УДК 517.982.274+517.983.22

АДАМАРОВСКИЕ ОПЕРАТОРЫ В ПРОСТРАНСТВАХ ФУНКЦИЙ, ГОЛОМОРФНЫХ В ШАРЕ

О.А. ИВАНОВА, С.Н. МЕЛИХОВ

Аннотация. Изучены операторы адамаровского типа в пространствах всех функций, голоморфных в открытом шаре в \mathbb{C}^N с центром в точке 0. Это такие линейные непрерывные операторы, для которых любой моном является их собственным вектором. Получено представление адамаровских операторов в виде мультипликативной свертки. Доказательство этого представления существенно использует преобразование Фантапье, реализующее сопряженные к пространствам голоморфных функций, и свойство голоморфности характеристической функции линейного непрерывного оператора в них. Примененный метод позволил свести проблему описания адамаровского оператора к задаче голоморфного продолжения голоморфной в точке 0 функции в заданный открытый шар в \mathbb{C}^N с l_1 -нормой. Доказано, что пространство операторов адамаровского типа из одного упомянутого выше пространства в другое с топологией ограниченной сходимости линейно топологически изоморфно сильному сопряженному к пространству ростков всех функций, голоморфных на замкнутом поликруге.

Ключевые слова: оператор адамаровского типа, пространство голоморфных функций.

Mathematics Subject Classification: 46E10, 47B91

1. Введение

Естественной интерпретацией произведения Адамара голоморфных функций в теории операторов является понятие оператора адамаровского типа. Так называются линейные непрерывные операторы, определенные на содержащем все многочлены комплексном локально выпуклом пространстве, для которых все мономы являются их собственными функциями. В настоящее время полностью охарактеризованы операторы адамаровского типа в пространстве всех функций, голоморфных в произвольной односвязной области в $\mathbb{C}[2], [3], [6], [18]$. В случае многих комплексных переменных соответствующий результат, как следствие из более общего описания операторов почти адамаровского типа, получен в [5] для пространства всех целых функций в \mathbb{C}^N . Для пространств функций, голоморфных в областях в \mathbb{C}^N , отличных от \mathbb{C}^N , подобная характеризация отсутствует. Отметим при этом довольно большое число таких результатов для пространств вещественно аналитических, бесконечно дифференцируемых функций и распределений как для одного, так и нескольких переменных [9]-[14], [19]-[23]. В настоящей работе исследованы операторы адамаровского типа, действующие из пространства $H(B_r)$ всех функций, голоморфных в открытом шаре B_r радиуса $r \in (0, \infty)$ с центром в точке 0 в \mathbb{C}^N в пространство $H(B_R)$,

O.A. Ivanova, S.N. Melikhov, Hadamard type operators in space of holomorphic functions on a ball.

[©] Иванова О.А., Мелихов С.Н. 2022.

Поступила 14 апреля 2022 г.

 $R \in (0, \infty)$. Основным результатом статьи является теорема 2.1, в которой получено представление адамаровских операторов в виде мультипликативной свертки. Подобное описание имеет место также и во всех изученных ранее ситуациях. Существенным звеном доказательства теоремы 2.1 является использование преобразования Фантапье, с помощью которого реализуется естественная двойственность для пространств голоморфных функций многих переменных. Это позволило, по сути, свести проблему представления адамаровского оператора к задаче голоморфного продолжения функции, голоморфной в некоторой окрестности точки 0, в заданный открытый шар в \mathbb{C}^N с l_1 -нормой. При этом применяется свойство голоморфности характеристической функции линейного непрерывного оператора, действующего в пространствах голоморфных функций.

Полученное представление проинтерпретировано в терминах адамаровского произведения голоморфных функций. В теореме 2.2, также с помощью преобразования Фантапье и соответствующего семейства дробей, его задающих, показано, что пространство адамаровских операторов с естественной топологией ограниченной сходимости топологически изоморфно сильному сопряженному к пространству всех функций, голоморфных на замкнутом поликруге в \mathbb{C}^N , и пространству Фреше всех функций, голоморфных в открытом шаре в \mathbb{C}^N с l_1 -нормой.

