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LOCAL AND NONLOCAL BOUNDARY VALUE PROBLEMS
FOR GENERALIZED ALLER-LYKOV EQUATION

S.KH. GEKKIEVA, M.A. KEREFOV, F.M. NAKHUSHEVA

Abstract. In mathematical modelling of solid media with memory there arise equations
describing a new type of wave motion, which is between the usual diffusion and classical
waves. Here we mean differential equations with fractional derivatives both in time and
spatial variables, which are a base for most part of mathematical models in mechanics of
liquids, viscoelasticity as well as in processes in media with fractal structure and memory.

In the present work we present a qualitatively new moisture transfer equation being
a generalization of Aller-Lykov equation. This generalization provides an opportunity to
reflect specific features of the studied objects in the nature of the equation such, namely, the
structure and physical properties of the going processes, by means of introducing a fractal
velocity of moisture varying.

The work is devoted to studying local and nonlocal boundary value problems for inho-
mogeneous Aller-Lykov moisture transfer equation with variable coefficients and Riemann-
Liouville fractional time derivative. For a generalized equation of Aller-Lykov type we
consider initial boundary value problems with Dirichlet and Robin boundary conditions as
well as nonlocal problems involving nonlocality in time in the boundary conditions. Assum-
ing the existence of regular solutions, by the method of energy inequalities, we obtain apriori
estimates in terms of Riemann-Liouville fractional derivative, which imply the uniqueness
of the solutions to the considered problems as well as their stability in the right hand side
and initial data.

Keywords: Aller-Lykov water transfer equation, Riemann-Liouville fractional derivative,
Fourier method, apriori estimate.

Mathematics Subject Classification: 35E99

1. INTRODUCTION

The issues of heat and moisture transfer in soils are fundamental in solving many problems
in hydrology, agricultural physics, building physics and other fields in science. The researchers
focus their attention on the possibility of describing specific features of the studied objects, their
structure, physical properties of the ongoing processes and others by mathematical equations
[1, Ch. 6]. Because of this there arises a qualitatively new class of differential equations of
state and transfer with fractional derivatives being the base for many mathematical models
describing a wide class of physical and mathematical processes with a fractal structure and
memory [2, Ch. 5.

As an example of such model describing the transfer of soil moisture with taking into con-
sideration the motion against the moisture gradient as well as of the fractal structure of the
soil, a generalized Aller-Lykov transfer equation can serve:
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where D, is an operator of the fractional Riemann-Liouville differentiation [2], 0 < o < 1, Ay,
A = const > 0, k(x,t) is a diffusion coefficient, f(z,t) is the density of the moisture sources.
For a function u(z,t) depending on two variables, the operator of partial integral-differentiation
Dg,u(x, 7) in the variable ¢ is described in the same way as for a function of one variable, while
the second variable x is treated as a parameter. For instance, in the case 0 < a < 1 we have:

t
o B 1 0 u(z,T)
Pl(e:1) = RT3 | i
0

The moisture transfer equation in the local setting (as @ = 1) were considered in works
by many authors and were solved by the separation of variables method, by the method of
apriori estimates as well as by numerical methods. Among recent works we mention [3], [4], in
which there were obtained apriori estimates for solutions to nonlocal problems for Aller-Lykov
moisture transfer equation in differential and difference setting, as well as works [5]-[7], in which
the Aller-Lykov moisture transfer with a fractional time derivative was studied with boundary
conditions o various types.

In [8] a unique solvability of Dirichlet boundary value problem for the Aller-Lykov equation
with constant coefficients was proved. In work [9] there was studied the Neumann boundary
value problem.

In [I0] for generalized Aller and Aller-Lykov equations with Dirichlet boundary conditions
there were obtained solutions for a system of difference equation with constant coefficients
arising while using the methods of straight lines. There were obtained apriori estimates, which
implied the convergence of solutions to a system of ordinary fractional differential equations
with varying coefficients.

