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ON A CLASS OF PERIODIC FUNCTIONS IN R𝑛

A.V. LUTSENKO, I.Kh. MUSIN, R.S. YULMUKHAMETOV

Abstract. By means of some family ℋ of separately radially convex in R𝑛 functions we
define a space 𝐺(ℋ) of 2𝜋-periodic in each variable infinitely differentiable in R𝑛 functions
with prescribed estimates on all partial derivatives. We describe the space 𝐺(ℋ) in terms
of the Fourier coefficients. We find conditions on the family ℋ, under which the functions
from 𝐺(ℋ) can be continued to functions holomorphic in a tubular domain in C𝑛. We
obtain an inner description of the space of such continuations. The considered problems are
directly related with works by P.L. Ul’yanov in the end of 1980s, in which he succeeded to
describe completely the classes of 2𝜋-periodic functions of Gevrey type on the real axis not
only by the decay rate of the Fourier coefficients but also in terms of the best trigonometric
approximations. The obtained results are new both for the case of many variables and the
case of a single variable. In particular, the novelty is owing to imposing condition 𝑖4) on
the family ℋ.

Keywords: Fourier series, Fourier coefficients, best possible approximation by trigonomet-
ric polynomials, entire functions, convex functions.
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1. Introduction

Let 𝐶2𝜋(R
𝑛) be a space of 2𝜋-periodic in each variable continuous in R𝑛 functions 𝑓 with the

norm ‖𝑓‖ = max
𝑥∈[0,2𝜋]𝑛

|𝑓(𝑥)|. Let 𝐶∞
2𝜋(R

𝑛) = 𝐶2𝜋(R
𝑛) ∩ 𝐶∞(R𝑛).

With each function 𝑓 ∈ 𝐶2𝜋(R
𝑛) we associate its Fourier series

𝑓(𝑥) ∼
∑︁
𝛼∈Z𝑛

𝑓𝛼𝑒
𝑖⟨𝛼,𝑥⟩, 𝑥 ∈ R𝑛,

where the Fourier coefficient 𝑓𝛼 is given by the formula

𝑓𝛼 =
1

(2𝜋)𝑛

∫︁
[0,2𝜋]𝑛

𝑓(𝑥)𝑒−𝑖⟨𝛼,𝑥⟩ 𝑑𝑥.

Establishing the relations between the difference and differential properties of the functions
from various subspaces of the space 𝐶2𝜋(R

𝑛) and the properties of their Fourier coefficients is
one of the main problems in the theory of the Fourier series. In this field we mention gentle
results by P.L. Ul’yanov [1]–[3] obtained in the end of 1980s. In particular, he succeeded to
characterize completely the classes of 2𝜋-periodic functions of Gevrey type on the real axis not
only by the decay rate of the Fourier coefficients but also in terms of the best trigonometric
approximations, see, for instance, [3, Thms. 3, 4]. These studies by P.L. Ul’yanov served as a
motivation for considering the following problem in the present note: to find subspaces of the
functions in 𝐶∞

2𝜋(R
𝑛) with estimates for partial derivatives admitting the description in terms
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of the their Fourier series. In order to do this, we introduce the space 𝐺(ℋ) as follows. Let
ℋ = {ℎ𝜈}∞𝜈=1 be a family of convex functions ℎ𝜈 : R𝑛 → [0,∞) with ℎ𝜈(0) = 0 such that for
each 𝜈 ∈ N

𝑖1) ℎ𝜈(𝑥) = ℎ𝜈(|𝑥1|, . . . , |𝑥𝑛|), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛;

𝑖2) lim
𝑥→∞

ℎ𝜈(𝑥)

‖𝑥‖
= +∞;

𝑖3) ℎ𝜈(𝑥) ⩾ ℎ𝜈+1(𝑥) for each 𝑥 ∈ R𝑛, and lim
𝑥→∞

(ℎ𝜈(𝑥)− ℎ𝜈+1(𝑥)) = +∞;

𝑖4) the series ∑︁
𝛼=(𝛼1,...,𝛼𝑛)∈Z𝑛

𝑒ℎ
*
𝜈(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|)−ℎ*
𝜈+1(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|)

converges, where

ℎ*
𝜈(𝑥) = sup

𝛼∈Z𝑛

(⟨𝛼, 𝑥⟩ − ℎ𝜈(𝛼)), 𝑥 ∈ R𝑛,

and, as usually, ln+ 𝑡 = ln 𝑡 for 𝑡 ⩾ 1, ln+ 𝑡 = 0 for 0 ⩽ 𝑡 < 1. For each 𝜈 ∈ N we introduce a
normed space

𝐺(ℎ𝜈) =

{︃
𝑓 ∈ 𝐶∞

2𝜋(R
𝑛) : ‖𝑓‖𝜈 = sup

𝑥∈R𝑛,𝛼∈Z𝑛
+

|(𝐷𝛼𝑓)(𝑥)|
𝑒ℎ𝜈(𝛼)

< ∞

}︃
.

