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ON TWO-ORDER FRACTIONAL BOUNDARY VALUE
PROBLEM WITH GENERALIZED RIEMANN-LIOUVILLE
DERIVATIVE

H. SERRAI, B. TELLAB AND Kh. ZENNIR

Abstract. In this paper we focus our study on the existence, uniqueness and Hyers-Ulam
stability for the following problem involving generalized Riemann-Liouville operators:

oY (Dgi@ + V)u(t) — §(t, u(t)).

It is well known that the existence of solutions to the fractional boundary value problem is
equivalent to the existence of solutions to some integral equation. Then it is sufficient to
show that the integral equation has only one fixed point. To prove the uniqueness result, we
use Banach fixed point Theorem, while for the existence result, we apply two classical fixed
point theorems due to Krasnoselskii and Leray-Scauder. Then we continue by studying
the Hyers-Ulam stability of solutions which is a very important aspect and attracted the
attention of many authors. We adapt some sufficient conditions to obtain stability results
of the Hyers-Ulam type.
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theorem, fractional Boundary value problem, Hyers-Ulam stability.
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1. INTRODUCTION

Fractional calculus is a subject that has lately spread rapidly and its applications are used
in several fields of applied sciences [22], [29], [36]. It plays essential roles, for example in
engineering [1], [23], [24], [32], structures [19], optimal control [6], chaotic systems [I7], epi-
demiological models [12], [30]. The fractional structures of boundary value problems and initial
value problems generally give a great diversity of mathematical models for the description of
certain physical, chemical and biological processes that can be referred to in recently published
papers [2], [7], [L0], [TT], [21], [25], [26], [31], [33]. Parallely to these real patterns caused by real
phenomena, many researchers studied the existence theory of solutions for general constructions
of fractional boundary value problems involving boundary conditions implying a multi-point
nonlocal integral [3], [8], [9], [13], [14], [15].

S. Rezapour et al. [27] discussed the existence of numerical solutions via DGJIM and
ADM methods for the follwing fractional boundary value problem implying the generalized
V-Riemann-Liouville operators:

DI u(t) = ¢(tu(t), DIV u(t), DY u(t), ..., Di¥u(t)),
w(0) =0, (1) = pIii¥ki (&, u(€)) + qZy ka(n, uln)),
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where
0<t<1, 1<o<?2, 0<0; <o <-v- <y, <1, 0> 0,+1,
and
¢:[0,1] x R"™ = R, ki [0,1] x R = R, j=1,2,

are continuous functions, Dgiﬁp, Dg}ﬁw, o ,Dgi;w are the ¢-Riemann-Liouville derivatives depend-
ing on an increasing function v of orders p, 91, ..., d,, respectively, and Igjﬁﬁ is the ¢-Riemann-
Liouville integral depending on the special function v of order v € {u,v} with p,v,p,q > 0
and 0 < &,n < 1. Thabet et al. [34] considered and studied the existence of solutions of the

following coupled system of the Caputo conformable fractional boundary value problems of the
Pantograph differential equations formulated as

COLp(t) =Py (t, m(t), m(t),  z €[t K],  to =0,
chg 7 ( ) :,PQ(t?U(t)ﬂU(et»»

via three-point-RIL-conformable integral conditions

v(ty) =0, c1v(K) + 3" 0(8) = wy,
m(ty) = 0, cm(K) + &R m(v) = w,
where
€ (0,1], 01,05 € (1,2), o,v € (ty, K),

1, Co, 1, Coy Wi, wy € R, e (0,1), 771,73260([{0, ] x R x R, R).

Based on some ideas and techniques used in the above cited works, we are interested in certain
criteria of existence, uniqueness and Ulam-stability of the generalized fractional boundary value
problem

DY (D v )u(®) = jeu(®),  te 0=[0.1]

u(0) =0,  u(l)=pZF e (n,u(n) +aZft (o, u(0)),
where 0 < p1,po <1, p1+p2>1,§,®;: OxR = R, (j =1,2) are three continuous functions,
Dgf’ is the W-Riemann-Liouville fractional derivative depending on an increasing function ¥ of

(1.1)

order o € {p1, 2}, Igf' is the W-Riemann-Liouville integral which depends on the function W
of order § € {ps, ps}, with p,q, p3, ps,v > 0and 0 < 7,0 < 1.

