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ON 𝐶1-CONVERGENCE OF PIECEWISE POLYNOMIAL

SOLUTIONS TO A FOURTH ORDER

VARIATIONAL EQUATION

A.A. KLYACHIN

Abstract. In the present work we consider a boundary value problem in a polygonal
domain for a fourth order variational equation. We assume that this domain is partitioned
into finitely many triangles forming its triangulation. We introduce a class of piecewise
polynomial functions of a given degree and for a considered equation we define the notion
of a piecewise polynomial solution on a triangle net. We prove a theorem on existence and
uniqueness of such solution. Moreover, we establish that under certain conditions for the
triangulation of the domain, the second derivatives of the piecewise polynomial solutions
are estimated by a constant independent of the fineness of the partition. This fact allows us
to prove 𝐶1-convergence of piecewise polynomial solutions to the equations as the fineness
of grid tends to zero.
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1. Introduction

We consider a functional of form

𝐼(𝑓) =

∫︁
Ω

𝐺(𝑥, 𝑓,∇𝑓,𝐷2𝑓) 𝑑𝑥, 𝐷2𝑓 =

(︂
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

)︂𝑛

𝑖,𝑗=1

, (1.1)

which is defined for functions 𝑓 ∈ 𝐶2(Ω) and the function 𝐺 reads as

𝐺 = 𝐺(𝑥, 𝑢, 𝜉1, . . . , 𝜉𝑛, 𝜂11, 𝜂12, . . . , 𝜂𝑛𝑛).

We assume that the function 𝐺(𝑥, 𝑢, 𝜉, 𝜂) has continuous derivatives up to the third order in
all its variables.
For the functional 𝐼(𝑓) we can write a corresponding Euler-Lagrange equation of the varia-

tional problem

𝑄[𝑓 ] ≡
𝑛∑︁

𝑖,𝑗=1

(︁
𝐺′

𝜂𝑖𝑗
(𝑥, 𝑓,∇𝑓,𝐷2𝑓)

)︁′′
𝑥𝑖𝑥𝑗

−
𝑛∑︁

𝑖=1

(︀
𝐺′

𝜉𝑖
(𝑥, 𝑓,∇𝑓,𝐷2𝑓)

)︀′
𝑥𝑖
+𝐺′

𝑢(𝑥, 𝑓,∇𝑓,𝐷2𝑓) = 0.

(1.2)

We note that a particular case of equation (1.2) is the biharmonic equation

𝜕4𝑓

𝜕𝑥41
+ 2

𝜕4𝑓

𝜕𝑥21𝜕𝑥
2
2

+
𝜕4𝑓

𝜕𝑥42
= 0,
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with the corresponding functions 𝐺 = 𝜂211 + 2𝜂212 + 𝜂222 and 𝐺 = (𝜂11 + 𝜂22)
2. As one more

example we adduce a free energy functional for a deformed plate, see [1, Ch. II], playing an
important role in the elasticity theory,∫︁∫︁

Ω

{︃(︂
𝜕2𝑓

𝜕𝑥21
+
𝜕2𝑓

𝜕𝑥22

)︂2

+ 2(1− 𝜎)

(︃(︂
𝜕2𝑓

𝜕𝑥1𝜕𝑥2

)︂2

− 𝜕2𝑓

𝜕𝑥21

𝜕2𝑓

𝜕𝑥22

)︃}︃
𝑑𝑥𝑑𝑦.

A huge amount of works both in Russian and foreign journals are devoted to a numerical solving
of fourth order equations, including a biharmonic one. For instance, in work [2], in solving a
boundary value problem for a variational nonlinear inequality with a biharmonic operator, a
Newton-Kantorovich method was used, at each step of which a linear problem is solved by
a difference method. In [3] a sharp estimate was established for the error in calculating the
eigenvalues of a discrete problem for a biharmonic operator in a rectangular domain. The author
showed that this error is of second order, moreover, it was possible to calculate its main part as
of an infinitesimal quantity. We also note paper [4], where the author proved an estimate for
the convergence of approximate solutions in the grid norm 𝑊 2

2 in terms of the grid step ℎ→ 0.
As in the previous article, the results were obtained in a rectangular area. It is interesting
to mention the article [5], in which integral representations were derived for exact solutions
of the Dirichlet boundary value problem for a certain family of elliptic equations, which also
included the biharmonic equation. We also cite paper [6], where the existence and uniqueness
of a solution of a Robin-type problem for an inhomogeneous biharmonic equation in the unit
ball were shown. For a rectangular area, the author of [7] succeeded to reduce the Neumann
problem for a certain class of fourth order linear equations to Fredholm integral equations
and to prove their solvability under certain conditions on the coefficients of the equation. In
paper [8] the fourth order elliptic equation was considered in a rectangular domain under mixed
boundary conditions. Its solution was based on iterative factorization of an operator that is
energetically equivalent to the operator of the problem being solved; the original problem was
discretized by using the finite element method. The problem of convergence of approximate
solutions obtained by the finite element method was quite thoroughly investigated in paper
[9]. The author proved the unique solvability of the corresponding variational problems and
the convergence of the solutions constructed by the variational method in the space 𝑊 1