By Condition 𝑖3) the space 𝐺(ℎ𝜈+1) is embedded into 𝐺(ℎ𝜈) completely continuous. We note
that 𝐺(ℎ𝜈+1) is a proper subspace of the space 𝐺(ℎ𝜈). Indeed, once we suppose that 𝐺(ℎ𝜈+1) =
𝐺(ℎ𝜈), then for some 𝐶𝜈 > 0 the inequality holds

‖𝑓‖𝜈+1 ⩽ 𝐶𝜈‖𝑓‖𝜈 , 𝑓 ∈ 𝐺(ℎ𝜈).

In particular, for the functions 𝑒𝑖⟨𝑚,𝑥⟩ with 𝑚 = (𝑚1, . . . ,𝑚𝑛) ∈ Z𝑛 we have

ℎ*
𝜈+1(ln

+ |𝑚1|, . . . , ln+ |𝑚𝑛|) ⩽ ℎ*
𝜈(ln

+ |𝑚1|, . . . , ln+ |𝑚𝑛|) + ln𝐶𝜈 .

But this inequality is impossible due to Condition 𝑖4). Now we let 𝐺(ℋ) =
∞⋂︀
𝜈=1

𝐺(ℎ𝜈). We equip

𝐺(ℋ) with a locally convex topology by means of the family of the norms ‖ · ‖𝜈 (𝜈 ∈ N). With
this topology, 𝐺(ℋ) is a Fréchet space.
In Section 2 we show that the space of the functions 𝐺(ℋ) admits the description in terms of

the estimates for the Fourier coefficients Theorem 2.1. It interesting to find the conditions for
the family ℋ, under which the functions from 𝐺(ℋ) admit the continuation to the functions
holomorphic in a tubular domain in C𝑛, and to describe the space of such continuation. This
problem is considered in the second section of this note, see Theorem 3.1.

2. Equivalent description of space 𝐺(ℋ)

In the formulation of the main result, Theorem 2.1, the space 𝐶(ℋ) is involved. We introduce
it as follows. For each 𝜈 ∈ N let 𝐶(ℎ𝜈) be the space consisting of the functions 𝑓 ∈ 𝐶2𝜋(R

𝑛),

the Fourier coefficients of which 𝑓𝛼 for some 𝑎𝜈(𝑓) > 0 satisfy the estimate

|𝑓𝛼| ⩽ 𝑎𝜈(𝑓)𝑒
−ℎ*

𝜈(ln
+ |𝛼1|,...,ln+ |𝛼𝑛|), 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛.

Since, owing to Condition 𝑖2, for each 𝜈 ∈ N

lim
𝑥→∞

ℎ*
𝜈(𝑥)

‖𝑥‖
= +∞,

then the functions in 𝐶(ℎ𝜈) are infinitely differentiable. We equip 𝐶(ℎ𝜈) with the norm

𝑝𝜈(𝑓) = sup
𝛼=(𝛼1,...,𝛼𝑛)∈Z𝑛

(|𝑓𝛼|𝑒ℎ
*
𝜈(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|)).
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Since ℎ*
𝜈(𝑥) ⩽ ℎ*

𝜈+1(𝑥) for each 𝑥 ∈ R𝑛, then 𝑝𝜈(𝑓) ⩽ 𝑝𝜈+1(𝑓) for an arbitrary function
𝑓 ∈ 𝐶(ℎ𝜈+1). Hence, the space 𝐶(ℎ𝜈+1) is continuously embedded into 𝐶(ℎ𝜈). At the same
time, 𝐶(ℎ𝜈+1) is a proper subspace of the space 𝐶(ℎ𝜈). Indeed, there are functions 𝐶(ℎ𝜈) not
belonging to 𝐶(ℎ𝜈+1). This is, for instance, the function

𝑓𝜈(𝑥) =
∑︁
𝛼∈Z𝑛

𝑒−ℎ*
𝜈(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|)𝑒𝑖⟨𝛼,𝑥⟩, 𝑥 ∈ R𝑛.

