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NEGATIVE BINOMIAL REGRESSION

IN DOSE-EFFECT RELATIONSHIPS

M.S. TIKHOV

Abstract. This paper is devoted to problem on estimating the distribution function and its
quantiles in the dose-effect relationships with nonparametric negative binomial regression.
Most of the mathematical researches on dose-response relationships concerned models with
binomial regression, in particular, models with binary data. Here we propose a kernel-based
estimates for the distribution function, the kernels of which are weighted by a negative
binomial random variable at each covariate. These covariates are quasirandom van der
Corput and Halton low-discrepancy sequences. Our estimates are consistent, that is, they
converge to their optimal values in probability as the number of observations 𝑛 grows to
infinity. The proposed estimats are compared by their mean-square errors. We show that our
estimates have a smaller asymptotic variance in comparison, in particular, with estimates
of the Nadaraya-Watson type and other estimates. We present nonparametric estimates for
the quantiles obtained by inverting a kernel estimate of the distribution function. We show
that the asymptotic normality of these bias-adjusted estimates is preserved under some
regularity conditions. We also provide a multidimensional generalization of the obtained
results.
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1. Introduction

The problem on estimating an unknown distribution is the most important problem in mathemat-
ical statistics for both complete and incomplete samples. In this paper we consider the problem of
constructing efficient estimates of a distribution function 𝐹 (𝑥) and a quantile function 𝐹−1(𝜆) = 𝑥𝜆,
0 < 𝜆 < 1, in the dose-effect relationship for a model of a negative binomial regression, and we also
study the asymptotic behavior of the proposed estimates. The aim of our paper is to provide usable
practical estimates of dose-response curves. Such problems arise in biology [1], toxicology [2], in the
evaluation of effective doses of drugs [3]. We note also that «dose-effect relationship» is a conventional
name. The model we consider can be used, for example, to estimate the confidence time limits for
the developmental stages of a child in pediatrics (see [1], [4]–[6]). This problem is most acute when
estimating quantiles of either small or relatively high levels.

There are two main approaches to estimating 𝐹 (𝑥) and its quantiles: a parametric approach using
known distributions, in particular, the probit- and logit-models, and a nonparametric approach. The
biological mechanisms of drug action and toxicity are often so complex that the shape of the 𝐹 (𝑥)
curve is mostly unknown and fitting a wrong model can lead to large and unpredictable deviations
with unacceptable confidence boundaries. In this case, for the dose-response relationship, it becomes
reasonable to use a non-parametric approach, which is as follows. There is a binary response model,
which is conventionally called dose-effect relationship [3], [7]. Namely, let {(𝑋𝑖, 𝑈𝑖), 1 ⩽ 𝑖 ⩽ 𝑛} be a
potential sample with replacement of an unknown distribution

𝐹 (𝑥)𝐺(𝑥), 𝐹 (𝑥) = P(𝑋𝑖 < 𝑥), 𝐺(𝑥) = P(𝑈𝑖 < 𝑥),
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instead which we observe the sample

𝒰 (𝑛) = {(𝑈𝑖,𝑊𝑖), 1 ⩽ 𝑖 ⩽ 𝑛},

where𝑊𝑖 = 𝐼(𝑋𝑖 < 𝑈𝑖) is the indicator of the event (𝑋𝑖 < 𝑈𝑖). The problem is to estimate an unknown

distribution function 𝐹 (𝑥) by the sample 𝒰 (𝑛). Here 𝑈𝑖 are treated as doses and 𝑊𝑖 as the effect of
the dose 𝑈𝑖. Let

𝐹 (𝑥) =

∫︁ 𝑥

−∞
𝑓(𝑡) 𝑑𝑡, 𝐺(𝑥) =

∫︁ 𝑥

−∞
𝑔(𝑡) 𝑑𝑡, 𝑓(𝑥) > 0, 𝑔(𝑥) > 0.

We call such situation a random plan of experiment. Then the conditional expectation is equal to

E(𝑊 |𝑈 = 𝑥) = P(𝑋 < 𝑈 |𝑈 = 𝑥) = P(𝑋 < 𝑥|𝑈 = 𝑥) = P(𝑋 < 𝑥) = 𝐹 (𝑥),

that is, the unknown distribution function 𝐹 (𝑥) is a regression and to estimate 𝐹 (𝑥) by the sample

𝒰 (𝑛) = {(𝑈𝑖,𝑊𝑖), 1 ⩽ 𝑖 ⩽ 𝑛} we can use kernel regression estimates.
Together with a random plan we shall consider fixed plans of experiment [8]. Namely, we suppose

that the injected dose 𝑈 is not random and we let 𝑈𝑖 = 𝑢𝑖, 𝑖 = 0, 1, . . . , 𝑛+ 1, where

0 = 𝑢0 < 𝑢1 < . . . < 𝑢𝑛 < 𝑢𝑛+1 = 1.

In the paper we study the behavior of kernel estimates by the fixed plans.
For the dose-effect relationship with random plans of experiment and binary responses [3], [7], as an

estimate for the distribution function 𝐹 (𝑥), one usually takes the statistics

𝐹𝑛(𝑥) =
𝑆2𝑛(𝑥)

𝑆1𝑛(𝑥)
, 𝑆1𝑛(𝑥) =

1

𝑛

𝑛∑︁
𝑖=1

𝐾ℎ(𝑥− 𝑈𝑖), 𝑆2𝑛(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

𝑊𝑖𝐾ℎ(𝑥− 𝑈𝑖),

if 𝑆1𝑛(𝑥) ̸= 0, where 𝐾ℎ(𝑥) = 𝐾(𝑥/ℎ)/ℎ, 𝐾(𝑥) is a finite symmetric density (kernel), ℎ = ℎ(𝑛) → 0,
𝑛ℎ → ∞ as 𝑛 → ∞. If 𝑆1𝑛(𝑥) = 0, then 𝐹𝑛(𝑥) is supposed to be zero. For instance, as the kernel
function 𝐾(𝑥) one often uses Epanechnikov kernel

𝐾1(𝑥) =
3

4
(1− 𝑥2)𝐼(|𝑥 | < 1),

as well as quartic kernel

𝐾2(𝑥) =
15

16
(1− 𝑥2)2𝐼(|𝑥 | < 1),

as ℎ(𝑛) one chooses 𝑛−1/5.

Under some regularity conditions, see [7], it turns out that as 𝑛 → ∞, the quantity 𝑛2/5(𝐹𝑛(𝑥) −
E(𝐹𝑛(𝑥))) is asymptotically normal 𝑁(0, 𝜎2(𝑥)), where

𝜎2(𝑥) = 𝐹 (𝑥)(1− 𝐹 (𝑥))
‖𝐾 ‖2

𝑔(𝑥)
, ‖𝐾 ‖2 =

∞∫︁
−∞

𝐾2(𝑥) 𝑑𝑥.

For fixed plans of experiments the dispersion of the estimate 𝐹𝑛(𝑥) equals

𝜎21(𝑥) = 𝐹 (𝑥)(1− 𝐹 (𝑥))‖𝐾 ‖2.

The dose-effect relationship in the model with binomial regression, see, for instance, [9], [10], can be
described as follows. Suppose that the response 𝑊𝑖𝑗 is equal to 1 if it gives a needed reaction and
𝑊𝑖𝑗 = 0 if there no reaction, which is observed on each fixed covariate 𝑢𝑖.

Thus, 𝑊𝑖𝑗 is the 𝑗th response of 𝑚 subjects when the covariate is equal to 𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑛, and the
responses 𝑊𝑖𝑗 are mutually independent. The relation between them is determined by the probability
that 𝑊𝑖𝑗 = 1 under condition 𝑢𝑖:

𝐹 (𝑢𝑖) = P(𝑊𝑖𝑗 = 1) = P(𝑋𝑖𝑗 < 𝑢𝑖),
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where 𝑊𝑖 =
𝑚∑︀
𝑗=1

𝑊𝑖𝑗 has a binomial distribution 𝐵(𝑚, 𝑝𝑖) with the parameter 𝑝𝑖 = 𝐹 (𝑢𝑖), and it is

well-known that the maximal likelihood for 𝑝𝑖 is given by the quotient 𝑤𝑖 =𝑊𝑖/𝑚 for each 𝑖. The data
(𝑢𝑖, 𝑤𝑖), 𝑖 = 1, 2, . . . , 𝑛, allow us to construct an estimator for the distribution function of the form

𝐹𝑛(𝑥) =

𝑛∑︀
𝑗=1

𝑤𝑖𝜂𝑖(𝑥)

𝑛∑︀
𝑗=1

𝜂𝑖(𝑥)

, 𝜂𝑖(𝑥) = 𝐾ℎ(𝑥− 𝑢𝑖).