The present paper is devoted to studying local and nonlocal boundary value problems for
moisture transfer of Aller-Lykov type with varying coefficients and with the fractional Riemann-
Liouville derivative
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A1 Dg;m u + Dgu = 5 <k<x’t)8x) + DOt(’?x (n(x)ax) q(z, t)u+ f(z,t). (1.1)

We shall study equation (1.1)) by the method of apriori estimates.

2. LOCAL BOUNDARY VALUE PROBLEMS FOR INHOMOGENEOUS
ALLER-LYKOV EQUATION WITH FRACTIONAL TIME DERIVATIVE

In a rectangle Qpr = {(x,t): 0 <z <!, 0 <t < T} we consider equation (1.1). A regular
solution of equation (1.1]) in Q7 is a function v = u(x,t) in the class

Dg“t_lu(x,t), Dgu(x,t) € C (QT) : Dg“tﬂu(x,t), Uzz (2, 1), Dty (z,t) € C (1),

which satisfies equation (1.1)) at all (z,t) € Q7.
~ We consider the Dirichlet boundary value problem for equation (1.1) in a closed rectangle
Qr={(z,t): 0< <, 0<t<T}:

u(0,t) = u(l,t) =0, 0<t<T, (2.1)
(2.2)

N
8
N

P_{%D(()lt_lu(xat) :Uo(l’)a lg%Dgtu(xat) :Ul(l’), 0

where ug(x), uq(z) are given functions.

In what follows we assume the existence of regular solutions for the considered problems.
By M;, i =1,2,..., we shall denote positive constants depending only on the given data of a
considered problem.



LOCAL AND NONLOCAL BOUNDARY VALUE PROBLEMS. .. 23

We define a scalar product and a norm as follows:
!

(@b) = [abds,  (e0) = al};
0

where a, b are given functions on the segment [0, ].
2.1. Apriori estimate for solution to Dirichlet boundary value problem.
Theorem 2.1. If
ko(z,t), nu(2), k(z,t), q(z,t), flz,t)€C(Qr); w(z)e Cl0,l]; wuo(z)e C0,]]

and
0<c <k(xt); nx), qlat)<cy k, ¢ <0 everywherein Qr
o(l

) = 0 is obeyed, then for a solution of problem (1.1 (-) (-) an

and the condition ug(0) =
apriort estimate

|Dgally + 11Dgul3 0, + IDGel3 0, < M (1 B, + luo(@) g0y + Il @)IF)  (23)
holds, where

Diyully0, = /HD u(@,m)lodr, (@) iz = lluo(@)5 + llup(@) 1§ + llug (2)II5-

Proof. We introduce a new unknown function g(z,t) by letting

a—1

u(z,t) = g(x,t) + muo(:c) (2.4)

so that g(z,t) is a deviation of the function u(x,t) from a known function %uo(w). In view
of [11],
Dyttt =0, Dyt '=0, D't =T(a)
and the function g(z,t) is determined as a solution of the equation
AiDG g + Diyg — (kga), — Dgy (092), + a9 = Fla,t), 0<z <l 0<t<T,  (25)

with the initial conditions

ta—l
i Do, 0) =ty D5 () = Fofe)) = wofe) = 300 iy DG4 o,
%

r
50 o (cv ( )(Oé) (2.6)
) N L o B o _ Uo\T) .. o ga—1 _
i Do) =l 8 (u(o,1) — f—sunlo) ) = (o) = 0 iy D~ = ()
and boundary conditions
9(0,) = g(L,) =0, 0<t<T, (2.7)

where
a—1

Tla) (Kag() + kug () + nzug () + nug(r) — quo(r)) .