For this function 𝑝𝜈(𝑓𝜈) = 1 and 𝑝𝜈+1(𝑓𝜈) = +∞ since owing to Conditions 𝑖2) and 𝑖3)

lim
𝑥→∞

(ℎ*
𝜈+1(𝑥)− ℎ*

𝜈(𝑥)) = +∞. (2.1)

We define the space 𝐶(ℋ) as the intersection of the spaces 𝐶(ℎ𝜈). We equip 𝐶(ℋ) by a locally
convex topology by means of the family of the norms 𝑝𝜈 .
We recall once again that the Young-Fenchel transform of a function 𝑔 : R𝑛 → [−∞,+∞] is

the function 𝑔 : R𝑛 → [−∞,+∞] defined by the formula

𝑔(𝑥) = sup
𝑦∈R𝑛

(⟨𝑥, 𝑦⟩ − 𝑔(𝑦)), 𝑥 ∈ R𝑛.

In the proof of Theorem 2.1 we shall need the following statement.

Proposition 2.1. Let 𝑔 : R𝑛 → R be a convex function such that

lim
𝑥→∞

𝑔(𝑥)

‖𝑥‖
= +∞.

Then 𝑔(𝛼) = ̃︂(𝑔*)(𝛼), 𝛼 ∈ Z𝑛.

Proof. By the assumptions on 𝑔, the convex in R𝑛 functions 𝑔* and ̃︀𝑔 take finite values. Hence,
𝑔* and ̃︀𝑔 are continuous in R𝑛. Since

𝑔(𝛼) ⩾ ⟨𝑥, 𝛼⟩ − 𝑔*(𝑥), 𝛼 ∈ Z𝑛, 𝑥 ∈ R𝑛,

then 𝑔(𝛼) ⩾ ̃︂(𝑔*)(𝛼) for each 𝛼 ∈ Z𝑛. We recall that 𝑔 = ˜̃𝑔 according to the formula of inverting
the Young-Fenchel transform [4], that is,

𝑔(𝑥) = sup
𝜉∈R𝑛

(⟨𝑥, 𝜉⟩ − 𝑔(𝜉)), 𝑥 ∈ R𝑛.

Using assumptions on the convex function 𝑔 and it continuity, for each 𝛼 ∈ Z𝑛 we find a point
𝜉(𝛼) ∈ R𝑛 such that 𝑔(𝛼) = ⟨𝛼, 𝜉(𝛼)⟩ − 𝑔(𝜉(𝛼)). Now, using this identity and the inequality
𝑔*(𝑥) ⩽ ̃︀𝑔(𝑥) for 𝑥 ∈ R𝑛, we have:̃︂(𝑔*)(𝛼) ⩽ 𝑔(𝛼) = ⟨𝛼, 𝜉(𝛼)⟩ − 𝑔(𝜉(𝛼)) ⩽ ⟨𝛼, 𝜉(𝛼)⟩ − 𝑔*(𝜉(𝛼)) ⩽ ̃︂(𝑔*)(𝛼).
Therefore, 𝑔(𝛼) = ̃︂(𝑔*)(𝛼) for each 𝛼 ∈ Z𝑛.

The following theorem holds true.

Theorem 2.1. The spaces 𝐺(ℋ) and 𝐶(ℋ) coincide.

Proof. Let 𝑓 ∈ 𝐺(ℋ). We are going to show that 𝑓 ∈ 𝐶(ℋ). Since 𝑓 ∈ 𝐺(ℎ𝜈) for each 𝜈 ∈ N,
then

|(𝐷𝛽𝑓)(𝑥)| ⩽ ‖𝑓‖𝜈𝑒ℎ𝜈(𝛽), 𝑥 ∈ R𝑛, 𝛽 ∈ Z𝑛
+.