𝑝 . In
the next work [10] a new version of the collocation and least squares (CLS) method for the
numerical solution of the inhomogeneous biharmonic equation was developed. The idea was
based on projecting the original problem into the space of polynomials of the fourth and eighth
degrees. Note that the method gives very good results even for a small number of grid points.
However, in the case of non-linear equations, it needs to be revised. Work [11] was also devoted
to an approximate solving of the biharmonic equation. In this work, the authors presented the
results on calculations by using some difference scheme with a fairly good degree of accuracy.
Moreover, just as in the previous article, the area in which the solution is sought had a general
form. It is also worth noting that in this work there is a comparative analysis with the results of
another work [12], noting the advantages and disadvantages of the method. In [13] the deviation
of a piecewise-cubic near-solution of a biharmonic equation was defined and a general formula
for its calculation was provided. Based on this concept, the authors of this article obtained an
approximation of this equation. A number of numerical calculations were carried out in order
to confirm experimentally the obtained formula.
In this paper we obtain conditions including those for a triangular computational grid, which

would guarantee a uniform boundedness of at least the second derivatives of the approximate
solutions in grid cells as the sizes of these cells tend to zero. Using this fact, we succeed to prove
the 𝐶1-convergence of piecewise polynomial solutions to the exact solution of the corresponding
boundary value problem.
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2. Piecewise polynomial solutions

Let a bounded polygonal domain Ω ⊂ R2 be given. We consider an arbitrary partition of
this polygon into non-degenerate triangles 𝑇1, 𝑇2, . . . , 𝑇𝑁 and let 𝑀1, 𝑀2, . . . , 𝑀𝑝 be the
vertices of these triangles. We shall assume that the set of these triangles forms a triangulation
of the domain Ω. By Γ𝑙 we denote the sides of all triangles, 𝑙 = 1, 2, . . . , 𝐿, while the maximal
diameter of all triangles is denoted by ℎ, that is, ℎ = max

1⩽𝑘⩽𝑁
diam𝑇𝑘.

By 𝛼 > 0 we denote the minimum of the angles in all triangles 𝑇𝑘. We formulate one more
condition for the triangle grid. We assume that there exists a constant 𝐶1 > 0 independent of
ℎ such that

ℎ ·
∑︁
Γ𝑙

|Γ𝑙| ⩽ 𝐶1, (2.1)

where the sum is taken over all internal sides Γ𝑙 of the triangles in the triangulation. This
condition was formulated in work [14] and it gives a needed accuracy in calculating integral
𝐼(𝑓) under replacing 𝑓 by a piecewise polynomial function.
We fix a natural number 𝑚. In the domain we consider a function 𝑓(𝑥1, 𝑥2), all derivatives

of which of order 4𝑚+ 2 are bounded by some constant 𝑀 . For each triangle 𝑇𝑘 we construct
a polynomial of degree 4𝑚 + 1 as follows, see [15]. Let 𝐴𝑘

1, 𝐴
𝑘
2, 𝐴

𝑘
3 be the vertices of this

triangle. On each of sides [𝐴𝑘
𝑖 , 𝐴

𝑘
𝑗 ] we select the set of points {𝐵𝑘

𝑙,𝑖𝑗}𝑟𝑙=1, 𝑟 = 1, . . . ,𝑚, such that
for each fixed 𝑟 these points partition the side on which they lie into 𝑟 + 1 equal parts. For
constructing an interpolation polynomial 𝑃4𝑚+1 on 𝑇𝑘 we define the values of a function and all
its derivatives up to the order 2𝑚 at the vertices of the triangle and 𝑟 derivatives of 𝑟th order
(𝑟 = 1, . . . ,𝑚) along the normal to each side of the triangle

𝜕𝑟𝑃4𝑚+1(𝐴
𝑘
𝑖 )

𝜕𝑥𝑟−𝑙
1 𝜕𝑥𝑙2

=
𝜕𝑟𝑓(𝐴𝑘

𝑖 )

