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SINGULAR HAHN-HAMILTONIAN SYSTEMS

B.P. ALLAHVERDIEV, H. TUNA

Abstract. In this work, we study a Hahn—Hamiltonian system in the singular case. For
this system, the Titchmarsh—Weyl theory is established. In this context, the first part
provides a summary of the relevant literature and some necessary fundamental concepts of
the Hahn calculus. To pass from the Hahn difference expression to operators, we define
the Hilbert space Li,qw((wo, 00); C?") in the second part of the work. The corresponding
maximal operator L. are introduced. For the Hahn—Hamiltonian system, we proved
Green formula. Then we introduce a regular self-adjoint Hahn—Hamiltonian system. In the
third part of the work, we study Titchmarsh-Weyl functions M (\) and circles C(a, \) for
this system. These circles proved to be embedded one to another. The number of square-
integrable solutions of the Hahn—-Hamilton system is studied. In the fourth part of the
work, we obtain boundary conditions in the singular case. Finally, we define a self-adjoint
operator in the fifth part of the work.
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1. INTRODUCTION

In this paper, we consider singular Hahn-Hamiltonian systems defined as

JZM(2) — B(x)Z(z) = \W (2)Z(z), & € [wo, o0), (1.1)

5@ = () )

and W (-) are 2n x 2n complex Hermitian matrix-valued functions defined on [wy, c0) and are
continuous at wp; Z(x) is 2n x 1 vector-valued function;

2= (102250 = (02200 )

q
0 —I,
(7).
where [, is the n x n identity matrix. The theory of Hamiltonian systems is well developed,
see [B], [6], [9]-[12], [14]-[16] and it plays important role in modeling various physical systems,
for example, in the study of electromechanical, electrical, and complex network systems with
negligible dissipation, see [I8]. However, to the best knowledge of the authors of this paper,
there is no study on the Hahn—Hamiltonian system, though there are some results about the
Hahn—Dirac systems in the literature, see [I], [2], [I3]. In this paper, our main aim is to develop
the Titchmarsh—Weyl theory for singular Hahn—-Hamiltonian systems. In our analysis we mostly
follow the development of the theory in [14], [15], [17].

where the matrices

and
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For the reader’s convenience, we recall main concepts. For further details, we refer the reader
to [I]-[4], [7], [8], [I3]. Throughout the paper, we let w > 0, h(z) := w + gz and ¢ € (0,1).

Let I be a real interval containing wy, where wy := l%q.

Definition 1.1 ([7],[8]). Let u : I — R be a function. If u is differentiable at wy, then the
Hahn operator D, , is given by the formula
W+ (g—1Da) " (u(w+gz) —ux), 7w,
Dquu('x) = /
u' (wo) , T = wp.
We have the following theorem.

Theorem 1.1 ([3]). Let u,v: I — R be Hahn-differentiable at x € 1. Then
1) Dyg (uv) (2) = (Do qu(z)) v(@) + u(w + 2q) Dy,gv(@),

ii) Dy, 4 (au+ bv) () = aDy qu(x) + bD,, qu(x), a,bel,

i66) Doy (/) (2) = (0(2)0 (@ + 20)) " (D (u()) v() — u(2) Do go(a)

) Dy qu (b (2)) = D_yg1 g1u(x),
where h™(z) = ¢ '(x —w), and z € I.

Definition 1.2 ([3]). Let v : I — R be a function and a,b,wy € I. The w,q-integral of the
function u s given by

a

b b
/u(x)dng = /u(:v)d%qzv— /u(x)dw,qx,

wo

where
X
n

e, 9] 1 .
/u(:v)dwqx =((1-¢q)zr—w) Zq"u <w 1 _qq + xq") : rel,
n=0

wo

provided the series converges.

2. SINGULAR HAHN-HAMILTONIAN SYSTEM

We consider the following system:
I'(2):=Jz2W(z) - B(x)Z(x) = \W (2)Z(x), T € [wy, 00), (2.1)

assuming that \ is a complex spectral parameter, I + ((¢ — 1) x + w) By(x) is invertible, and
W (-) is nonnegative definite.

By L2 ,w((wo,00); C*") we denote the Hilbert space of all 2n-dimensional vector-valued
functions Z defined on [wp, 00) satisfying the condition

/(WZ,Z)C% dy,qT < 00
wo

with the scalar product

o0

(Z,Y) ::/(WZ,J/)C% dy g

wo
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_ / V()W () Z(2)do 1.

We assume that if I'(Z) = WF and WZ = 0, then Z = 0. Furthermore, throughout this
work, we assume that the following definiteness condition holds: for every nontrivial solution

Z of (2.1, we have

/Z*(x)W(x)Z(x)d%qx > 0.