For 𝑚 = 1 we have a Bernoulli regression model. It was shown in [11] that for a fixed 𝑥 the

difference
√
𝑛ℎ(𝐹𝑛(𝑥) − E(𝐹𝑛(𝑥))) is asymptotically normal 𝑁(0, 𝜎21(𝑥)/𝑚) as 𝑛 → ∞. At the same

time in each fiber we consider a sampling without replacing, in which the parameter 𝑝𝑖 = 𝐹 (𝑢𝑖) of
the binomial distribution is not random. For a sampling without replacement we can suppose that
the parameter of the binomial distribution is random, for instance, it has a Beta distribution B(𝛼, 𝛽).
In this case we obtain a Beta-binomial distribution, then instead of the parameter 𝑝𝑖 we have the
parameter 𝛼𝑖/(𝛼𝑖+𝛽𝑖) and as its estimate we take 𝑚1,𝑖/𝑊𝑖 as ML-estimate of «mean» probability and
«mean» distribution function.

In this note, announced in [12], we consider a negative binomial regression model (NBR-model).
More precisely, for a given 𝑚 we consider a negative binomial distribution of the quantities 𝑍𝑖 under
a given covariate 𝑢𝑖:

P(𝑍𝑖 = 𝑘) =
Γ(𝑘 +𝑚)

Γ(𝑘 + 1)Γ(𝑚)
𝑝𝑚𝑖 (1− 𝑝𝑖)

𝑘−𝑚, 𝑘 = 𝑚,𝑚+ 1, . . . , Γ(𝑘 + 1) = 𝑘! .

We choose a sample 𝒵 = {(𝑧𝑖, 𝑢𝑖), 𝑖 = 1, 2, . . . , 𝑛 } for determining an estimate for 𝐹 (𝑥) of the form

𝑇𝑛(𝑥) =

𝑛∑︀
𝑗=1

𝑚𝜂𝑖(𝑥)

𝑛∑︀
𝑗=1

𝑧𝑖𝜂𝑖(𝑥)

. (1.1)

For so-called quasi-random low-discrepancy sequences {𝑢𝑖}, 𝑖 = 1, 2, . . . , 𝑛, where 𝑢𝑖 are not random,
we prove the consistency and asymptotic normality of the constructed estimates as 𝑛→ ∞. We show
that the limiting dispersion of the estimates under the normalization of

√
𝑛ℎ is equal to

𝜎22(𝑥) = 𝐹 2(𝑥)(1− 𝐹 (𝑥))
‖𝐾 ‖2

𝑚
,

which is less that the limiting dispersion

𝜎21(𝑥) = 𝐹 (𝑥)(1− 𝐹 (𝑥))
‖𝐾 ‖2

𝑚

of the estimates of the distribution function 𝐹 (𝑥) of Nadaraya-Watson type in the binomial regression.
On the base of statistics (1.1) we construct estimates for the quantiles and prove its asymptotic
normality. On the base of unbiased estimate for the parameter 𝑝 as well as of the estimate of the
maximal likelihood of the negative binomial distribution we propose an estimate for the unknown
distribution function.

A negative binomial distribution naturally arises for small value of the parameters of the binomial
distribution 𝑝𝑖 and large 𝑚, which can be approximated by the Poisson distribution. It is known
that the mixture of the Poisson and Gamma distribution, see [13, Sect. 5.13], leads to the negative
binomial distribution. One can also consider Pólya urn scheme and to show that the negative binomial
distribution can be obtained by passing to the limit from the Pólya urn scheme, see [14, Sect. 10.9].

In applied problems, like our problem, apart of theoretical issues on treating specific situations, one
has to take into consideration the choice of covariates 𝑢𝑖. They can be chosen deterministically with a
uniform step, it is possible to build purely random constructions, it is possible, using the quasi-Monte
Carlo method, to select them randomly from a given set. Under a good choice of the set, it is possible
to obtain almost optimal results. Here we propose to consider almost uniform sequences of covariates.
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2. Main conditions

Let {𝑋𝑖, 𝑖 = 1, . . . , 𝑛} be a sequence of independent identically distributed with 𝑋 on the segment
[0, 1] random variables with the distribution function 𝐹 (𝑥), and

𝑃 = {𝑢0, 𝑢1, . . . , 𝑢𝑛, 𝑢𝑛+1}, 𝑢0 = 0 < 𝑢1 < . . . < 𝑢𝑛 < 1 = 𝑢𝑛+1,

be a partition of the segment [0, 1]. We shall assume the following conditions.

Condition 1. As 𝑛→ ∞, the window width is ℎ = 𝑛−1/5.

We shall refer this condition as Condition (H).

Condition 2. 𝐾(𝑥) ⩾ 0, and 𝐾(𝑥) = 0, 𝑥 /∈ [−1, 1].

Condition 3.
1∫︀

−1

𝐾(𝑥) 𝑑𝑥 = 1.

Condition 4. 𝐾(𝑥) = 𝐾(−𝑥), 𝑥 ∈ R.

Condition 5. There exist third continuous bounded derivatives of the function 𝐾(𝑥) on the seg-
ment [−1, 1].

Condition 6. ‖𝐾 ‖∞ = sup
−1⩽𝑥⩽1

|𝐾(𝑥) | = 𝑘𝑗 <∞ .

We let

‖𝐾 ‖2 =
1∫︁

−1

𝐾2(𝑥) 𝑑𝑥

and defined a variation of the function 𝑓 = 𝑓(𝑥), 𝑎 ⩽ 𝑥 ⩽ 𝑏, see [15, Ch. VIII, Sect. 3].
Let 𝑔 : [𝑎, 𝑏] → R. A variation of the function 𝑔 = 𝑔(𝑢) on the segment [𝑎, 𝑏] is the following quantity⋁︁

(𝑔) =

𝑏⋁︁
𝑎

(𝑔) = sup
𝑃

𝑚∑︁
𝑘=0

| 𝑔(𝑢𝑘+1)− 𝑔(𝑢𝑘) |,

that is, the supremum over all partitions 𝑃 of the segment [𝑎, 𝑏].

Condition 7. A variation of the function 𝐾(𝑥) is bounded, that is,
⋁︀
(𝐾) <∞.

We observe that if 𝐾(𝑥) is a smooth function, then
⋁︀1

0(𝐾) =
1∫︀
0

|𝐾 ′(𝑥) | 𝑑𝑥.

In what follows, Conditions (2-7) are referred to as Condition (K).

Condition 8. There exists a third continuous bounded derivatives of the distribution density 𝑓(𝑥) =
𝐹 ′(𝑥) and 𝑓(𝑥) > 0.

This condition (8) will be referred to as Condition (F).
In the work we assume that Conditions (H), (K), (F) are satisfied; they will be called regularity

conditions.

3. Auxiliary results

In this section we provide auxiliary results needed to studying the asymptotics of the introduced
estimates.

We provide a Koksma-Hlawka inequality, see [16, Sect. 2.2], which allows one to estimate the rate
of the convergence of the integral sums to the corresponding integral. Let ℬ be the Lebesgue 𝜎-
measure on 𝐼𝑠, where 𝐼 = [0, 1], and 𝜌𝑠 is the Lebesgue measure on ℬ, while 𝑃 is the set of the points
u1,u2, . . . ,u𝑁 ∈ 𝐼𝑠. We define a counter

𝐴𝑛(𝐵;𝑃 ) =
𝑛∑︁

𝑖=1

𝐼𝐵(𝑢𝑖)
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and a deviation

𝐷𝑛(ℬ;𝑃 ) = sup
𝐵∈ℬ

⃒⃒⃒⃒
𝐴𝑛(𝐵;𝑃 )

𝑛
− 𝜌𝑠(𝐵)

⃒⃒⃒⃒
,

where 𝐼𝐵(𝑥) is the indicator of as set 𝐵. We let 𝐷*
𝑛(𝑃 ) = 𝐷𝑛(𝐽

*
𝑐 ;𝑃 ), where 𝐽

*
𝑐 is the family of the

subintervals on 𝐼𝑠 of the form
𝑠∏︀

𝑖=1
[0, 𝑢𝑖]. Here 𝜌𝑠

(︂
𝑠∏︀

𝑖=1
[0, 𝑢𝑖]

)︂
= 𝑢1𝑢2 . . . 𝑢𝑠. The quantity 𝐷*

𝑛(𝑃 ) is

called a discrepancy of a sequence.

Definition 3.1. We say that a sequence 𝑃 = {𝑢1, 𝑢2, . . .} of random numbers is uniformly dis-

tributed if for each pair of real numbers 0 ⩽ 𝑎 < 𝑏 ⩽ 1 we have:

lim
𝑛→∞

𝐴𝑛([𝑎, 𝑏), 𝑃 )

𝑛
= 𝑏− 𝑎.