𝜕𝑥𝑟−𝑙
1 𝜕𝑥𝑙2

, 0 ⩽ 𝑟 ⩽ 2𝑚, 0 ⩽ 𝑙 ⩽ 𝑟, 𝑖 = 1, 2, 3, (2.2)

𝜕𝑟𝑃4𝑚+1(𝐵
𝑘
𝑙,𝑖𝑗)

𝜕𝑛𝑟
𝑖𝑗

=
𝜕𝑟𝑓(𝐵𝑘

𝑙,𝑖𝑗)

𝜕𝑛𝑟
𝑖𝑗

, 1 ⩽ 𝑟 ⩽ 𝑚, 1 ⩽ 𝑙 ⩽ 𝑟, 𝑖, 𝑗 = 1, 2, 3, 𝑖 ̸= 𝑗. (2.3)

In [15] and [16] for conditions (2.2), (2.3) and chosen in some ways of remaining conditions, the
estimates were proved:⃒⃒⃒⃒

𝜕𝑠(𝑓(𝑥1, 𝑥2)− 𝑃4𝑚+1(𝑥1, 𝑥2))

𝜕𝑥𝑙1𝜕𝑥
𝑠−𝑙
2

⃒⃒⃒⃒
⩽ 𝐶(𝑚)𝑀ℎ4𝑚+2−𝑠(sin𝛼)−𝑠. (2.4)

The obtained piecewise polynomial function belongs to the class 𝐶𝑚(Ω), see [15].
In view of the said above, we introduce the following notations. The set of 𝑚 times contin-

uously differentiable piecewise polynomial functions with zero boundary conditions is denoted
by 𝑃𝑚

0,4𝑚+1, that is, 𝑣 ∈ 𝑃𝑚
0,4𝑚+1, if 𝑣 ∈ 𝐶𝑚(Ω), in each triangle 𝑇𝑘 the function 𝑣 is a polynomial

of degree 4𝑚+ 1 and satisfies the conditions

𝑣 = 0, ∇𝑣 = 0 on 𝜕Ω.

The set of all 𝑚 times continuously differentiable piecewise polynomial functions of degree
4𝑚+ 1, that is, with no boundary conditions, is denoted by 𝑃𝑚

4𝑚+1.

We note that if a function 𝑓 ∈ 𝐶2(Ω)∩𝐶1(Ω) satisfies equation (1.2), then for each function
𝜓 ∈ 𝐶1

0(Ω) such that 𝜓 ∈ 𝐶2(𝑇𝑘) in each triangl 𝑇𝑘, the identity

2∑︁
𝑘=1

∫︁
𝑇𝑘

(︃
2∑︁

𝑖𝑗=1

𝐺′
𝜂𝑖𝑗
(𝑥, 𝑓,∇𝑓,𝐷2𝑓)𝜓𝑥𝑖𝑥𝑗

+
2∑︁

𝑖=1

𝐺′
𝜉𝑖
(𝑥, 𝑓,∇𝑓,𝐷2𝑓)𝜓𝑥𝑖

+𝐺′
𝑢(𝑥, 𝑓,∇𝑓,𝐷2𝑓)𝜓

)︃
𝑑𝑥 = 0

(2.5)
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holds. This identity is obtained by applying the Gauss-Ostrogradsky formula and by taking
into consideration that the function 𝜓 is continuously differentiable in the domain Ω. Then
the arising integrals over the sides of the boundary 𝜕𝑇𝑘 mutually cancel out for each pair of
neighbouring triangles.
We introduce a quantity

𝛿(𝑢′, 𝑢′′, 𝜉′, 𝜉′′, 𝜂′, 𝜂′′) =𝐺(𝑥, 𝑢′′, 𝜉′′, 𝜂′′)−𝐺(𝑥, 𝑢′, 𝜉′, 𝜂′)−𝐺′
𝑢(𝑥, 𝑢

′, 𝜉′, 𝜂′)(𝑢′′ − 𝑢′)

−
2∑︁

𝑖=1

𝐺′
𝜉𝑖
(𝑥, 𝑢′, 𝜉′, 𝜂′)(𝜉′𝑖 − 𝜉′′𝑖 )−

2∑︁
𝑖,𝑗=1

𝐺′
𝜂𝑖𝑗
(𝑥, 𝑢′, 𝜉′, 𝜂′)(𝜂′𝑖𝑗 − 𝜂′′𝑖𝑗).

