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GROUND STATES OF ISING-POTTS MODEL

ON CAYLEY TREE

M.M. RAHMATULLAEV, B.M. ISAKOV

Abstract. It is known that for low temperatures, a ground state is associated with a
limiting Gibbs measure. This is why, the studying of the sets of ground states for a given
physical system is a topical issue.

We consider a model of mixed type on the Cayley tree, which is referred to as Ising-
Potts model, that is, the Ising and Potts models are related with the parameter 𝛼, where
𝛼 ∈ [0, 1]. In the paper we study the ground state for the Ising-Potts model with three states
on the Cayley tree. It is known that there exists a one-to-one correspondence between the
set of the vertices 𝑉 of the Cayley tree of order 𝑘 and a group 𝐺𝑘 being a free product of
𝑘 + 1 cyclic groups of second order. We define periodic and weakly periodic ground states
corresponding to normal divisors of the group 𝐺𝑘. For the Ising-Potts model we describe
the set of periodic and weakly periodic ground states corresponding to normal divisors of
index 2 of the group 𝐺𝑘. We prove that for some values of the parameters there exist no
such periodic (non translation-invariant) ground states. We also prove that for a normal
subgroup consisting of even layers there exist periodic (non translation-invariant) ground
states and we also prove the existence of weakly-periodic (non periodic) ground states.
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1. Introduction

With each Gibbs measure, one phase of a physical system is associated. If there exists more
than one Gibbs measure, one says that there are phase transitions. A main problem for a given
Hamiltonian is to describe all associated limiting Gibbs measures.
It is known that a phase diagram of Gibbs measures for a given Hamiltonian is close to a

phase diagram of ground isolated (stable) states of this Hamiltonian. For low temperatures,
with the ground state a limiting Gibbs measure is associated, see [1], [2]. This is a problem on
describing ground states naturally arises.
In work [5] there were studied translation-invariant and periodic ground states for the Ising

model on the Cayley tree. In work [6] a notion of weakly periodic ground states was introduced.
Weakly periodic ground states for the Ising model with competing interactions were described
in works [6] and [7]. Periodic ground states for the Potts model with competing interactions
on the Cayley tree of order 𝑘 = 2 were studied in works [8] and [9]. In work [10], for the Potts
model, weakly periodic ground states were studied for a normal divisor of index 2. In work [11]
for the Potts model with competing interactions on the Cayley tree of order 𝑘 ⩾ 2 there was
described a set of periodic and weakly periodic ground states corresponding to normal divisors
of index 4 of the group representation of the Cayley tree. In works [12] and [13] periodic and
weakly periodic ground states for a 𝜆-model on the Cayley tree were studied. In work [14], for
the Ising model, periodic ground states with respect to a subgroup of index three were studied.
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In work [16], on the base of the replica algorithm, by the Monte Carlo method, the phase
transitions of the antiferromagnetic layered Ising model on a cubic lattice were studied taking
into consideration intralayer interactions of the second nearest neighbors in small ranges. In
work [17] there were studied various phase transitions and interactions of two and three nearest
neighbors for the Potts model as 𝑞 = 3 by the Monte Carlo method. It was shown in work
[18] that the transition from an antiferromagnetic and collinear phases into a paramagnetic
one is a phase transition of the first kind, while the transition from a frustrated domain into
the paramagnetic one is a phase transition of second kind for the Potts model as 𝑞 = 3 on
a triangular lattice. In work [19] a ferro- and antiferromagnetic three-vertices (𝑞 = 3) Potts
model were studied on a triangular lattice taking into consideration the interactions of second
nearest neighbors.
In recent work [20] the authors considered the Potts model on the Cayley tree and proved

the existence of new classes of Gibbs measures differing from one known earlier.
In the present work we consider a model of a mixed type and in what follows we call it an

Ising-Potts model in the Cayley tree of order 𝑘 ⩾ 2. Ising and Potts models are related with a
parameter 𝛼, where 𝛼 ∈ [0, 1]. If 𝛼 = 0, then the model coincides with the Potts model, while
for 𝛼 = 1 the model coincides with the Ising model. For the Ising-Potts model with respect a
normal divisor the group 𝐺𝑘, which a free product of 𝑘+1 cyclic groups {𝑒, 𝑎𝑖} of second order
with generators 𝑎1, 𝑎2, . . . , 𝑎𝑘+1, respectively, that is, 𝑎

2
𝑖 = 𝑒 (see [15]), we determine periodic

and weakly periodic ground states.
In conclusion we briefly describe the structure of the paper. In the next section we introduce

main definitions and recall known facts. In the third section we study periodic and weakly
periodic ground states.

2. Definitions and known facts

Let 𝜏 𝑘 = (𝑉, 𝐿), 𝑘 ⩾ 1, be a Cayley tree of order 𝑘, that is, an infinite tree, each vertex of
which is an origin for exactly 𝑘 + 1 edges, where 𝑉 is the set of vertices and 𝐿 is the set of
edges 𝜏 𝑘.
Let 𝐺𝑘 be a free product of 𝑘 + 1 cyclic groups {𝑒, 𝑎𝑖} of second order with generators 𝑎1,

𝑎2, . . . , 𝑎𝑘+1, respectively, that is, 𝑎
2
𝑖 = 𝑒, see [15]. There exists a one-to-one correspondence

between the set of the vertices 𝑉 of the Cayley tree of order 𝑘 and the group 𝐺𝑘, see [10], [4].
Two vertices 𝑥, 𝑦 ∈ 𝑉 are called neighbors if they the end points of some edge 𝑙 ∈ 𝐿; in this

case we write 𝑙 = ⟨𝑥, 𝑦⟩.
For an arbitrary point 𝑥0 ∈ 𝑉 we let

𝑊𝑛 = {𝑥 ∈ 𝑉 | 𝑑(𝑥0, 𝑥) = 𝑛}, 𝑉𝑛 =
𝑛⋃︁

𝑚=0

𝑊𝑚, 𝐿𝑛 = {⟨𝑥, 𝑦⟩ ∈ 𝐿| 𝑥, 𝑦 ∈ 𝑉𝑛},

where 𝑑(𝑥, 𝑦) is the distance between 𝑥 and 𝑦 on the Cayley tree, that is, the number of edges
in a path connecting 𝑥 and 𝑦.
We denote by 𝑆(𝑥) the set of ‘direct descendants’ of a point 𝑥 ∈ 𝐺𝑘, that is, if 𝑥 ∈ 𝑊𝑛, then