By the representations

𝑓𝛼(𝑖𝛼)
𝛽 =

1

(2𝜋)𝑛

∫︁
[0,2𝜋]𝑛

(𝐷𝛽𝑓)(𝑥)𝑒−𝑖⟨𝛼,𝑥⟩ 𝑑𝑥, 𝛼 ∈ Z𝑛, 𝛽 ∈ Z𝑛
+,
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we hence obtain

|𝑓𝛼| ⩽ ‖𝑓‖𝜈
𝑒ℎ𝜈(𝛽)

(|𝛼1|+)𝛽1 · · · (|𝛼𝑛|+)𝛽𝑛

for each 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛, 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ Z𝑛
+, where 𝑡 ⩾ 0 𝑡+ = max(𝑡, 1). Therefore,

|𝑓𝛼| ⩽ ‖𝑓‖𝜈 inf
𝛽=(𝛽1,...,𝛽𝑛)∈Z𝑛

+

𝑒ℎ𝜈(𝛽)

(|𝛼1|+)𝛽1 · · · (|𝛼𝑛|+)𝛽𝑛
, 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛.

That is,

|𝑓𝛼| ⩽ ‖𝑓‖𝜈𝑒−ℎ*
𝜈(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|), 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛.

Thus, 𝑝𝜈(𝑓) ⩽ ‖𝑓‖𝜈 , 𝑓 ∈ 𝐺(ℋ). In view of the arbitrariness of 𝜈 we conclude that 𝑓 ∈ 𝐶(ℋ)
and the embedding 𝐺(ℋ) into 𝐶(ℋ) is continuous.
Now let 𝑓 ∈ 𝐶(ℋ). Then for each 𝑘 ∈ N

|𝑓𝛼| ⩽ 𝑝𝑘(𝑓)𝑒
−ℎ*

𝑘(ln
+ |𝛼1|,...,ln+ |𝛼𝑛|), 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛. (2.2)

Therefore,

|𝑓𝛼| ⩽ 𝑝𝑘(𝑓)
𝑒ℎ𝑘(𝛽)

(|𝛼1|+)𝛽1 · · · (|𝛼𝑛|+)𝛽𝑛

for each 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛, 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ Z𝑛
+. Hence, 𝑓 ∈ 𝐶∞

2𝜋(R
𝑛). Let us show that

𝑓 ∈ 𝐺(ℋ). Let 𝜈 ∈ N be arbitrary. For 𝑥 ∈ R𝑛, 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ Z𝑛
+ we estimate from above

|(𝐷𝛽𝑓)(𝑥)| employing inequality (2.2) and Condition 𝑖3). We have:

|(𝐷𝛽𝑓)(𝑥)| ⩽
∑︁

𝛼=(𝛼1,...,𝛼𝑛)∈Z𝑛

|𝑓𝛼|(|𝛼1|+)𝛽1 · · · (|𝛼𝑛|+)𝛽𝑛

⩽ 𝑝𝜈+1(𝑓)
∑︁

(𝛼1,...,𝛼𝑛)∈Z𝑛

𝑒−ℎ*
𝜈+1(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|)(|𝛼1|+)𝛽1 · · · (|𝛼𝑛|+)𝛽𝑛 , 𝑥 ∈ R𝑛.

Hence, letting

𝜏𝜈 =
∑︁

𝛼=(𝛼1,...,𝛼𝑛)∈Z𝑛

𝑒ℎ
*
𝜈(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|)−ℎ*
𝜈+1(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|),

we obtain that

|(𝐷𝛽𝑓)(𝑥)| ⩽ 𝜏𝜈𝑝𝜈+1(𝑓)𝑒
sup

(𝛼1,...,𝛼𝑛)∈Z𝑛
(𝛽1 ln

+ |𝛼1|+···+𝛽𝑛 ln+ |𝛼𝑛|−ℎ*
𝜈(ln

+ |𝛼1|,...,ln+ |𝛼𝑛|))
.

This yields the inequality

|(𝐷𝛽𝑓)(𝑥)| ⩽ 𝜏𝜈𝑝𝜈+1(𝑓)𝑒
sup
𝑡∈R𝑛

(⟨𝛽,𝑡⟩−ℎ*
𝜈(𝑡))

.

Using now Proposition 2.1, we get:

|(𝐷𝛽𝑓)(𝑥)| ⩽ 𝜏𝜈𝑝𝜈+1(𝑓)𝑒
ℎ𝜈(𝛽), 𝑥 ∈ R𝑛, 𝛽 ∈ Z𝑛

+.

Therefore, for each 𝜈 ∈ N the inequality holds:

‖𝑓‖𝜈 ⩽ 𝜏𝜈𝑝𝜈+1(𝑓).