The structure of the paper is as follows. In Section 2, we present some useful definitions,
lemmas and theorems used throughout our work: the Riemann-Liouville fractional derivative of
a function with respect to another function, fixed point Theorems due to Banach, Krasnoselskii
and Leray-Schauder. Section 3 contains result of the existence and uniqueness with an illus-
trative example. We finish our paper by Section 4 where we study two problems on existence
using Krasnoselskii fixed point theorem and Leray-Schauder nonlinear alternative.

2. BASIC NOTIONS OF FRACTIONAL CALCULUS

Before starting the proofs of our main results, we should remind the notion of fractional
derivatives of a function with respect to another function as well as its essential properties.
To this end, in the following and throughout this section, o > 0 is a real constant number,
O = [a,b] is a finite or infinite interval, x an integrable function and ¥ € C™(Q) is an
increasing function such that ¥'(t) # 0 for each t € O.
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The U-Riemann-Liouville fractional integral of order p of the function x is defined as

oY x(t) = ﬁ / '(s)(W(t) — \I/(s))g_lx(s) ds,

a

and the U-Riemann-Liouville fractional derivative of order p of the function x is defined as

1 dy\»
oV = — —o¥
D2 x(t) —<\I/’(t) t> I x(t)

t

1 1 d
_F(n—g)<

n n—oe—1
\I/’(t)a) /\Il/(s) (\If(t) — \I/(s)) x(s) ds,
where n = [p] + 1. In particular, if we choose ¥(t) = t, ¥(t) = Int, ¥U(t) = t¥, we find
respectively the well-known fractional operators of Riemann-Liouville, Hadamard and Erdélyi-
Kober type.
The semigroup property holds for fractional integrals, in other words, for p,v > 0, we have

IV IO x(t) = I x(t).

Definition 2.1. [22] Let ¥ € C™[a,b] such that V'(t) # 0 for all t € [a,b]. Then we define

n—1
AC™"[a,b] = {9 ab] - R, 6" = (@/1@ dit) 0. 0"~ € ACTa, b]}-

Lemma 2.1. [22] Let 0 > 0 and v > 0. If u(s) = [¥(s) — \I/(a)r_l, then

(Dgfju<3)> (t) = F(i(il)) [\P(t) - \Ij<a)r_g_1> (2.1)
and
(zgf“u(s)) (t) = F(FV<—1)Q) [W(t) — W(a)] ™" (2.2)

As a particular case of and we have respectively the following expressions

4o I'(v)
Dg,t o’(l/—l)) t — to’(l/—g—l)
( ot * (®) I'(v — o) ’
and
40 I'(v)
Tt a(u—1)> t) — toletr=1)
(Zer" s ) (6) O

Lemma 2.2. [20] Let o > n with n € IN. Then

1 d\"_ .
— ) 7%Y®(t) = 797V D (t).
(i) = o0 =20

Lemma 2.3. [20] Let o > v, n—1<v <n,n € N. Then
DTSN B (t) = T2,V O(t).

In particular,
DEYTE (1) = B(6).
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Lemma 2.4. [20] Let 0 > 0, n = [o] + 1, ® € L[a, b] and I%'® € AC""[a,b]. Then

(z2¥ D2 )o(t) = @(t) — > %(\P(O ~U(a))".

=1

In the special case 0 < o < 1 we have
(z2 D2 ) (t) = o(t) -
Lemma 2.5. [20] Let o > 0 and Dﬁf’@ € AC™Y[a,b] N L'[a, b], then

TEIDEYD(t) = D(t) + Ky (U(t) — V(@) + ko (U(t) — U(a)) "+ + ky (V(t) — W(a))* ",
where ki, ..., k, € R and n = [po] + 1.

Theorem 2.1. [I6](Banach fized point theorem). Let (€,d) be a complete metric space and
T : & — € be a contraction mapping. Then T has unique fixed point in €.

Theorem 2.2. [10] (Krasnoselskii fized point theorem). Let M be a nonempty, bounded,
closed and convex subset of a Banach space €. Let A and B be two operators such that:

o Ax + By € M whenever x,y € M.
o A is compact and continuous.
e B is a contraction mapping.

Then there exists z € M such that z = Az + Bz.

Theorem 2.3. [16] (Leray-Schauder nonlinear alternative). Let € be a Banach space, C a
closed, convex subset of €, U an open subset of C and 0 € U.