𝑆(𝑥) = {𝑦 ∈ 𝑊𝑛+1 : 𝑑(𝑥, 𝑦) = 1}. By 𝑆1(𝑥) we denote the set of all nearest neighbors of a
point 𝑥 ∈ 𝐺𝑘, that is, 𝑆1(𝑥) = {𝑦 ∈ 𝐺𝑘 : ⟨𝑥, 𝑦⟩} and by 𝑥↓ we denote a unique element in the
set 𝑆1(𝑥) ∖ 𝑆(𝑥).
We consider a model, where the spin ranges in the set Φ = {−1, 0, 1}. A configuration 𝜎

on 𝑉 is defined as a function 𝑥 ∈ 𝑉 → 𝜎(𝑥) ∈ Φ; the set of all configuration coincides with
Ω = Φ𝑉 .
Let 𝐺𝑘/𝐺

*
𝑘 = {𝐻1, . . . , 𝐻𝑟} be a quotient group, where 𝐺*

𝑘 is a normal divisor of index 𝑟 ⩾ 1.
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Definition 2.1. A configuration 𝜎(𝑥) is called 𝐺*
𝑘-periodic if 𝜎(𝑥) = 𝜎𝑖 as 𝑥𝑖 ∈ 𝐻𝑗, for all

𝑥 ∈ 𝐺𝑘. A 𝐺𝑘-periodic configuration is called translation-invariant.

For a given periodic configuration the index of the normal divisor is called a period of the
configuration.

Definition 2.2. A configuration 𝜎(𝑥) is called 𝐺*
𝑘-weakly periodic if 𝜎(𝑥) = 𝜎𝑖𝑗 as 𝑥↓ ∈ 𝐻𝑖,

𝑥 ∈ 𝐻𝑗 for all 𝑥 ∈ 𝐺𝑘.

The Hamiltonian of the Ising-Potts model reads as

𝐻(𝜎) = −𝛼𝐽1
∑︁

⟨𝑥,𝑦⟩∈ 𝐿

𝜎(𝑥)𝜎(𝑦)− (1− 𝛼)𝐽2
∑︁

⟨𝑥,𝑦⟩∈ 𝐿

𝛿𝜎(𝑥)𝜎(𝑦), (2.1)

where 𝐽 = (𝐽1, 𝐽2) ∈ R2, 0 ⩽ 𝛼 ⩽ 1 and 𝛿𝑖,𝑗 is the Kronecker delta

𝛿𝑖,𝑗 =

{︂
0 if 𝑖 ̸= 𝑗,

1 if 𝑖 = 𝑗.
(2.2)

3. Ground states

For a pair of configurations 𝜎 and 𝜙 coinciding almost everywhere, that is, except for finitely
many points, we consider a relative Hamiltonian 𝐻(𝜎, 𝜙), which is a difference between the
energies of the configurations 𝜎, 𝜙, that is,

𝐻(𝜎, 𝜙) = −𝛼𝐽1
∑︁
⟨𝑥,𝑦⟩,
𝑥,𝑦∈𝑉

(𝜎(𝑥)𝜎(𝑦)− 𝜙(𝑥)𝜙(𝑦))− (1− 𝛼)𝐽2
∑︁
⟨𝑥,𝑦⟩,
𝑥,𝑦∈𝑉

(𝛿𝜎(𝑥)𝜎(𝑦) − 𝛿𝜙(𝑥)𝜙(𝑦)), (3.1)

where 𝐽 = (𝐽1, 𝐽2) ∈ R2 is an arbitrary fixed parameter.
Let 𝑀 be a set of unit balls with vertices at 𝑉. A restriction of the configuration 𝜎 on a ball

𝑏 ∈ 𝑀 is called a bounded configuration 𝜎𝑏. We define the energy of the configuration 𝜎𝑏 on 𝑏
as follows:

𝑈(𝜎𝑏) = −1

2
𝛼𝐽1

∑︁
<𝑥,𝑦>∈𝐿

𝜎(𝑥)𝜎(𝑦)− 1

2
(1− 𝛼)𝐽2

∑︁
<𝑥,𝑦>∈𝐿

𝛿𝜎(𝑥)𝜎(𝑦). (3.2)

The following lemma is known, see [6], [8].

Lemma 3.1. Relative Hamiltonian (2.2) is of the form

𝐻(𝜎, 𝜙) =
∑︁
𝑏∈𝑀

(𝑈(𝜎𝑏)− 𝑈(𝜙𝑏)).

In this work we consider the case 𝑘 = 2. By 𝑐𝑏 we denote the center of a unit ball 𝑏. Let

𝐵− = {𝑥 ∈ 𝑆1(𝑐𝑏) : 𝜙𝑏(𝑥) = −1},
𝐵0 = {𝑥 ∈ 𝑆1(𝑐𝑏) : 𝜙𝑏(𝑥) = 0},
𝐵+ = {𝑥 ∈ 𝑆1(𝑐𝑏) : 𝜙𝑏(𝑥) = 1}.

Let 𝜙𝑏(𝑐𝑏) = 𝑧, 𝑧 ∈ Φ and |𝐵−| = 𝑑, |𝐵+| = 𝑡. Then |𝐵0| = 3 − 𝑑 − 𝑡. It is easy to prove the
following statement.