We shall deal with uniformly distributed sequences.

Theorem 3.1 ([16, Sect. 2.2]). (Koksma-Hlawka inequality). If a function 𝑓(𝑢) (0 ⩽ 𝑢 ⩽ 1) is
continuous and has a bounded variation

⋁︀
(𝑓) on [0, 1], then for each 𝑢1, 𝑢2, . . . , 𝑢𝑛 ∈ [0, 1] we have⃒⃒⃒⃒

⃒ 1𝑛
𝑛∑︁

𝑖=1

𝑓(𝑢𝑖)−
∫︁
𝑓(𝑢) 𝑑𝑢

⃒⃒⃒⃒
⃒ ⩽⋁︁(𝑓)𝐷*

𝑛(𝑢1, . . . , 𝑢𝑛).

For a multi-dimensional unit cube 𝐼𝑠 = [0, 1)𝑠, 𝐼𝑠 = [0, 1]𝑠 and the variation in the sense of Hardy
and Krause the following result holds true [16, Sect. 2.2].

Theorem 3.2. [16, Sect. 2.2] If a function 𝑓(𝑢) (0 ⩽ 𝑢 ⩽ 1) has a bounded variation
⋁︀
(𝑓) on 𝐼𝑠

in the sense of Hardy and Krause, then for all u1,u2, . . . ,u𝑛 ∈ 𝐼𝑠 we have⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

𝑓(u𝑖)−
∫︁
𝑓(u)du

⃒⃒⃒⃒
⃒ ⩽⋁︁(𝑓)𝐷*

𝑛(u1, . . . ,u𝑛).

It was shown in [16, Sect. 2.2] that 𝐷*
𝑛(𝑢1, . . . , 𝑢𝑛) is a continuous function of variables (𝑢1, . . . , 𝑢𝑛)

and if 𝑢𝑖 =
𝑖

𝑛
, then 𝐷*

𝑛(𝑢1, . . . , 𝑢𝑛) =
1

𝑛
. In the same way one can show that for a continuous partition

of a 𝑠-dimensional unit cube 𝐼𝑠 the discrepancy of finitely many points is 𝐷*
𝑛 ≍ 1

𝑛
, see [17]. For finite 𝑛

we can also calculate it using the algorithm given in [18].

Remark 3.1. In the finite-dimensional case, if 𝑢0 = 0 < 𝑢1 < 𝑢2 < . . . < 𝑢𝑛 < 𝑢𝑛+1 = 1, then

𝐷*
𝑛(𝑃 ) = max

0⩽𝑘⩽𝑛
sup

𝑢𝑘<𝑢⩽𝑢𝑘+1

⃒⃒⃒⃒
𝐴𝑛([0, 𝑢);𝑃 )

𝑛
− 𝑢

⃒⃒⃒⃒
= max

0⩽𝑘⩽𝑛
sup

𝑢𝑘<𝑢⩽𝑢𝑘+1

⃒⃒⃒⃒
𝑘

𝑛
− 𝑢

⃒⃒⃒⃒
= max

0⩽𝑘⩽𝑛
max

(︂⃒⃒⃒⃒
𝑘

𝑛
− 𝑥𝑘

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝑘

𝑛
− 𝑥𝑘+1

⃒⃒⃒⃒)︂
,

and this is the Kolmogorov statistics.

Thus, if we treat 𝑢1 < 𝑢2 < . . . < 𝑢𝑛 as a variation series of a sample and as a zero conjecture
we choose the uniform distribution, then the discrepancy is the maximal deviation of the sampling
distribution function from the uniform one. Large values indicates𝐷*

𝑛 the concentration of the sequence
𝑃 in some domain.

This result is generalizaed on the multi-dimensional case [16, Sect. 2.2]. In this case the law of the
reiterated logarithm holds, which was proved by Kiefer [20]:

lim
𝑛→∞

√
2𝜋𝐷*

𝑛(𝑃 )√
2 ln ln𝑛

= 1

almost everywhere.
To extend possible applications of the results given in Section 4, we consider low-discrepancy se-

quences [16, Ch. 3], which are van der Corput and Halton sequences [21].
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Let

𝑛 =
∞∑︁
𝑗=0

𝑎𝑗(𝑛)𝑏
𝑗 (3.1)

be the representation of an integer number 𝑛 ⩾ 0 by a natural base 𝑏 ⩾ 2, where 𝑎𝑗(𝑛) ∈ 𝑍𝑏 =
{0, 1, . . . , 𝑏− 1} for each 𝑗 ⩾ 0 and 𝑎𝑗(𝑛) = 0 for all sufficiently large 𝑗.

Definition 3.2. For 𝑏 ⩾ 2, the radical inverse function 𝜑𝑏 be the base 𝑏 is defined as follows:

𝜑𝑏(𝑛) =
∞∑︁
𝑗=0

𝑎𝑗(𝑛)𝑏
−𝑗−1 for each integer 𝑛 ⩾ 0, (3.2)

where 𝑎𝑗(𝑛) come from representation (3.1) with the same 𝑏.

Definition 3.3. For each natural 𝑏 ⩾ 2, the van der Corput sequence by the base 𝑏 is the sequence
{𝑢0, 𝑢1, . . . , 𝑢𝑛, . . .} with 𝑢𝑛 = 𝜑𝑏(𝑛) for each 𝑛 ⩾ 0.

Given a sequence 𝑆 = {𝑢0, 𝑢1, . . .}, we shall write 𝐷𝑛(𝑆) = 𝐷𝑛(𝑢0, 𝑢1, . . . , 𝑢𝑛+1) for the discrepancy
of the first 𝑛 terms in 𝑆 and in the same way we write 𝐷*

𝑛(𝑆) = 𝐷*
𝑛(𝑢0, 𝑢1, . . . , 𝑢𝑛).

It was shown in [16, Sect. 3.1] that if 𝑆𝑏 is a van der Corput sequence by the base 𝑏, then

𝐷*
𝑁 (𝑆𝑏) ⩽ 𝐶1

ln𝑁

𝑁
for all 𝑁 ⩾ 2,

where a constant 𝐶1 is independent of 𝑏.

Definition 3.4. Let 𝑠 be an arbitrary dimension and 𝑏1, 𝑏2, . . . , 𝑏𝑠 ⩾ 2, be mutually prime natural
numbers. We define a Halton sequence by letting

u(𝑛) = (𝜑𝑏1(𝑛), 𝜑𝑏2(𝑛), . . . , 𝜑𝑏𝑠(𝑛)) ∈ 𝐼𝑠 for each integer 𝑛 ⩾ 0.

As 𝑠 = 1, this definition is reduced to the definition of var der Corput sequence.

Theorem 3.3 ([17, Ch. 5, Sect. 1]). If 𝑆 is a Halton sequence, then there exist constants 𝐶2 and
𝐶3 depending only on 𝑏1, 𝑏2, . . . , 𝑏𝑠 such that for all 𝑁 ⩾ 1,

𝐶2
(ln𝑁)𝑠−1

𝑁
⩽ 𝐷*

𝑁 (𝑆) ⩽ 𝐶2
(ln𝑁)𝑠

𝑁
.

It was mentioned in [17, Ch. 5, Sect. 1] that for 𝑠 = 1 the uniform grids are the best ones, while
as 𝑠 increases, they approach to worst ones. It was shown how one should modify the grid to make it
better. In the two-dimensional case a quadrature Fibonacci formula is also known [22]:

1

𝑏𝑛

𝑏𝑛∑︁
𝑘=1

𝑓

(︂
𝑘

𝑏𝑛
,

{︂
𝑏𝑛−1

𝑏𝑛
𝑘

}︂)︂
, 𝑏1 = 𝑏2 = 1, 𝑏𝑛 = 𝑏𝑛−1 + 𝑏𝑛−2, 𝑛 ⩾ 3,

where {𝑎} is the fractional part of the number 𝑎. Moreover, the following upper bound for the quad-
rature formulae was given in [23, Sect. 3.1.3]:

sup
𝑓∈𝐻𝑟

2

⃒⃒⃒⃒
⃒⃒⃒ ∫︁
[0,1]2

𝑓(𝑥1, 𝑥2) 𝑑𝑥1𝑑𝑥2 =
1

𝐴

𝐴∑︁
𝑘=1

𝑓

(︂
𝑘

𝐴
,

{︂
𝑏

𝐴
𝑘

}︂)︂ ⃒⃒⃒⃒⃒⃒⃒ ⩽ 𝐶
1 + ln𝐴

𝐴𝑟
,

where 𝑟 > 1, 𝐴 and 𝑏, 1 < 𝑏 < 𝐴, are mutually prime integer numbers and the function 𝑓(𝑥1, 𝑥2)
belongs to the class 𝐻𝑟

2 if in the unit cube 𝐼𝑠 it possesses continuous derivatives of the form

𝜕𝑘

𝜕𝑥𝑘11 . . . 𝜕𝑥𝑘𝑠𝑠
(0 ⩽ 𝑘 ⩽ 𝑟𝑠, 0 ⩽ 𝑘𝜈 ⩽ 𝑟).

