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INVERSE PROBLEM ON DETERMINING TWO KERNELS IN

INTEGRO-DIFFERENTIAL EQUATION OF HEAT FLOW

D.K. DURDIEV, J.J. JUMAEV, D.D. ATOEV

Abstract. We study the inverse problem on determining the energy-temperature rela-
tion 𝜒(𝑡) and the heat conduction relation 𝑘(𝑡) functions in the one-dimensional integro-
differential heat equation. The direct problem is an initial-boundary value problem for this
equation with the Dirichlet boundary conditions. The integral terms involve the time con-
volution of unknown kernels and a direct problem solution. As an additional information for
solving inverse problem, the solution of the direct problem for 𝑥 = 𝑥0 and 𝑥 = 𝑥1 is given.
We first introduce an auxiliary problem equivalent to the original one. Then the auxiliary
problem is reduced to an equivalent closed system of Volterra-type integral equations with
respect to the unknown functions. Applying the method of contraction mappings to this
system in the continuous class of functions, we prove the main result of the article, which
a local existence and uniqueness theorem for the inverse problem.

Keywords: Banach principle, resolvent, Volterra equation, operator equation, initial-
boundary problem, inverse problem, Green function.
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1. Introduction

Integro-differential equations with integral term of convolution type arise in many fields of
physics and applied mathematics for modeling the processes of heat and mass transfer with
finite propagation speed, systems with thermal memory, viscoelasticity problems and acoustic
waves in composite media. In [1] Gurtin and Pipkin derived the integro-differential equation

𝑢𝑡𝑡 = △𝑢(𝑥, 𝜏) +
𝑡∫︁

0

𝐾 ′(𝑡− 𝜏)△𝑢(𝑥, 𝜏)𝑑𝜏 + 𝑞(𝑥, 𝑡), (1.1)

describing the heat propagation in a media with memory at a finite speed. Here ∆ is the
Laplace operator in the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛). Apart of equation (1.1), in the literature
the following equation

𝑢𝑡(𝑥, 𝑡) =

𝑡∫︁
0

𝐾(𝑡− 𝜏)△𝑢(𝑥, 𝜏)𝑑𝜏 + 𝑔(𝑥, 𝑡) (1.2)

was considered, it is of the first order in the time variable 𝑡. Nowadays, equations (1.1) and
(1.2) are referred to as the Gurtin-Pipkin equations. It can readily be seen that equation (1.1)
is derived from (1.2) by differentiating with respect to the variable 𝑡 if we let 𝐾(0) = 1 and
𝑞(𝑥, 𝑡) = 𝑔𝑡(𝑥, 𝑡).
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In the linear theory of heat conduction in media with memory the constitutive equations
between heat flux and gradient of temperature contain integral terms over the past history of the
material involving time-dependent convolution. In [2] Miller studied the existence, uniqueness,
and continuous dependence on parameters for solutions of the certain initial boundary value
problem for following system of integro-ifferential equations:

𝑒(𝑡, 𝑥) = 𝑒0 + 𝜒(0)𝜃(𝑡, 𝑥) +

𝑡∫︁
0

𝜒′(𝑡− 𝜏)𝜃(𝜏, 𝑥)𝑑𝜏,

𝑞(𝑡, 𝑥) = −𝑘(0)𝜃𝑥(𝑡, 𝑥)−
𝑡∫︁

0

𝑘′(𝑡− 𝜏)𝜃𝑥(𝜏, 𝑥)𝑑𝜏,

𝑒𝑡(𝑡, 𝑥) = −𝑞𝑥(𝑡, 𝑥) + 𝑟(𝑡, 𝑥),

(1.3)

where 𝑡 ∈ (0, 𝑇 ], 𝑥 ∈ (0; 𝑙), 𝑒𝑡 =
(︀
𝜕/𝜕𝑡

)︀
𝑒, 𝑞𝑥 =

(︀
𝜕/𝜕𝑥

)︀
𝑞. In (1.3) 𝜒(𝑡) and 𝑘(𝑡) are relaxation

functions of internal energy and heat flow, respectively. Moreover, 𝜃(𝑡, 𝑥) is a function of
temperature, 𝑟(𝑡, 𝑥) is an external heat source function.
The first and second equations in (1.3) are linearized (with respect to certain constant 𝑒0 en-

ergy) constitutive equations for internal energy and heat flow, respectively. The third equation
in (1.3) expresses the fundamental law of thermal conductivity, the Fourier law. For 𝑘(0) = 0
these equations represent the linearized theory for heat flow in a rigid, isotropic, homogeneous
material as proposed by Gurtin and Pipkin, see, for instance, [1], [3]. For 𝑘(0) > 0 the equations
represent an alternate linearized theory proposed by Coleman and Gurtin [4]. For the direct
problem consisting in determining the distribution of heat from some initial-boundary value
problem for equation (1.3) Grabmueller [5] gave a very general uniqueness proof for generalized
solutions in a Sobolev space and proved existence theorems in certain special situations.
The determination of the integral operator from the observable information about the solu-

tions of the corresponding equations is a new class of inverse problems that has not yet been
studied in details. In view of a wide range of applications, the theory of inverse problems
for integro-differential equations is one of the most urgent and rapidly developing direction in
mathematics.
The problem of determining the kernel𝐾(𝑡) of the integral term in equation (1.1) was studied

in many publications [6]–[14], see also the references therein, in which for one-dimensional
inverse problems the issues on well-posedness were investigated. Inverse problems to determine
time- and space-dependent kernels for initial, initial-boundary problem in hyperbolic integro-
differential equations with several additional conditions were studied in [15]-[26] and there were
proved existence, uniqueness and stability theorems.
In papers [27]-[31] inverse problems on determining the coefficients and kernel of parabolic

and pseudo-parabolic equation with several overdetermination conditions were investigated.
Solvability of these inverse problems in the classical and generalized sense were studied.
In the present paper, we study the inverse problem on determining the kernels of an inte-

gral convolution-type terms in the system of integro-differential equations (1.3) by the single
observations at the points 𝑥 = 𝑥0 and 𝑥 = 𝑥1.
Among the works close to our problem we mention [32]–[35]. In [32] the uniqueness theorem

for solution of kernel determination problem for one-dimensional heat conduction equation was
proven. Papers [33]–[35] dealt with the inverse problems of determining the kernel depending
on a time variable 𝑡 and (𝑛−1)-dimensional spatial variable 𝑥′ = (𝑥1, . . . , 𝑥𝑛−1). The main part
of the considered integro-differential equation was a 𝑛-dimensional heat conduction operator
and the integral term had a convolution type form with respect to unknown functions, which



INVERSE PROBLEM OF DETERMINING TWO KERNELS . . . 121

the solutions of direct and inverse problem. In these works the theorems of existence and
uniqueness of problems solutions were obtained.
It should also be noted that the statement of the problem and the technique used in this

paper differ from those in the above cited papers and the conditions in the theorems differ
essentially from those in them. A distinctive feature of this article is the inverse problem on
determining two unknown functions, we determine the energy-temperature relation 𝜒(𝑡) and
the heat conduction relation 𝑘(𝑡) functions in the integro-differential heat equation.

2. Problem and auxiliary constructions

It is supposed a rigid body occupies a fixed interval (0, 𝑙) (one dimensional case). We also
suppose that the functions 𝜒(𝑡) and 𝑘(𝑡) are sufficiently continuously differentiable functions.
If follows from (1.3) that

𝜃𝑡(𝑡, 𝑥) =− 𝜒′(0)

𝜒(0)
𝜃(𝑡, 𝑥) +

𝑘(0)

𝜒(0)
𝜃𝑥𝑥(𝑡, 𝑥)

+

𝑡∫︁
0

(︂
𝑘′(𝑡− 𝜏)

𝜒(0)
𝜃𝑥𝑥(𝜏, 𝑥)−

𝜒′′(𝑡− 𝜏)

𝜒(0)
𝜃(𝜏, 𝑥)

)︂
𝑑𝜏 +

𝑟(𝑡, 𝑥)

𝜒(0)
.