We define a maximal operator L., by the formula L,,..Z =F for all Z € D,,.x, where
Z e L, w((wo,00); C*") : Z is a continuous at wp,
Diax :=  JZU(2) — B(2)Z(x) = W(z)F(z) is well-defined in (wj, 00),
P € 12 (s, 00): C*)
The next theorem introduces a Green formula.
Theorem 2.1. For all functions U,V € Dpyax we have the following relation:
(Lo, V) = U, LuaxV) = V7 (0)-TU(E) = V* (w0) JU (1), (2.2)
where t € [wp, 00).

Proof. For U,V € Dy, there exist F, G € H such that L., = F and L.V = G. Then we
get

(Lmaxu7 V) - (uv Lmaxv) = (F’ V) - (u7 G)

:/wawwﬂ@%w_/bmmW@M@%w

— [V@r @)~ [ 0 Uy

- / V() (JUM () + (AW (2) + B(2)) U(x)) du g

wo
t

- / (W (@) + (AW (2) + B(@) V(@) Ulx)du gt

t

= / V* () JU (z)d,, .z — / (JV ()" U(x)d, g

wo

1
:/ (—5Vf(x)D_wq17q1U2(x) + V5 (x) Dy, (U (x)) Ay g

wo
t

_ / ((_é D_wa,qlvg(x)) Uy (x) + Dy, Vi (x)uz@c)) Ay g

wo
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_ j (v;@:) <—$qu_17q_lu2(x>> - Dw,qv;(@%(m)) Qg

wo

+ t V3 (2) Dyl () — —ED—wq*’q*V;(x) (@) ) dug.
/( (- Juto)

wo

On the other hand,
Doq (Vi @)Uz (R (2))) = Vi (2) Do o (W () Dugh™" (z) + Doy g Vi (z)Us ()

V{07 (Do Ue(2) + (D gVa(0))" ()
and
Dy (V5 (h™(2)) Us(2)) = DugVs (h™(2)) Duvy (h™"(2)) Us () + V5 (2) D s ()
:é (Dt 1 Vi (@) U (2) + Vi () Do s ().
Therefore,
[V @ @@ du— [0 U= [ (S e
=V (£)JU(t) = V" (wo) JGi(wo).
The proof is complete. O

Let (1, (2,71, 72 be matrices satisfying
Gi¢) + QG = 1y, GG — Gl =0,
NN+ 2 =l N =0,

and
rank (Cl CQ) = rank (’yl ’yg) =n.
We impose the following boundary conditions:

$Z (wp) =0, (2.5)
EZ(a) =0, (2.6)
where
G G - 0 0
Y= ==
(0 0/’ Mo oY)’
and

sy ( Zi2)

20= (2,00
It follows from (2.5) that XJX* = 0 and ZJZ* = 0. It is obvious that (2.1)) with conditions
(2.5), (2.6 defines a regular self-adjoint problem.

We denote by
Z=(p ¥)= (i; Zﬁ;) (2.7)

the fundamental matrix for I' (Z) = AW Z satisfying
> (1 ‘—C§>
Z =F:=|> .
) & 3
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Thus, (Gi G2) @ (wo) = Lo, and (G G2) ¥ (wo) = 0.
Lemma 2.1. The following relation holds

75 (2, N) JZ (z,\) = J. (2.8)
Proof. From Theorem 2.1, we see that
0= / Z* (4, V) T(Z(t \))doy ot — / T(Z* (6, A) Z(t, N)do ot
wo wo

= 7" (2, \) JZ (3, )) — Z* (w0, \) JZ (wp, A) .
Thus,
Z (2, N) JZ (2, ) = Z* (wo, ) JZ (wp, A) .
Since Z (wo, \) = E, we obtain
Z* (2, N) JZ (2, \) = J.
The proof is complete. O

3. THE TITCHMARSH-WEYL FUNCTION
In this section, we construct the Titchmarsh-Weyl function M (A) for system (2.1), (2.5).
Definition 3.1. Let
P, (2.0) = Z (2, \) <M {;’ A)> |

where Im A # 0 and M (a,\) is a n X n matriz-valued function. Then M (a, \) is called the
Titchmarsh—Weyl function for boundary value problem , , .

The following theorem holds true.
Theorem 3.1. Let

(n 72) Ya(a,\) = 0. (3.1)
Then
M (a,\) = — (m¥1(a) + 1212 (h‘l(a)))*l (i1 (a) + 202 (R '(a))) ,
and

Y, (a,3) IV, (a,3) =0,
where v, and vy are defined in . And vice versa, if ?a satisfies
Y (a,\) JY, (a,\) =0,
then there exists Y1, v satisfying such that
(M ) Ya(a, ) =0,

and
M (a,A) = — (@) + w2 (h7(a) ™ (nei(a) + 7202 (R (a))) .