We shall also make use a theorem on asymptotic behavior of the functions on such estimates.
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Theorem 3.4. [24, Th. 2.5.2] (Delta method). If 𝜙(𝑛) → ∞ as 𝑛→ ∞ and

𝜙(𝑛)(𝑇𝑛 − 𝜃)
𝑑−−−−→

𝑛→∞
𝑁(0, 𝜏2)

then

𝜙(𝑛)(𝑔(𝑇𝑛)− 𝑔(𝜃))
𝑑−−−−→

𝑛→∞
𝑁(0, 𝜏2(𝑔′(𝜃))2).

provided there exists a continuous non-zero derivative 𝑔′(𝜃) of the function 𝑔(𝜃).

4. Main results

4.1. NBR-estimates. Asymptotic behavior. Let we be given a sample 𝒵(𝑛) = {(𝑧𝑖, 𝑢𝑖), 𝑖 =
1, 2, . . . , 𝑛}, where 𝑧𝑖 has a negative binomial regression 𝑁𝐵(𝑚,𝐹 (𝑢𝑖)), and a sequence 𝑢𝑖, 𝑖 =
1, 2, . . . , 𝑛, be a van der Corput one. We define a statistics

𝑇𝑛(𝑥) =

𝑛∑︀
𝑖=1

𝑚𝜂𝑖(𝑥)

𝑛∑︀
𝑖=1

𝑧𝑖𝜂𝑖(𝑥)

, 𝜂𝑖(𝑥) = 𝐾ℎ(𝑢𝑖 − 𝑥).

Since
1

𝑛

𝑛∑︀
𝑖=1

𝜂𝑖(𝑥) → 1 as 𝑛→ ∞, we consider an estimate

𝐹𝑛(𝑥) =
𝑚

1

𝑛

𝑛∑︀
𝑖=1

𝑧𝑖𝜂𝑖(𝑥)

. (4.1)

We denote

𝑆1 =
1

𝑛

𝑛∑︁
𝑖=1

𝑧𝑖𝜂𝑖(𝑥), 𝜈𝑗(𝐾) =

1∫︁
−1

𝑡𝑗𝐾(𝑡) 𝑑𝑡, 𝑗 ∈ N.

Theorem 4.1. Let 𝐹𝑛(𝑥) be an estimate for the distribution function 𝐹 (𝑥) defined by formula (4.1)
and {𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑛} be a van der Corput sequence and the regularity conditions be satisfied. Then

√
𝑛ℎ(𝐹𝑛(𝑥)−E(𝐹𝑛(𝑥))

𝑑−→
𝑛→∞

𝑁

(︂
0,

(1− 𝐹 (𝑥))𝐹 2(𝑥)

𝑚
‖𝐾 ‖2

)︂
.

Proof. It follows from [25, Lm. 3.4] that
⋁︀
(𝐾ℎ) = 𝑂(ℎ−1) and this is why as 𝑛→ ∞ we have

E(𝑆1) = E

(︃
1

𝑛ℎ

𝑛∑︁
𝑖=1

𝑍𝑖𝐾

(︂
𝑢𝑖 − 𝑥

ℎ

)︂)︃
=

1

𝑛ℎ

𝑛∑︁
𝑖=1

𝐾

(︂
𝑢𝑖 − 𝑥

ℎ

)︂
E(𝑍𝑖) =

1

𝑛ℎ

𝑛∑︁
𝑖=1

𝐾

(︂
𝑢𝑖 − 𝑥

ℎ

)︂
𝑚

𝐹 (𝑢𝑖)

=𝑚 · 1
ℎ

∞∫︁
−∞

1

𝐹 (𝑢)
𝐾

(︂
𝑢− 𝑥

ℎ

)︂
𝑑𝑢+𝑂

(︂
ln𝑛

𝑛ℎ

)︂

=𝑚

(1−𝑥)/ℎ∫︁
−𝑥/ℎ

𝐾(𝑡)

𝐹 (𝑥+ ℎ𝑡)
𝑑𝑡+𝑂

(︂
1

𝑛

)︂

=𝑚

∞∫︁
−∞

𝐾(𝑡)

𝐹 (𝑥+ ℎ𝑡)
𝑑𝑡+𝑂

(︂
ln𝑛

𝑛ℎ

)︂

=𝑚

∞∫︁
−∞

(︂
𝐾(𝑡)

𝐹 (𝑥)
+𝐾(𝑡)

(︂
1

𝐹 (𝑥+ ℎ𝑡)
− 1

𝐹 (𝑥)

)︂)︂
𝑑𝑡+𝑂

(︂
ln𝑛

𝑛ℎ

)︂

=
𝑚

𝐹 (𝑥)
+𝑚

∞∫︁
−∞

𝐹 (𝑥)− 𝐹 (𝑥+ ℎ𝑡)

𝐹 (𝑥)𝐹 (𝑥+ ℎ𝑡)
𝐾(𝑡) 𝑑𝑡+𝑂

(︂
ln𝑛

𝑛ℎ

)︂
.
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Now

𝛾𝑛 =

∞∫︁
−∞

𝐹 (𝑥+ ℎ𝑡)− 𝐹 (𝑥)

𝐹 (𝑥)𝐹 (𝑥+ ℎ𝑡)
𝐾(𝑡) 𝑑𝑡

=

∞∫︁
−∞

𝑓(𝑥)ℎ𝑡+ (1/2)𝑓 ′(𝑥)ℎ2𝑡2 + (1/6)𝑓 ′′(𝑥)ℎ3𝑡3 + (1/24)𝑓 ′′′(𝜁)ℎ4𝑡4

𝐹 (𝑥)𝐹 (𝑥+ ℎ𝑡)
𝐾(𝑡) 𝑑𝑡,

where 𝜁 is some «mean» point. Since⃒⃒⃒⃒
⃒⃒ℎ4

1∫︁
−1

𝑓 ′′′(𝜁)

𝐹 (𝑥)𝐹 (𝑥+ ℎ𝑡)
ℎ4𝑡4𝐾(𝑡) 𝑑𝑡

⃒⃒⃒⃒
⃒⃒ ⩽ ℎ4𝜈4(𝐾) sup

−1⩽𝑡⩽1

𝑓 ′′′(𝜁)

𝐹 (𝑥)𝐹 (𝑥+ ℎ𝑡)

⩽
2𝐶3ℎ

4

𝐹 (𝑥)(𝐹 (𝑥)− 𝜀)
for 𝑛 ⩾ 𝑛1,

then

𝛾𝑛 =
1

𝐹 2(𝑥)

∞∫︁
−∞

𝑓(𝑥)ℎ𝑡+ (1/2)𝑓 ′(𝑥)ℎ2𝑡2

(1 + (𝑓(𝑥)/𝐹 (𝑥))ℎ𝑡) +𝑂(ℎ2))
𝐾(𝑡)𝑑𝑡+𝑂(ℎ4)

=
1

𝐹 2(𝑥)

∞∫︁
−∞

(︂
𝑓(𝑥)ℎ𝑡+

1

2
𝑓 ′(𝑥)ℎ2𝑡2 − 𝑓2(𝑥)

𝐹 (𝑥)
ℎ2𝑡2 − 1

2

𝑓 ′(𝑥)𝑓(𝑥)

𝐹 (𝑥)
ℎ3𝑡3

)︂
𝐾(𝑡)𝑑𝑡+𝑂(ℎ3)

=
1

𝐹 2(𝑥)

∞∫︁
−∞

(︂
𝑓(𝑥)ℎ𝑡+

1

2
𝑓 ′(𝑥)ℎ2𝑡2 − 𝑓2(𝑥)

𝐹 (𝑥)
ℎ2𝑡2

)︂
𝐾(𝑡)𝑑𝑡+ 𝑜(ℎ2)

=

(︂
1

2

𝑓 ′(𝑥)

𝐹 2(𝑥)
− 𝑓2(𝑥)

𝐹 3(𝑥)

)︂
ℎ2𝜈2(𝐾) + 𝑜(ℎ2),

therefore

E(𝑆1) =
𝑚

𝐹 (𝑥)
−𝑚

(︂
1

2

𝑓 ′(𝑥)

𝐹 2(𝑥)
− 𝑓2(𝑥)

𝐹 3(𝑥)

)︂
ℎ2𝜈2(𝐾) + 𝑜(ℎ2), 𝜈2(𝐾) =

∞∫︁
−∞

𝑡2𝐾(𝑡) 𝑑𝑡.