(2.1)

Throughout the paper 𝜒(0) and 𝑘(0) are given numbers such that 𝑘(0) > 0, 𝜒(0) > 0.
We rewrite equation (2.1) in a compact form:

𝜃𝑡(𝑡, 𝑥) = 𝑓(𝑡, 𝑥) +𝐶𝜃𝑥𝑥(𝑡, 𝑥)− 𝑎(0)𝜃(𝑡, 𝑥) +

𝑡∫︁
0

(𝐶𝑏(𝑡− 𝜏)𝜃𝑥𝑥(𝜏, 𝑥)− 𝑎′(𝑡− 𝜏)𝜃(𝜏, 𝑥)) 𝑑𝜏 (2.2)

for all 𝑡 ∈ (0, 𝑇 ], 𝑥 ∈ (0, 𝑙) and for this equation we consider a problem with an initial condition

𝜃(0, 𝑥) = 𝜃0(𝑥), (2.3)

and a boundary condition

𝜃(𝑡, 0) = 𝜇1(𝑡), 𝜃(𝑡, 𝑙) = 𝜇2(𝑡); 𝜃0(0) = 𝜇1(0), 𝜃0(𝑙) = 𝜇2(0), (2.4)

where

𝐶 :=
𝑘(0)

𝜒(0)
, 𝑎(𝑡) :=

𝜒′(𝑡)

𝜒(0)
, 𝑏(𝑡) :=

𝑘′(𝑡)

𝑘(0)
, 𝑓(𝑡, 𝑥) :=

𝑟(𝑡, 𝑥)

𝜒(0)
.

In identities (2.3) and (2.4), by 𝜃0(𝑥), 𝜇1(𝑡) and 𝜇1(𝑡) we denote some given functions. If 𝑟(𝑡, 𝑥),
𝜃0(𝑥), 𝑎(𝑡), 𝑏(𝑡), 𝜇1(𝑡), 𝜇2(𝑡) are given functions, then problem on finding the function 𝜃(𝑡, 𝑥)
from (2.2), (2.3), (2.4) is called direct problem. This direct problem was investigated in paper
[32].
We pose an inverse problem. For given functions 𝑟(𝑡, 𝑥), 𝜃0(𝑥), 𝜇1(𝑡), 𝜇2(𝑡) and numbers

𝑘(0) > 0, 𝜒(0) > 0 it is required to determine the kernels 𝑘(𝑡), 𝜒(𝑡) (these functions are
included in the definitions of 𝑎, 𝑏 of the integral terms in (2.2)) using additional conditions
about the solution of the direct problem (2.2), (2.3), (2.4):

𝜃 |𝑥=𝑥0= 𝜓0(𝑡), 𝜃 |𝑥=𝑥1= 𝜓1(𝑡), 𝑥0, 𝑥1 ∈ (0, 𝑙), 𝑡 > 0. (2.5)

Here 𝜓0(𝑡), 𝜓1(𝑡) are also assumed to be given functions.
Since the method for studying the inverse problem allow us to find simultaneously the solution

to the inverse problem and the solution to the direct problem, in what follows we regard the
inverse problem as a problem on determining functions 𝜃(𝑡, 𝑥), 𝑘(𝑡), 𝜒(𝑡) from equations (2.2),
(2.3), (2.4), (2.5).
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Let 𝐶𝑚(0; 𝑙) be the class of 𝑚 times continuously differentiable on (0; 𝑙) functions. In the
case 𝑚 = 0 this space coincides with the class of continuous functions. By 𝐶𝑚,𝑛(𝐷𝑇 ) we denote
the class of 𝑚 times continuously differentiable with respect to 𝑡 and 𝑛 times continuously
differentiable with respect to 𝑥 in the domain 𝐷𝑇 functions,

𝐷𝑇 := {(𝑡, 𝑥) : 0 < 𝑡 ⩽ 𝑇, 0 < 𝑥 < 𝑙}.

We need the following lemma.

Lemma 2.1. Suppose that 𝜒(𝑡) ∈ 𝐶2[0, 𝑇 ], 𝑘(𝑡) ∈ 𝐶1[0, 𝑇 ], 𝑇 > 0 is an arbitrary fixed
number, and 𝜒(0) > 0, 𝑘(0) > 0. Then problem (2.2), (2.3), (2.4), (2.5) is equivalent to the
auxiliary problem on determining the functions 𝜗(𝑥, 𝑡), 𝑎(𝑡), 𝑏(𝑡) :

𝜗𝑡(𝑡, 𝑥) =𝐶𝜗𝑥𝑥(𝑡, 𝑥) + 𝑓𝑡(𝑡, 𝑥)− 𝑎(0)𝜗(𝑡, 𝑥)− 𝑎′(𝑡)𝜃0(𝑥)−
𝑡∫︁

0

𝑎′(𝜏)𝜗(𝑡− 𝜏, 𝑥)𝑑𝜏+

+ 𝑏(𝑡)𝐶𝜃′′0(𝑥) +

𝑡∫︁
0

𝑅(𝑡− 𝜏)𝐹
(︀
𝜗(𝜏, 𝑥), 𝜗𝜏 (𝜏, 𝑥), 𝑎

′(𝜏), 𝑏(𝜏)
)︀
𝑑𝜏,

(2.6)

𝜗|𝑡=0 = 𝑓(0, 𝑥) + 𝐶𝜃′′0(𝑥)− 𝑎(0)𝜃0(𝑥), (2.7)

𝜗|𝑥=0 = 𝜇′
1(𝑡), 𝜗|𝑥=𝑙 = 𝜇′

2(𝑡), (2.8)

𝜗 |𝑥=𝑥0= 𝜓′
0(𝑡), 𝜗 |𝑥=𝑥1= 𝜓′

1(𝑡), 𝑥0, 𝑥1 ∈ (0, 𝑙), 𝑡 > 0, (2.9)

where

𝜗(𝑡, 𝑥) = 𝜃𝑡(𝑡, 𝑥),

𝐹 is defined as

𝐹
(︀
𝜗(𝑡, 𝑥), 𝜗𝑡(𝑡, 𝑥), 𝑎

′(𝑡), 𝑏(𝑡)
)︀
:=𝜗𝑡(𝑡, 𝑥)− 𝑓𝑡(𝑡, 𝑥) + 𝑎(0)𝜗(𝑡, 𝑥) + 𝑎′(𝑡)𝜃0(𝑥)

+

𝑡∫︁
0

𝑎′(𝜏)𝜗(𝑡− 𝜏, 𝑥)𝑑𝜏 − 𝑏(𝑡)𝐶𝜃′′0(𝑥)

and 𝑅(𝑡) is the resolvent of kernel 𝑏(𝑡) and they are related by the identity

𝑅(𝑡) = −𝑏(𝑡)−
𝑡∫︁

0

𝑅(𝑡− 𝜏)𝑏(𝜏)𝑑𝜏. (2.10)

Proof. The proof consists of several steps. At the first step, we find 𝜃(𝑡, 𝑥) from the equation
𝜃𝑡(𝑡, 𝑥) = 𝜗(𝑡, 𝑥) :

𝜃(𝑥, 𝑡) =

𝑡∫︁
0

𝜗(𝑥, 𝜏)𝑑𝜏 + 𝜃0(𝑥).

By 𝜗 we denote the function 𝜃𝑡(𝑡, 𝑥) := 𝜗(𝑡, 𝑥). Differentiating (2.2), (2.3), (2.4) with respect
to 𝑡, we obtain the following problem:

𝜃𝑡𝑡(𝑡, 𝑥) =𝑓𝑡(𝑡, 𝑥) + 𝐶𝜃𝑡𝑥𝑥(𝑡, 𝑥)− 𝑎(0)𝜃𝑡(𝑡, 𝑥)−
𝑡∫︁

0

𝑎′(𝜏)𝜃𝑡(𝑡− 𝜏, 𝑥) 𝑑𝜏

+ 𝐶𝑏(𝑡)𝜃′′0(𝑥) +

𝑡∫︁
0

𝐶𝑏(𝜏)𝜃𝑡𝑥𝑥(𝑡− 𝜏, 𝑥) 𝑑𝜏.

(2.11)
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The following statement was proved in [36], [37], see Proposition 2.1 in the cited works.