Proof. Let (71 72) Y, (a,A) = 0. Then we get
(111 (a) +y2t2 (B H(a))] M (a,A) = = (rap1(a) + 202 (R (a)))

and
M (a,A) = — (@) + w2 (h7(a)) ™ (nei(a) + 7202 (R (a))) .
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Since A is not an eigenvalue of the self-adjoint problem on [wy,a], the inverse of the matrix
y1(a) + y2tbs (R (a)) exists. By (3.1), we see that

S 0 -1, *
Y, (a, )‘> = (In 0 ) (1%) K
0o -1, *

(I, M*(a,\) Z* (a,\) JZ (a, \) (

for

Hence,

1, B
M (a, A)) -0
that is, Y* (a, ) JY, (a,\) = 0.

Vice versa, for some M we let

Vi (a,\) JY, (a,0) = (I, M*(a,\)) Z* (a,\) JZ (a, \) <M (];‘, A)) —0

We let R
(m 72) =L M*(a,N) Z* (a,\) J
and we get the desired results. The proof is complete. ]

We introduce Titchmarsh—Weyl circles.
Definition 3.2. Let

C(a,\) = (I, M*(a,N) (g; 83 (M (IC’; A)> =0, (3.2)

where ©,, are n X n matrices form =1,2,3 and

(8 &) = s 2 (@ %) /) Z 00, 53)

Then C (a,\) is called the Titchmarsh-Weyl circle for boundary value problem , ,
)

From the above definition we deduce that
C(a,\) = (M, +05'0,)" 0,4 (M, + 65'0,) + 01 — 050510,
= (M, = ©4) K7 (M, — ©4) = K3 =0,
where
0,=-6;'0,, K;?=0;' K;=0;6;'0,-0,.
Lemma 3.1. The inequality ©5 > 0 holds true.

Proof. From and we see that
B ) 3
() (i 6 80)

wnttmn [ EUE )Y
= —sgn (I A)( 5 ')#))'

i (J/i)

Hence,

o~

O3 = —sgn (Im \) " (J/) ).
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Straightforward calculations give:
21m A (/ Y Webd,gx | =9 (/i) ¥(a) — 9" (J/i) § (wo) -

Since ¢* (J/1) J(wo) = 0, we get the desired result.
Lemma 3.2. The inequality
050;'0, -0, =0; ' >0
holds, where @_3_1 = 05" (1).
Proof. Tt follows from that Z (z,\) JZ* (z,\) = J. Thus,
J=Z" (%) (~IZ (@, N IZ" (2. 0) ) Z (2. 3)

= (Z @XM Z@N) T (-2 @ I 2 (25)).

()@ )0 )E )
I, 0 ) 0, 03)\I, O ©, O3]’
since there is a sign change in the matrix when A replaces X. Therefore,
0=6,0, - 050y, — I, = ©:0; — ©;0,,
I, = 0,0, — 030, 0 = 0,03 — 0;05.
The last and second identities imply that
0;  =0;0;'0,— 0.

and

This completes the proof.
Corollary 3.1. K, = K

Theorem 3.2. As a increases, O3, K1 and K, decrease.
Proof. Since
O3 = 2|Im A| (/ Y Whd,, 4 |
0

Corollary 3.2. The following limits exist
lim K (a, ) = K, lim K (a, ) = Ko,
a—0o0

a—r0o0

where Ky >0 and K, > 0.
Theorem 3.3. As a — oo, the circles C (a, \) = 0 are embedded.

we get the desired results.

Proof. The interior of the circle is

—sgn(Im\) (I, M*(a,\)) Z* (a, X) (J/i)Z(a,)\)( [n )go.

M (a, \)
By (3.2) we see that

f 1
C(a,\) =2|Im )| (V/ YWY, dy,x | £=(M; —M,).
i
0

133
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If M, is in the circle at ay € I, ay > a, then C(a,\) < 0 at the point ay. At the point a,,
C (a, A) is certainly smaller, and so C (a, ) is in the circle at the point ay as well. Hence, the
circles C (a, \) = 0 are embedded as a — oo. O

Theorem 3.4. The following limit exists
lim C (a,\) = C".

a—00

Proof. From , we conclude that
C(a,\) = (M, — D) K;?(M,— D) — K3 =0.
Therefore,
(K" (M- DY) (K (M, = DYKTT) = I, (3.4)

It follows from 1} that U = K; ' (M, — D) K;!, where U is a unitary matrix, i.e., U*U = I,,.
Thus,

M, (\) = D+ K\UKj. (3.5)
As U ranges over the n x n unit sphere, M, (\) ranges over a circle with center D.