We consider the dispersion of statistics 𝑆1. We have

D(𝑆1) = D

(︃
1

𝑛ℎ

𝑛∑︁
𝑖=1

𝑍𝑖𝐾

(︂
𝑢𝑖 − 𝑥

ℎ

)︂)︃
=

1

𝑛2ℎ2

𝑛∑︁
𝑖=1

𝐾2

(︂
𝑢𝑖 − 𝑥

ℎ

)︂
D(𝑍𝑖)

=
1

𝑛2ℎ2

𝑛∑︁
𝑖=1

𝐾2

(︂
𝑢𝑖 − 𝑥

ℎ

)︂
𝑚(1− 𝐹 (𝑢𝑖))

𝐹 2(𝑢𝑖)

∼ 𝑚

𝑛ℎ2

∞∫︁
−∞

1− 𝐹 (𝑢)

𝐹 2(𝑢)
𝐾2

(︂
𝑢− 𝑥

ℎ

)︂
𝑑𝑢

=
𝑚

𝑛ℎ

∞∫︁
−∞

1− 𝐹 (𝑥+ ℎ𝑡)

𝐹 2(𝑥+ ℎ𝑡)
𝐾2(𝑡) 𝑑𝑡

∼ 𝑚(1− 𝐹 (𝑥))

𝑛ℎ𝐹 2(𝑥)
‖𝐾 ‖2.

To prove the asymptotic normality of the 𝑆1 statistics, we check the Lyapunov condition, for which
we need the following inequality for 𝑎 > 1:

|𝑥+ 𝑦 |𝑎 ⩽ 2𝑎−1( |𝑥 |𝑎 + | 𝑦 |𝑎), (4.2)
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which is implied by the convexity of the function |𝑥 |𝑎 as 𝑎 > 1 and hence⃒⃒⃒⃒
𝑥+ 𝑦

2

⃒⃒⃒⃒𝑎
⩽

|𝑥 |𝑎 + | 𝑦 |𝑎

2
.

Let

𝜉𝑗 =
1

𝑛ℎ
𝑍𝑗𝐾

(︂
𝑢𝑖 − 𝑥

ℎ

)︂
.

Then 𝑆1 =
𝑛∑︀

𝑗=1
𝜉𝑗 . Employing inequality (4.2) as 𝑎 = 4, we find:

| 𝜉𝑗 −E(𝜉𝑗) |4 ⩽ 8(| 𝜉𝑗 |4 + |E(𝜉𝑗) |4) .

Calculating the expectation of both sides, we obtain:

E((𝜉𝑗 −E(𝜉𝑗))
4) ⩽ 8(E(𝜉4𝑗 ) + (E(𝜉𝑗))

4 ⩽ 16E(𝜉4𝑗 ) .

We consider 𝐴𝑛 =
𝑛∑︀

𝑗=1
E(𝜉4𝑗 ). We have:

𝐴𝑛 =
1

𝑛4ℎ4

𝑛∑︁
𝑗=1

E(𝑍4
𝑗 )𝐾

4

(︂
𝑢𝑗 − 𝑥

ℎ

)︂
.

We observe that a random variable 𝑍 has a negative binomial distribution with the parameters 𝑚
and 𝑝 = 1− 𝑞, then its characteristic function is

𝜙(𝑡) =

(︂
𝑝 · exp(𝑖𝑡)

1− 𝑞 · exp(𝑖𝑡)

)︂𝑚

,

the dispersion equals D(𝑍) = 𝑚𝑞/𝑝2, and the fourth initial moment reads as

E(𝑍4) = 𝑏4
𝑞4

𝑝4
+ 𝑏3

𝑞3

𝑝3
+ 𝑏2

𝑞2

𝑝2
+ 𝑏1

𝑞

𝑝
,

where

𝑏4 = 𝑚(𝑚3 + 6𝑚2 + 11𝑚+ 6), 𝑏3 = 6𝑚(𝑚2 + 3𝑚+ 2), 𝑏2 = 7𝑚(𝑚+ 1), 𝑏1 = 𝑚.

In view of the above remarks we get that

𝐴𝑛 ∼ 1

𝑛4ℎ4

𝑛∑︁
𝑗=1

(︂
𝑏4
(1− 𝐹 (𝑢𝑗))

4

𝐹 4(𝑢𝑗)
+ 𝑏3

(1− 𝐹 (𝑢𝑗))
3

𝐹 3(𝑢𝑗)
+ 𝑏2

(1− 𝐹 (𝑢𝑗))
2

𝐹 2(𝑢𝑗)
+ 𝑏1

1− 𝐹 (𝑢𝑗)

𝐹 (𝑢𝑗)

)︂
𝐾4

(︂
𝑢𝑗 − 𝑥

ℎ

)︂

∼ 1

𝑛3ℎ3

(︂
𝑏4
(1− 𝐹 (𝑥))4

𝐹 4(𝑥)
+ 𝑏3

(1− 𝐹 (𝑥))3

𝐹 3(𝑥)
+ 𝑏2

(1− 𝐹 (𝑥))2

𝐹 2(𝑥)
+ 𝑏1

1− 𝐹 (𝑥)

𝐹 (𝑥)

)︂ ∞∫︁
−∞

𝐾4(𝑡) 𝑑𝑡 =
𝐶1

𝑛3ℎ3
,

where 𝐶1 is an universal constant. Hence, for the Lyapunov quotient,

𝐿𝑛 =

∑︀𝑛
𝑗=1E((𝜉𝑗 −E(𝜉𝑗))

4)

(
∑︀𝑛

𝑗=1D(𝜉𝑗))2
⩽
𝐶1𝑛

2ℎ2

𝐶2𝑛3ℎ3
=

𝐶

𝑛ℎ
−→
𝑛→∞

0,

that is, the assumption of the Lyapunov central limit theorem [26] is satisfied and

𝑆1 −E(𝑆1)√︀
D(𝑆1)

𝑑−→
𝑛→∞

𝑁(0, 1).

In other words,

√
𝑛ℎ

(︂
𝑆1 −

𝑚

𝐹 (𝑥)

)︂
𝑑−→

𝑛→∞
𝑁

(︂
𝑚

(︂
𝑓2(𝑥)

𝐹 3(𝑥)
− 1

2

𝑓 ′(𝑥)

𝐹 2(𝑥)

)︂
𝜈2(𝐾),

𝑚(1− 𝐹 (𝑥))

𝐹 2(𝑥)
‖𝐾 ‖2

)︂
.
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Now we consider an asymptotic behavior of the statistics 𝑇 =
𝑚

𝑆1
:

𝑇 = 𝑇𝑛(𝑥) =

1

𝑛ℎ

∑︀𝑛
𝑖=1𝑚𝜂𝑖(𝑥)

1

𝑛ℎ

∑︀𝑛
𝑖=1 𝑧𝑖𝜂𝑖(𝑥)

∼ 𝑚
1

𝑛ℎ

∑︀𝑛
𝑖=1 𝑧𝑖𝜂𝑖(𝑥)

=
𝑚

𝑆1𝑛(𝑥)
=
𝑚

𝑆1
.

Here the quantities 𝑧𝑖 has a negative binomial distribution with corresponding parameters. This is
why, employing the delta method, we obtain:

𝑔(𝑥) =
𝑚

𝑥
, 𝑔′(𝑥) = −𝑚

𝑥2
, 𝑔′

(︂
𝑚

𝐹 (𝑥)

)︂
= −𝐹

2(𝑥)

𝑚
,

(︂
𝑔′
(︂

𝑚

𝐹 (𝑥)

)︂)︂2

=
𝐹 4(𝑥)

𝑚2
.

The estimate 𝐹𝑛(𝑥) =
𝑚

𝑆1
satisifies 𝐹𝑛(𝑛)

𝑝−→
𝑛→∞

𝐹 (𝑥) and this is why

𝑔(𝜃𝑛) = 𝑔(𝜃0) + (𝜃𝑛 − 𝜃0)𝑔
′(𝜃0) +𝑂((𝜃𝑛 − 𝜃0)

2) ⇒ 𝑔(𝜃𝑛)− 𝑔(𝜃0) = (𝜃𝑛 − 𝜃0)𝑔
′(𝜃0),

√
𝑛ℎ(𝑔(𝜃𝑛)− 𝑔(𝜃0)) ∼

√
𝑛ℎ(𝜃𝑛 − 𝜃0)𝑔

′(𝜃0) ∼ 𝑁

(︂
𝑎, (𝑔′(𝜃0))

2𝑚‖𝐾 ‖2 1− 𝐹 (𝑥)

𝐹 2(𝑥)

)︂
.