Lemma 2.2. If 𝜑(𝑡), 𝜈(𝑡) ∈ 𝐿1[0, 𝑇 ] for a fixed 𝑇 > 0 and 𝜑(𝑡), 𝜈(𝑡) satisfy the integral
equation

𝜈(𝑡) = 𝜑(𝑡) +

𝑡∫︁
0

𝜑(𝑡− 𝜏)𝜈(𝜏) 𝑑𝜏, 𝑡 ∈ [0, 𝑇 ],

then the solution of the integral equation

𝜙(𝑡) = 𝑝(𝑡) +

𝑡∫︁
0

𝜑(𝑡− 𝜏)𝜙(𝜏) 𝑑𝜏, 𝑝(𝑡) ∈ 𝐿1[0, 𝑇 ],

is expressed by formula

𝜙(𝑡) = 𝑝(𝑡) +

𝑡∫︁
0

𝜈(𝑡− 𝜏)𝑝(𝜏) 𝑑𝜏.

We observe that equation (2.11) can be treated as integral Volterra equation of the second
kind with respect to 𝐶𝜗𝑥𝑥(𝑡, 𝑥) (𝜃𝑡𝑥𝑥 = 𝜗𝑥𝑥) with the kernel 𝑏(𝑡),

𝐶𝜗𝑥𝑥(𝑡, 𝑥) =𝜗𝑡(𝑡, 𝑥)− 𝑓𝑡(𝑡, 𝑥) + 𝑎(0)𝜗(𝑡, 𝑥) +

𝑡∫︁
0

𝑎′(𝜏)𝜗(𝑡− 𝜏, 𝑥) 𝑑𝜏

− 𝐶𝑏(𝑡)𝜃′′0(𝑥)−
𝑡∫︁

0

𝑏(𝜏)𝐶𝜗𝑥𝑥(𝑡− 𝜏, 𝑥) 𝑑𝜏.

It follows from Lemma 2.2 that the solution of this equation is expressed by the formula

𝐶𝜗𝑥𝑥(𝑡, 𝑥) =𝜗𝑡(𝑡, 𝑥)− 𝑓𝑡(𝑡, 𝑥) + 𝑎(0)𝜗(𝑡, 𝑥) +

𝑡∫︁
0

𝑎′(𝜏)𝜗(𝑡− 𝜏, 𝑥)𝑑𝜏 − 𝐶𝑏(𝑡)𝜃′′0(𝑥)

−
𝑡∫︁

0

𝑅(𝑡− 𝜏)

(︃
𝜗𝜏 (𝜏, 𝑥)− 𝑓𝜏 (𝜏, 𝑥) + 𝑎(0)𝜗(𝜏, 𝑥)

+

𝜏∫︁
0

𝑎′(𝛼)𝜗(𝜏 − 𝛼, 𝑥)𝑑𝛼− 𝐶𝑏(𝜏)𝜃′′0(𝑥)

)︃
𝑑𝜏.

Using the notation 𝜃𝑡(𝑡, 𝑥) = 𝜗(𝑡, 𝑥), we derive equation (2.7) from equations (2.2) and (2.3),
boundary condition (2.8) from identity (2.4) and also additional condition (2.9) from equation
(2.5). The proof is complete.

Theorem 2.1. Let

𝜃0(𝑥) ∈ 𝐶2[0, 𝑙], 𝑓(𝑡, 𝑥) ∈ 𝐶1,0(𝐷𝑇 ),

𝑎(𝑡), 𝜇1(𝑡), 𝜇2(𝑡) ∈ 𝐶1[0, 𝑇 ], 𝑅(𝑡), 𝑏(𝑡) ∈ 𝐶[0, 𝑇 ], 𝐶 > 0

and the matching conditions

𝑓(0, 0) + 𝐶𝜃′′0(0)− 𝑎(0)𝜃0(0) = 𝜇′
1(0), 𝑓(0, 𝑙) + 𝐶𝜃′′0(𝑙)− 𝑎(0)𝜃0(𝑙) = 𝜇2(0)

are satisfied. Then there exists a unique classical solution 𝜗(𝑡, 𝑥) to problem (2.6), (2.7), (2.8)
in the class 𝐶1,2(𝐷𝑇 ).
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This theorem can be proved similarly to Theorem 1 in [32].

3. Reduction of problem (2.6), (2.7), (2.8), (2.9) to integral equations

In this section, we reduce problem (2.6), (2.7), (2.8), (2.9) to a closed system of nonlinear
integral equations with respect to 𝜗(𝑡, 𝑥), 𝑎(𝑡), 𝑏(𝑡) and some of their combinations.
The solution of initial boundary problem (2.6),(2.7), (2.8) satisfies the integral equation, see

[39]:

𝜗(𝑡, 𝑥) =Ψ(𝑡, 𝑥) +

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)
(︁
𝐶𝑏(𝜏)𝜃′′0(𝜉)− 𝑎(0)𝜗(𝜏, 𝜉)− 𝑎′(𝜏)𝜃0(𝜉)

)︁
𝑑𝜉𝑑𝜏

−
𝑡∫︁

0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

𝑎′(𝛼)𝜗(𝜏 − 𝛼, 𝜉) 𝑑𝛼𝑑𝜉𝑑𝜏

+

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

𝑅(𝜏 − 𝛼)

(︃
𝜗𝛼(𝛼, 𝜉)− 𝑓𝛼(𝛼, 𝜉) + 𝑎(0)𝜗(𝛼, 𝜉)

+ 𝑎′(𝛼)𝜃0(𝜉) +

𝛼∫︁
0

𝑎′(𝛽)𝜗(𝛼− 𝛽, 𝜉) 𝑑𝛽 − 𝑏(𝛼)𝐶𝜃′′0(𝜉)

)︃
𝑑𝛼𝑑𝜉𝑑𝜏 ,

(3.1)

where

Ψ(𝑡, 𝑥) =

𝑙∫︁
0

𝐺(𝑡, 𝑥, 𝜉)
(︀
𝑓(0, 𝜉) + 𝐶𝜃0(𝜉)− 𝑎(0)𝜃0(𝜉)

)︀
𝑑𝜉

+

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)𝑓𝜏 (𝜏, 𝜉) 𝑑𝜉𝑑𝜏

+
∞∑︁
𝑛=1

𝑡∫︁
0

2𝜋𝑛

𝑙2
(︀
𝜇′
1(𝜏)− (−1)𝑛𝜇′

2(𝜏)
)︀
𝑒−

𝜋2𝑛2

𝑙2
𝐶(𝑡−𝜏) sin

𝜋𝑛

𝑙
𝑥 𝑑𝜏,

𝐺(𝑡− 𝜏, 𝑥, 𝜉) =
2

𝑙

∞∑︁
𝑛=1

𝑒−
𝜋2𝑛2

𝑙2
𝐶(𝑡−𝜏) sin

𝜋𝑛

𝑙
𝜉 sin

𝜋𝑛

𝑙
𝑥

is the Green function of the first initial-boundary problem for heat equation.
We differentiate equation (3.1) with respect to 𝑡 and taking into account the relations

lim
𝑡→0

𝐺(𝑡, 𝑥, 𝜉) = 𝛿(𝑥− 𝜉),

lim
𝑡→0

𝑙∫︁
0

𝐺(𝑡, 𝑥, 𝜉)𝜃0(𝜉) 𝑑𝜉 = 𝜃0(𝑥),
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where 𝛿(·) is the Dirac delta function, we rewrite the result as

𝜗𝑡(𝑡, 𝑥) =Ψ𝑡(𝑡, 𝑥) + 𝐶𝑏(𝑡)𝜃′′0(𝑥)− 𝑎(0)𝜗(𝑡, 𝑥)− 𝑎′(𝑡)𝜃0(𝑥)

+

𝑡∫︁
0

𝑙∫︁
0

𝐺𝑡(𝑡− 𝜏, 𝑥, 𝜉)
(︀
𝐶𝑏(𝜏)𝜃′′0(𝜉)− 𝑎(0)𝜗(𝜏, 𝜉)− 𝑎′(𝜏)𝜃0(𝜉)

)︀
𝑑𝜉𝑑𝜏

−
𝑡∫︁

0

𝑎′(𝜏)𝜗(𝑡− 𝜏, 𝑥)𝑑𝜏 −
𝑡∫︁

0

𝑙∫︁
0

𝐺𝑡(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

𝑎′(𝛼)𝜗(𝜏 − 𝛼, 𝜉) 𝑑𝛼𝑑𝜉𝑑𝜏

−
𝑡∫︁

0

𝑅(𝑡− 𝜏)

(︃
𝜗𝜏 (𝜏, 𝑥)− 𝑓𝜏 (𝜏, 𝑥) + 𝑎(0)𝜗(𝜏, 𝑥) + 𝑎′(𝜏)𝜃0(𝑥)− 𝑏(𝜏)𝐶𝜃′′0(𝑥)

+

𝜏∫︁
0

𝑎′(𝛼)𝜗(𝜏 − 𝛼, 𝑥) 𝑑𝛼

)︃
𝑑𝜏 −

𝑡∫︁
0

𝑙∫︁
0

𝐺𝑡(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

𝑅(𝜏 − 𝛼)

(︃
𝜗𝛼(𝛼, 𝜉)− 𝑓𝛼(𝛼, 𝜉)

+ 𝑎(0)𝜗(𝛼, 𝜉) + 𝑎′(𝛼)𝜃0(𝜉) +

𝛼∫︁
0

𝑎′(𝛽)𝜗(𝛼− 𝛽, 𝜉)𝑑𝛽 − 𝑏(𝛼)𝐶𝜃′′0(𝜉)

)︃
𝑑𝛼𝑑𝜉𝑑𝜏.