Suppose that T : U — C is a continuous, compact map (that is, T(U) is a relatively compact
subset of C). Then either:

o T has a fized point in U, or
o There are a x € OU (the boundary of U in C) and X € (0,1) with \T'(x) = x.

Lemma 2.6. Let

0 <p1,p2 <1, p1+p2>1, P, 4, p3, P4,V > 0, 0<no<l

and f,®;: O xR = R, j = 1,2, are three continuous functions. Then the fractional boundary
value problem

DY (Dgiﬂ“ n V)u(t) —i(tult), teo=[0,1],

(2.3)
u(0) =0,  u(1)=pZ P (n,uln) + qZyi 2o, u(o))
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18 equivalent to the following integral equation

ut) = F&ﬁ/ '(s)(¥(t) — (s))” 'u(s)ds
L j ! p1+p2—1
L(p1 + p2) /qj ()(T(t) — U(s)) f(s,u(s)) ds

I'(p2)
1 (2.4)
L [V ) - ve) 7 s ) ds
L(p1 + p2) ] 7
n
|y / . p3—1
“ T O/\I/ (s)(¥(n) — ()™ ®(s,u(s))ds
- /U\I/'(s) (¥(o) — \I!(s))p4_1<l>2(s u(s)) ds)
I'(p4) / ’ 7
where
B \Il(t) — \IJ(O) p1+p2—1
Se(t) = —<q,(1) —m(0)> '
Proof. From and by applying the integral operator ZfV'" to both sides we get
T Dy (DY + v )u() = T i u(y). (2.5)
Then by using Lemma [2.5| we see that
Dgi’q’u(t) = —vu(t) + Igi’qu(t, u(t)) —c ((t) — \I/(O))pl_l. (2.6)

Applying the VU-Riemann-Liouville fractional operator Igi’\p to both sides of (2.6), we find:
22D a(t) = —vZ () + TR () — 20 (W(E) — w(0)
In view of Lemma [2.5] the last equation implies

u(t) = — VIgi"I’u(f) + Igfrpz,‘l’f(f, u(t)) — 01%(\11({) _ \I,<0>)p1+p2—1 .

— e (W(t) — w(0))™ ",

From the first boundary condition, we get co = 0 and then (2.7) becomes

u(t) = —vZu(t) + 20t u () — CI%(\W) —w0)T (2.8)
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Employing then the second boundary condition, we have on the one hand

) = = V)|, T )] - e B (v - w(o)

S mo/\ll’(s)(\ll(l) —U(s))” Tu(s)ds

(2.9)

1

[ ) - v s ) ds

0

1
+ -
L(p1 + p2)

—c F(pl) N p1+p2—1
O s (W) = W(0)

and on the other hand

u(1) =pZ+Y®, (n,u(n)) + qZii @5 (0, u(o))
:L/q/(s)(\p(n) — ()", (s, u(s)) ds

L(ps)

) (2.10)

k. [ ! pa—1
" ['(pa) O/\Ij (S)@’(U) - \IJ(S)) ) (S, U(S)) ds.

Using then expressions (2.9)), (2.10), after some computations we get

1

SN /ES N G

T(p1) (W(1) - \Il(()))P1+P2—1 mo/\lf (s)(¥(1) — U(s))™ "u(s)ds

1 / / p1tp2—1
+ mo/xy (5) (¥ (1) — U(s)) s, u(s)) ds

n

P ! p3—1
_ (o0 O/‘I/ (s) (\I/(Ti) - ‘I’(S)) P, (S,u(s)) ds

o

4 ! —U(s))" D, (s, u(s)) ds ).
—r<p4>0/‘1’<5><‘1’<“> ¥(s)" s (s 0(s) ds )

Replacing ¢; by its value in (2.8]), we obtain immediately integral equation (2.4
For the reverse case, we just write u(t) in the form

al6) = = VI () + T () - (0|~ 17 ()
(2.11)
+ I Y(1, (1) — pZy Y @y (n,u(n)) — aZt @2 (o, u(0)) |
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Applying the WU-Riemann-Liouville fractional operator Dgi’\l' to both sides of (2.11)) and using

Lemmas [2.1] and after some manipulations we get

L(pa +p2) (2(8) = W(0))"
(w(1) — w(o)" "™

(Dgi"l’ + u)u(t) =7/Y§(t,u(t) — ( — I u(1)

(2.12)

F TR () - P (. u(n) - QT Ba(or (o) ).