Lemma 3.2. For each configuration 𝜎𝑏 the belonging

𝑈(𝜎𝑏) ∈ {𝑈1, 𝑈2, 𝑈3, . . . , 𝑈12}
is true, where

𝑈1 = 0, 𝑈2 = −3𝛼

2
𝐽1 −

3

2
(1− 𝛼)𝐽2, 𝑈3 =

3𝛼

2
𝐽1,
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𝑈4 = −𝛼𝐽1 − (1− 𝛼)𝐽2, 𝑈5 = −𝛼

2
𝐽1 −

1− 𝛼

2
𝐽2, 𝑈6 = −𝛼

2
𝐽1 − (1− 𝛼)𝐽2,

𝑈7 =
𝛼

2
𝐽1 −

1− 𝛼

2
𝐽2, 𝑈8 = 𝛼𝐽1, 𝑈9 =

𝛼

2
𝐽1,

𝑈10 = −1− 𝛼

2
𝐽2, 𝑈11 = −3− 3𝛼

2
𝐽2, 𝑈12 = −(1− 𝛼)𝐽2.

Definition 3.1. A configuration 𝜙 is called a ground state of the Hamiltonian 𝐻 if

𝑈(𝜙𝑏) = min {𝑈1, 𝑈2, 𝑈3, . . . , 𝑈12}
for each 𝑏 ∈ 𝑀.

A periodic (weakly periodic, translation-invariant) configuration being a ground state is called
periodic (weakly periodic, translation-invariant) ground state.
The aim of the present work is to describe the set of periodic and weakly periodic ground

states for the Ising-Potts model on the Cayley tree of order 𝑘 = 2 corresponding to normal
divisors of index 2 of the group representations of the Cayley tree.
We denote 𝐶𝑖 = {𝜙𝑏 : 𝑈(𝜙𝑏) = 𝑈𝑖} and

𝐴𝑖 =
{︀
𝐽 ∈ R2 : 𝑈𝑖 = min {𝑈1, 𝑈2, 𝑈3, . . . , 𝑈12}

}︀
, (3.3)

where 𝑖 = 1, 2, . . . , 12.
A simple but bulky analysis show that 𝐴𝑖 read as

𝐴1 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 ⩾ 0;

𝛼− 1

𝛼
𝐽2 ⩾ 𝐽1

}︂
,

𝐴2 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 ⩾ 0;

𝛼− 1

𝛼
𝐽2 ⩽ 𝐽1

}︂
,

𝐴3 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 ⩽ 0;

𝛼− 1

𝛼
𝐽2 ⩾ 𝐽1

}︂
,

𝐴4 = 𝐴5 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
,

𝐴6 = 𝐴7 = 𝐴10 =
{︀
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = 0; 𝐽2 = 0

}︀
,

𝐴8 = 𝐴9 =
{︀
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = 0; 𝐽2 ⩽ 0

}︀
,

𝐴11 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 ⩾

−(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩾ 0

}︂
,

𝐴12 =
{︀
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 ⩽ 0; 𝐽2 = 0

}︀
.

It is easy to confirm

R2 =
12⋃︁
𝑖=1

𝐴𝑖.

On Figure 1 we show the location of 𝐴𝑖, 𝑖 = 1, 2, . . . , 12, in the plane.

3.1. Translation-invariant ground states. In this subsection we study translation-
invariant ground states. We recall that a configuration 𝜎(𝑥) is called translation-invariant
if 𝜎(𝑥) = 𝑖 for all 𝑥 ∈ 𝑉 , 𝑖 ∈ Φ.
We prove the following theorem.

Theorem 3.1. Let 𝑘 = 2. The following statements hold true for the Ising-Potts model:
1) On the set 𝐴11 there exists a unique translation-invariant ground state and it reads as

𝜙(𝑥) = 0 for all 𝑥 ∈ 𝐺𝑘.
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Figure 1. Location of 𝐴𝑖, 𝑖 = 1, 2, . . . , 12 in the plane.

2) On the set 𝐴2 there exist two ground states and they read as 𝜙(𝑥) = ±1 for all 𝑥 ∈ 𝐺𝑘.
3) If (𝐽1, 𝐽2) ∈ R2 ∖ (𝐴11 ∪ 𝐴2), then there exist no translation-invariant ground states.

Proof. 1. Let 𝜙(𝑥) = 0 for all 𝑥 ∈ 𝐺𝑘. Then for all 𝑏 ∈ 𝑀 we have

𝜙𝑏(𝑐𝑏) = 0, |𝐵−| = 0, |𝐵+| = 0, |𝐵0| = 3,

and therefore, 𝜙𝑏 ∈ 𝐶11. Hence, the configuration 𝜙(𝑥) = 0 for all 𝑥 ∈ 𝐺𝑘 is a translation-
invariant ground state on the set 𝐴11.
2. Let 𝜙(𝑥) = 1 for all 𝑥 ∈ 𝐺𝑘. Then for all 𝑏 ∈ 𝑀 we have

𝜙𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵+| = 3, |𝐵0| = 0

and hence, 𝜙𝑏 ∈ 𝐶2. This gives that the configuration 𝜙(𝑥) = 1 for all 𝑥 ∈ 𝐺𝑘 is a translation-
invariant ground state on the set 𝐴2.
Let 𝜙(𝑥) = −1 for all 𝑥 ∈ 𝐺𝑘. Then for all 𝑏 ∈ 𝑀 we have

𝜙𝑏(𝑐𝑏) = −1, |𝐵−| = 3, |𝐵+| = 0, |𝐵0| = 0

and hence 𝜙𝑏 ∈ 𝐶2. This implies that the configuration 𝜙(𝑥) = −1 for all 𝑥 ∈ 𝐺𝑘 is a translation-
invariant ground state on the set 𝐴2.
3. The proof is obvious.

Remark 3.1. We note that as 𝛼 = 0, Hamiltonian (2.1) describes the Potts model. Then
Theorem 3.1 coincides with Item B.1 in Theorem 2 in work [8] in the case 𝐽*

2 = 0 (𝐽*
2 = 𝐽2,

where is from work [8]).