(3.2)
Using conditions (2.9), from the above equation we obtain the integral equations of the second
order with respect to unknown functions 𝑎′(𝑡), 𝑏(𝑡) :

𝑎′(𝑡) =
1

∆

(︁
𝜃′′0(𝑥1)(Ψ𝑡(𝑡, 𝑥0)− 𝑎(0)𝜓′

0(𝑡)− 𝜓′′
0(𝑡))− 𝜃′′0(𝑥0)(Ψ𝑡(𝑡, 𝑥1)− 𝑎(0)𝜓′

1(𝑡)− 𝜓′′
1(𝑡))

)︁
+

1

∆

𝑡∫︁
0

𝑙∫︁
0

(︁
𝜃′′0(𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃′′0(𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︁(︁
𝑏(𝜏)𝜃′′0(𝜉)− 𝑎(0)𝜗(𝜏, 𝜉)

− 𝑎′(𝜏)𝜃0(𝜉)
)︁
𝑑𝜉𝑑𝜏 − 1

∆

(︃
𝜃′′0(𝑥1)

𝑡∫︁
0

𝑎′(𝜏)𝜓′
1(𝑡− 𝜏) 𝑑𝜏 − 𝜃′′0(𝑥0)

𝑡∫︁
0

𝑎′(𝜏)𝜓′
0(𝑡− 𝜏) 𝑑𝜏

)︃

− 1

∆

𝑡∫︁
0

𝑙∫︁
0

(︁
𝜃′′0(𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃′′0(𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︁ 𝜏∫︁
0

𝑎′(𝛼)𝜗(𝜏 − 𝛼, 𝜉) 𝑑𝛼𝑑𝜉𝑑𝜏

+
1

∆

𝑡∫︁
0

𝑅(𝑡− 𝜏)
(︁
𝜃′′0(𝑥1)𝐹 (𝜗(𝜏, 𝑥0), 𝜗𝜏 (𝜏, 𝑥0), 𝑎

′(𝜏), 𝑏(𝜏))

− 𝜃′′0(𝑥0)𝐹 (𝜗(𝜏, 𝑥1), 𝜗𝜏 (𝜏, 𝑥1), 𝑎
′(𝜏), 𝑏(𝜏))

)︁
𝑑𝜏

+
1

∆

𝑡∫︁
0

𝑙∫︁
0

(︁
𝜃′′0(𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃′′0(𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︁

·
𝜏∫︁

0

𝑅(𝜏 − 𝛼)𝐹 (𝜗(𝛼, 𝜉), 𝜗𝛼(𝛼, 𝜉), 𝑎
′(𝛼), 𝑏(𝛼)) 𝑑𝛼𝑑𝜉𝑑𝜏,

(3.3)
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where ∆ = 𝜃0(𝑥0)𝜃
′′
0(𝑥1)− 𝜃0(𝑥1)𝜃

′′
0(𝑥0),

𝑏(𝑡) =
1

𝐶∆

(︁
𝜃0(𝑥1)(Ψ𝑡(𝑡, 𝑥0)− 𝑎(0)𝜓′

0(𝑡)− 𝜓′′
0(𝑡))− 𝜃0(𝑥0)(Ψ𝑡(𝑡, 𝑥1)− 𝑎(0)𝜓′

1(𝑡)− 𝜓′′
1(𝑡))

)︁
+

1

𝐶∆

𝑡∫︁
0

𝑙∫︁
0

(︁
𝜃0(𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃0(𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︁(︁
𝑏(𝜏)𝜃′′0(𝜉)− 𝑎(0)𝜗(𝜏, 𝜉)

− 𝑎′(𝜏)𝜃0(𝜉)
)︁
𝑑𝜉𝑑𝜏 − 1

𝐶∆

(︃
𝜃0(𝑥1)

𝑡∫︁
0

𝑎′(𝜏)𝜓′
1(𝑡− 𝜏)𝑑𝜏 − 𝜃0(𝑥0)

𝑡∫︁
0

𝑎′(𝜏)𝜓′
0(𝑡− 𝜏) 𝑑𝜏

)︃

− 1

𝐶∆

𝑡∫︁
0

𝑙∫︁
0

(︁
𝜃0(𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃0(𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︁ 𝜏∫︁
0

𝑎′(𝛼)𝜗(𝜏 − 𝛼, 𝜉) 𝑑𝛼𝑑𝜉𝑑𝜏

− 1

𝐶∆

𝑡∫︁
0

𝑅(𝑡− 𝜏)
(︀
𝜃0(𝑥1)𝐹 (𝜗(𝜏, 𝑥0), 𝜗𝜏 (𝜏, 𝑥0), 𝑎

′(𝜏), 𝑏(𝜏))

− 𝜃0(𝑥0)𝐹 (𝜗(𝜏, 𝑥1), 𝜗𝜏 (𝜏, 𝑥1), 𝑎
′(𝜏), 𝑏(𝜏))

)︁
𝑑𝜏

+
1

𝐶∆

𝑡∫︁
0

𝑙∫︁
0

(︁
𝜃0(𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃0(𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︁

·
𝜏∫︁

0

𝑅(𝜏 − 𝛼)𝐹 (𝜗(𝛼, 𝜉), 𝜗𝛼(𝛼, 𝜉), 𝑎
′(𝛼), 𝑏(𝛼)) 𝑑𝛼𝑑𝜉𝑑𝜏.

(3.4)

4. Main result and its proof

The main result of this work is a theorem on existence and uniqueness of the solution to
integral equations (2.10), (3.1), (3.2), (3.3), (3.4).

Theorem 4.1. Assume that

𝜃0(𝑥) ∈ 𝐶2[0, 𝑙], 𝜓0(𝑡), 𝜓1(𝑡) ∈ 𝐶2[0;𝑇 ], 𝜇𝑖(𝑡) ∈ 𝐶2[0, 𝑇 ], 𝑖 = 1, 2,

𝜃0(𝑥0) = 𝜓1(0), 𝜃0(𝑥1) = 𝜓2(0), ∆ ̸= 0, 𝜃0(0) = 𝜇1(0), 𝜃0(𝑙) = 𝜇2(0).

Then there exists a sufficiently small number 𝑇 * ∈ (0, 𝑇 ) that integral equations (2.10), (3.1),
(3.2), (3.3), (3.4) are uniquely solvable in the class of functions 𝜗(𝑡, 𝑥) ∈ 𝐶1,2(𝐷𝑇 *), 𝑎(𝑡) ∈
𝐶2[0, 𝑇 *], 𝑏(𝑡) ∈ 𝐶1[0;𝑇 *], 𝐷𝑇 * =

{︁
(𝑥, 𝑡)|𝑥 ∈ (0, 𝑙), 𝑡 ∈ (0, 𝑇 *]

}︁
.