Applying the fractional derivative Dgi"y to both sides of (2.12)), due to the property
DY (T () - ¥ (0)" ' =0,
we obtain
DLy (Dgi’“’ + I/>u(t) — §(t, u(t)).
To check boundary conditions, it is easy to confirm by (2.11) that
u(0) =0, and u(l)= pIgi’\PCIDl (n,u(n)) + ngi7‘ll(1)2 (o,u(0)).

Therefore, u(t) is a solution of the problem (1.1} and this completes the proof. a

In what follows, we introduce some new notations based on Lemma[2.6] In addition, we consider

the Banach space € = C([0, 1], R) equipped with the norm |Ju]| = m[ax] lu(t)| and we define an
te[0,1
operator N : € — €

W) == s [ V() - 1) uls)ds

F(Pz)
; (2.13)
! ! _ p1+p2—1 1 S
F<m+p2>0/ V() (U(1) = W(s))" (s, u(s))
p_ n ! p3—1
['(p3) / (8)(¥(n) —¥(s))™ @i (s,u(s)) ds

The fixed point equation
Nu=u uec,
is equivalent to integral equation (2.4), and the continuity of the functions f, ®;, @, ensures

that for the operator N
We are in position to formulate an existence and uniqueness theorem.
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3. UNIQUE SOLVABILITY

Theorem 3.1. Suppose that the following assertions hold
(H1) : There exists a real constant M; > 0 such that

f(t,w) —f(t,v)| < Mjlu—v|, te]0,1], uveR.
(Hz) : There exist two V-Riemann-Liouville integrable functions wy,ws : [0, 1] — R such that
|D;(t,u) — Di(t,v)| Sw(Hlu—v|, ie€{1,2}, te]0,1], uveR.
(Hs) : A real constant
C2w(W(1) - w(0)” 2M;(T(1) — w(0))"
T(p2+1) T(p1+p2+1)

satisfies 0 < v < 1.
Then fractional boundary value problem (L.1)) possesses a unique solution.

+pZ Y wi(n) + qZft Y ws (o)

Proof. In view of the above, we know that the solvability of fractional boundary value problem
is equivalent to the solvability of integral equation . Hence, it is sufficient to show
that integral equation has only one fixed point.

First, since ¥ is an increasing function and p; + po > 1, we have 0 < £y (t) < 1. Therefore,
for each t € [0, 1] we can write

t

W)(© ~ W) O] < / V() (W(0) — ()™ Jus) — v(s)|ds
o [ VOO - 96)" 7 e u(e) e v(e)ds

b [ (000 = 9(8)" ) — vl

T mo/‘l"(S)(\If(l) — W(s))" 7 f(s, u(s)) — f(s, v(s))|ds

n

4P /\If/(s) (¥ (n) — \I/(s))p371|<1>1(s,u(s)) — @y (s, v(s))|ds

T / W (s) (T(0) — U(s))" @ (s, u(s)) — s (s, v(s))|ds

(pa)
vl = v (¥() - w(0)” Myl - v]|(¥(t) — ¥(0))" "
I(p2+1) L(p1 + p2 +1)
vl — V][ (2(1) = 9(0))”  Mylju—v]|(¥(1) — ¥(0))" "
T(ps+1) L(p1+p2+1)

+pllu— V]| Z5Ywi (n )+QIIH—VI|I”4’% (o)
2v(0(1) — ¥(0))”  2M;(¥(
<( [(pz+1) - (Pl + P2

)>P1+P2 .
+ o Pyt wi(n)
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AR (o) ) u = v
Thus,
[Nu—Nv|| <vllu—v], 0<y<1, (3.1)

and N is a contraction. Therefore, by applying the Banach principle, we conclude that A has
only one fixed point and this implies the existence of a unique solution for the FBVP (1.1)).
The proof is complete. 0

Example 3.1. Consider a fractional boundary value problem of the following form

Lo/ 2z 1 1
D2 (Dgf + Z>u(f) = t+ osin(u(t), e (0,1,

N
N

u(l) = /25 (i — 52>3(1 + 10u(s)e®) ds + /25(% — 52>4(1 + %es sin (u(s))) ds.

0

[en]

In this case we have

1 2
@(t) :t27 P1 257 P2 = ga p3:47 104:57
1 1 1
’/:Za p:F(4), q:F(5)7 "7:57 O-:Z:
and
1
(6 u(0) = ¢+ sin(2u(©),
Oy (t,u(t)) = 1+ 10u(t)e,
1
Dy(t,u(t)) =1+ éet sin (u(t)).
Then
1 1
M; = 3 w1 (t) = 10¢", wy(t) = éet.

