается теорема 3.2.

Ясно, что от дискретной формы записи функционала можно перейти к привычной интегральной форме, используя общую теорию рядов Фурье.

Отметим, что результаты работы были анонсированы в [8], [7], [15].

Благодарности

Автор выражает искреннюю благодарность своему научному руководителю профессору Ф.А. Шамояну за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

- 1. В.И. Гаврилов, А.В. Субботин, Д.А. Ефимов. *Граничные свойства аналитических функций* (дальнейший вклад). М.: Изд-во Московского унив-та. 2012.
- 2. Р. Неванлинна. Однозначные аналитические функции. М.-Л.: ГИТТЛ. 1941.
- 3. И.И. Привалов. Граничные свойства однозначных аналитических функций. М.: Изд. МГУ. 1941.
- 4. Е.Г. Родикова. Об оценках коэффициентов разложения некоторых классов аналитических в круге функций // Материалы VI Петрозаводской международной конференции «Комплексный анализ и приложения». Петрозаводск: ПетрГУ. 64–69 (2012).
- 5. Е.Г. Родикова. О коэффициентных мультипликаторах в одном весовом пространстве аналитических в круге функций // Вестник Брянского гос. унив-та. 4:2, 61-69 (2012).
- 6. Е.Г. Родикова. Факторизация, характеризация корневых множеств и вопросы интерполяции в весовых пространствах аналитических функций. Дисс. ... канд. физ.-мат. наук. Брянск, 2014.
- 7. Е.Г. Родикова. Линейные непрерывные функционалы пространств Привалова // Современные проблемы теории функций и их приложения. Материалы 21-й междунар. Саратовской зимней школы. Саратов. 249-251 (2022).
- 8. Е.Г. Родикова. *О линейных непрерывных функционалах плоских классов И.И. Привалова* // Теоретические и прикладные аспекты естественнонаучного образования в эпоху цифровизации. Материалы Всероссийской научно-практической конференции. Брянск. 102–103 (2022).
- 9. Е.Г. Родикова. О коэффициентных мультипликаторах плоских классов Привалова // Уфимск. матем. журн. 13:4, 82–93 (2021).
- 10. У. Рудин. Функциональный анализ. М.: Мир. 1975.
- 11. Ф.А. Шамоян. Параметрическое представление и описание корневых множеств весовых классов голоморфных в круге функций // Сиб. матем. журн. **40**:6, 1422–1440 (1999).
- 12. P. Duren, B. Romberg, A. Shields. Linear functionals on H^p spaces with 0 . Reine Angew. Math. 238, 32–60 (1969).
- 13. M. Pavlovic. Introduction to function spaces in a disk. Matematicki Institut SANU, Beograd. 2004.
- 14. Е.G. Rodikova. Coefficient multipliers for the Privalov class in a disk // Журн. СФУ. Сер. Матем. и физ. 11:6, 723—732 (2018).
- 15. E.G. Rodikova. Continuous linear functionals on the Nevanlinna-Djrbashian type spaces // Proc. of the Math. Center named after N.I. Lobachevsky. Int. Conf. «Complex Analysis and Related Topics». Abstracts. Kazan: KFU. **63**, 51–52 (2022).
- 16. Е.G. Rodikova, F.A. Shamoyan. On the differentiation in the Privalov classes // Журн. СФУ. Сер. Матем. и физ. **13**:5, 622–630 (2020).
- 17. A.E. Taylor. Banach spaces of functions analytic in the unit circle // II Studia Math. 12, 25–50 (1951).
- 18. N. Yanagihara. Multipliers and linear functionals for the class N^+ // Transactions of the Amer. Math. Soc. **180**, 449–461 (1973).
- 19. K. Yoshida. Functional Analysis. Berlin, Göttingen, Heidelberg: Springer-Verlag. 1965.

Евгения Геннадьевна Родикова, Брянский государственный университет, ул. Бежицкая, 14, 241050, Брянск, Россия E-mail: evheny@yandex.ru