Сведения из теории локально выпуклых пространств, используемые здесь без ссылок, можно найти в [8].

ХАРАКТЕРИЗАЦИЯ ОПЕРАТОРОВ АДАМАРОВСКОГО ТИПА

Представление адамаровских операторов в виде мутипликативной 2.1.

2.1. Представление адамаровских операторов в виде мутипликативной свертки. Зафиксируем
$$N \in \mathbb{N}$$
. Положим $|z| := \left(\sum_{j=1}^N |z_j|^2\right)^{1/2}$, $\langle t,z \rangle := \sum_{j=1}^N t_j z_j$, $tz := (t_j z_j)_{j=1}^N$, $t,z \in \mathbb{C}^N$; $L \cdot M := \{tz \mid t \in L, z \in M\}$, $uM := \{u\} \cdot M$ для множеств $L, M \subset \mathbb{C}^N$, $u \in \mathbb{C}^N$; $B_r := \{z \in \mathbb{C}^N \mid |z| < r\}$, $\overline{B}_r := \{z \in \mathbb{C}^N \mid |z| \le r\}$, $D_r := \{z \in \mathbb{C}^N \mid |z_j| < r, 1 \le j \le N\}$, $\overline{D}_r := \{z \in \mathbb{C}^N \mid |z_j| \le r, 1 \le j \le N\}$, $U_r := \{z \in \mathbb{C}^N \mid \sum_{j=1}^N |z_j| < r\}$, $\overline{U}_r := \{z \in \mathbb{C}^N \mid \sum_{j=1}^N |z_j| < r\}$, $0 < r < +\infty$; $P_N := \{1, ..., N\}$.

Далее будут использоваться множества точек с ненулевыми координатами. Введем $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$ и для $Q \subset \mathbb{C}^N$ положим $Q^{(0)} := Q \cap (\mathbb{C}^*)^N$.

Замечание 2.1. Для любых $r, \rho \in (0, \infty)$

- (i) $B_{r\rho} = \overline{D}_r \cdot B_{\rho}$;
- (ii) множество $U_{r
 ho}$ можно представить в виде произведения шаров (один из них может быть «прорежен»):

$$U_{r\rho} = B_r \cdot \overline{B}_{\rho} = B_r^{(0)} \cdot \overline{B}_{\rho};$$

(iii)
$$\overline{U}_{ro} = \overline{B}_r \cdot \overline{B}_o$$
.

Определим дроби $p_t(z):=\frac{1}{1-\langle t,z\rangle}$ для $t,z\in\mathbb{C}^N$ таких, что $\langle t,z\rangle\neq 1$. Для множества $Q\subset \mathbb{C}^N$ сопряженное к Q множество Q^* задается равенством

$$Q^* := \{t \in \mathbb{C}^N \, | \, \langle t,z \rangle \neq 1 \,$$
для любого $\, z \in Q \}$

[1], [17, § 1], [7, гл. 3, § 12, 4], [15, гл. IV, § 4.7].

Пример 2.1. Пусть $r \in (0, \infty)$.

(i) Согласно [7, гл. 3, § 12, 4, свойство 2⁰]

$$B_r^* = \overline{B}_{1/r}, \quad \overline{B}_r^* = B_{1/r}.$$

(ii) Выполняются равенства $D_r^* = \overline{U}_{1/r}, \quad \overline{D}_r^* = U_{1/r}.$ Равенства в (ii) проверяются непосредственным подсчетом.

Для области Q в \mathbb{C}^N через H(Q) обозначим пространство всех функций, голоморфных в Q с топологией равномерной сходимости на компактах Q. Ниже $H(\overline{D}_r)$ для $r \in (0,\infty)$ — пространство всех ростков функций, голоморфных на \overline{D}_r . Пусть $(s_n)_{n \in \mathbb{N}}$ — строго убывающая последовательность положительных чисел такая, что $s_n \to r$; $H_c(D_{s_n})$ — банахово пространство всех голоморфных в D_{s_n} и непрерывных на \overline{D}_{s_n} функций с нормой $\max_{z \in \overline{D}_{s_n}} |f(z)|, n \in \mathbb{N}$. Тогда $H(\overline{D}_r) = \bigcup_{n \in \mathbb{N}} H_c(D_{s_n})$ и в $H(\overline{D}_r)$ вводится топология индуктивного предела пространств $H_c(D_{s_n}), n \in \mathbb{N}$, относительно их естественных вложений в $H(\overline{D}_r)$. Эта топология не зависит от выбора последовательности $(s_n)_{n \in \mathbb{N}}$, как выше. Для локально выпуклого пространства E символ E' обозначает топологическое сопряженное к E пространство; E'_b — сильное сопряженное к E.