Thus, 𝑓 ∈ 𝐺(ℋ) and the embedding of 𝐶(ℋ) into 𝐺(ℋ) is continuous. The proven statements
imply that the spaces 𝐺(ℋ) and 𝐶(ℋ) coincide as topological spaces.
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3. On continuing functions from 𝐺(ℋ) to
holomorphic ones in convex tubular domain

For each 𝜈 ∈ N we define a function 𝑢𝜈 in R𝑛 letting

𝑢𝜈(𝑥) = ℎ*
𝜈(ln

+ |𝑥1|, . . . , ln+ |𝑥𝑛|), 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛.

It is clear that the function 𝑢𝜈 is continuous, negative and 𝑢𝜈(0) = 0, and its restriction to
[0,∞)𝑛 does not decrease in each variable. By (2.1) we have

lim
𝑥→∞

(𝑢𝜈+1(𝑥)− 𝑢𝜈(𝑥)) = +∞. (3.1)

Hereafter we suppose that the functions 𝑢𝜈 obey the condition

lim
𝑥→∞

𝑢𝜈(𝑥)

‖𝑥‖
> 0, 𝜈 = 1, 2, . . . . (3.2)

We define a set 𝐵𝜈 = {𝑦 ∈ R𝑛 : ̃︀𝑢𝜈(𝑦) < ∞}. It is obvious that if

lim
𝑥→∞

𝑢𝜈(𝑥)

‖𝑥‖
= +∞, 𝜈 ∈ N,

then 𝐵𝜈 = R𝑛. By (3.2) the interior 𝐵∘
𝜈 of the set 𝐵𝜈 is non-empty. Since the function ̃︀𝑢𝜈 is

convex in R𝑛, then 𝐵𝜈 is a convex set. Since ̃︂𝑢𝜈+1(𝑦) ⩽ ̃︀𝑢𝜈(𝑦) for each 𝑦 ∈ R𝑛, then 𝐵𝜈 ⊆ 𝐵𝜈+1

(𝜈 = 1, 2, . . .).

Let 𝐵 =
∞⋃︀
𝜈=1

𝐵∘
𝜈 ; we see that 𝐵 is a convex domain in R𝑛.

We observe that each function 𝑓 ∈ 𝐺(ℋ) admits a continuation for a 2𝜋-periodic in each
variable holomorphic in a tubular domain 𝑇𝐵 = R𝑛 + 𝑖𝐵 function 𝐹𝑓 introduced by the rule

𝐹𝑓 (𝑧) =
∑︁
𝛼∈Z𝑛

𝑓𝛼𝑒
𝑖⟨𝛼,𝑧⟩, 𝑧 ∈ 𝑇𝐵. (3.3)

Indeed, for each 𝜈 ∈ N, for each 𝑧 ∈ R𝑛 + 𝑖𝐵∘
𝜈 ,∑︁

𝛼∈Z𝑛

|𝑓𝛼||𝑒𝑖⟨𝛼,𝑧⟩| ⩽ 𝑝𝜈+1(𝑓)
∑︁
𝛼∈Z𝑛

𝑒−𝑢𝜈(𝛼)−⟨𝛼,Im 𝑧⟩

⩽ 𝜏𝜈𝑝𝜈+1(𝑓)𝑒
sup

𝛼∈Z𝑛
(−𝑢𝜈(𝛼)−⟨𝛼,Im 𝑧⟩)

= 𝜏𝜈𝑝𝜈+1(𝑓)𝑒
̃︁𝑢𝜈(− Im 𝑧)

= 𝜏𝜈𝑝𝜈+1(𝑓)𝑒
̃︁𝑢𝜈(Im 𝑧) < ∞.

Thus, the series in the right hand side in (3.3) converges absolutely and uniformly in the domain
𝑇𝐵∘

𝜈
= R𝑛 + 𝑖𝐵∘

𝜈 for each 𝜈 ∈ N. Hence, 𝐹𝑓 is holomorphic in 𝑇𝐵 and

|𝐹𝑓 (𝑧)| ⩽ 𝜏𝜈𝑝𝜈+1(𝑓)𝑒
̃︁𝑢𝜈(Im 𝑧), 𝑧 ∈ R𝑛 + 𝑖𝐵∘

𝜈 . (3.4)