3.2. Periodic ground states. Let 𝐴 ⊂ {1, 2, . . . , 𝑘 + 1}. It is known that each normal
divisor of index of the group 𝐺𝑘 reads as (see [10])

𝐻𝐴 =

{︃
𝑥 ∈ 𝐺𝑘 :

∑︁
𝑖∈𝐴

𝜔𝑥(𝑎𝑖) is even

}︃
.

We consider a quotient group 𝐺𝑘/𝐻𝐴 = {𝐻0, 𝐻1}, where 𝐻0 = 𝐻𝐴, 𝐻1 = 𝐺𝑘 ∖ 𝐻0. In this
subsection we study an 𝐻𝐴-periodic ground state. An 𝐻𝐴-periodic configuration reads as

𝜙(𝑥) =

{︂
𝜎1 if 𝑥 ∈ 𝐻0,

𝜎2 if 𝑥 ∈ 𝐻1,
(3.4)

where 𝜎1, 𝜎2 ∈ Φ.
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Theorem 3.2. Let 𝑘 = 2 and |𝐴| = 1. Then each 𝐻𝐴-periodic ground state is translation-
invariant.

Proof. For 𝜎1 = 𝜎2 we have that 𝐻𝐴-periodic configuration (3.4) is a translation-invariant state,
which was studied in Theorem 2.1.
We consider the case when 𝜎1 ̸= 𝜎2. Let

𝜙1(𝑥) =

{︂−1 if 𝑥 ∈ 𝐻0,

0 if 𝑥 ∈ 𝐻1.

If 𝑐𝑏 ∈ 𝐻0 then for all 𝑏 ∈ 𝑀 we have

𝜙1,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0,

and therefore, 𝜙1,𝑏 ∈ 𝐶4. If 𝑐𝑏 ∈ 𝐻1, then

𝜙1,𝑏(𝑐𝑏) = 0, |𝐵−| = 1, |𝐵0| = 2, |𝐵+| = 0

and hence, 𝜙1,𝑏 ∈ 𝐶12. Since 𝐴4∩𝐴12 = {0, 0}, this implies that the corresponding configuration
is not a ground state on R2 ∖ {(0, 0)}.
Let

𝜙2(𝑥) =

{︂−1 if 𝑥 ∈ 𝐻0,

1 if 𝑥 ∈ 𝐻1.

If 𝑐𝑏 ∈ 𝐻0 then for all 𝑏 ∈ 𝑀 we have

𝜙2,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 0, |𝐵+| = 1

and hence, 𝜙2,𝑏 ∈ 𝐶6. If 𝑐𝑏 ∈ 𝐻1, then for all 𝑏 ∈ 𝑀 we have

𝜙2,𝑏(𝑐𝑏) = 1, |𝐵−| = 1, |𝐵0| = 0, |𝐵+| = 2

and hence, 𝜙2,𝑏 ∈ 𝐶7. Since 𝐴6 ∩𝐴7 = {0, 0}, this implies that the corresponding configuration
is not a ground state on R2 ∖ {(0, 0)}.
Let

𝜙3(𝑥) =

{︂
0 if 𝑥 ∈ 𝐻0,

−1 if 𝑥 ∈ 𝐻1.

If 𝑐𝑏 ∈ 𝐻0, then for all 𝑏 ∈ 𝑀 we have

𝜙3,𝑏(𝑐𝑏) = 0, |𝐵−| = 1, |𝐵0| = 2, |𝐵+| = 0,

and therefore, 𝜙3,𝑏 ∈ 𝐶12. If 𝑐𝑏 ∈ 𝐻1, then for all 𝑏 ∈ 𝑀 we have

𝜙3,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0

and hence, 𝜙3,𝑏 ∈ 𝐶4. Since 𝐴4 ∩𝐴12 = {0, 0}, the corresponding configuration is not a ground
state on R2 ∖ {(0, 0)}.
For the configuration 𝜙4(𝑥) = −𝜙1(𝑥), 𝜙5(𝑥) = −𝜙2(𝑥) and 𝜙6(𝑥) = −𝜙3(𝑥), by similar

method we prove that the corresponding configurations are also not ground states on R2 ∖
{(0, 0)}.
We note that apart of 𝜙𝑖(𝑥), 𝑖 = 1, . . . , 6, there exist no 𝐻0-periodic and not translation-

invariant configuration. The proof is complete.

By a similar method for |𝐴| = 2 we can prove the following theorem.

Theorem 3.3. Let 𝑘 = 2 and |𝐴| = 2. Then each 𝐻𝐴-periodic ground state are translation
invariant.
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We observe that as 𝑘 = 2 and |𝐴| = 3, the normal divisor of 𝐻𝐴 is of the form

𝐺
(2)
𝑘 = {𝑥 : |𝑥| is even},

see [10]. For 𝐺
(2)
𝑘 -periodic ground state the following theorem holds.

Theorem 3.4. Let 𝑘 = 2. Then for the Ising-Potts model the following statements hold
true:
I) On the set 𝐴3 there exist two 𝐺

(2)
𝑘 -periodic ground states and they read as

𝜎(𝑥) = ±
{︂

1 if 𝑥 ∈ 𝐻0,

−1 if 𝑥 ∈ 𝐻1.

II) On the set 𝐴1 there exist four 𝐺
(2)
𝑘 -periodic ground states and they read as

𝜙(𝑥) =

{︂
𝑖 if 𝑥 ∈ 𝐻0,

𝑗 if 𝑥 ∈ 𝐻1,

where |𝑖− 𝑗| =1 (𝑖, 𝑗 ∈ Φ).

Proof. We begin with proving Statement I. We consider the configurations

𝜎1(𝑥) =

{︂
1 if 𝑥 ∈ 𝐻0,

−1 if 𝑥 ∈ 𝐻1.