We shall obtain an apriori estimate in terms of the fractional Riemann-Liouville derivative; in
order to do this, we calculate the scalar product of equation (2.5 with

1 0 tg(a:,T)dT
F(l—a)ao/ (t—71) "

F(x,t) = f(x,t) +

DOtg =
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We get:
(A1D3t+19= DOtg) + (Doeg, Diyg) — ((kga), - Dvg)
— (DG, (ngz), Dmg) (qg, Dgg) = (F, Dgig) -
We transform the terms in identity by using , :

I t t
atl 1 6_2 / gle,T)dr 1 0 / g(x,T)dr
(D59, Divg) = A / rl—a)ot? ) (t—7)eT(1l-a)ot) (t—71) d
0 0 0

l
Ay 0 o A2 A, 0
:7 &( Otg) dw:ya” 0t9||o,

0
(Dgrg, Dgrg) = || Dy, 9“07

(thoe)s D39) = ey [ (oo g [ e

0
! ¢
o ooy 1 0 (ngz),dr 0 /g(x,T)dT
(DOt (ngx)anOtg) - F2( ) / 8t / 815 dl‘
0 0 0

1 0 [ gu(z,T)dT
Cl/ P(l —a) at/ (t_T)a de = —¢ ” otJ Ho

0 0
To estimate the right hand side in (2.8]), we use the Cauchy-Schwarz inequality and e-inequality
[12):

(F, Dg) < ||F||o +e|Dglly, > 0.

In view of the obtained inequalities by . we find:

l
A, 0

3 o | Dy 9||o+||D 9”0 F(l_a)o/kgx( ) / (t ) e (2.9)

1
a 2
+ e D5z llg + (a9, Divg) < - I Fllg + € [ DGgll; -

oY
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We integrate (2.9) over 7 from 0 to ¢ :

ga: Z, 7'1 d7'1
A gl + /uDngas S /dr/kgx r)e / e

cl/HDOTgx(x,Tl)H?)dT—{—ﬁ/aﬁ/qg(z ﬂi/%m (2.10)

0 0
Ay
EFIEg, +e / D59 7[5 + S (D) (2, 0)

We are going to prove that the triple integrals in the left hand side of the latter inequalities
[13, Ch. 2]. We introduce the notations:

l t

1= [do kot [ &

0 0 0
¢
_sinm(l—a) 0 [ go(z,71)dn
iz t) = 7r 815/ (t—m)~
0

Then in view of the resolving formula for the integral Abel equation [14] we have

l t
F d
J = /dx/kleT)dT/M.
sin 7 ( 1—05 (t — 7))@
0 0

Using the formula for the Gamma function

o0

r
/t“_lcosktdt:%cos%r, k>0 0<p<l,
0

for k= (r — 1), p =1 — a we obtain

1 1 o
- “*cos&(t — 1 )dE,
(t=m)"" D1 —a)cos S527 0/5 §(t —7)dg

while for the initial integral we get

t T

! oo
™
J = dz | kFy(z,7)dr | F i [ Y
sin(1 — a)I(1 — @) cos ¢ 0/ :E/ V(z,7) / (2, 7m) 710/5 cos&(t — ) dé

0

o0

cos(l a)ﬂ/da:/kleTdr/leﬁ dﬁ/f “cos&(T —m)dE.
0

Interchanging the integration order, we have:

J:cos — a)w /dx/§ adﬁ//{:Fl x,t) coszdT/ 1(z, 1) cosEmdr
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l T

/ dx / £ode / kFy(z,7)sinérdr / Fi(z,m)sinéndn

0
- 2

—% /dm/f O‘df/ x,T) /Fl(x,rl)COSTlgdﬁ dr

T

- 2

+ O/Idx(jgadﬁo/k(x,r) O/Fl(l‘,T) sin m&dm dt

-
By integration by parts the latter identity is transformed to the form
2

T

l [ee]
T
J:(;'I‘) /dm/g—ak /Fl(x,ﬁ) cos T &dm
QCOS% , J o

27 l oo t 2

+ /Fl(x,Tl)sin71§d7'1 dﬁ—/dx/{‘adﬁ/k; /F1 x, 1) cos T1€dm
0 0 0

0

- 2

- /Fl(x,ﬁ) sin 7 &dm
0

Under the condition & < 0, since I'(a) > 0, 0 < cos L=2)" 5 )™ 1, we obtain that J > 0.
Thus, under the conditions k;, ¢; < 0, the triple integrals in the left hand side in inequality

(2.10) are negative.