This continuation is obviously unique.
Below we suppose that for each 𝜈 ∈ N the function 𝑢𝜈 is convex in R𝑛. This condition

and the fact the function 𝑢𝜈 takes finite values in R𝑛 imply that it is continuous in R𝑛. Now
we define the space 𝐻2𝜋(𝑇𝐵∘

𝜈
, 𝑢̃𝜈) consisting of 2𝜋-periodic in each variable holomorphic in 𝑇𝐵∘

𝜈

functions 𝐹 , for which
|𝐹 (𝑧)| ⩽ 𝑐𝜈(𝐹 )𝑒𝑢̃𝜈(Im 𝑧), 𝑧 ∈ 𝑇𝐵∘

𝜈
,

for some 𝑐𝜈(𝐹 ) > 0. We equip 𝐻2𝜋(𝑇𝐵∘
𝜈
, 𝑢̃𝜈) with the norm

𝑛𝜈(𝐹 ) = sup
𝑧∈𝑇𝐵∘

𝜈

|𝐹 (𝑧)|
𝑒̃︀𝑢𝜈(Im 𝑧)

, 𝐹 ∈ 𝐻2𝜋(𝑇𝐵∘
𝜈
, 𝑢̃𝜈).

Since ̃︂𝑢𝜈+1(𝑦) ⩽ ̃︀𝑢𝜈(𝑦) for each 𝑦 ∈ R𝑛, then

𝑛𝜈(𝐹 ) ⩽ 𝑛𝜈+1(𝐹 ), 𝐹 ∈ 𝐻2𝜋(𝑇𝐵∘
𝜈+1

, 𝑢̃𝜈+1).
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Hence, the space 𝐻2𝜋(𝑇𝐵∘
𝜈+1

, 𝑢̃𝜈+1) is continuously embedded into 𝐻2𝜋(𝑇𝐵∘
𝜈
, 𝑢̃𝜈).

We note that the space 𝐻2𝜋(𝑇𝐵∘
𝜈+1

, 𝑢̃𝜈+1) is a proper subspace of the space 𝐻2𝜋(𝑇𝐵∘
𝜈
, 𝑢̃𝜈).

Indeed, if we suppose that 𝐻2𝜋(𝑇𝐵∘
𝜈+1

, 𝑢̃𝜈+1) = 𝐻2𝜋(𝑇𝐵∘
𝜈
, 𝑢̃𝜈), then for some 𝑐𝜈 > 0 the inequality

should hold:

𝑛𝜈+1(𝐹 ) ⩽ 𝑐𝜈𝑛𝜈(𝐹 ), 𝐹 ∈ 𝐻2𝜋(𝑇𝐵∘
𝜈
, 𝑢̃𝜈).

In particular, due to this inequality for the function 𝑒−𝑖⟨𝛼,𝑧⟩ with 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛, we
have

sup
𝑦∈𝐵∘

𝜈+1

(⟨𝛼, 𝑦⟩ − 𝑢̃𝜈+1(𝑦)) ⩽ ln 𝑐𝜈 + sup
𝑦∈𝐵∘

𝜈

(⟨𝛼, 𝑦⟩ − 𝑢̃𝜈(𝑦)).

This inequality can be written as follows:

sup
𝑦∈R𝑛

(⟨𝛼, 𝑦⟩ − 𝑢̃𝜈+1(𝑦)) ⩽ ln 𝑐𝜈 + sup
𝑦∈R𝑛

(⟨𝛼, 𝑦⟩ − 𝑢̃𝜈(𝑦)).

Now we take into consideration that for each 𝜈 ∈ N
sup
𝑦∈𝐵∘

𝜈

(⟨𝛼, 𝑦⟩ − ̃︀𝑢𝜈(𝑦)) = sup
𝑦∈𝐵𝜈

(⟨𝛼, 𝑦⟩ − ̃︀𝑢𝜈(𝑦)) = sup
𝑦∈R𝑛

(⟨𝛼, 𝑦⟩ − ̃︀𝑢𝜈(𝑦)) = 𝑢𝜈(𝛼). (3.5)

Here at the final step we employed the formula for inverting the Young-Fenchel transform [4].
In view of this identity, by the previous inequality we obtain that 𝑢𝜈+1(𝛼) ⩽ ln 𝑐𝜈 + 𝑢𝜈(𝛼) for
each 𝛼 ∈ Z𝑛 and this contradicts (3.1).
We introduce the space 𝐻2𝜋(𝑇𝐵,ℋ) as the intersection of the spaces 𝐻2𝜋(𝑇𝐵∘

𝜈
, 𝑢̃𝜈). We equip

𝐻2𝜋(𝑇𝐵,ℋ) by a locally convex topology defined by the system of the norms 𝑛𝜈 .