We observe that the condition 𝛿(𝑢′, 𝑢′′, 𝜉′, 𝜉′′, 𝜂′, 𝜂′′) ⩾ 0 for all 𝑢′, 𝑢′′, 𝜉′𝜉′′, 𝜂′, 𝜂′′ is equivalent
to the property that the function 𝐺(𝑥, 𝑢, 𝜉, 𝜂) is convex down in the variables 𝑢, 𝜉, 𝜂. In what
follows we assume that the function 𝛿(𝑢′, 𝑢′′, 𝜉′, 𝜉′′, 𝜂′, 𝜂′′) obeys one of the following conditions.
The first is that there exists a constant 𝜇 > 0 such that

𝛿(𝑢′, 𝑢′′, 𝜉′, 𝜉′′, 𝜂′, 𝜂′′) ⩾ 𝜇
2∑︁

𝑖,𝑗=1

(𝜂′′𝑖𝑗 − 𝜂′𝑖𝑗)
2 (2.6)

for all 𝑢′, 𝑢′′, 𝜉′, 𝜉′′, 𝜂′, 𝜂′′. The second condition is weaker: for some constant 𝜇 > 0 the inequality

𝛿(𝑢′, 𝑢′′, 𝜉′, 𝜉′′, 𝜂′, 𝜂′′) ⩾ 𝜇

(︃
2∑︁

𝑖=1

(𝜂′′𝑖𝑖 − 𝜂′𝑖𝑖)

)︃2

(2.7)

holds for all 𝑢′, 𝑢′′, 𝜉′, 𝜉′′, 𝜂′, 𝜂′′.
Using identity (2.5), it is easy to see that if a function 𝑓 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) satisfies equation

(1.2), then the identity

𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

𝛿(𝑓, 𝑔,∇𝑓,∇𝑔,𝐷2𝑓,𝐷2𝑔) 𝑑𝑥

=
𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

𝐺(𝑥, 𝑔,∇𝑔,𝐷2𝑔) 𝑑𝑥−
𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

𝐺(𝑥, 𝑓,∇𝑓,𝐷2𝑓) 𝑑𝑥

(2.8)

holds true, where a function 𝑔 ∈ 𝐶1(Ω) is such that 𝑔 ∈ 𝐶2(𝑇𝑘) in each triangle 𝑇𝑘 and

𝑔|𝜕Ω = 𝑓 |𝜕Ω, ∇𝑔|𝜕Ω = ∇𝑓 |𝜕Ω. (2.9)

For a shorter writing we shall employ the notation 𝐼(𝑔) for the above described functions 𝑔
meaning the following:

𝐼(𝑔) =
𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

𝐺(𝑥, 𝑔,∇𝑔,𝐷2𝑔) 𝑑𝑥.

Example 2.1. Let

𝐺(𝑥, 𝑢, 𝜉1, 𝜉2, 𝜂11, 𝜂12, 𝜂21, 𝜂22) =
2∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑎𝑘𝑙𝑖𝑗𝜂𝑖𝑗𝜂𝑘𝑙,

where the set of twice continuous differentiable functions 𝑎𝑘𝑙𝑖𝑗 = 𝑎𝑘𝑙𝑖𝑗 (𝑥) is such that

𝑎𝑘𝑙𝑖𝑗 = 𝑎𝑖𝑗𝑘𝑙
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and for each non-zero matrix 𝜂𝑖𝑗 the inequality holds:

2∑︁
𝑖,𝑗,𝑘,𝑙=1

𝑎𝑘𝑙𝑖𝑗𝜂𝑖𝑗𝜂𝑘𝑙 > 0.

We note that in this case equation (1.2) reads as

2∑︁
𝑖,𝑗,𝑘,𝑙=1

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

(︂
𝑎𝑘𝑙𝑖𝑗

𝜕2𝑓

𝜕𝑥𝑘𝜕𝑥𝑙

)︂
= 0.

For such function 𝐺, identity(2.8) is as follows:

𝑁∑︁
𝑠=1

∫︁
𝑇𝑠

2∑︁
𝑖,𝑗,𝑘,𝑙=1

𝑎𝑘𝑙𝑖𝑗 (𝑓𝑥𝑖𝑥𝑗
− 𝑔𝑥𝑖𝑥𝑗

)(𝑓𝑥𝑘𝑥𝑙
− 𝑔𝑥𝑘𝑥𝑙

) 𝑑𝑥 = 𝐼(𝑔)− 𝐼(𝑓).

In particular, the identity holds:

𝑁∑︁
𝑠=1

∫︁
𝑇𝑠

(∆𝑓 −∆𝑔)2 𝑑𝑥 =
𝑁∑︁
𝑠=1

∫︁
𝑇𝑠

(∆𝑔)2 𝑑𝑥−
𝑁∑︁
𝑠=1

∫︁
𝑇𝑠

(∆𝑓)2 𝑑𝑥.