If 𝑐𝑏 ∈ 𝐻0, then for all 𝑏 ∈ 𝑀 we have

𝜙1,𝑏(𝑐𝑏) = 1, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0,

and hence, 𝜙1,𝑏 ∈ 𝐶3. If 𝑐𝑏 ∈ 𝐻1, then

𝜙1,𝑏(𝑐𝑏) = −1, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3

and hence, 𝜙1,𝑏 ∈ 𝐶3. Then we see that on 𝐺
(2)
𝑘 the configuration 𝜎1(𝑥) is a periodic ground

state on 𝐴3.
Now we consider

𝜎2(𝑥) =

{︂−1 if 𝑥 ∈ 𝐻0,

1 if 𝑥 ∈ 𝐻1.

A configuration 𝜎2(𝑥) is also a periodic ground state on 𝐴3; this can be proved similar to the
same fact for 𝜎1(𝑥).
We proceed to proving Statement II. We consider the configurations

𝜙1(𝑥) =

{︂
0 if 𝑥 ∈ 𝐻0,

−1 if 𝑥 ∈ 𝐻1.

If 𝑐𝑏 ∈ 𝐻0, then for all 𝑏 ∈ 𝑀 we have

𝜙1,𝑏(𝑐𝑏) = 0, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0

and hence, 𝜙1,𝑏 ∈ 𝐶1. If 𝑐𝑏 ∈ 𝐻1, then for all 𝑏 ∈ 𝑀 we have

𝜙1,𝑏(𝑐𝑏) = −1, |𝐵−| = 0, |𝐵0| = 3, |𝐵+| = 0

and hence, 𝜙1,𝑏 ∈ 𝐶1. This shows that on 𝐺2
𝑘 the configuration 𝜎1 is a periodic ground state on

𝐴1.
Now we consider

𝜙2(𝑥) =

{︂−1 if 𝑥 ∈ 𝐻0,

0, if 𝑥 ∈ 𝐻1.

A configuration 𝜙2(𝑥) is also a periodic gorund state on 𝐴1 that can be proved as the same for
𝜙1(𝑥).
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We consider

𝜙3(𝑥) =

{︂
0 if 𝑥 ∈ 𝐻0,

1 if 𝑥 ∈ 𝐻1.

If 𝑐𝑏 ∈ 𝐻0, then for all 𝑏 ∈ 𝑀 we have

𝜙3,𝑏(𝑐𝑏) = 0, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3

and hence, 𝜙3,𝑏 ∈ 𝐶1. If 𝑐𝑏 ∈ 𝐻1, then for all 𝑏 ∈ 𝑀 we have

𝜙3,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 3, |𝐵+| = 0

and hence, 𝜙3,𝑏 ∈ 𝐶1. This show that on 𝐺
(2)
𝑘 the configuration 𝜙3 is a periodic ground state

on 𝐴1.
We consider

𝜙4(𝑥) =

{︂
1 if 𝑥 ∈ 𝐻0,

0 if 𝑥 ∈ 𝐻1.

The configuration 𝜙4(𝑥) is also a periodic ground state on 𝐴1 and this can be proved as the

same has been done for 𝜙3(𝑥). This shows that on 𝐺
(2)
𝑘 the configurations 𝜙𝑖(𝑥), 𝑖 = 1, . . . , 4,

are periodic ground states on 𝐴1. The proof is complete.

Remark 3.2. We note that as 𝛼 = 0, Hamiltonian (2.1) describes the Potts model. Then
Theorem 3.4 coincides with Statement B.3 in Theorem 2 from work [8] in the case 𝐽2 = 0.

3.3. Weakly periodic ground states. We are going to study 𝐻𝐴-weakly periodic ground
state. An 𝐻𝐴-weakly periodic configuration reads as

𝜙(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎0,0 if 𝑥↓ ∈ 𝐻0, 𝑥 ∈ 𝐻0,

𝜎0,1 if 𝑥↓ ∈ 𝐻0, 𝑥 ∈ 𝐻1,

𝜎1,0 if 𝑥↓ ∈ 𝐻1, 𝑥 ∈ 𝐻0,

𝜎1,1 if 𝑥↓ ∈ 𝐻1, 𝑥 ∈ 𝐻1,

where 𝜎𝑖,𝑗 ∈ Φ, 𝑖, 𝑗 = 0, 1.
In what follows for the sake of convenience we write a weakly periodic configuration 𝜙(𝑥),

𝑥 ∈ 𝐺𝑘, as 𝜙 = (𝜎0,0, 𝜎0,1, 𝜎1,0, 𝜎1,1).

Theorem 3.5. Let 𝑘 = 2 and |𝐴| = 1. Then for the Ising-Potts model the following state-
ments hold true:
I) On the set {︂

(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
there exist six 𝐻𝐴-weakly periodic (non-periodic) ground states and they are of the form

(1, 1, 0, 1), (−1,−1, 0,−1), (1, 0, 1, 1), (−1, 0,−1,−1), (−1, 0, 0, 1), (1, 0, 0,−1).

II) Each 𝐻𝐴-weakly periodic ground state except for the configurations provided in Statement I
are translation-invariant.

Proof. We begin with proving Statement I. We consider a configuration

𝜙1 = (1, 1, 0, 1).