Theorem 3.1. The spaces 𝐺(ℋ) and 𝐻2𝜋(𝑇𝐵,ℋ) are isomorphic.

Proof. Employing estimate (3.4), we have: 𝑛𝜈(𝐹𝑓 ) ⩽ 𝜏𝜈𝑝𝜈+1(𝑓) for each 𝑓 ∈ 𝐺(ℋ). This means
that the linear mapping 𝐴 acts from 𝐺(ℋ) into 𝐻2𝜋(𝑇𝐵,ℋ) and is continuous. It is clear that
the mapping 𝐴 is injective.
We are going to show that the mapping 𝐴 is surjective. Let 𝐹 ∈ 𝐻2𝜋(𝑇𝐵,ℋ). Then, in

particular, 𝐹 ∈ 𝐶∞
2𝜋(R

𝑛). Therefore,

𝐹 (𝑥) =
∑︁
𝛼∈Z𝑛

𝐹𝛼𝑒
𝑖⟨𝛼,𝑥⟩, 𝑥 ∈ R𝑛.

Employing the analyticity and periodicity of 𝐹 , we can write a representation for the Fourier
coefficient 𝐹𝛼 of the function 𝐹 :

𝐹𝛼 =
1

(2𝜋)𝑛

∫︁
[0,2𝜋]𝑛

𝐹 (𝑥+ 𝑖𝑦)𝑒−𝑖⟨𝛼,𝑥+𝑖𝑦⟩ 𝑑𝑥, 𝑦 ∈ 𝐵∘
𝜈 .

Then for each 𝛼 ∈ Z𝑛

|𝐹𝛼| ⩽
1

2𝜋

∫︁
[0,2𝜋]𝑛

|𝐹 (𝑥+ 𝑖𝑦)|𝑒⟨𝛼,𝑦⟩ 𝑑𝑥, 𝑦 ∈ 𝐵∘
𝜈 .

Since 𝐹 ∈ 𝐻2𝜋(𝑇𝐵∘
𝜈
, 𝑢̃𝜈) for each 𝜈 ∈ N, by this inequality we obtain that

|𝐹𝛼| ⩽ 𝑛𝜈(𝐹 )𝑒̃︀𝑢𝜈(𝑦)𝑒⟨𝛼,𝑦⟩, 𝑦 ∈ 𝐵∘
𝜈 .

Therefore,

|𝐹𝛼| ⩽ 𝑛𝜈(𝐹 )𝑒
inf

𝑦∈𝐵∘
𝜈

(̃︀𝑢𝜈(𝑦)+⟨𝛼,𝑦⟩)
.

In view of (3.5) we have:

inf
𝑦∈𝐵∘

𝜈

(̃︀𝑢𝜈(𝑦) + ⟨𝛼, 𝑦⟩) = inf
𝑦∈𝐵∘

𝜈

(̃︀𝑢𝜈(−𝑦) + ⟨𝛼, 𝑦⟩) = − sup
𝑦∈𝐵∘

𝜈

(⟨𝛼, 𝑦⟩ − ̃︀𝑢𝜈(𝑦)) = −𝑢𝜈(𝛼).
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By this and the previous inequality we find:

|𝐹𝛼| ⩽ 𝑛𝜈(𝐹 )𝑒−𝑢𝜈(𝛼). (3.6)

Hence, 𝐹|R𝑛 ∈ 𝐶(ℋ). But then by Theorem 2.1 we have 𝐹|R𝑛 ∈ 𝐺(ℋ). It is obvious that
𝐴(𝐹|R𝑛) = 𝐹 . Thus, the mapping 𝐴 is surjective. We also note that by estimate (3.6) and The-
orem 2.1 the linear mapping 𝐴−1 : 𝐹 ∈ 𝐻2𝜋(𝑇𝐵,ℋ) → 𝐹|R𝑛 acts continuously from 𝐻2𝜋(𝑇𝐵,ℋ)
into 𝐺(ℋ). The proven statements imply that the mapping 𝐴 makes an isomorphism of the
spaces 𝐺(ℋ) and 𝐻2𝜋(𝑇𝐵,ℋ).
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