Strengthening inequality (2.10]), we obtain

AHM)ﬂb+21_5/megxﬁmwh+2ﬁ/wDﬂthm%W

<% IE(13 g, + Al ()15,

and this implies the estimate

2 2
10301+ 105010, + 1050120, < M (IF I, + ()2
or, returning back to u(x,t), we arrive at (2.3). The proof is complete. O

Remark 2.1. Inequality implies the uniqueness of solutio to problem f. In-
deed, let u be a solution to the inhomogeneous problem, that is, f = ug = u; = 0. Then by

we have
| D5, UHO + || D5, UHQ ot | D, Um“z Q= = 0.
Applying the generalized Newton-Leibnitz formula |11

a—1
—a o _ a—1
Dy Dgu(x,t) = u(x,t) — T(a) 151(1) D§ u(z, t),
wn particular, we get
a—1 a—1

lim Dy M u(w, t) =

u(z,t) = o) i muo(x) =0 in Qp.
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2.2. Apriori estimate for solution to Robin boundary value problem. We consider
a Robin boundary value problem for equation (1.1) in the domain Q7 with the boundary

conditions
{ H(07 t) = Bl <t>u(0> t) ! (t>7
—II(l,t) = Bo(t)u(l, ) — pa(2)
and initial conditions (2.2), where II(z,t) = k(z, t)u, + D§, (nuy) .

(2.11)

Theorem 2.2. If, in additions to the assumptions of Theorem 2.1, the relations
ﬁl? 52 € Cl[OaT]a M1, M2 € C[OaT]>
B, B2 = co > 0; Bt < 0; Boy <0 everywhere in€;
hold as well as the condition uy(0) = uo(l) = uy(0) = uy(l) = 0, then a solution of problem

(2.1, , (2.9) satisfies an apriori estimate

1D5yully + 1D5yull5 g, + I1D5tsll5 g,
t

<M(||f||§,@ T / (12 + 13) dr -+ luo(@) |20 + ||u1<x>||3>.

0

(2.12)

Proof. We introduce a new unknown function g(z,t) by formula (2.4). As a result we obtain
that the function g(x,t) should solve equation (2.5)) with initial conditions (2.6)) and boundary

conditions
T,(0,4) = By()g — u(t), o =0,
{ 1(0,8) = Bi(t)g — m(t) (2.13)
—ILi(lt) = Ba(t)g — pa(t), =1,
where I1;(z,t) = k(z,t) g, + D§, (ng.) -
Then we transform the terms in (2.8)) by using (2.6, (2.13)) and we obtain:
N A0
(A D0t+1g7D0tg) 9 ot D591l »
(Dorg, Divg) =11 Dg, gHo,
((kga), » Dig) =kga (1) Dgyg (1, 7) — kg (0,£) Dig (0, 7)
I
d
L frutend ens,
I(l—a) (t—1)
0
(DG (n9z), » Dovg) <Dg; (0 (1) go(l, 7)) Diig(l, 7)
- Dgt (7(0) 92(0,7)) D5,9(0,7) — 1 ||D0t9x||0>
(F, DGg) < ||F||o+€||D gl €>0.
In view of the obtained inequahtles in (2.8) we have
I t
Al 0 ga:(l’,T)dT
D¢, Dy, kg, — d
L L e 8/ s
0
1 0 [ gz 7)d (2.14)
g(x,7)dr -
Dg,9. _— EAS Al |
+er 1Dy ||o+m_a)/qg< >8t/ i
0