Proof. We represent the system of equations (2.10)and (3.1)-(3.4) in the form

𝐴ℎ = ℎ, (4.1)

where

ℎ =
(︁
ℎ1, ℎ2, ℎ3, ℎ4, ℎ5

)︁
=
(︁
𝜗(𝑡, 𝑥), 𝜗𝑡(𝑡, 𝑥)− 𝐶𝜃′′0(𝑥)𝑏(𝑡) + 𝑎(0)𝜗(𝑡, 𝑥) + 𝑎′(𝑡)𝜃0(𝑥), 𝑎

′(𝑡), 𝑏(𝑡), 𝑅(𝑡) + 𝑏(𝑡)
)︁
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is the vector-function and the unknown functions are represented by functions ℎ1, ℎ2, ℎ3, ℎ4,
ℎ5 as follows:

𝜗(𝑡, 𝑥) = ℎ1(𝑡), 𝜗𝑡(𝑡, 𝑥) = ℎ2(𝑡, 𝑥) + 𝐶𝜃′′0(𝑥)ℎ4(𝑡)− 𝑎(0)ℎ1(𝑡, 𝑥)− 𝜃0(𝑥)ℎ3(𝑡),

𝑎′(𝑡) = ℎ3(𝑡), 𝑏(𝑡) = ℎ4(𝑡), 𝑅(𝑡) = ℎ5(𝑡)− ℎ4(𝑡).

The operator 𝐴 = (𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5) is defined as

𝐴1ℎ =ℎ01 +

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)
(︁
𝐶ℎ4(𝜏)𝜃

′′
0(𝜉)− 𝑎(0)ℎ1(𝜏, 𝜉)− ℎ3(𝜏)𝜃0(𝜉)

)︁
𝑑𝜉𝑑𝜏

−
𝑡∫︁

0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

ℎ3(𝛼)ℎ1(𝜏 − 𝛼, 𝜉)𝑑𝛼𝑑𝜉𝑑𝜏 +

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

·
𝜏∫︁

0

(ℎ5(𝜏 − 𝛼)− ℎ4(𝜏 − 𝛼))

(︃
ℎ2(𝛼, 𝜉)− 𝑓𝛼(𝛼, 𝜉) +

𝑡∫︁
0

ℎ3(𝛽)ℎ1(𝛼− 𝛽, 𝜉)𝑑𝛽)

)︃
𝑑𝛼𝑑𝜉𝑑𝜏 ,

𝐴2ℎ =ℎ02 +

𝑡∫︁
0

𝑙∫︁
0

𝐺𝑡(𝑡− 𝜏, 𝑥, 𝜉)
(︁
𝐶ℎ4(𝜏)𝜃

′′
0(𝜉)− 𝑎(0)ℎ1(𝜏, 𝜉)− ℎ3(𝜏)𝜃0(𝜉)

)︁
𝑑𝜉𝑑𝜏

−
𝑡∫︁

0

ℎ3(𝜏)ℎ1(𝑡− 𝜏, 𝑥)𝑑𝜏 −
𝑡∫︁

0

𝑙∫︁
0

𝐺𝑡(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

ℎ3(𝛼)ℎ1(𝜏 − 𝛼, 𝜉)𝑑𝛼𝑑𝜉𝑑𝜏

−
𝑡∫︁

0

[ℎ5(𝑡− 𝜏)− ℎ4(𝑡− 𝜏)]
(︁
ℎ2(𝜏, 𝑥)− 𝑓𝜏 (𝜏, 𝑥) +

𝜏∫︁
0

ℎ3(𝛼)ℎ1(𝜏 − 𝛼, 𝑥)𝑑𝛼
)︁
𝑑𝜏

−
𝑡∫︁

0

𝑙∫︁
0

𝐺𝑡(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

(︁
ℎ5(𝜏 − 𝛼)− ℎ4(𝜏 − 𝛼)

)︁

·

(︃
ℎ2(𝛼, 𝜉)− 𝑓𝛼(𝛼, 𝜉) +

𝛼∫︁
0

ℎ3(𝛽)ℎ1(𝛼− 𝛽, 𝜉)𝑑𝛽

)︃
𝑑𝛼𝑑𝜉𝑑𝜏,

𝐴𝑗ℎ =ℎ0𝑗 +
1

𝐶𝑗−3∆

𝑡∫︁
0

𝑙∫︁
0

(︁
𝜃
(8−2𝑗)
0 (𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃

(8−2𝑗)
0 (𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︁
·
(︁
ℎ4(𝜏)𝜃

′′
0(𝜉)− 𝑎(0)ℎ1(𝜏, 𝜉)− ℎ3(𝜏)𝜃0(𝜉)

)︁
𝑑𝜉𝑑𝜏

− 1

𝐶𝑗−3∆
(𝜃

(8−2𝑗)
0 (𝑥1)

𝑡∫︁
0

ℎ3(𝜏)𝜓
′
1(𝑡− 𝜏)𝑑𝜏 − 𝜃

(8−2𝑗)
0 (𝑥0)

𝑡∫︁
0

ℎ3(𝜏)𝜓
′
0(𝑡− 𝜏)𝑑𝜏)

− 1

𝐶𝑗−3∆

𝑡∫︁
0

𝑙∫︁
0

(︁
𝜃
(8−2𝑗)
0 (𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃

(8−2𝑗)
0 (𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︁

×
𝜏∫︁

0

ℎ3(𝛼)ℎ1(𝜏 − 𝛼, 𝜉) 𝑑𝛼𝑑𝜉𝑑𝜏 +
𝜃
(8−2𝑗)
0 (𝑥1)

∆

𝑡∫︁
0

(︀
ℎ5(𝑡− 𝜏)− ℎ4(𝑡− 𝜏)

)︀
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·

(︃
𝜓′′
0(𝜏)− 𝑓𝜏 (𝜏, 𝑥0) + 𝑎(0)𝜓′

0(𝜏) + ℎ3(𝜏)𝜃
(8−2𝑗)
0 (𝑥0) +

𝜏∫︁
0

ℎ3(𝛼)𝜓
′
0(𝜏 − 𝛼) 𝑑𝛼

)︃
𝑑𝜏

− 𝜃
(8−2𝑗)
0 (𝑥0)

𝐶𝑗−3∆

𝑡∫︁
0

(︀
ℎ5(𝑡− 𝜏)− ℎ4(𝑡− 𝜏)

)︀(︁
𝜓′′
1(𝜏)− 𝑓𝜏 (𝜏, 𝑥1) + 𝑎(0)𝜓′

1(𝜏)

+ ℎ3(𝜏)𝜃
(8−2𝑗)
0 (𝑥1) +

𝜏∫︁
0

ℎ3(𝛼)𝜓
′
1(𝜏 − 𝛼) 𝑑𝛼

)︃
𝑑𝜏

+
1

𝐶𝑗−3∆

𝑡∫︁
0

𝑙∫︁
0

(︀
𝜃
(8−2𝑗)
0 (𝑥1)𝐺𝑡(𝑡− 𝜏, 𝑥0, 𝜉)− 𝜃

(8−2𝑗)
0 (𝑥0)𝐺𝑡(𝑡− 𝜏, 𝑥1, 𝜉)

)︀

·
𝜏∫︁

0

(︀
ℎ5(𝜏 − 𝛼)− ℎ4(𝜏 − 𝛼)

)︀(︃
ℎ2(𝛼, 𝜉)− 𝑓𝛼(𝛼, 𝜉) +

𝛼∫︁
0

ℎ3(𝛽)ℎ1(𝛼− 𝛽, 𝜉) 𝑑𝛽

)︃
𝑑𝛼𝑑𝜉𝑑𝜏,

here 𝜃
(8−2𝑗)
0 (𝑥𝑖) is the value of the (8 − 2𝑗)th derivative of the function 𝜃0(𝑥) at the points

𝑥 = 𝑥𝑖, 𝑗 = 3, 4, 𝑖 = 0, 1;

𝐴5ℎ = ℎ05 +

𝑡∫︁
0

ℎ5(𝑡− 𝜏)ℎ4(𝜏) 𝑑𝜏 +

𝑡∫︁
0

ℎ4(𝑡− 𝜏)ℎ4(𝜏) 𝑑𝜏.

Denote

ℎ0(𝑡, 𝑥) :=
(︁
ℎ01(𝑡, 𝑥), ℎ02(𝑡, 𝑥), ℎ03(𝑡), ℎ04(𝑡), ℎ05(𝑡)

)︁
:=
(︁
Ψ(𝑡, 𝑥),Ψ𝑡(𝑡, 𝑥),

1

𝐶𝑗−3∆

(︀
𝜃
(8−2𝑗)
0 (𝑥1)(Ψ𝑡(𝑡, 𝑥0)− 𝑎(0)𝜓′

0(𝑡)− 𝜓′′
0(𝑡))

− 𝜃
(8−2𝑗)
0 (𝑥0)(Ψ𝑡(𝑡, 𝑥1)− 𝑎(0)𝜓′

1(𝑡)− 𝜓′′
1(𝑡))

)︀
, (𝑗 = 3, 4), 0

)︁
.