Therefore, by simple computations we get

:2V(\I’(1) — \IJ(O))P2 2/\/[(\1/(1) _ \IJ(O))pH_pQ
T(py+1) T+ po 1)
~0.9031 < 1.

+ pISi’q’wl (n) + ngi’\pwz(U)

Hence, by Theorem we conclude that the considered fractional boundary value problem s
uniquely solvable.

4. EXISTENCE RESULTS

In order to apply the Krasnoselskii fixed point theorem, it is useful to decompose the operator
Nas N = N; + Ny, where,

t

[0 - ve)" s ) ds

0

1

N e
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/ p1+p2—1
T !@ ()" (s, u(s)) s
and
(Nou) () = — F(Zz) /ws) (1) - U(s))” "u(s) ds
+suo(mm)!iwg@wnw<»2 (s)ds
p h ' p3—
+ (o) /\If (s) (\Il(n) — \I/(s)) <I>1(s u(s)) ds
+ F((:4) /\IJ’(S) (¥(o) — \D(s))prl@g(s,u(s)) ds).
To simplify the futher calculations, we use the following parameters:
_2((1) - w(0))" 0. _ 20 (W(1) — ¥(0))"”
' o +p2+1) ’ I'(p2 +1)
o p(¥0) —W(0)” o _ al¥(o) - ()"
T Tlps+1) T Tt )

The main result in this section is the following theorem.

Theorem 4.1. Assume that Conditions (H1) and (Hz) hold. In addition, let there exist
three functions T, ¢; € C([O, 1],]R+), j €{1,2} such that
(Ha) @ |f(t,0)] < T(4) for allt € O, u € R;
(Hs) = |Pi(t,u)] < @i(t), i € {1,2}, forallt € O, u e R.
Then boundary value problem (1.1)) is solvable if
QQ + Qg”&)ln + Q4HC&)2H < 1. (41)
Proof. We begin with considering the following nonempty closed convex ball
B, ={ue€: [ul<e},
where p satisfies the inequality
_ Y]+l + Ul
- 11— ’
with [|T] = supico T(t) and [jo;]| = supico @;(1).
First step: We are going to show that Nju+ Nyv € B, for every u,v € B,. Let u € B,, then
we can write

t

! (/w%xwo—w@Vﬁ”%@m@wm

|(Nu)(b)] T )

&l / V(1) ~ 9(6)" . 0() ds )
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t

1 / _ (s p1t+p2—1 u s
<F@;$5(!W@MMO W($)"i(s, u(s))| d

1

el [V () - \If<s>)““21|f<s,u<s>>|ds)

“Tp m ) (V) = w(0)"™ + & (O ((1) - w(0))" ).

Since W is an increasing function, we have

| Niu| <F<pl ﬂ_ﬂ‘z =y sup ((\If(t) — \II(O))FHP2 + & (H)(T(1) — \I/(O))pl+p2> )
2||TH p1+p2 .
STt 1) (T(1) = w(0))™ ™ = 7]
In the same way, for v € B, we get
|(N2V)(f>’ :l — F(Vp2) /@’(s) (\I/(t) - \I/(s))pQ—lv<s) ds

+§\y(t)(r(yp2) /\1;/(5)(\1/(1) — ))P2—1 (s)ds
1Y h ! p3—

+ (o) O/\I/ (s)(\I!(n) — \I/(s)) ) (s,v(s)) ds
q f ! pa—1

+ Tlon) O/\IJ (s)(W(o) — U(s))™ "Da(s, v(s)) ds)

<o ( / W(s) (1) — W(s))"(s)lds
+ qu(t)/\If’(s)(\P(l) - \IJ(S))p21|v(s)\dS)
p h / p3—1

+eult) (s [ ¥ w10 )
4 [ ! — pa—1 s, v(s))|ds

iy | VO30~ e o)l )

Then
2”””” 02 pHQOIH 3
Vo] <A (1) = B(0)” + 2 2 () = 9(0)
i alle:| (\I/(J) _ W(O))M (4.3)