But

(𝑔′(𝜃0))
2𝑚‖𝐾 ‖2 1− 𝐹 (𝑥)

𝐹 2(𝑥)
= 𝑚‖𝐾 ‖2 1− 𝐹 (𝑥)

𝐹 2(𝑥)
· 𝐹

4(𝑥)

𝑚2
=

(1− 𝐹 (𝑥))𝐹 2(𝑥)

𝑚
‖𝐾 ‖2,

and this implies

√
𝑛ℎ(𝐹𝑛(𝑥)−E(𝐹𝑛(𝑥))

𝑑−→
𝑛→∞

𝑁

(︂
0,

(1− 𝐹 (𝑥))𝐹 2(𝑥)

𝑚
‖𝐾 ‖2

)︂
.

The proof is complete.

Remark 4.1. In the estimate 𝐹𝑛(𝑥), instead of the statistics 𝑆1, one can employ statistics [27]

𝑆𝑃𝐶
1 (𝑥) =

𝑛−1∑︁
𝑖=1

(𝑢𝑖+1 − 𝑢𝑖)𝑧𝑖𝜂𝑖(𝑥),

which is also asymptotically normal with the same parameters as 𝑆1.

Remark 4.2. Since the limiting dispersion of the estimate 𝐹𝑛(𝑥) depends on an unknown distribu-
tion function 𝐹 (𝑥), in order to estimate, one can use the statistics

𝜎̂2(𝑥) =
𝑚2

2𝑛

𝑛−1∑︁
𝑖=1

(𝑧𝑖+1 − 𝑧𝑖)
2

𝑆4
1(𝑥)

𝐾ℎ(𝑢𝑖+1 − 𝑥)𝐾ℎ(𝑢𝑖 − 𝑥),

which is a consistent estimate of a function

𝑚(1− 𝐹 (𝑥))

𝐹 2(𝑥)
‖𝐾 ‖2.

Remark 4.3. On the base of an unbiased estimate for the parameter 𝑝

𝑝 =
𝑚− 1

𝑚+ 𝑧 − 1

of the negative binomial distribution 𝑁𝐵(𝑚, 𝑝) [28, Sect. 5.8.2] we propose one more estimate for the
distribution function 𝐹 (𝑥) of form (𝑚 ⩾ 2)

𝐹𝑛(𝑥) =
1

𝑛ℎ

𝑛∑︁
𝑖=1

𝑚− 1

𝑚+ 𝑧𝑖 − 1
𝐾

(︂
𝑢𝑖 − 𝑥

ℎ

)︂
.

The estimate 𝑝 is an unbiased one and the Cramer-Rao lower bound for its dispersion reads as

D(𝑝) ⩾
𝑝2𝑞

𝑚
.
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We first find the second initial moment and then its dispersion. By the definition,

E(𝑝2) =
∞∑︁
𝑘=0

(𝑚− 1)2

(𝑚+ 𝑘 − 1)2
Γ(𝑚+ 𝑘)

𝑘! Γ(𝑚)
𝑝𝑚𝑞𝑘 = 𝑝𝑚

∞∑︁
𝑘=0

𝑚− 1

𝑚+ 𝑘 − 1

Γ(𝑚+ 𝑘 − 1)

𝑘! Γ(𝑚− 1)
𝑞𝑘

= 𝑝𝑚2𝐹1(𝑚− 1,𝑚− 1;𝑚; 𝑞)

= (𝑚− 1)𝑝𝑚
1∫︁

0

𝑡𝑚−1

(1− 𝑡𝑞)𝑚−1 𝑑𝑡
,

where 2𝐹1(𝑎, 𝑏; 𝑐;𝑥) is the Gauss hypergeometric function.
In this case

D(𝑝) = 𝑝𝑚 2𝐹1(𝑚− 1,𝑚− 1;𝑚; 𝑞)− 𝑝2.

If 𝑚 = 2, then

D(𝑝) = −𝑝2
(︂
1 +

ln 𝑝

𝑞

)︂
⩾
𝑝2𝑞

2

and for small values of 𝑞 the left and the right hand sides are close. The limiting dispersion of the
estimate 𝐹𝑛(𝑥) is equal to

𝜎2 = −𝐹 2(𝑥)

(︂
1 +

ln𝐹 (𝑥)

1− 𝐹 (𝑥)

)︂
.

If 𝑚 = 3, then

𝜎23 = D(𝑝) = 𝑝2
(︂
2𝑝 ln 𝑝

𝑞2
+

1 + 𝑝

𝑞

)︂
⩾ 𝜎20 =

𝑝2𝑞

3

since

2𝐹1(2, 2; 3;𝑥) =
2 ln(1− 𝑥)

𝑥2
+

2

𝑥(1− 𝑥)

and for small values of 𝑞 the left and right hand sides, that is, 𝜎23 and 𝜎20, are also close. We observe
that

E(𝑝2) =
(𝑚− 1)𝑝𝑚

𝑞𝑚−1

[︃
(−1)𝑚−1 ln 𝑝+

𝑚−2∑︁
𝑘=1

(−1)𝑚− 𝑘

𝑘

(︂
𝑞

𝑝

)︂]︃
.

This relation was obtained first in work [29].
One can also construct a kernel estimate for the distribution function starting from the estimate of

the maximal likelihood, which is equal to

𝑝 =
𝑚

𝑚+ 𝑧
.

In this case

E(𝑝) =
∞∑︁
𝑘=0

𝑚

𝑚+ 𝑘
· Γ(𝑚+ 𝑘)

𝑘! Γ(𝑚)
𝑝𝑚𝑞𝑘 = 𝑝𝑚2𝐹1(𝑚,𝑚;𝑚+ 1; 𝑞),

and, [30, Sect. 5.2.11, Eq. (15)],

E(𝑝2) =

∞∑︁
𝑘=0

𝑚2

(𝑚+ 𝑘)2
· Γ(𝑚+ 𝑘)

𝑘! Γ(𝑚)
𝑝𝑚𝑞𝑘 = 𝑚2𝑝𝑚

∞∫︁
0

𝑡𝑒−𝑚𝑡(1− 𝑞𝑒−𝑡)−𝑚 𝑑𝑡.

In particular, for 𝑚 = 1 we have

E(𝑝) = −𝑝 ln 𝑝
𝑞

, E(𝑝2) =
𝑝

𝑞
dilog(𝑝).
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As 𝑚 = 2, we have:

E(𝑝) =
2𝑝

𝑞
(𝑞 + 𝑝 ln 𝑝), E(𝑝2) = −4𝑝2

𝑞2
(ln 𝑝+ dilog(𝑝)), where dilog(𝑥) =

𝑥∫︁
1

ln 𝑡

1− 𝑡
𝑑𝑡.

In view of this we see that the maximal likelihood estimate 𝑝 is not a consistent estimate for the
parameter 𝑝 and this is why for 𝑚 = 2, as a consistent estimate, we can propose the statistics

𝜃 =
𝑚

2(𝑚+ 𝑧)

1− 𝑝

1 + 𝑝(ln 𝑝− 1)
,

but this estimate has a greater risk than estimate (4.1).

4.2. Quantile estimation. In this section we study asymptotic behavior of the quantiles estiomator
in the dose-effect dependence by the fixed plans of experiments in the model of negative binomial
regression.

We define an quantile estimator for 𝜉𝜆 of order 0 < 𝜆 < 1 as follows:

𝜉𝑛𝜆 = inf{𝑥 ∈ R : 𝐹𝑛(𝑥) ⩾ 𝜆} . (4.3)

We let

𝑎 =
(𝜆𝑓 ′(𝜉𝜆)− 2𝑓2(𝜉𝜆))𝜈2(𝐾)

2𝜆𝜎
.

In the next theorem an asymptotic normality of the estimates 𝜉𝑛𝜆 is shown.

Theorem 4.2. Let 𝜉𝑛𝜆 be the quantile estimator of order 0 < 𝜆 < 1 defined by formula (4.3),
{𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑛} be a van der Corput seuqence, the regularity conditions be satisfied and 𝑓(𝜉𝜆) > 0.
Then

√
𝑛ℎ(𝜉𝑛𝜆 − 𝜉𝜆 − 𝑎ℎ2)

𝑑→
𝑛→∞

𝑁

(︃
0,
𝜆2(1− 𝜆) ‖𝐾‖2

𝑚𝑓2(𝜉𝜆)

)︃
.

Proof. Let

𝜎2 =
(1− 𝜆)𝜆2

𝑚
‖𝐾 ‖2, 𝛿 = 𝛿(𝑥) = 𝜉𝜆 +

𝑥𝜎√
𝑛ℎ𝑓(𝜉𝜆)

.