We also introduce the class of all real-valued vector functions continuous in the domain 𝐷𝑇

with values in R5; we denote this space by 𝐶
(︀
𝐷𝑇 ,R

5
)︀
. The norm on this space is introduced

as

‖ℎ‖ = max
{︁

max
(𝑥,𝑡)∈𝐷𝑇

|ℎ𝑖(𝑥, 𝑡)|, 𝑖 = 1, 2; max
𝑡∈[0,𝑇 ]

|ℎ𝑗(𝑡)|, 𝑗 = 3, 4, 5
}︁
,

It is clear that the operator 𝐴 acts from the space 𝐶
(︀
𝐷𝑇 , R

5
)︀
into itself.

We observe that

‖ℎ0‖ = max
{︁

max
(𝑥,𝑡)∈𝐷𝑇

|ℎ0𝑖(𝑥, 𝑡)|, 𝑖 = 1, 2; max
𝑡∈[0,𝑇 ]

|ℎ0𝑗(𝑡)|, 𝑗 = 3, 4, 5
}︁
.

By 𝑆(ℎ0, ‖ℎ0‖) we denote the ball of vector-functions ℎ ∈ 𝐶
(︀
𝐷𝑇 ,R

5
)︀
with center at the point

ℎ0 and radius ‖ℎ0‖, that is,

𝑆(ℎ0, ‖ℎ0‖) =
{︁
ℎ : ‖ℎ− ℎ0‖ ⩽ ‖ℎ0‖

}︁
⊂ 𝐶

(︀
𝐷𝑇 ,R

5
)︀
.

It is clear that ‖ℎ‖ ⩽ 2‖ℎ0‖ for ℎ(𝑥, 𝑡) ∈ 𝑆(ℎ0, ‖ℎ0‖). We are going to prove that the operator
𝐴 is contracting in the Banach space 𝑆(ℎ0, ‖ℎ0‖) if the number 𝑇 is chosen in a suitable way.
We begin by checking the first condition of contractive mapping, see [38], for the operator

𝐴. We let

𝑀0 := ‖𝜃0‖𝐶2[0,𝑙], 𝑀1 := ‖𝑓‖𝐶1(𝐷𝑇 ), 𝑀2 := {‖𝜓𝑖‖𝐶2[0,𝑇 ], 𝑖 = 0, 1}.
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Let ℎ(𝑥, 𝑡) be an element in 𝑆(ℎ0, ‖ℎ0‖), that is, ℎ(𝑥, 𝑡) ∈ 𝑆(ℎ0, ‖ℎ0‖). Then for (𝑥, 𝑡) ∈ 𝐷𝑇

we have the estimates

‖𝐴1ℎ− ℎ01‖ = max
(𝑥,𝑡)∈𝐷𝑇

|(𝐴1ℎ− ℎ01)|

⩽ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)
(︁
𝐶ℎ4(𝜏)𝜃

′′
0(𝜉)− 𝑎(0)ℎ1(𝜏, 𝜉)− ℎ3(𝜏)𝜃0(𝜉)

)︁
𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

ℎ3(𝛼)ℎ1(𝜏 − 𝛼, 𝜉)𝑑𝛼𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

(ℎ5(𝜏 − 𝛼)− ℎ4(𝜏 − 𝛼))[ℎ2(𝛼, 𝜉)− 𝑓𝛼(𝛼, 𝜉)

+

𝛼∫︁
0

ℎ3(𝛽)ℎ1(𝛼− 𝛽, 𝜉)𝑑𝛽)]𝑑𝛼𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

⩽
(︁
2𝑇 (𝐶𝑀0 + 𝑎(0) +𝑀0) + (6‖ℎ0‖+ 4𝑀1)𝑇

2 +
4‖ℎ0‖2𝑇 3

3

)︁
‖ℎ0‖,

‖𝐴2ℎ− ℎ02‖ = max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒
(𝐴2ℎ− ℎ02)

⃒⃒
⩽

(︃
16‖ℎ0‖2𝑇 3

3𝑙
+

(︂
8‖ℎ0‖2 +

4𝑀1 + 12‖ℎ0‖
𝑙

)︂
𝑇 2

+

(︂
4𝐶𝑀0 + 4𝑎(0) + 4𝐶

𝑙
+ 12‖ℎ0‖+ 4𝑀1

)︂
𝑇

)︃
‖ℎ0‖,

‖𝐴𝑗ℎ− ℎ0𝑗‖ ⩽
8𝑀0

𝐶𝑗−3𝑙∆

(︁(︁
2𝑀0 + 𝑎(0) + 1, 5𝑙𝑀2 + 𝑙𝑀1 + 𝑙𝑎(0)𝑀2 + 2𝑀0‖ℎ0‖

)︁
𝑇

+
(︁
3‖ℎ0‖+𝑀1 + 2𝑙𝑀2‖ℎ0‖

)︁
𝑇 2 + 4‖ℎ0‖2𝑇 3

)︁
‖ℎ0‖, 𝑗 = 3, 4,

‖𝐴5ℎ− ℎ05‖ ⩽8‖ℎ0‖2𝑇.

As a result we conclude that if 𝑇 satisfies the inequalities

2𝑇 (𝐶𝑀0 + 𝑎(0) +𝑀0) + (6‖ℎ0‖+ 4𝑀1)𝑇
2 +

4‖ℎ0‖2𝑇 3

3
⩽ 1,

16‖ℎ0‖2𝑇 3

3𝑙
+

(︂
8‖ℎ0‖2 +

4𝑀1 + 12‖ℎ0‖
𝑙

)︂
𝑇 2

+

(︂
4𝐶𝑀0 + 4𝑎(0) + 4𝐶

𝑙
+ 12‖ℎ0‖+ 4𝑀1

)︂
𝑇 ⩽ 1,

8𝑀0

𝐶𝑗−3𝑙∆

(︁(︀
2𝑀0 + 𝑎(0) + 1, 5𝑙𝑀2 + 𝑙𝑀1 + 𝑙𝑎(0)𝑀2 + 2𝑀0‖ℎ0‖

)︀
𝑇

+
(︁
3‖ℎ0‖+𝑀1 + 2𝑙𝑀2‖ℎ0‖

)︁
𝑇 2 + 4‖ℎ0‖2𝑇 3

)︁
⩽ 1, 𝑗 = 3, 4,

8‖ℎ0‖𝑇 ⩽ 1,

(4.2)

then operator 𝐴 maps 𝑆(ℎ0, ‖ℎ0‖) into itself, that is, 𝐴ℎ ∈ 𝑆(ℎ0, ‖ℎ0‖).
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We proceed to checking the second condition of contractive mapping. In accordance with
(3.1) for the first component of operator 𝐴 we have:

‖(𝐴ℎ1 − 𝐴ℎ2)1‖ = max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)𝐶
[︁
ℎ14(𝜏)− ℎ24(𝜏)

]︁
𝜃′′0(𝜉)𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)𝑎(0)
(︀
ℎ11(𝜏, 𝜉)− ℎ21(𝜏, 𝜉)

)︀
𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒
𝑔

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)
(︀
ℎ13(𝜏)− ℎ23(𝜏)

)︀
𝜃0(𝜉) 𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

(︀
ℎ13(𝛼)ℎ

1
1(𝜏 − 𝛼, 𝜉)− ℎ23(𝛼)ℎ

2
1(𝜏 − 𝛼, 𝜉)

)︀
𝑑𝛼𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

(︀
ℎ15(𝜏 − 𝛼)ℎ12(𝛼, 𝜉)− ℎ25(𝜏 − 𝛼)ℎ22(𝛼, 𝜉)

)︀
𝑑𝛼𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

(︀
ℎ15(𝜏 − 𝛼)− ℎ25(𝜏 − 𝛼)

)︀
𝑓𝛼(𝛼, 𝜉) 𝑑𝛼𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

(︃ 𝜏∫︁
0

ℎ15(𝜏 − 𝛼)