||F||o +e||Dgglls + (2, t) Dgyg(x, 7)1 -
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Let us estimate the last term in the right hand side of inequality (2.14):
I (2, 1) Dgyg(x, 7) |y =Dgig(l, 7) (kg (1, 1) + DG (n (1) (1, 7))
— DG9(0,7) (kg (0,2) + Dg; (1(0)92(0, 7))
=DGig(l,7) (n2(t) = Bag) — Diig(0,7) (Brg — pa(t))
=DGg(l, 7)pa(t) — Dgig(l, 7)fag (1,1)
— Dg (0,7) B1g (0,1) + Dyg (0, 7) pa (¢)

1
< - Dgtg(la 7)629 (la t) DOtg (07 7-) 519 (07 t) + 5(“% + ,U,g)

+ 2 (D5 (0,72 + (D (7)),

2
Taking into consideration the obtained estimate, by (2.14)) we arrive at the inequality
Ay 0

1Dg.9llo + 11 D6.allg + Dg: (0,7) 819 (0, 8) + Dgyg (1, 7) g (I, 1)

(kgz, D§,g.) + 1 | Dgg.|lo + (a9, Dg.g)

2 0t

1
—(pi + p13)

LIFIZ+e D59l + 5
¥ ; (D59 (0,7))* + (Diyg (L7))?)

We integrate the latter inequality over 7 from 0 to ¢ :
t

Dggll? + / ID2g|2dr + / B1g (0,7) Deg (0,m) dr + / Bag (1,7) Dsog (I, ma) dr
0

t t

/ kg, Digs) dr + 1 / 1D, g |2 dr + / (a9, D5.g) dr

0 0
t

1 . 1
<t / IFI3dr +e / D5 gl dr+ 5 [+ siyar
0 0 0
t

+%/ ((Dg.g(0,71))* + (Dg-g (1,m))%) dr + —

0

A

L (Dgug) (0.

Under the conditions k; < 0, ¢; < 0, 1 < 0, [y < 0, strengthening this inequality, we obtain

« 1 «
S IDggli+ / D591 dr+ / 1D5.0eldr < o [ IFIEdr+= [ 1059l dr
0

t

+3 / (it + 1) dr+ 5 [ (Dig Om)) + (Dig (7))

0 0
A
+ S I(Dug) (, 0)2

In view of the estimates [15]

. 2 1
(D59 0,0 < <D 13+ (2 4 7 ) 1069l
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(D9 ) < £ [Pl + (24 1 ) 15l

we obtain

A (0%
Dl + (1-c (2 ))Q/HD oli3dr + cl—st/anyamdr

t
1 1 A,
<E/Wﬂﬁw+g/hu+wwr+ = (Dgg) (2, 0)]5
0 0

or
t

t
|W9%tﬂwg%w+/W%%Mh<% J1EIzar+ [+ i) dr+ o)l
0 0
Returning back to u(z,t), we obtain (2.12), and this implies the uniqueness of the solution to

problem (1.1}, (2.11), (2.2). The proof is complete. ]

3. NONLOCAL BOUNDARY VALUE PROBLEM FOR INHOMOGENEQUS
ALLER-LYKOV EQUATION WITH FRACTIONAL TIME DERIVATIVE

Many works were devoted to problems with nonlocal boundary conditions including work
[16], which has already become classical. It is conventional [I7] that nonlocal problems are ones
involving conditions relating the value of the values of the sought solution and/or its derivatives
at different points on the boundary or on the boundary and at some internal points.

Problem 3.1. We consider a nonlocal boundary value problem for equation in the
domain Qp with the boundary conditions

{ [2(0,7) = B1(t)u(0,1) + Dgu(0,7) — pu (2),
—My(l 1) = Ba(t)ull,t) + Dgull, 7) = pa(t)
and initial conditions (2.3), where Iy(z,t) = k(x,t)u, + D, (nuy).