We have:

P

(︃√
𝑛ℎ𝑓(𝜉𝜆))(𝜉𝑛,𝜆 − 𝜉𝜆)

𝜎
⩽ 𝑥

)︃
=P(𝜉𝑛,𝜆 ⩽ 𝛿) = P(𝐹𝑛(𝛿) ⩾ 𝜆) = P

(︃
𝑚

1
𝑛

∑︀𝑛
𝑖=1 𝑧𝑖𝜂𝑖(𝛿)

⩾ 𝜆

)︃

=P

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖𝐾ℎ(𝑢𝑖 − 𝛿) ⩽
𝑚

𝜆

)︃

=P

(︃
1

𝑛

𝑛∑︁
𝑖=1

(𝑍𝑖𝐾ℎ(𝑢𝑖 − 𝛿)− 𝜃𝑖) ⩽
1

𝑛

𝑛∑︁
𝑖=1

(︁𝑚
𝜆

− 𝜃𝑖

)︁)︃

=P

(︃√
𝑛ℎ𝜆2

𝑚𝜎𝑛

𝑛∑︁
𝑖=1

(𝑍𝑖𝐾ℎ(𝑢𝑖 − 𝛿)− 𝜃𝑖) ⩽

√
𝑛ℎ𝜆2

𝑚𝜎
· 1
𝑛

𝑛∑︁
𝑖=1

(︁𝑚
𝜆

− 𝜃𝑖

)︁)︃
,

where

𝜃𝑖 = E (𝑍𝑖𝐾ℎ(𝑢𝑖 − 𝛿)) =
𝑚

𝐹 (𝑢𝑖)
𝐾ℎ(𝑢𝑖 − 𝛿).

We note that ℎ2 = 1/
√
𝑛ℎ and the function 𝐾ℎ(𝑢− 𝛿) vanishes outside the segment

𝒥𝜆 = [𝜉𝜆 − ℎ+ 𝑥ℎ2𝜎/𝑓(𝜉𝜆), 𝜉𝜆 + ℎ+ 𝑥ℎ2𝜎/𝑓(𝜉𝜆)].

Moreover, the function 1/𝐹 (𝑢) > 0 decays monotonically on 𝒥𝜆, {𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑛} is a van der
Corput sequence and this is why

⋁︀
𝒥𝜆

(1/𝐹 (𝑢)) <∞ and it follows from [16] that

𝛼𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

𝜃𝑖 =
1

𝑛

𝑛∑︁
𝑖=1

𝑚

𝐹 (𝑢𝑖)
𝐾ℎ(𝑢𝑖 − 𝛿) =

∫︁
𝒥𝜆

𝑚

𝐹 (𝑢)
𝐾ℎ(𝑢− 𝛿) 𝑑𝑢+𝑂

(︂
ln𝑛√
𝑛ℎ

)︂
.
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Making the change

𝑡 =
𝑢− 𝛿

ℎ

and taking into consideration that 0 ⩽ 𝑢 ⩽ 1, we conclude that

𝛼𝑛 =

1∫︁
0

𝑚

𝐹 (𝑢)
𝐾ℎ(𝑢− 𝛿) 𝑑𝑢 =

(1−𝛿)/ℎ∫︁
−𝛿/ℎ

𝑚

𝐹 (𝜉𝜆 + 𝜌1ℎ)
𝐾(𝑡) 𝑑𝑡 ,

where

𝜌1 = 𝑡+
𝑥𝜎

𝑓(𝜉𝜆)
ℎ

and for sufficiently large 𝑛, 𝑛 ⩾ 𝑛1,

𝛼𝑛 =

1∫︁
−1

𝑚

𝐹 (𝜉𝜆 + 𝜌1ℎ)
𝐾(𝑡) 𝑑𝑡 .

Let |𝑥 | ⩽ 𝐿, where 𝐿 is large enough and 𝜔1 = 𝜔/𝜆. Then

𝐹 (𝜉𝜆 + 𝜌1ℎ) = 𝜆+ 𝑓(𝜉𝜆)𝜌1ℎ+
𝑓 ′(𝜉𝜆)

2
𝜌21ℎ

2 + 𝜔ℎ3 = 𝜆(1 + 𝑎1ℎ+ 𝑏1ℎ
2 + 𝜔1ℎ

3),

where

𝑎1 =
𝑓(𝜉𝜆)

𝜆
𝑡, 𝑏1 =

2𝑥𝜎 + 𝑡2𝑓 ′(𝜉𝜆)

2𝜆
,

and it follows from the assumptions of the theorem that |𝜔1 | is bounded. Since⃒⃒⃒⃒
1

1 + 𝑎1ℎ+ 𝑏1ℎ2 + 𝜔1ℎ3
− 1 + 𝑎1ℎ− (𝑎21 − 𝑏1)ℎ

2

⃒⃒⃒⃒
=

⃒⃒⃒⃒
((𝑏1 − 𝑎21)𝜔1ℎ

2 + (𝑎1𝜔1 + 𝑏21 − 𝑎21𝑏1)ℎ+ 2𝑎1𝑏1 − 𝜔1 − 𝑎31
1 + 𝑎1ℎ+ 𝑏1ℎ2 + 𝜔1ℎ3

⃒⃒⃒⃒
ℎ3 ⩽ 𝐶2ℎ

3

and for 𝑛 ⩾ 𝑛2 and
1∫︁

−1

𝑡𝐾(𝑡) 𝑑𝑡 = 0,

we obtain that

𝛼𝑛 =
𝑚

𝜆
− 𝑚𝜎

𝜆2

(︂
𝑥+

(𝜆𝑓 ′(𝜉𝜆)− 2𝑓2(𝜉𝜆))𝜈2(𝐾)

2𝜆𝜎

)︂
ℎ2 + 𝑜(ℎ2).

This implies that the sequence

𝜆2

𝑚𝜎ℎ2
·
(︁
𝛼𝑛 − 𝑚

𝜆

)︁
+

(︂
𝑥+

(𝜆𝑓 ′(𝜉𝜆)− 2𝑓2(𝜉𝜆))𝜈2(𝐾)

2𝜆𝜎

)︂
converges to zero uniformly in |𝑥 | ⩽ 𝐿 as 𝑛→ ∞, where 𝐿 > 0 is chosen to be large enough.

Let

Σ𝑛(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑍𝑖𝐾ℎ(𝑢𝑖 − 𝛿)− 𝜃𝑖) .

We are going to show that
√
𝑛ℎ𝜆2

𝑚𝜎
· Σ𝑛(𝑥)

𝑑−→
𝑛→∞

𝑁(0, 1).

In order to do this, we consider the dispersion of the quantity Σ𝑛(𝑥):

D(Σ𝑛(𝑥)) =
1

𝑛2

𝑛∑︁
𝑖=1

D (𝑍𝑖𝐾ℎ(𝑢𝑖 − 𝛿)) =
1

𝑛2

𝑛∑︁
𝑖=1

𝐾2
ℎ(𝑢𝑖 − 𝛿)D(𝑍𝑖)
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=
1

𝑛2ℎ2

𝑛∑︁
𝑖=1

𝐾2

(︂
𝑢𝑖 − 𝛿

ℎ

)︂
𝑚(1− 𝐹 (𝑢𝑖)))

𝐹 2(𝑢𝑖)

=
1

𝑛ℎ2

∫︁ 1

0

𝑚(1− 𝐹 (𝑢))

𝐹 2(𝑢)
𝐾2

(︂
𝑢− 𝛿

ℎ

)︂
𝑑𝑢 (1 + 𝑜(1))

∼𝑚(1− 𝜆)

𝑛ℎ𝜆2
‖𝐾 ‖2

uniformly in |𝑥 | ⩽ 𝐿 in the latter relation. This yields:

lim
𝑛→∞

D

(︃
𝜆2

√
𝑛ℎ

𝑚𝜎
Σ𝑛(𝑥)

)︃
= 1 .

The Lyapunov conditions can be checked as in the proof of Theorem 4.1. Thus, the assumptions of
the Lyapunov central theorem are satisfied [26, Sect. 40] and this is why, for |𝑥 | ⩽ 𝐿,

𝜆2
√
𝑛ℎ

𝑚𝜎
Σ𝑛(𝑥)

𝑑−→
𝑛→∞

𝑁(0, 1).

It remains to show that for each 𝜀 > 0 we can choose 𝐿 > 0 and 𝑛 ⩾ 𝑛0 so that

𝛽𝑛 = P

(︃√
𝑛ℎ𝑓(𝜉𝜆))| 𝜉𝑛,𝜆 − 𝜉𝜆 |

𝜎
> 𝐿

)︃
< 𝜀.