[(ps+1)
<o + Q@[ + Qallp2 ]l
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By combining (4.2)) and (4.3]) we get
[N1u 4 Nov|| <[[Nul| + [|Nav]|
<0 + || Y]] + Q31 || + Qulle2]| < o

which shows that Nju + Nav € B, for every u,v € B,,.
Second step: We are going to prove that N> is a contraction on B,. For every u,v € B, we
have

[(Now) () — (Nav)(b)] :‘ - F(’; S / W(s)(U(t) — U(s))™ " (uls) — v(s)) ds
+ ”f(“’pg‘)) 0/1 W(s)(T(1) — U(s))™ " (u(s) — v(s)) ds
; 1;%);) / W(s) () — U(s))" " (@5, u(s)) — @1 (5, v(s))) ds
+ ‘f(‘;i")) O/ W(s)(U(0) — ()" (@2(s,u(s)) — B (s, v(s))) ds

+ I}%S) / (s) () = W(s)" |1 (s, u(s)) = @1(s,¥(5)) | ds
+ (}%) / V(s) (Vo) — U(s))" | @2(s, u(s)) — (s, v(s))| ds,
N Pﬁw(?gt;llnil)— M (T(n) — w(0)”
n qgw(?éﬁﬂlﬂ%‘ V|| (U(0) — q;(o))p4.

Then

2v 2 Dl ps
[Nou — Nov|| < (m(\m) —U(0))” + (s + 1) (¥ (n) — ¥ (0))

qlws| pa
il (w(o) - w(0)" ) I~ v

= (2 + Qgflwr ]| + Qallwz]) [[u = v]|.
Hence, it follows from condition ([4.1)) that N is a contraction.
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Third step: We are going to show that A is compact and continuous.

i) It follows from the definition of the operator N; that the continuity of § implies that of
N

ii) The uniform boundedness of the operator A} on B, is due to expression (4.2]), where we
have shown that for any u € B,,

[NV < Q| Y.
iii) In view of (H,), for all u € B, and for each t;,t; € O such that t; < t, we have:

t2

1 , p1+p2—1
o O/ V(s) (k) — U(s)) (s, u(s)) ds

t1

_ / W(s) (W () — W(s))" (s, u(s)) ds

|(Mu)(t2) — (M) ()] =

—&p(te) [ W(s)(W(1) — U(s))" ™ f(s, u(s)) ds

1
(6ulta) — &ult) / (s ()™ (s, u(s)) ds
0
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g—
I'(p1 + p2)

1 (jw’(s)((\l/(tg) _ @(S))MPH

— (W(t) = W(s)" ) (s, u(s)) s

to

+/w%xwm—W@VWTW@mawm

t
1

@w2£w1/v @Wmﬂmmmm>

0

||T” p1t+p2 p1+p2
\Nm+m+D«ww_@@) ~ (¥(t) — ()

+ (Sulte) = &ult) ) (L) — w(0)" ™).

We observe that the right hand side in the above inequality is independent on u and tends to zero
as to — t;. Hence, NV is equicontinuous. By Arzela-Ascoli theorem this yields the compactness
of the operator AV;. As a consequence of Krasnoselskii fixed point theorem, problem has
at least one solution. The proof is complete. O

Theorem 4.2. Assume that there exist three functions x,x1, X2 € C([O, 1],]R+) and three
non-decreasing functions =, =1, =5 : Ry — Ry such that
(He) = |F(t,w)] < x(O=(|Jul)), for all t € O, u € R.

(H7) : |®i(t,w)| < xa()Z5(f|lull), i € {1,2}, for allt € O, ueR.
(Hg) : There exists a real constant w > 0 satisfying
w(l—Qy)
IXIE @) + (x| Z1(@) 2 + [[x2]|Z2(@)$24

Then fractional boundary value problem (1.1|) possesses a solution.

> 1.

Proof. First step: We are going to show that A/ maps bounded sets into bounded sets in €.
For a positive number r we define the bounded sets B, of € as follows:

B.={uec¢: |u|<r}

For u € B,, we have

\mmmﬂ%—r” [ - v)" us) s

1 / . p1+p2—1 a s
o [ Ve - ve) " e () d
— &y (t) ( — F(ypg) /kII’(s) (\I’(l) — \IJ(S))P2 1 (s)ds
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P / ! p3—1

" T(ps) 0/‘1’ () (¥(n) — U(s))™ '@ (s,u(s)) ds
q [ ! pa—1

- oL O/ W(s) (U(0) — W(s))" "Dy (s, u(s)) ds)