We note that identity (2.8) gives the following property. If the function 𝑓 satisfies equation
(1.2), then functional (1.1) attains its minimum on 𝑓 among the functions of form 𝑔, 𝑔 ∈ 𝐶1(Ω)
such that 𝑔 ∈ 𝐶2(𝑇𝑘) in each 𝑇𝑘 and satisfying (2.9).
In view of this we introduce the notion of a piecewise polynomial solution to equation (1.2).

Let 𝑓 ∈ 𝐶4𝑚+2(Ω) ∩ 𝐶1(Ω) be a solution to equation (1.2) and let an arbitrary function 𝜙 ∈
𝐶4𝑚+2(Ω) ∩ 𝐶1(Ω) be given, which satisfies the boundary conditions

𝜙|𝜕Ω = 𝑓 |𝜕Ω, ∇𝜙|𝜕Ω = ∇𝑓 |𝜕Ω.
In what follows, in order to avoid introducing new constants, we suppose that the second
derivatives of the function 𝜙 are also bounded by some constant 𝑀 .

Definition 2.1. If on the function 𝑣* the minimum of the integral

𝐼(𝜙+ 𝑣) =
𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

𝐺(𝑥, 𝜙+ 𝑣,∇𝜙+∇𝑣,𝐷2𝜙+𝐷2𝑣) 𝑑𝑥

is attained among all 𝑣 ∈ 𝑃𝑚
0,4𝑚+1, then the function 𝑓 * = 𝜙+𝑣* is called a piecewise polynomial

solution of equation (1.2) satisfying the boundary conditions

𝑓 *|𝜕Ω = 𝜙|𝜕Ω, ∇𝑓 *|𝜕Ω = ∇𝜙|𝜕Ω. (2.10)

We shall also need the quantity

𝜆𝑞 = inf
𝑃

∫︀
𝑇𝑘

|𝑃 (𝑥)| 𝑑𝑥

|𝑇𝑘|max
𝑇𝑘

|𝑃 (𝑥)|
,

where the infimum is taken over all polynomials 𝑃 in 𝑇𝑘 of degree 𝑞 and |𝑇𝑘| is the area of the
triangle 𝑇𝑘. We note that 𝜆𝑞 > 0 and by means of the linear change of the variables one can
show that this quantity depends only on the degree of the polynomials and is independent of
the triangle 𝑇𝑘.

Theorem 2.1. If there exist constants 𝜈1, 𝜈2 > 0 such that

𝐺(𝑥, 𝑢, 𝜉, 𝜂) ⩾ 𝜈1|𝜂|2 − 𝜈2, |𝜂|2 = 𝜂211 + 𝜂212 + 𝜂221 + 𝜂222, (2.11)

for all 𝑥, 𝑢, 𝜉, 𝜂, the the piecewise polynomial exists and is unique.
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Proof. Let a sequence 𝑣𝑟 ∈ 𝑃𝑚
0,4𝑚+1, 𝑟 = 1, 2, 3, . . ., be such that 𝐼(𝜙 + 𝑣𝑟) → 𝐼0, where

𝐼0 = inf
𝑣∈𝑃𝑚

0,4𝑚+1

𝐼(𝜙 + 𝑣). It is clear that for sufficiently large 𝑟 the inequality 𝐼(𝜙 + 𝑣𝑟) ⩽ 2𝐼0

holds. Taking into consideration that the second derivatives of the function 𝜙 are bounded by
a constant 𝑀 , by condition (2.11) we see easily that⎛⎝ 𝑁∑︁

𝑘=1

∫︁
𝑇𝑘

|𝐷2𝑣𝑟|2 𝑑𝑥

⎞⎠1/2

⩽

√︂
2𝐼0 + 𝜈2
𝜈1

+ 2𝑀
√︀
|Ω|.

We note that in each triangle 𝑇𝑘 the function |𝐷2𝑣𝑟|2 is a polynomial of degree 8𝑚 − 2. This
is why

|𝑇𝑘|max
𝑇𝑘

|𝐷2𝑣𝑟|2 ⩽
1

𝜆8𝑚−2

∫︁
𝑇𝑘

|𝐷2𝑣𝑟|2 𝑑𝑥.

Then we arrive at the estimate(︂
|𝑇𝑘|max

𝑇𝑘

|𝐷2𝑣𝑟|2
)︂1/2

⩽
1√︀
𝜆8𝑚−2

(︃√︂
2𝐼0 + 𝜈2
𝜈1

+ 2𝑀
√︀
|Ω|

)︃
.