(3.1)

Nonlocal boundary value problems involving time nonlocality in the boundary conditions
were first studied by A.I. Kozhanov [I8]. Boundary value problems for the moisture transfer
with such boundary condition were also considered in works [19], [20].

Theorem 3.1. Under the assumptions of Theorem 2.2 a solution of problem (1.1), (3.1),
2.2) satisfies the apriori estimate

t

umtﬂWz%M+/wﬁ%mm+/ww@nW+wwmem

0

t
<m</w%hﬁ/w+@www%m%%mﬂmum)
0

0

(3.2)

Proof. For a new unknown function g(z,t) we obtain equation (2.5)) with initial conditions ({2.6)
and boundary conditions
{ [5(0,%) = £1(t)g(0, 1) + DGg(0, 1) — pua (¢),
I3

(1, 1) = Bo(t)g(l,t) + DSg(l,t) — pa(t), (3.3)
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where I3(x,t) = k(x,t)g, + D§, (ng:) . In view of (3.3)), the latter term in the right hand side
in inequality (2.14) is represented as

HSDgtg‘o =Dgg (I, 7) (kg (I, 1) + Dg, (n (1) g2 (1, 7)))
— Dg;g (0, 7) (kg (0,1) + Dg; (1 (0) 9:(0,7)))
=Dgg (1, 7) (pa(t) = P2 (8) g (1, 1) = Dgyg (1, 7))
— Dgig (0,7) (B () g (0,8) + Dig (0,7) — pa(t))
+ D9l m)pa(t) — Dgg(l, 7)P2g (1, 1) — Diyg(L, ) Diyg (1, 7)
+ Dy (0,7) pa (t) — Dgyg(0,7)Brg (0,8) — Dyg (0,7) Dy (0, 7) -
Let us estimate the sum pus(t)D%g(1,t) + p1(t) DSg(0,t):

o o 1 o 2 1
0 D5a(0.) + 1aD30(00) < 300 +48) + (£ 1D5ate. 01 + (24 7) 1Dl )

Taking into consideration the above obtained estimate, by (2.14) we have

Saposal+ (1= (247) ) D8l + (ko D) + (c1 =) 1 Dl
 a D)+ 50D )a ()4 () D071 0.1 (3.4)
+ (D) + (D01 < 1= IFIE + 20 + 3.

We integrate (3.4) over 7 from 0 to ¢ :
t

S |Dgl+v (e / 1D gl dr + / kg, DEg2) d7 + 11 (e / 1D gu 12 dr

0
t

T / (a9, Di.g) dr + / Bog(l, 7) DG (1, 71 )dr
0

0
t

+/ﬁlg (0,7) DS?(O’Tl)dTJr/(Déﬁg(l;ﬁ))Z)+(DS“TQ(O,Tl))QdT
0 0

1 1 A,
Sk / 171l dr + 5 / (1 + ) + - [ (DGg) (.05

where v(e) =1 —¢ — (g—i—%),yl(s)—cl—s
Under the conditions k; < 0, ¢, <0, 1y <0, By < 0 we can strengthen the latter inequality.
As a result we get

t

S 1Dl + (e / D59l dr -+ / D5 gelid+ [ (Dfg(t. ) + (D500.7))% dr

0
A
= / |FI2dr + / (12 + 1)dr + 5 s ()2

This implies estimate (3.2)), which proves the uniqueness of solution to problem (L.1)), (3.1,
(2.2). The proof is complete. O
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Problem 3.2. In problem , , we replace boundary conditions by ones
of form

{ IL(0,¢) = Ai(t) (u(0,) + D5 (0, 7)) — (L), (3.5)

—Iy(1,t) = Ba(t) (u(l,t) + D Mull, 7)) — pa(t). '

Theorem 3.2. If the assumptions of Theorem 2.2 are satisfied, then a solution of problem