I'(p1 + p2) )
p h ’ p3—1
+ (os) O/‘I/ (s)(\lf(n) — ‘Il(s)) |Dy (s,u(s))| ds
4 [ ! —w(s)) ! s, u(s S
T [ VOO V6 ) )
A o IIXIE(ull) pr+p2
Sy (V) = 00)) 4 L (W) — w(0))
4 fq;(t) (F<Z|2|1—li| 1) (‘11(1) _ \If(()))m 4 F!ZH—T E)!u—ﬂ)l) (\I/(l) . \I](O>)p1+p2
pllxa [l = ([Jull) ps . dllxallZ2(Jlul) P
+ Font 1) (T(n) — ¥ (0)” + Tt 1) (¥(o) — V(0)) )
Then
pllx: /=1 ([ul) ps . dllxallZ2(|[ull) P (4.4)
+ (st 1) (T (n) —w(0)” + (st 1) (¥ (o) — ¥(0))

<y + [ 2 ()2 + [[xallZ1(r) Qs + [[xa || Z2(r) 2.

Second step: We are going to show that N/ maps bounded sets into equicontinuous sets of
¢. Based on Assumptions (Hg) — (H7), for all t;,t, € O with t; < t; and each u € B, we can
write

t2

( / W (s) (U(ty) — U(s))™ "u(s) ds

0

Wu)(t) — (W) (b)) :‘ .
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- / U'(s)(W(ty) — U(s))” "u(s) ds)

0

L (/\I/'(s)(‘ll(tg) —\Il(s))p1+p2_lf(s,u(s))ds

+ -
C(p1 + p2)

(6o (ty) — &)= / () (T(1) — U(s))” us) ds

< (v - v(0)"” = (¥(t) - w(0))”)
[xI=(r)
L(pyr+p2 +1)

+ (Sul(t) — sm))m(m) —w(0))".

We observe that as t; — to, the right-hand side in the above relations is independent of u and
goes to zero uniformly. Therefore, the operator N : € — € is equicontinuous and thus the
operator A is completely continuous.

We are going to confirm that the set of all solutions to the equation AN u = u is bounded for
Ae (0,1).

By computations similar to ones used in the first step we get

uf] < [[uf]Q + [[x | = ([[ul)20 + (x| Z1(Jal) 25 + [[xal| Z2(][ul])L2q,
which leads to

((T(t) = w(0))"™ = (U(tr) — 0(0))"")

Ju (1 - ) -,
IIED2: + TallZFDes + TelZ: (e
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According to Assumption (Hg), there exists a real constant @ > 0 such that [ju|| # @ and
w(l — Q)

== e ———— > 1
IXIIZ @D + [Ixal|Z1(@)€2s + [Ixal|Z2(w) €

We introduce the set

U={ueC: |u| <M},
and note that A/ : & — C is continuous and completely continuous. Then the choice of u implies
that there is no u € oU such that AN (u) = w for some A € (0,1). Then by Leray-Schauder

nonlinear alternative we conclude that N has a fixed point u € U which corresponds to a
solution of fractional boundary value problem ([1.1)). The proof is complete. n

5.  HYERS-ULAM STABILITY OUTCOMES

Fractional differential equations play a very important role in mathematical analysis and
especially in the modeling of physical phenomenons and these have been widely studied from
different sides. Among these, the stability analysis in the Hyers-Ulam sense is a very important
aspect which attracted the attention of many authors [I8], [35], [28]. Based on the definition
of Hyers-Ulam stability, then this notion was modified into more general types [4], [5]. In this
section, we will adapt some sufficient conditions to obtain stability results of the Hyers-Ulam
type for our main problem.

Definition 5.1. [I8|, [28] Let us consider a Banach space S and an operator K : S — S.
The operator equation
Ku = u, (5.1)
15 said to be Hyers-Ulam stable if the inequality
lu(t) — Ku(t)| <e,

which holds for all t € O = [0,1], implies that there exists a constant mg > 0 such that for each
u e C((’), IR) satisfying (5.1) one can find a unique solution U € C((’), ]R) of operator equation
(5.1) provided that for each t € O we have

lu(t) — U(t)| < mke.