1. Let 𝑐𝑏 ∈ 𝐻0, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙1,𝑏(𝑐𝑏↓) = 1, then 𝜙1,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3 and hence,

𝜙1,𝑏 ∈ 𝐶4.
b) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙1,𝑏(𝑐𝑏↓) = 0, then 𝜙1,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 1, |𝐵+| = 2 and hence,

𝜙1,𝑏 ∈ 𝐶4.
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c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙1,𝑏(𝑐𝑏↓) = 1, then 𝜙1,𝑏(𝑐𝑏) = 0, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3 and hence,
𝜙1,𝑏 ∈ 𝐶1.
2. Let 𝑐𝑏 ∈ 𝐻1, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙1,𝑏(𝑐𝑏↓) = 1, then 𝜙1,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 0|, |𝐵+| = 3 and hence,

𝜙1,𝑏 ∈ 𝐶4.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙1,𝑏(𝑐𝑏↓) = 1, then 𝜙1,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 1, |𝐵+| = 2 and hence,

𝜙1,𝑏 ∈ 𝐶4.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙1,𝑏(𝑐𝑏↓) = 1, then 𝜙1,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3 and hence,

𝜙1,𝑏 ∈ 𝐶1.
This implies that on the set

𝐴1 ∩ 𝐴4 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
a weakly periodic configuration 𝜙1 is a 𝐺

(2)
𝑘 -weakly periodic ground state.

We consider
𝜙2 = (−1,−1, 0,−1).

1. Let 𝑐𝑏 ∈ 𝐻0, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙2,𝑏(𝑐𝑏↓) = −1, then 𝜙2,𝑏(𝑐𝑏) = −1, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0 and hence,

𝜙2,𝑏 ∈ 𝐶4.
b) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙2,𝑏(𝑐𝑏↓) = 0, then 𝜙2,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0 and hence,

𝜙2,𝑏 ∈ 𝐶4.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙2,𝑏(𝑐𝑏↓) = −1, then 𝜙2,𝑏(𝑐𝑏) = 0, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0 and hence,

𝜙2,𝑏 ∈ 𝐶1.
2. Let 𝑐𝑏 ∈ 𝐻1, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙2,𝑏(𝑐𝑏↓) = −1, then 𝜙2,𝑏(𝑐𝑏) = −1, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0 and hence,

𝜙2,𝑏 ∈ 𝐶4.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙2,𝑏(𝑐𝑏↓) = −1, then 𝜙2,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0 and hence,

𝜙2,𝑏 ∈ 𝐶4.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙2,𝑏(𝑐𝑏↓) = −1, then 𝜙2,𝑏(𝑐𝑏) = −1, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0 and hence,

𝜙2,𝑏 ∈ 𝐶1.
This yields that on the set

𝐴1 ∩ 𝐴4 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
are weakly periodic configuration 𝜙2 is a 𝐺

(2)
𝑘 -weakly periodic ground state.

We consider
𝜙3 = (1, 0, 1, 1).

1. Let 𝑐𝑏 ∈ 𝐻0, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙3,𝑏(𝑐𝑏↓) = 1, then 𝜙3,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 1, |𝐵+| = 2 and hence,

𝜙3,𝑏 ∈ 𝐶4.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙3,𝑏(𝑐𝑏↓) = 1, then 𝜙3,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3 and hence,

𝜙3,𝑏 ∈ 𝐶4.
2. Let 𝑐𝑏 ∈ 𝐻1, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙3,𝑏(𝑐𝑏↓) = 1, then 𝜙3,𝑏(𝑐𝑏) = 0, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3 and hence,

𝜙3,𝑏 ∈ 𝐶2.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙3,𝑏(𝑐𝑏↓) = 1, then 𝜙3,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3 and hence,

𝜙3,𝑏 ∈ 𝐶2.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙3,𝑏(𝑐𝑏↓) = 0, then 𝜙3,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 1, |𝐵+| = 2 and hence,

𝜙3,𝑏 ∈ 𝐶4.
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This yields that on the set

𝐴2 ∩ 𝐴4 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
a weakly periodic configuration 𝜙3 is a 𝐺

(2)
𝑘 -weakly periodic ground state.

We consider

𝜙4 = (−1, 0,−1,−1).

1. Let 𝑐𝑏 ∈ 𝐻0, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙4,𝑏(𝑐𝑏↓) = −1, then 𝜙4,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0 and hence,

𝜙4,𝑏 ∈ 𝐶4.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙4,𝑏(𝑐𝑏↓) = −1, then 𝜙4,𝑏(𝑐𝑏) = −1, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0 and hence,

𝜙4,𝑏 ∈ 𝐶4.
2. Let 𝑐𝑏 ∈ 𝐻1, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙4,𝑏(𝑐𝑏↓) = −1, then 𝜙4,𝑏(𝑐𝑏) = 0, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0 and hence,

𝜙4,𝑏 ∈ 𝐶2.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙4,𝑏(𝑐𝑏↓) = −1, then 𝜙4,𝑏(𝑐𝑏) = −1, |𝐵−| = 3, |𝐵0| = 0, |𝐵+| = 0 and hence,

𝜙4,𝑏 ∈ 𝐶2.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙4,𝑏(𝑐𝑏↓) = 0, then 𝜙4,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0 and hence,

𝜙4,𝑏 ∈ 𝐶4.
This yields that on the set

𝐴2 ∩ 𝐴4 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
a weakly periodic configuration 𝜙4 is a 𝐺

(2)
𝑘 -weakly periodic ground state

We consider

𝜙5 = (−1, 0, 0, 1).

1. Let 𝑐𝑏 ∈ 𝐻0, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙5,𝑏(𝑐𝑏↓) = −1, then 𝜙5,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0 and hence,

𝜙5,𝑏 ∈ 𝐶4.
b) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙5,𝑏(𝑐𝑏↓) = −1, then 𝜙5,𝑏(𝑐𝑏) = 0, |𝐵−| = 1, |𝐵0| = 0, |𝐵+| = 2 and hence,

𝜙5,𝑏 ∈ 𝐶1.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙5,𝑏(𝑐𝑏↓) = 1, then 𝜙5,𝑏(𝑐𝑏) = 0, |𝐵−| = 2, |𝐵0| = 0, |𝐵+| = 1 and hence,

𝜙5,𝑏 ∈ 𝐶1.
2. Let 𝑐𝑏 ∈ 𝐻1, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙5,𝑏(𝑐𝑏↓) = −1, then 𝜙5,𝑏(𝑐𝑏) = 0, |𝐵−| = 1, |𝐵0| = 0, |𝐵+| = 2 and hence,

𝜙5,𝑏 ∈ 𝐶1.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙5,𝑏(𝑐𝑏↓) = 0, then 𝜙5,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 2, |𝐵+| = 1 and hence,

𝜙5,𝑏 ∈ 𝐶5.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙5,𝑏(𝑐𝑏↓) = 1, then 𝜙5,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 1, |𝐵+| = 2 and hence,

𝜙5,𝑏 ∈ 𝐶4.
This yields that on the set

𝐴1 ∩ 𝐴4 ∩ 𝐴5 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
a weakly periodic configuration 𝜙5 is a 𝐺

(2)
𝑘 -weakly periodic ground state.