Since 𝛽𝑛 ⩽ 𝛽1𝑛 + 𝛽2𝑛, where

𝛽1𝑛 = P

(︃√
𝑛ℎ𝑓(𝜉𝜆))(𝜉𝑛,𝜆 − 𝜉𝜆)

𝜎
> 𝐿

)︃
, 𝛽2𝑛 = P

(︃√
𝑛ℎ𝑓(𝜉𝜆))(𝜉𝑛,𝜆 − 𝜉𝜆)

𝜎
< −𝐿

)︃
,

we consider the first term. Arguing as above, we obtain:

𝛽1𝑛 = P

(︂√
𝑛ℎ𝜆2

𝑚𝜎
· 1
𝑛

𝑛∑︁
𝑖=1

(𝑍𝑖𝐾ℎ(𝑢𝑖 − 𝛿(𝐿))− 𝜃𝑖) >

√
𝑛ℎ𝜆2

𝑚𝜎
· 1
𝑛

𝑛∑︁
𝑖=1

(︁𝑚
𝜆

− 𝜃𝑖

)︁)︂
=P

(︂
𝜆2

𝑚𝜎ℎ2
Σ𝑛(𝐿) > 𝐿+ 𝑎

)︂
+ 𝑜(1).

We let 𝑥 = 𝐿+ 𝑎 and 𝜓(𝑥) = 𝑒𝑡𝑥, 𝑡 ⩾ 0. Then

P

(︂
𝜆2

𝑚𝜎ℎ2
Σ𝑛(𝐿) > 𝑥

)︂
⩽ P

(︂
𝜓

(︂
𝜆2

𝑚𝜎ℎ2
Σ𝑛(𝐿)

)︂
> 𝜓(𝑥)

)︂
⩽
E(𝜓(Σ𝑛(𝐿)))

𝜓(𝑥)
.

This is why

lim
𝑛→∞

lnP

(︂
𝜆2

𝑚𝜎ℎ2
Σ𝑛(𝐿) > 𝑥

)︂
⩽ −𝑡𝑥+ 𝜑(𝑡),

where

𝜑(𝑡) = lim
𝑛→∞

lnE

(︂
exp

(︂
𝑡𝜆2

𝑚𝜎ℎ2
Σ𝑛(𝐿)

)︂)︂
=

𝑡2

2
.

Since the minimum of the function −𝑡𝑥 + 𝜑(𝑡) is attained at 𝑡 = 𝑥 and is equal −𝑥2/2, then the
Gärtner-Ellis theorem [31] implies

lim
𝑛→∞

𝛽1𝑛 ⩽ exp(−(𝐿+ 𝑎)2/2).

We choose 𝐿 so that for a given 𝜀 > 0 we have exp(−(𝐿+ 𝑎)2/2) < 𝜀/2. In the same way we study
the second term and this is why for a chosen 𝐿 we obtain lim

𝑛→∞
𝛽𝑛 < 𝜀. This gives the statement of the

theorem and completes the proof.
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4.3. Multi-dimensional case. In this section we study asymptotic behavior of the estimates for a
two-dimensional distribution function in the dose-effect dependence by the fixed plans of experiments
in the model of negative binomial regression; we restrict ourselves by the two-dimensional case only.

We denote

𝐹𝑖𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐹 (𝑥1, 𝑥2), 𝐹𝑖 =

𝜕

𝜕𝑥𝑖
𝐹 (𝑥1, 𝑥2), ∇𝑇

𝐹 = (𝐹1, 𝐹2),

ℋ𝐹 =

(︂
𝐹11 𝐹12

𝐹12 𝐹22

)︂
, H =

(︂
ℎ1 0
0 ℎ2

)︂
, J𝑇 = (1, 1), h = HJ =

(︂
ℎ1
ℎ2

)︂
.

Let 𝒦(x) = 𝒦(𝑥1, 𝑥2) be a symmetric compactly supported square integrable distribution density such
that ∫︁

xx
𝑇𝒦(x) 𝑑x = 𝜈2(𝒦)I𝑠,

where 𝜈2(𝒦) is a real number and I2 is the unit matrix of the second order,

𝒦H(x) = |H |−1𝒦(H−1
x), 𝑁 = 𝑛1𝑛2,

S1 = S1(x) =
1

|H |𝑁

𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑗=1

𝑍𝑖𝑗𝒦H(U𝑖𝑗 − x), 𝐹𝑁 (x) =
𝑚

S1
. (4.4)

Theorem 4.3. Let 𝐹𝑁 (x) be the estimate for the distribution function 𝐹 (x) defined by for-
mula (4.4), {u𝑖𝑗 , 𝑖 = 1, 2, . . . , 𝑛1; 𝑗 = 1, 2, . . . , 𝑛2; } be a Halton sequence and the regularity conditions
are satisfied. Then as 𝑁 → ∞,

(𝑖) E(S1(x)) =
𝑚

𝐹 (x)
+

𝑚

2𝐹 3(x)
(2∇𝑇

𝐹hh
𝑇∇𝐹 − 𝜈2(𝒦)hℋ𝐹h

𝑇 )(1 + 𝑜(1));

(𝑖𝑖) D(S1(x)) =
𝑚(1− 𝐹 (x))

𝑁 |H |𝐹 2(x)
‖𝒦 ‖2(1 + 𝑜(1));

(𝑖𝑖𝑖)
√︀
𝑁 |H |(𝐹𝑁 (x)−E(𝐹𝑛(𝑁))

𝑑−→
𝑛→∞

𝑁

(︂
0,

(1− 𝐹 (x))𝐹 2(x)

𝑚
‖𝒦 ‖2

)︂
.

Proof. The proof follows the lines of the one-dimensional case and this is why we only mention the
differences. We expand the function 𝐹 (x+Ht), where t𝑇 = (𝑡1, 𝑡2), into the Taylor series:

𝐹 (x+Ht) = 𝐹 (𝑥1 + 𝑡1ℎ1, 𝑥2 + 𝑡2ℎ2) =𝐹 (𝑥1, 𝑥2) +

[︂
𝑡1ℎ1

𝜕

𝜕𝑥1
+ 𝑡1ℎ1

𝜕

𝜕𝑥2

]︂
𝐹 (𝑥1, 𝑥2)

+
1

2

[︂
𝑡1ℎ1

𝜕

𝜕𝑥1
+ 𝑡1ℎ1

𝜕

𝜕𝑥2

]︂2
𝐹 (𝑥1, 𝑥2) + 𝑜(|H |) .

Then

1

1 + 𝑎1ℎ1 + 𝑎2ℎ2 +
1
2(𝑏11ℎ

2
1 + 2𝑏12ℎ1ℎ2 + 𝑏22ℎ22)

=1− 𝑎1ℎ1 − 𝑎2ℎ2 +
1

2

(︂
(2𝑎21 − 𝑏11)ℎ

2
1

+ (4𝑎1𝑎2 − 𝑏12)ℎ1ℎ2 + (2𝑎22 − 𝑏22)ℎ
2
2

)︂
+ . . .

=
1

𝐹 (𝑥1, 𝑥2)
−

[︂
𝑡1ℎ1

𝜕

𝜕𝑥1
+ 𝑡1ℎ1

𝜕

𝜕𝑥2

]︂
𝐹 2(𝑥1, 𝑥2)

𝐹 (𝑥1, 𝑥2)

+

(︂[︂
𝑡1ℎ1

𝜕

𝜕𝑥1
+ 𝑡1ℎ1

𝜕

𝜕𝑥2

]︂
𝐹 (𝑥1, 𝑥2)

)︂2

𝐹 3(𝑥1, 𝑥2)

− 1

2

[︂
𝑡1ℎ1

𝜕

𝜕𝑥1
+ 𝑡1ℎ1

𝜕

𝜕𝑥2

]︂2
𝐹 (𝑥1, 𝑥2)

𝐹 2(𝑥1, 𝑥2)
+ . . .
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This yields:

E(𝑆1) =
𝑚

𝐹 (𝑥1, 𝑥2)
+𝑚

(︃(︂[︂𝑡1ℎ1 𝜕

𝜕𝑥1
+ 𝑡1ℎ1

𝜕

𝜕𝑥2

]︂
𝐹 (𝑥1, 𝑥2)

)︂2

𝐹 3(𝑥1, 𝑥2)

− 𝜈2(𝒦)

2

[︂
𝑡1ℎ1

𝜕

𝜕𝑥1
+ 𝑡1ℎ1

𝜕

𝜕𝑥2

]︂2
𝐹 (𝑥1, 𝑥2)

𝐹 2(𝑥1, 𝑥2)

)︃
=

𝑚

𝐹 (x)
+

𝑚

2𝐹 3(x)

(︀
2∇𝑇

𝐹hh
𝑇∇𝐹 − 𝜈2(𝒦)𝐹 (x)h𝑇ℋ𝐹h

)︀
(1 + 𝑜(1)).

In the same way,

D(𝑆1) ∼
𝑚(1− 𝐹 (x))

𝑛|H |𝐹 2(x)
‖𝒦 ‖2.

The Lyapunov conditions are confirmed as in the one-dimensional case and this gives Statement (iii)
of the theorem. The proof is complete.
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