𝛼∫︁
0

ℎ13(𝛽)ℎ
1
1(𝛼− 𝛽, 𝜉) 𝑑𝛽𝑑𝛼

−
𝜏∫︁

0

ℎ25(𝜏 − 𝛼)

𝛼∫︁
0

ℎ23(𝛽)ℎ
2
1(𝛼− 𝛽, 𝜉) 𝑑𝛽𝑑𝛼]𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

(︀
ℎ14(𝜏 − 𝛼)ℎ12(𝛼, 𝜉)− ℎ24(𝜏 − 𝛼)ℎ22(𝛼, 𝜉)

)︀
𝑑𝛼𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

𝜏∫︁
0

(︀
ℎ14(𝜏 − 𝛼)− ℎ24(𝜏 − 𝛼)

)︀
𝑓𝛼(𝛼, 𝜉) 𝑑𝛼𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒

+ max
(𝑥,𝑡)∈𝐷𝑇

⃒⃒⃒⃒
⃒

𝑡∫︁
0

𝑙∫︁
0

𝐺(𝑡− 𝜏, 𝑥, 𝜉)

(︃ 𝜏∫︁
0

ℎ14(𝜏 − 𝛼)

𝛼∫︁
0

ℎ13(𝛽)ℎ
1
1(𝛼− 𝛽, 𝜉) 𝑑𝛽𝑑𝛼

−
𝜏∫︁

0

ℎ24(𝜏 − 𝛼)

𝛼∫︁
0

ℎ23(𝛽)ℎ
2
1(𝛼− 𝛽, 𝜉)𝑑𝛽𝑑𝛼

)︃
𝑑𝜉𝑑𝜏

⃒⃒⃒⃒
⃒.

To estimate the integrands, we use the following inequalities:

‖ℎ12ℎ11 − ℎ22ℎ
2
1‖ = ‖(ℎ12 − ℎ22)ℎ

1
1 + ℎ22(ℎ

1
1 − ℎ21)‖

⩽ 2‖ℎ1 − ℎ2‖max
(︀
‖ℎ11‖, ‖ℎ22‖

)︀
⩽ 4‖ℎ0‖‖ℎ1 − ℎ2‖,

‖ℎ11ℎ12ℎ13 − ℎ21ℎ
2
2ℎ

2
3‖ = ‖(ℎ11 − ℎ21)ℎ

1
2ℎ

1
3 + (ℎ12 − ℎ22)ℎ

2
1ℎ

1
3 + (ℎ13 − ℎ23)ℎ

2
1ℎ

2
2‖
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⩽ 3‖ℎ1 − ℎ2‖max
(︀
‖ℎ13ℎ12‖, ‖ℎ21ℎ13‖, ‖ℎ21ℎ22‖

)︀
⩽ 12‖ℎ0‖2‖ℎ1 − ℎ2‖.

Therefore,

‖(𝐴ℎ1 − 𝐴ℎ2)1‖ ⩽
(︀
𝐶𝑀0 + 𝑎(0) +𝑀0

)︀
𝑇‖ℎ1 − ℎ2‖

+ (10‖ℎ0‖+𝑀1)𝑇
2‖ℎ1 − ℎ2‖+ 4‖ℎ0‖2𝑇 3‖ℎ1 − ℎ2‖.

The other components can be estimated in a similar way:

‖(𝐴ℎ1 − 𝐴ℎ2)2‖ ⩽

(︂(︂
2

𝑙
𝐶𝑀0 +

2

𝑙
𝑎(0) +

2

𝑙
𝑀0 + 12‖ℎ0‖+ 2𝑓0

)︂
𝑇

+

(︂
12‖ℎ0‖

𝑙
+ 6‖ℎ0‖2 +

2𝑀1

𝑙

)︂
𝑇 2 + 4‖ℎ0‖2𝑇 3

)︂
‖ℎ1 − ℎ2‖,

‖(𝐴ℎ1 − 𝐴ℎ2)𝑗‖ ⩽
4𝑀0

𝐶𝑗−3∆

(︁
(2𝑀0 + 𝑎(0) +𝑀1 + 𝑎(0)𝑀2 + 4𝑀0‖ℎ0‖)𝑇

+ (6‖ℎ0‖+ 2𝑀2‖ℎ0‖+𝑀1)𝑇
2 + 8‖ℎ0‖2𝑇 3

)︁
‖ℎ1 − ℎ2‖, 𝑗 = 3, 4,

‖(𝐴ℎ1 − 𝐴ℎ2)5‖ ⩽ 8‖ℎ0‖𝑇‖ℎ1 − ℎ2‖.

If 𝑇 satisfies the inequalities(︁
𝐶𝑀0 + 𝑎(0) +𝑀0

)︁
𝑇 +

(︁
10‖ℎ0‖+𝑀1

)︁
𝑇 2 + 4‖ℎ0‖2𝑇 3 < 1,(︂

2

𝑙
𝐶𝑀0 +

2

𝑙
𝑎(0) +

2

𝑙
𝑀0 + 12‖ℎ0‖+ 2𝑓0

)︂
𝑇

+

(︂
12‖ℎ0‖

𝑙
+ 6‖ℎ0‖2 +

2𝑀1

𝑙

)︂
𝑇 2 + 4‖ℎ0‖2𝑇 3 < 1,

4𝑀0

𝐶𝑗−3∆

(︁
(2𝑀0 + 𝑎(0) +𝑀1 + 𝑎(0)𝑀2 + 4𝑀0‖ℎ0‖)𝑇

+ (6‖ℎ0‖+ 2𝑀2‖ℎ0‖+𝑀1)𝑇
2 + 8‖ℎ0‖2𝑇 3

)︁
< 1,

8‖ℎ0‖𝑇 ⩽ 1,

(4.3)

then the operator 𝐴 satisfies the second condition of contracting mapping.
Therefore, if the number 𝑇 is small enough to ensure inequalities (4.2) and (4.3), then 𝐴 is

a contraction operator on 𝑆(ℎ0, ‖ℎ0‖) and by the Banach principle, the equation ℎ = 𝐴ℎ has a
unique solution in 𝑆(ℎ0, ‖ℎ0‖).
Since ℎ involves 𝜗 and 𝜗𝑡, this implies that 𝜗 is differentiable in 𝑡. By the proved theorem

this implies that all functions in identity (2.6) are continuous except for 𝜗𝑥𝑥. Since system of
equations (2.6), (2.7), (2.8), (2.9) is equivalent to operator equation (4.1), then 𝜗𝑥𝑥 is continuous,
i.e. 𝜗 is twice continuously differentiable in 𝑥. Thus, 𝜗(𝑡, 𝑥) ∈ 𝐶1,2(𝐷𝑇 ). The proof is complete.

By the known functions 𝑎(𝑡), 𝑏(𝑡), solving the differential equations

𝑎(𝑡) =
𝜒′(𝑡)

𝜒(0)
, 𝑏(𝑡) =

𝑘′(𝑡)

𝑘(0)
,

we find the functions

𝜒(𝑡) = 𝜒(0) + 𝜒(0)

𝑡∫︁
0

𝑎(𝜏)𝑑𝜏, 𝑘(𝑡) = 𝑘(0) + 𝑘(0)

𝑡∫︁
0

𝑏(𝜏)𝑑𝜏

as solutions to inverse problem (2.2-(2.5).
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5. Conclusion

In this work, inverse problem is considered for determining the kernels 𝜒(𝑡) and 𝑘(𝑡) included
in the system of equations (1.3) by simple observation (2.5) at the points 𝑥0, 𝑥1 ∈ (0, 𝑙) of the
solution of this system with initial and boundary conditions (2.2), (2.3). We obtain conditions
for given functions, under which the inverse problem has unique solutions for a sufficiently small
time interval. We note that global solvability of this kind of problems is an open issue.

Acknowledgements

The authors express their profound thanks to the anonymous reviewers for their insightful
comments and helpful suggestions.

BIBLIOGRAPHY

1. M.E. Gurtin, A.C. Pipkin. A general theory of heat conduction with finite wave speeds // Arch.
Rational Mech. Anal. 31:2, 113–126 (1968).

2. R.K. Miller. An integro-differential equation for rigid heat conductors with memory // J. Math.
Anal. Appl. 66:2, 313–332 (1978).