Let Dy be the center at a’ € I, Dy be the center at a” € I, a” < a’. By Theorem 3.7, we see
that C (a”,\) C C (', \). By (3.5) we find that

Ma’ ()\) = D1 + Kl(a/>U1K1(CL/),

and

M ()\) =Dy + K, (a") Us K, (a”). (36)
Since C (a”,\) C C (a’, \), we conclude that

Ma” ()\) = D1 -+ Kl (GI) %Kl(al), (37)

where V] is a contraction. Subtracting (3.6]) from (3.7)) yields

Dl — D2 = Kl(a")UQKl (a”) — Kl(a')VlKl(a’).
This gives:
Vi = [Dl Dyt Kl(a’)VlKl(a’)] .

We define a mapping Y by the formula Y (Us) = V4. The mapping Y is a continuous one
from the unit ball into itself. Hence, it has a unique fixed point. Replacing U; and Vi by U, we
conclude that

ID: = Da| = || K3 (@)U ES (@) — K (@)U (@)

<l (@) |[Fa@) - K@)

+IK(a") = Ky (@) [ (@)

As @' and a” approach a, K; and K, have limits. The centers form a Cauchy sequence and
converge.
Straightforward calculations give:

Oy =+ [2ImA (/ Vv Wed, v | —ily
0

Thus, at o/, the center

D =—-03'0,
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, -1 o
=— | 2ImA\ (/ Y Whd,, g 2Im A (V/ Y Wipdy, g | — il
0 0

Hence, we obtain
lim C (a’,\) = C°.

a’—o0
The proof is complete. O
It is obvious that M (\) = D + K UK, is well defined. As U ranges over the unit circle in

n X n space, the limit circle or point C is covered.
Now we investigate the number of square-integrable solutions to (2.1)).

Theorem 3.5. Let M be a point inside C° < 0. Let x = ¢ + ¢ M. Then
X € L g w((wo, 00); €.
Proof. Since

/ 1
C(a,A) = 2|lm A /X*deng + v - <o,
1
0

we obtain
a

0< / W dogt <

wo

1
— [M — M7].
2i|Im)\|[ ]

As a — oo, the upper bound is fixed. The proof is complete. O
Lemma 3.3. Let rank K, = r and S (U) = K \UK,, where U is unitary. Then we have the

following relations:
i) rank S (U) < r,
it) supyrank S(U) =r.
The proof follows clearly from the matrix theory.

Theorem 3.6. Let m = n+r. For Im \ # 0, there exists at least m square integrable solutions

of (1), n < m < 2n.

Proof. ¢ + D consists of n solutions in the space L;W((wo, a); C*). As U varies, v (KlUE)
gives m — n additional linearly independent solutions. By the reflection principles, the number
of solutions is the same for Im A < 0 or Im A > 0. This completes the proof. O

4. BOUNDARY CONDITIONS IN SINGULAR CASE
Theorem 4.1. Let Y be a solution of the equation
JYM (2) = AW + B) Y,
where Im \g # 0. Then for all Z € Dyax, the following limit
A(Z) = lim Y*JZ

T—r00

exists if and only if Y € L2,y ((wo, 00); C*).
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Proof. From the following equalities

JZW(z) — B(x)Z(z) = W(z)F (),

and
JYM(z) = B(x)Y(x) = AW (2)V(x),
we obtain
r* i () (JZW(2) — B(z)Z(z
/)7 ()W () (F(f) - /\OZ(m))d%qx - / <_y(§y)[h(1 (z) —(B)(x)y((x)))*(é’zg)v)) Ay g
= / YV (x)JZM (z)dy 01 — / (JYVM(2))" Z(2)dyga
-/ (y;%x) (—éD_quzz(:v)) +y;<x>Dw7qzl<x>) dogt
[/ 1 , )
- / ((—5D_wq—1,q—1y2 <az>) 2(2) + Do <x>zz<x>) dog
:/ (yf(@[(_%D—wq‘l,q‘lz2(x)) - Dw,qyf<$)z2($)) dy g
v (y;me,qzl(x) - (—%qu—l,q—ly;‘(x)) zl<x>) Doyt
Since
Do (Vi (2) 22 (h'(2))) = V5 (2) DuvgZa (W (2)) Dy (h71()) + Duvg V5 (2) Za(x)
= yik (x) (éD_wagle(x)) + Dquf(x)Zg(x)
and
Dug (V5 (h7'(2)) 21(2)) = (DugYs (b7 (@) Dug (h7(2)) Z1(x) + V5(2) D g 21 ()
1 N *
- (ED_W,MQ <x>) 2(2) + Vi(2) D2 (a).
Hence,