Since the triangulation is fixed, it follows from the obtained inequality that the sequence
max
1⩽𝑘⩽𝑁

max
𝑇𝑘

|𝐷2𝑣𝑟(𝑥)| is bounded. Since 𝑣𝑟 has zero boundary values, the sequences

max
Ω

|∇𝑣𝑟(𝑥)|, max
Ω

|𝑣𝑟(𝑥)|

are also bounded. Then taking into consideration that in each triangle 𝑇𝑘 the function 𝑣𝑟 is
polynomial of a fixed degree and passing to a subsequence if this is needed, we conclude that
there exists 𝑣* ∈ 𝑃𝑚

0,4𝑚+1 such that

max
1⩽𝑘⩽𝑁

(max
𝑇𝑘

|𝑣𝑟 − 𝑣*|+max
𝑇𝑘

|∇𝑣𝑟 −∇𝑣*|+max
𝑇𝑘

|𝐷2𝑣𝑟 −𝐷2𝑣*|) → 0.

Then we obviously have 𝐼(𝜙+𝑣*) = 𝐼0. Let us show the uniqueness of the piecewise polynomial
solution. We note that for a piecewise polynomial solution we can show that the identity

2∑︁
𝑘=1

∫︁
𝑇𝑘

(︃
2∑︁

𝑖𝑗=1

𝐺′
𝜂𝑖𝑗
(𝑥, 𝑓 *,∇𝑓 *, 𝐷2𝑓 *)𝑣𝑥𝑖𝑥𝑗

+
2∑︁

𝑖=1

𝐺′
𝜉𝑖
(𝑥, 𝑓 *,∇𝑓 *, 𝐷2𝑓 *)𝑣𝑥𝑖

+𝐺′
𝑢(𝑥, 𝑓

*,∇𝑓 *, 𝐷2𝑓 *)𝑣

)︃
𝑑𝑥 = 0

(2.12)

holds for each 𝑣 ∈ 𝑃𝑚
0,4𝑚+1. This is why if 𝑓 *

1 and 𝑓 *
2 are two piecewise polynomial solutions

obeying boundary condition (2.10), then

𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

𝛿(𝑓 *
1 , 𝑓

*
2 ,∇𝑓 *

1 ,∇𝑓 *
2 , 𝐷

2𝑓 *
1 , 𝐷

2𝑓 *
2 ) 𝑑𝑥 = 𝐼(𝑓 *

2 )− 𝐼(𝑓 *
1 ),

𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

𝛿(𝑓 *
2 , 𝑓

*
1 ,∇𝑓 *

2 ,∇𝑓 *
1 , 𝐷

2𝑓 *
2 , 𝐷

2𝑓 *
1 ) 𝑑𝑥 = 𝐼(𝑓 *

1 )− 𝐼(𝑓 *
2 ).

Summing up these identity, we obtain:

𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

(︀
𝛿(𝑓 *

1 , 𝑓
*
2 ,∇𝑓 *

1 ,∇𝑓 *
2 , 𝐷

2𝑓 *
1 , 𝐷

2𝑓 *
2 ) + 𝛿(𝑓 *

2 , 𝑓
*
1 ,∇𝑓 *

2 ,∇𝑓 *
1 , 𝐷

2𝑓 *
2 , 𝐷

2𝑓 *
1 )
)︀
𝑑𝑥 = 0.
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Then it follows from conditions (2.6) and (2.7) that 𝑓 *
1 = 𝑓 *

2 .

3. Convergence of piecewise polynomial solutions

We are going to study the behavior of such approximate solutions 𝑓 * as the grid fineness ℎ
tends to zero. In view of this we consider an additional condition on the triangulation. Namely,
we assume the minimal angle 𝛼 is separated from zero by a constant 𝐶2 independent of ℎ,

𝛼 ⩾ 𝐶2 > 0. (3.1)

First we are going to show that the second derivatives of these solutions are bounded by
some constant independent of ℎ under the formulated condition on the triangle grid.

Theorem 3.1. If condition (2.1) holds as well as one of inequalities (2.6) or (2.7), then in
each triangle 𝑇𝑘 the piecewise polynomial solution 𝑓 * satisfies the estimate⎯⎸⎸⎷max

𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑓 *
𝑥𝑖𝑥𝑗

)2 ⩽ 2𝑀 +
1

𝜆8𝑚−2

(︃
4𝑀 +

1

sin2 𝛼

√︃
2𝐶

𝜇
(diamΩ)2𝑚−1/2

)︃
, (3.2)

where 𝐶 is some constant independent of ℎ.