We consider

𝜙6 = (1, 0, 0,−1).

1. Let 𝑐𝑏 ∈ 𝐻0, then the following cases are possible:
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a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙6,𝑏(𝑐𝑏↓) = 1, then 𝜙6,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 1, |𝐵+| = 2 and hence,
𝜙6,𝑏 ∈ 𝐶4.
b) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙6,𝑏(𝑐𝑏↓) = 1, then 𝜙6,𝑏(𝑐𝑏) = 0, |𝐵−| = 2, |𝐵0| = 0, |𝐵+| = 1 and hence,

𝜙6,𝑏 ∈ 𝐶1.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙6,𝑏(𝑐𝑏↓) = −1, then 𝜙6,𝑏(𝑐𝑏) = 0, |𝐵−| = 1, |𝐵0| = 0, |𝐵+| = 2 and hence,

𝜙6,𝑏 ∈ 𝐶1.
2. Let 𝑐𝑏 ∈ 𝐻1, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙6,𝑏(𝑐𝑏↓) = 1, then 𝜙6,𝑏(𝑐𝑏) = 0, |𝐵−| = 2, |𝐵0| = 0, |𝐵+| = 1 and hence,

𝜙6,𝑏 ∈ 𝐶1.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙6,𝑏(𝑐𝑏↓) = 0, then 𝜙6,𝑏(𝑐𝑏) = −1, |𝐵−| = 1, |𝐵0| = 2, |𝐵+| = 0 and hence,

𝜙6,𝑏 ∈ 𝐶5.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙6,𝑏(𝑐𝑏↓) = −1, then 𝜙6,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0 and hence,

𝜙6,𝑏 ∈ 𝐶4.
This yields that on the set

𝐴1 ∩ 𝐴4 ∩ 𝐴5 =

{︂
(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
a weakly periodic configuration 𝜙4 is a 𝐺

(2)
𝑘 -weakly periodic ground state.

We observe that in all cases the domain of the intersections of 𝐴1, 𝐴2, 𝐴4 and 𝐴5 is equal to
the set {︂

(𝐽1, 𝐽2) ∈ R2 | 𝐽1 = −(1− 𝛼)

𝛼
𝐽2; 𝐽2 ⩽ 0

}︂
.

Hence, on the set {︀
(𝐽1, 𝐽2) ∈ R2 | 𝛼𝐽1 = −(1− 𝛼)𝐽2; (1− 𝛼)𝐽2 ⩽ 0

}︀
the configurations 𝜙𝑖, 𝑖 = 1, . . . , 6 are weakly periodic ground states. This completes the proof
of the first part of the theorem.
We proceed to proving Statement II. We consider an arbitrary configuration differing from

the configurations in Statement I:

𝜙7 = (1, 1, 0,−1).

1. Let 𝑐𝑏 ∈ 𝐻0, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙7,𝑏(𝑐𝑏↓) = 1, then 𝜙7,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 0, |𝐵+| = 3 and hence,

𝜙7,𝑏 ∈ 𝐶2.
b) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙7,𝑏(𝑐𝑏↓) = 0, then 𝜙7,𝑏(𝑐𝑏) = 1, |𝐵−| = 0, |𝐵0| = 1, |𝐵+| = 2 and hence,

𝜙7,𝑏 ∈ 𝐶4.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙7,𝑏(𝑐𝑏↓) = −1, then 𝜙7,𝑏(𝑐𝑏) = 0, |𝐵−| = 1, |𝐵0| = 0, |𝐵+| = 2 and hence,

𝜙7,𝑏 ∈ 𝐶1.
2. Let 𝑐𝑏 ∈ 𝐻1, then the following cases are possible:
a) 𝑐𝑏↓ ∈ 𝐻0 and 𝜙7,𝑏(𝑐𝑏↓) = 1, then 𝜙7,𝑏(𝑐𝑏) = 1, |𝐵−| = 2, |𝐵0| = 0, |𝐵+| = 1 and hence,

𝜙7,𝑏 ∈ 𝐶7.
b) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙7,𝑏(𝑐𝑏↓) = 1, then 𝜙7,𝑏(𝑐𝑏) = −1, |𝐵−| = 1, |𝐵0| = 1, |𝐵+| = 1 and hence,

𝜙7,𝑏 ∈ 𝐶10.
c) 𝑐𝑏↓ ∈ 𝐻1 and 𝜙7,𝑏(𝑐𝑏↓) = −1, then 𝜙7,𝑏(𝑐𝑏) = −1, |𝐵−| = 2, |𝐵0| = 1, |𝐵+| = 0 and hence,

𝜙7,𝑏 ∈ 𝐶4.
We note that the intersection 𝐴1 ∩ 𝐴2 ∩ 𝐴4 ∩ 𝐴7 ∩ 𝐴10 produces the points (0, 0).
This gives that the configuration 𝜙7,𝑏 is translation-invariant. By a similar method we can

treat the remaining cases. Hence, all configurations excepts ones mentioned in Statement I are
translation-invariant on R2 ∖ (0, 0).
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Remark 3.3. It was proved in work [10] that for the Potts model on the Cayley tree of
order two, as |𝐴| = 1, there exist no 𝐻𝐴-weakly periodic (non-periodic) ground states. At the
same time, for the Ising-Potts model on the Cayley tree of order two, as |𝐴| = 1, there exist
𝐻𝐴-weakly periodic (non-periodic) ground states.