T

[V @) (F@) - 02 @) duge
z (4.1)
_ / Doy {35 (h74(2)) Z1(2) — Vi(@)Zs (h1(@)) } dugt

= Jj*JZA(x) —YIZ (wo) -
If Y e L2 ,w((wo,00); C*"), then as  — oo, the integral in (4.1)) converges, and the limit

lim (V*J Z)(x)

T—r00
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exists. And vice versa, suppose that the integral in (4.1)) converges for all
Z F e Liquw((wo,oo);ﬁ%).

By the Hahn-Banach theorem on existence of a linear bounded functional and the Riesz rep-
resentation theorem, we see that

Y € L, g w((wo, 00); €*).

The proof is complete. O

Suppose that )\ is fixed, where Im \y # 0.

Definition 4.1. Let

M, (A) =D+ KUK,
be on the limit circle. Let
X (#,20) = @ (2, 20) +¢ (2, 20) M (No) € LT 4 ((wp, 00); €*")
and let x (x,)\_o) satisfies the equation
JZW(z) = \W (x) + B(z)) Z(2).
Then we define Sy, (Z) by the formula
Sx (£) = lim {* (2, 20) JZ(2)

for all Z € Dypay.

5. SELF-ADJOINT OPERATOR

Here we define a self-adjoint operator. We suppose that the number of solutions of ({2.1)) is
m. Then we define the operator L by the rule

L:D— L, w((wo,00); C*),
Z—LZ=F ifandonlyif I'(2Z)=WF,
where
D= {z € Do B2 (wo) =0 and Sy, (2) =0, Im Ay # o} .
The following theorem holds true.

Theorem 5.1. If JZI(2) — B(x)Z(z) = W(z)F(z), WZ = 0 implies Z = 0, then the set
D is dense in L7,y ((wo, 00); C*").

Proof. Suppose that D is not dense in L2,y ((wo, 00); C*"). Then there exists
G e Livqw((wo, o0); C*™)
such that G is orthogonal to the set D. Let ) satisfy ) € D,
TYM(x) = B(x)Y(x) = AW (2)V(2) + W (2)G(x)
for Im Ay # 0. Then for Z € D, we see that

0=(Z,G) = / G*W Zd,

wo
o]

- / (JY" (@) — B(x)Y(z) — AW (2) V()" Zd, g2

wo
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= /y* (JZ[h] (z) — B(z)Z(z) — MW (2)Z(2)) duy g
We define

Then we have

0=(F)Y)= /))*WFdw,qx. (5.1)
wo
Since F'is arbitrary, we take F' = ). By , we see that ) = 0 which yields WG = 0 and
G =01in L2, y((wo,00); C*"). The proof is complete. O
Define
(L—X)"" = /G (N, 2,t) W () F(t)d,, 4t, (5.2)

where Im A # 0 and

<
G“’””’”:{wx,A)x*(t,A), o <

The following theorem holds.
Theorem 5.2. L is a self-adjoint operator.

Proof. Let LZ — X\oZ = F and L*Z — \gZ = H (Im )\ # 0). Then

(L=XI)'F,H) = ]oH*(x)W(x) (/:o G (Mo, z,1) W(t)F(t)dw,qt) oy g

0
0

due to G (X, t,z) = (G(No, z,1))".

Since

we see that

We thus get L = L*. The proof is complete. O
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Theorem 5.3. Let Im \g # 0. The operator (L — X\oI) ™" defined by the formula is a
bounded operator and

H L )‘0 H \Im)\0|

Proof. Let (L — X\ol) Z =F. Then
(Z,F)—(F,2)=(Z,(L—X])Z)—((L—XI)Z,2)
= (X —N)(Z,2).
Using Cauchy-Schwartz inequality, we obtain
2 |tm Aol [|Z[* < 2|12 | 7| -

Hence,
1
i 171
yields the result. O

Theorem 5.4. Let

(L = XI)™" | <

X (ZL‘, )‘0) = (CL’, /\0) + v (ZE, )‘0) M ()‘0) )
where Im \g # 0. Then we have
lim 5(\* (l’, )‘0) JSZ (:E7 A0) = 0.

T—r00

Proof. Since

R (2:20) JX (@ 20) = (I M (o) 2° (2.00) JZ (Do) (MI&o))

* I,
= (I, M* (X)) J (M (Ao)) =0,
we get the desired result. The proof is complete. O]
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