3. M.E. Gurtin. On the thermodynamics of materials with memory // Arch. Rational Mech. Anal.
28:1, 40–50 (1968).

4. B.D. Coleman , M.E. Gurtin. Equipresense and constitutive equation for rigid heat conductors //
Z. Angew. Math. Phys. 18:2, 199–208 (1967).

5. H. Grabmueller. Linear Theorie der Waermeleitung in Medium mit Gedaechtnis; Existenz und

Eindeutigkeit von Loesungen sum Inversen Problem // Technische Hochschule Darmstdadt,
Preprint 226 (1975).

6. G.V. Dyatlov. Determination for the memory kernel from boundary measurements on a finite

time interval // J. Inverse Ill-Posed Probl. 11:1, 59–66 (2003).
7. D.K. Durdiev, Zh.D. Totieva. The problem of determining the one-dimensional kernel of vis-

coelasticity equation with a source of explosive type // J. Inverse Ill-Posed Probl. 28:1, 43–52
(2020).

8. D.K. Durdiev, Zh.Sh. Safarov. Inverse problem of determining the one-dimensional kernel of the

viscoelasticity equation in a bounded domain // Math. Notes. 97:6, 867–877 (2015).
9. D.K. Durdiev, Zh.D. Totieva. Problem of determining one-dimensional kernel of viscoelasticity

equation // Sib. Zh. Ind. Mat. 16:2, 72–82 (2013).
10. . Zh.D. Totieva. The problem of determining the piezoelectric module of electro visco-elasticity

equation // Math. Meth. Appl. Sci. 41:17, 6409–6321 (2018).
11. A. Lorenzi, E. Paparoni. Direct and inverse problems in the theory of materials with memory //

Rend. Semin. Math. Univ. Padova. 87, 105–138 (1992).
12. A. Lorenzi, V. Priymenko. A duality approach for solving identification problems related to integro-

differential Maxwell’s equations // Rend. Semin. Math. Univ. Padova. 94, 31–51 (1994).
13. A. Lorenzi, F. Messina, V.G. Romanov. Recovering a Lame kernel in a viscoelastic system //

Appl. Anal. 86:11, 1375–1395 (2007).
14. D.K. Durdiev, A.A. Rakhmonov. Inverse problem for a system of integro-differential equations

for SH waves in a visco-elastic porous medium: global solvability // Theor. Math. Phys. 195:3,
923–937 (2018).

15. V.G. Romanov. Stability estimates for the solution to the problem of determining the kernel of a

viscoelastic equation // J. Appl. Ind. Math. 6:4, 360–370 (2012).
16. V.G. Romanov, A. Lorenzi. Stability estimates for an inverse problem related to viscoelasticmedia

// J. Inverse Ill-Posed Probl. 14:1, 57–82 (2006).
17. V.G. Romanov, A. Lorenzi. Identification of an electromagnetic coefficient connected with defor-

mation currents // Inverse Probl. 9:2, 301–319 (1993).



INVERSE PROBLEM OF DETERMINING TWO KERNELS . . . 133

18. V.G. Romanov. Problem of determining the permittivity in the stationary system of Maxwell

equations // Dokl. Math. 95:3, 230–234 (2017).
19. A.L. Bukhgein, G.V. Dyatlov. Uhlmann, Unique continuation for hyperbolic equations with mem-

ory // J. Inverse Ill-Posed Probl. 15:6, 587–598 (2007).
20. D.K. Durdiev, A.A. Rahmonov. The problem of determining the 2D-kernel in a system of integro-

differential equations of a viscoelastic porous medium // J. Appl. Ind. Math. 14:2, 281–295 (2020).
21. V.G. Romanov. Inverse problems for equation with a memory // Eurasian J Math. Comput.

Appl. 2:4, 51–80 (2014).
22. A. Lorenzi. An identification problem related to a nonlinear hyperbolic integro-differential equation

// Nonl. Anal. Theory, Meth. Appl. 22:1, 21–44 (1994).
23. D.K.Durdiev. Global solvability of an inverse problem for an integro-differential equation of elec-

trodynamics // Diff. Equat. 44:2, 893–899 (2008).
24. D.K. Durdiev , A.A. Rahmonov. A 2D kernel determination problem in a visco-elastic porous

medium with a weakly horizontally inhomogeneity // Math. Meth. Appl. Sci. 43:15, 8776–8796
(2020).

25. D.K. Durdiev, Zh.D. Totieva. Problem of determining the multidimensional kernel of viscoelas-

ticity equation // Vladikavkaz. Mat. Zh. 17:4, 18–43(2015).
26. U.D.Durdiev , Z.D.Totieva. A problem of determining a special spatial part of 3D memory kernel

in an integro-differential hyperbolic equation // Math. Meth. Appl. Sci. 42:18, 7440–7451 (2019).
27. J. Janno, L.V. Wolfersdorf. Inverse problems for identification of memory kernels in heat flow //

J. Inverse Ill-Posed Probl. 4:1, 39–66 (1996).
28. J. Janno, A. Lorenzi. Recovering memory kernels in parabolic transmission problems // J. Inverse

Ill-Posed Probl. 16:3, 239–265 (2008).
29. F. Colombo. A inverse problem for a parabolic integro-differential model in the theory of combus-

tion // Physica D. 236:2, 81–89 (2007).
30. D. Serikbaev. Inverse problem for fractional order pseudo-parabolic equation with involution //

Ufa Math. J. 12:4, 119–135 (2020).
31. A. Gladkov, M. Guedda. Influence of variable coeffcients on global existence of solutions of semi-

linear heat equations with nonlinear boundary conditions // Elect. J. Qualitative Theory Diff.
Equat. 2020, id 63 (2020).

32. D.K. Durdiev, Zh.Zh. Zhumaev. One-dimensional inverse problems of finding the kernel of the

integro-differential heat equation in a bounded domain // Ukrains’kyi Matematychnyi Zhurnal.
73:11, 1492–1506 (2021).

33. D.K. Durdiev, A.Sh. Rashidov. Inverse problem of determining the kernel in an integro-

differential equation of parabolic type // Diff. Equat. 50:1, 110–116 (2014).
34. D.K. Durdiev, Zh.Zh. Zhumaev. Problem of determining a multidimensional thermal memory in

a heat conductivity equation // Meth. Funct. Anal. Topology. 25:3, 219–226 (2019).
35. D.K. Durdiev , Zh.Zh. Zhumaev. Problem of Determining the Thermal Memory of a Conducting

Medium // Diff. Equat. 56:6, 785–796 (2020).
36. D. Durdiev, E. Shishkina, S. Sitnik. The Explicit Formula for Solution of Anomalous Diffusion

Equation in the Multi-Dimensional Space // Lobachevskii J. Math. 42:6, 1264–1273 (2021).
37. A.A. Kilbas. Integral equations: course of lectures. Belorus State Univ., Minsk (2005) (in Rus-

sian).
38. A.N. Kolmogorov, S.V. Fomin. Introductory real analysis. Nauka, Moscow (1972). [Prentice-Hall,

Inc., Englewood Cliffs, New Jersey (1970).]
39. A.N. Tikhonov, A.A. Samarsky. Equations of mathematical physics. Nauka, Moscow (1977).

[Pergamon Press, Oxford (1963).]



134 D.K. DURDIEV, J.J. JUMAEV, D.D. ATOEV

Durdimurod Kalandarovich Durdiev,
Bukhara branch of the Institute of Mathematics
named after V.I. Romanovskiy,
Academy of Sciences of the Republic of Uzbekistan,
M. Ikbal Str. 11,
200100, Bukhara, Uzbekistan,

Bukhara State University,
M. Ikbal Str. 11 ,
200100, Bukhara, Uzbekistan
E-mail: d.durdiev@mathinst.ru

Jonibek Jamolovich Jumaev,
Bukhara branch of the Institute of Mathematics
named after V.I. Romanovskiy,
Academy of Sciences of the Republic of Uzbekistan,
M. Ikbal Str. 11,
200100, Bukhara, Uzbekistan,

Bukhara State University,
M. Ikbal Str. 11,
200100, Bukhara, Uzbekistan
E-mail: jonibekjj@mail.ru

Dilshod Dilmurodovich Atoev,

Bukhara State University,
M. Ikbal Str. 11 ,
200100, Bukhara, Uzbekistan
E-mail: atoevdd@mail.ru