Acknowledgments

The authors express a deep gratitude to professors N.N. Ganikhodzhaev and U.A. Rozikov
for useful advices on the work.

BIBLIOGRAPHY

1. Ya.G. Sinaj. Theory of phase transitions: rigorous results. Nauka, Moscow (1980). [Pergamon
Press, Oxford (1982).]

2. R.A. Minlos. Introduction to mathematical statistical physics. Amer. Math. Soc., Providence, RI.
(2000).

3. U.A. Rozikov. Gibbs measures on Cayley trees: results and open problems // Rev. Math. Phys.
25:1, 112 pp. (2013).

4. N.N. Ganikhodzhaev, U.A. Rozikov. Discription of periodic extreme Gibbs measures of some

lattice models on the Cayley tree // Teor. Matem. Fiz. 111:1, 109–117 (1997). [Theor. Math.
Phys. 111:1, 480–486 (1997).]

5. U.A. Rozikov. A Constructive description of ground states and Gibbs measures for Ising model

with two-step interactions on Cayley tree // J. Stat. Phys. 122:2, 217–235 (2006).
6. U.A. Rozikov, M.M. Rakhmatullaev. Weakly periodic ground states and Gibbs measures for the

Ising model with competing interactions on the Cayley tree // Teor. Matem. Fiz. 160:3, 507–516
(2009). [Theor. Math. Phys. 160:3, 1292–1300 (2009).]

7. M.M. Rahmatullaev. Description of weak periodic ground states of Ising model with competing

interactions on Cayley tree // Appl. Math. Inf. Sci. 4:2, 237–241 (2010).
8. G.I. Botirov, U.A. Rozikov. Potts model with competing interactions on the Cayley tree: the

contour method // Teor. Matem. Fiz. 153:1, 86–97 (2007). [Theor. Math. Phys. 153:1, 1423–
1433 (2007).]

9. F.M. Mukhamedov, U.A. Rozikov, F.F. Mendes. On contour arguments for the three state Potts

model with competing interactions on a semi-infinite Cayley tree // J. Math Phys. 48:1, 013301
(2007).

10. M.M. Rakhmatullaev.Weakly periodic Gibbs measures and ground states for the Potts model with

competing interactions on the Cayley tree // Teor. Matem. Fiz. 176:3, 477–493 (2013). [Theor.
Math. Phys. 176:3, 1236–1251 (2013).]

11. M.M. Rahmatullaev, M.A. Rasulova. Periodic and weakly periodic ground states for the Potts

model with competing interactions on the Cayley tree // Matem. Trudy. 18:2, 112–132 (2015).
[Sib. Adv. Math. 26:3, 215–229 (2016).]

12. F. Mukhamedov, Chin Hee Pah, and H. Jamil. Ground states and phase transition of the 𝜆-model

on the Cayley tree // Teor. Matem. Fiz. 194:2, 304–319 (2018). [Theor. Math. Phys. 194:2, 260–
273 (2018).]

13. F.M. Mukhamedov, M.M. Rahmatullaev, M.A. Rasulova. Weakly periodic ground states for the

𝜆-model // Ukr. Math. Zhur. 72:5, 667–678 (2020). [Ukr. Math. J. 72:5, 771–784 (2020).
14. M.M. Rahmatullaev, D.O. Egamov, F.H. Haydarov. Periodic and weakly periodic ground states

corresponding to subgroups of index three for the ising model on Cayley tree // Rep. Math. Phys.
88:2, 247–257 (2021).

15. M.I. Kargapolov, Ju.I. Merzljakov. Fundamentals of the theory of groups. Nauka, Moscow (1982).
[Springer-Verlag, New York (1979).]

16. M.K. Ramazanova, A.K. Murtazaeva. Phase transitions in the antiferromagnetic layered Ising

model on a cubic Lattice // Pisma ZhETF. 103:7, 522–526 (2016). [JETP Letters. 103:7, 460–464
(2016).]



GROUND STATES OF ISING-POTTS MODEL. . . 55

17. F.A. Kassan-Ogly, A.K. Murtazaev, A.K. Zhuravleva, M.K. Ramazanov, A.I. Proshkina. Ising
model on a square lattice with second-neighbor and third-neighbor interactions // J. Magn. Magn.
Mat. 384, 247–254 (2015).

18. M.A. Magomedov, A.K. Murtazaev, L.K. Magomedova. Phase transitions in the Potts model on

triangular lattice // Vestn. Dagestan. Gosud. Univ. Ser. 1. Estestvenye nauki. 32:4, 14–24 (2017).
(in Russian).

19. A.B. Babaeva, M.A. Magomedov, A.K. Murtazaev, F.A. Kassan-Ogly, A. I. Proshki. Phase
transitions in a two-dimensional antiferromagnetic Potts model on a triangular lattice with next-

nearest neighbor interactions // ZhETF. 149:2, 357–366 (2016). [J. Exper. Theor. Phys. 122:2,
310–317 (2016).]

20. M.M. Rahmatullaev, D.J. Dekhkonov. The Potts model on a Cayley tree: the new class of Gibbs

measures // Preprint: arXiv:2211.12128 (2022).

Muzaffar Mukhamadzhanovich Rahmatullaev,
Insitute of Mathematics named after V.I. Romanovsky
of the Academy of Sciences of the Republic of Uzbekistan,
Universitetstkaya str. 9,
100174, Tashkent, Uzbekistan
Namangan State University,
Uyci str. 316,
160136, Namangan, Uzbekistan
E-mail: mrahmatullaev@rambler.ru

Begzod Mukhtorzhonovich Isakov,
Andijan State University,
Universitetstkaya str. 129,
170100, Andijan, Uzbekistan
E-mail: begzod1981bek@gmail.com