Proof. We first assume that condition (2.6) is satisfied. Then for functions 𝑔 ∈ 𝐶1(Ω) such that
𝑔 ∈ 𝐶2(𝑇𝑘) in each triangle 𝑇𝑘 and satisfying condition (2.9), by (2.8) we obtain

𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑓𝑥𝑖𝑥𝑗
− 𝑔𝑥𝑖𝑥𝑗

)2 ⩽
1

𝜇
(𝐼(𝑔)− 𝐼(𝑓)) . (3.3)

This is why by inequality (3.3) for each triangle, by letting 𝑔 = 𝑓 * we have:⎯⎸⎸⎸⎷∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑓 *
𝑥𝑖𝑥𝑗

)2 𝑑𝑥 ⩽

⎯⎸⎸⎸⎷∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑓𝑥𝑖𝑥𝑗
)2 𝑑𝑥+

√︂
1

𝜇
(𝐼(𝑓 *)− 𝐼(𝑓)).

We divide both sides of the inequality by the square root of the area of the triangle |𝑇𝑘| and
using that |𝑓𝑥𝑖𝑥𝑗

| ⩽𝑀 , we obtain:⎯⎸⎸⎸⎷ 1

|𝑇𝑘|

∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑓 *
𝑥𝑖𝑥𝑗

)2 𝑑𝑥 ⩽ 2𝑀 +

√︃
𝐼(𝑓 *)− 𝐼(𝑓)

|𝑇𝑘|𝜇
.

Using the boundedness of the second derivatives of the function 𝜙 by the constant 𝑀 and
applying the inequality⎯⎸⎸⎸⎷ 1

|𝑇𝑘|

∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑓 *
𝑥𝑖𝑥𝑗

)2 𝑑𝑥 ⩾

⎯⎸⎸⎸⎷ 1

|𝑇𝑘|

∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑣*𝑥𝑖𝑥𝑗
)2 𝑑𝑥−

⎯⎸⎸⎸⎷ 1

|𝑇𝑘|

∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝜙𝑥𝑖𝑥𝑗
)2 𝑑𝑥,

we have: ⎯⎸⎸⎸⎷ 1

|𝑇𝑘|

∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑣*𝑥𝑖𝑥𝑗
)2 𝑑𝑥 ⩽ 4𝑀 +

√︃
𝐼(𝑓 *)− 𝐼(𝑓)

|𝑇𝑘|𝜇
.
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Since the expression
2∑︀

𝑖,𝑗=1

(𝑣*𝑥𝑖𝑥𝑗
)2 is a polynomial of degree 8𝑚− 2, we have:

max
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑣*𝑥𝑖𝑥𝑗
)2 ⩽

1

𝜆8𝑚−2

1

|𝑇𝑘|

∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑣*𝑥𝑖𝑥𝑗
)2 𝑑𝑥.

Thus, we arrive at the inequality⎯⎸⎸⎷max
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑣*𝑥𝑖𝑥𝑗
)2 ⩽

1√︀
𝜆8𝑚−2

(︃
4𝑀 +

√︃
𝐼(𝑓 *)− 𝐼(𝑓)

|𝑇𝑘|𝜇

)︃
.

By the obtained inequality we see that the issue on the boundedness of the second derivatives
of the piecewise polynomial solution is reduced to studying the behavior of the quantity

𝐼(𝑓 *)− 𝐼(𝑓)

|𝑇𝑘|

as ℎ→ 0. We denote by 𝑣𝑓 the function from 𝑃𝑚
0,4𝑚+1 constructed by the values and derivatives

of the function 𝑓 − 𝜙. In this case, since 𝐼(𝜙+ 𝑣*) ⩽ 𝐼(𝜙+ 𝑣𝑓 ), the inequality holds:

𝐼(𝑓 *)− 𝐼(𝑓)

|𝑇𝑘|
⩽
𝐼(𝜙+ 𝑣𝑓 )− 𝐼(𝑓)

|𝑇𝑘|
.

We consider a functional

𝐼(𝑔) = 𝐼(𝜙+ 𝑔).

We showed in work [14] that the value of the functional on the function 𝑓 ∈ 𝐶4𝑚+2(Ω) is
approximated by piecewise polynomial functions of degree 4𝑚+1 up to 𝑂(ℎ4𝑚+1) for a triangle
grid satisfying condition (2.1). Therefore, since we assume that (𝑓 − 𝜙) ∈ 𝐶4𝑚+2(Ω), there
exists a constant 𝐶 > 0 independent of ℎ and such that

|𝐼(𝑣𝑓 )− 𝐼(𝑓 − 𝜙)| ⩽ 𝐶ℎ4𝑚+1.