, , 2.9) satisfies an apriori estimate

o 2 o 2
HD UHo + HD UH2 KoN + ||D ux”2 Q (DOt lu(l,T)) + (DOt 1“(0>7'))

t

(3.6)
<M | Iz, + / (11 + p3)dr + [Jua ()15 + u5(0) + ug (1)
0
Proof. We calculate the scalar product of equation (1.1)) with Dgu :
(AngtH“ DOtu) (DG, Dgyu) — ((kug), , Dgw) (3.7)
— (D, (nug),. , Dgyu) + (qu, Dgyu) = (f, Dgu) -
We reproduce the same arguing as in the proof of inequality (2.14)), then we obtain
! t
Ay 0 2 1 0 [ uy(x,7)dr
Dy, D¢, —— [ kug(z,t —
gl bl [l g [t [ 2
0
L 0 [ ulz,m)d (3.8)
u(z, 7)dr :
+ ClHDOtUx”o + —F(l — ) /C]U(%t)a / —(t e dx
0 0
< My (e, 1) Diyule, 7)] | + HfHo+€||D ullo:

In order to obtain an apriori estimate, we use (3.5) in order to transform the first term in
the right hand side of inequality (3.8]):

H4Dgtu‘0 =Dgu(l, 7) (kuy (1, t) + Dg, (n (1) ue(I,7))) — Dgu (0, 7) (k:uz (0,1)
+ D (1(0) ug(0,7)) ) = Dggu (1, 7) (p2(t) = B (t) (w(l,t) + Dgy 'u (1, 7))
— Dgyu (0,7) (ﬁl (t) (u (0,t) + Dgtilu (0, 7')) - Ml(t))
=Dgyu(l, T)ua(t) — Dggu(l, 7)Ba(t)u (I, t) — Dgyu(l, 7)Ba(t) Doy u (1,7)
+ D (0, 7) pur (t) — Dgpu(0,7)51 () w (0, t) — Dgyu (0, 7) B () Dy u (0, 7).
Taking into consideration the estimates

13

Dgu(l, 7)Ba(t )Dtc)ytillL(l?T) 28t (Dgt ! u(l, T))2a
Diu0,7)5: (1) D (0. 7) > eoy o (D~ (0, 7))
by (3.8) we find that
40 Dg, 1 2,1 Dg kg, D D§
Fophosall+ (12— (24 3) ) 105l + (o D) + (1 = ©) 1D
(D) + Dl 7)ul. ) + OG0, 1u(0,0) (3.9)
0 0 0 0
O (D5t )+ D (D5 u(0,7)” < AR+ 50+ ).
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We integrate (3.9) over 7 from 0 to ¢ :

S Dl +v (e / D ulldr + / (bt D) dr 14 ¢ / 1D, dr

t t

+0/(qu Dg u)dr U/ﬁgu(l ,7) D u (l,Tl)dTJr/51U(O,T)D(°)‘Tu(0,7'1)d7'

+%O [(Dgéflu(l,r)) (Dgt 1 u(0, ) /Hf||0d7+ /(Mf +M§) dr

Ay C o a—
+ 5 1(D5) (2. 0)ll5 + 3 (Df Hu(t.0)° +§(Dm fu(0,0)°,

where v(e) =1—¢e— (2+ 1), m(e) =1 —e.

5 l

Under the conditions k; < 0, ¢; < 0, B¢ <0, By < 0 we strengthen the latter inequality. As
a result we obtain the estimate

o 2
S Dl + v (e / D5l dr + 11 ¢ / D5, + [ (D5 utt. )

A
+ (Dg a0, 7) / 1713+ / (12 + )dr + 5L (D5 (2,0)

+ 5 (Df " u(l,0))” + 3 (D~ u(0,0))°

which implies desired estimate (3.6) and it proves the uniqueness of solution to problem ([1.1]),

(3.5), (2.2)). The proof is complete. O
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