Definition 5.2. [18], [28] Consider the operator N : € — €. We say that the operator

equation
u(t) = Nu(t), (5.2)
1s Hyers-Ulam stable if for the inequality
lu(t) = Nu(t)| <e, teO, (5.3)

we can find a constant wy such that for each u satisfying (5.2)) there ezists a unique solution U
of the operator equation (5.2) provided that

lu(t) — ()| < mue
for each t € O

Theorem 5.1. Assume that ¥ € C(O, IR) is a solution of the inequality satisfying the
conditions
(i) [9(t)| <€ for all t € O;
(i7) Dgi’q’ (Dgi’\y +v)u(t) — f(t, u(t)) + d(t) = 0 for all t € O.
Then
[9(t) = NI(t)| < le, teO,
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where
2

= W(1) —w(0)) ",
I(p1+p2+1)( W <))
and N is the operator given by (2.13).

Proof. According to Condition (i7), for each t € O we have
Dy (DY + 1) (0 = FL9(0) + 6(8) =0
9(0) =0, 9(1) = pZ" 1 (n.9(n)) + aZ§t" 2(0.9(0)).

In view of Lemma the solution of fractional boundary value problem ({5.4) can be expressed
as

(5.4)

0= [ ¥E (w0 —we)" i) ds
F(ml—i-pz) /\If’(s)(\lf(t) _qj(s>)p1+p271f( 9(s)) ds
r@ﬁmg/W“”WO—W®W“T%mds

F(p11+ p2) 0/1 V() (U(1) — W ()" (s, 0(s)) ds
F@ﬁpﬁjwﬁﬂw”w@fm”%Uds

- F(I;g) 0/77‘11’(8)(‘1’(77) — W(s))" Dy (s,9(s)) ds

_ r((;) O/Jqf’(s)(\p(a) —W(s))" Dy (s, 9(s)) ds)

[ - v()" " s, 0(s)) ds

0

~a0( - i [ V() - v () ds

_l’_
L'(p1 + p2)
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1

T | 1910800~ 0 e o)

0
n

L ! —W(s))? D, (s, 9(s)) ds
- / W(s)(¥(n) — U(s))" 1 (5,0(s)) d

4 [ ! —W(s))" @, (s, 9(s)) ds
- | YO Yo >)d))‘

t

- ﬁ/ W(s)(P() ~ ()" (s) ds
(01 + p2) / (s —W(s))" T o(s)| ds
plm / W(s)(¥(1) — W(s))" T fo(s) | ds

(\I/(]_> . \I/(0>)01+P2€7

<F(p1 +p2+1)
which can also be written
[9(t) = NI(H)| < le, teO.
This completes the proof. O

Theorem 5.2. Let Assumptions (Hi) — (Hs) hold. Then the solution of fractional boundary
value problem (1.1)) is Hyers-Ulam stable.

Proof. Let ¢ € C((’), ]R) be an arbitrary solution of the following inequality
D (D" +v)u® - fLu®)| <, teo,
and let 9 € C(O, ]R) be the unique solution of the problem

Dyt (DY +v)0() = §(60(),  teo,

R R R R (5.5)
J(0) =0, U(1) = ngi\y(pl (777 19(77)) + ngf\p(I)Q (07 19(0))
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Thanks to Lemma the solution of fractional boundary value problem (.1)) can be expressed

as
t

mo/\lf’(s)(\ll(t) —w(s))* () ds

~ 14

() = —

t

1 / p1+p2—1 9,
N mg/qf (s) (W (1) — U(s))" " f(s, 9(s)) ds

_ f\p({) ( N F(VQ) /\IJ’(S) (\I’(l) — \11(5))02—11§<S) ds

p
) (5.6)
1 -
+——— [ W(s)(T(1) — U(s)) T (s, 9(s)) ds
r<pl+p2>0/ (@)~ ¥(6)" (e, 1(a)
Y
p / P3 1 -~
— s)(¥(n) — U(s ®q(s,V(s)) ds
s [ W) (W)~ 9)" 1 (5. 516)
__4 /\IJ’(S)(\IJ(J) —0(s)" by (s, O(s)) ds
I'(ps) /
Based on (5.6), we can write
9(t) — D(t)| =|9(t) N@t )|
=[0(t) — NO(t) + NI(t) — NI (t))|
<[9(t) = NO(t)| + [NY(E) — ND(b)].
Then by (3.1) and Theorem [5.1] we arrive at
[0 = 9] <
which gives immediately
~ 14
o3 < e
Therefore, the solution of fractional boundary value problem ([1.1]) is Hyers-Ulam stablen. The
proof is complete. O]
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