It is easy to see that |𝑇𝑘| ⩾ 0.5ℎ2 sin2 𝛼. Then we arrive at the inequality⎯⎸⎸⎷max
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑓 *
𝑥𝑖𝑥𝑗

)2 ⩽ 2𝑀 +
1

𝜆8𝑚−2

(︃
4𝑀 +

1

sin2 𝛼

√︃
2𝐶

𝜇
(diamΩ)2𝑚−1/2

)︃
.

Now we suppose that instead of inequality (2.6), a weaker inequality (2.7) is satisfied. Then by
(2.8) we obtain:

𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

(∆(𝑓 − 𝑔))2 𝑑𝑥 ⩽
𝐼(𝑔)− 𝐼(𝑓)

𝜇
.

Then we employ Calderon-Zygmund inequality [17, Cor. 9.10] for a function 𝑓 − 𝑔. Namely,
the identity

||𝐷2𝑢||2 = ||∆𝑢||2

holds, where 𝑢 ∈ 𝑊 2
0 (Ω). Let us clarify the possibility of using this identity. If 𝑚 > 1, then

the assumptions of Corollary 9.10 in [17] are satisfied. As 𝑚 = 1, we have 𝑔 ∈ 𝐶1(Ω) and
𝑔 ∈ 𝐶2(𝑇𝑘) for each triangle 𝑇𝑘. If in each triangle the second derivatives of the function 𝑔
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are bounded, then taking into consideration that 𝑓 = 𝑔 on 𝜕Ω, we get 𝑓 − 𝑔 ∈ 𝑊 2
0 (Ω). Thus,

letting 𝑔 = 𝑓 *, we arrive at the inequality

𝑁∑︁
𝑘=1

∫︁
𝑇𝑘

2∑︁
𝑖,𝑗=1

(𝑓𝑥𝑖𝑥𝑗
− 𝑓 *

𝑥𝑖𝑥𝑗
)2 𝑑𝑥 ⩽

𝐼(𝑓 *)− 𝐼(𝑓)

𝜇
.

Further arguing to similar to ones made in the case of condition (2.6) and they also lead to
estimate (3.2).

Theorem 3.2. Let 𝑓 ∈ 𝐶4𝑚+2(Ω) ∩ 𝐶1(Ω) be a solution to equation (1.2) satisfying the
boundary conditions

𝑓 |𝜕Ω = 𝜙|𝜕Ω, ∇𝑓 |𝜕Ω = ∇𝜙|𝜕Ω
and 𝑓 * be a piecewise polynomial solution with the same boundary conditions. If conditions
(2.1), (3.1) are satisfied as well as one of inequalities (2.6) or (2.7), then

lim
ℎ→0

max
Ω

|𝑓 *(𝑥)− 𝑓(𝑥)| = 0, lim
ℎ→0

2∑︁
𝑖=1

max
Ω

|𝑓 *
𝑥𝑖
− 𝑓𝑥𝑖

| = 0.

Proof. Under the formulated conditions on the triangle grid we have showed that as it becomes
finer, in each triangle 𝑇𝑘 the second derivatives of approximate solutions remain bounded by
a constant independent of ℎ. Let us show that a corollary of such behavior of the solutions is
their uniform convergence to the exact solution in the space 𝐶1. Let |𝑓 *

𝑥𝑖𝑥𝑗
− 𝑓𝑥𝑖𝑥𝑗

| ⩽ 𝐾, where

𝐾 is independent of ℎ. We then employ Sobolev inequality [17, Thm. 7.10] for 𝑝 > 2 and prove
inequality (3.3):

max
Ω

|𝑓 *
𝑥𝑖
− 𝑓𝑥𝑖

| ⩽ 𝐶0|Ω|1/2−1/𝑝||𝐷2(𝑓 * − 𝑓)||𝑝

⩽ 𝐶0|Ω|1/2−1/𝑝𝐾1−2/𝑝

⎛⎝∫︁
Ω

2∑︁
𝑖,𝑗=1

(𝑓 *
𝑥𝑖𝑥𝑗

− 𝑓𝑥𝑖𝑥𝑗
)2 𝑑𝑥

⎞⎠1/𝑝

⩽ 𝐶0|Ω|1/2−1/𝑝𝐾1−2/𝑝

(︂
𝐼(𝑓 *)− 𝐼(𝑓)

𝜇

)︂1/𝑝

⩽ 𝐶0|Ω|1/2−1/𝑝𝐾1−2/𝑝

(︂
𝐶

𝜇

)︂1/𝑝

ℎ
4𝑚+1

𝑝 .

Thus, the uniform convergence of the first derivatives holds as ℎ→ 0. Since 𝑓 * = 𝑓 on 𝜕Ω, we
obtain

lim
ℎ→0

max
Ω

|𝑓 *(𝑥)− 𝑓(𝑥)| = 0.
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