Преобразование Фанталье функционала $\nu \in H(\mathbb{C}^N)'$ задается равенством

$$\Phi(\nu)(t) := \widetilde{\nu}(t) := \nu(p_t).$$

Согласно [15, гл. 4, § 4.7], функция $\widetilde{\nu}$ голоморфна в точке 0, т.е. в некоторой окрестности точки 0.

По [17, теорема 2.2], [1], [15, теорема 4.7.8] справедлива

Лемма 2.1. Для любого r>0 преобразование $\nu\mapsto\Phi(\nu)$ является топологическим изоморфизмом $H(\overline{D}_r)_b'$ на $H(U_{1/r})$.

Докажем для многих комплексных переменных естественный аналог (конечно, известный) результата Г. Кете [16, теорема 19] о характеристических функциях линейных непрерывных операторов в пространствах голоморфных функций одной комплексной переменной. Для $r, R \in (0, \infty)$ через $\mathcal{L}(H(B_r), H(B_R))$ обозначим пространство всех линейных непрерывных операторов из $H(B_r)$ в $H(B_R)$. Для $A \in \mathcal{L}(H(B_r), H(B_R))$ полагаем

$$ch(A)(t,z) := A(p_t)(z), \quad t \in \overline{B}_{1/r}, \quad z \in B_R.$$

Введем орты $e^{(j)} := (\delta_{j,m})_{m=1}^N$, $j \in P_N$. Далее для чисел $r, R \in (0, \infty)$ будем фиксировать строго возрастающие последовательности положительных чисел $(r_n)_{n \in \mathbb{N}}$ и $(R_n)_{n \in \mathbb{N}}$ такие, что $r_n \to r$ и $R_n \to R$.

Лемма 2.2. Пусть $r, R \in (0, \infty)$. Для любого оператора $A \in \mathcal{L}(H(B_r), H(B_R))$ его характеристическая функция ch(A) обладает следующим свойством голоморфности: для любого $n \in \mathbb{N}$ существует $m \in \mathbb{N}$ такое, что функция ch(A) голоморфна на $B_{1/r_m} \times B_{R_n}$.

Доказательство. Как и в одномерном случае, это утверждение является следствием непрерывности A и свойств функции r_t . Так как A непрерывен из $H(B_r)$ в $H(B_R)$, то для любого $n \in \mathbb{N}$ существует $m \in \mathbb{N}$ такое, что оператор A можно (единственным образом) продолжить до линейного непрерывного оператора A_n из $H(B_{r_m})$ в $H(B_{R_n})$. Определим функцию $g_n(t,z) := A_n(p_t)(z), t \in B_{1/r_m}, z \in B_{R_n}$. Для любых $t \in B_{1/r_m}, j \in P_N$ в пространстве $H(B_{r_m})$ (т.е. равномерно по u на каждом компакте B_{r_m}) существует предел $\lim_{h \in \mathbb{C}, h \to 0} \frac{p_{t+he}(j)(u)-p_t(u)}{h}$, равный $\frac{u_j}{(1-\langle t,u \rangle)^2} =: s_{j,t}(u)$. Поэтому для любых $z \in B_{R_n}, t \in B_{1/r_m}, j \in P_N$ существует предел $\lim_{h \in \mathbb{C}, h \to 0} \frac{g_n(t+he^{(j)},z)-g_n(t,z)}{h}$, который равен $A_n(s_{j,t})(z)$. Следовательно, для всякого $z \in B_{R_n}$ функция $g_n(t,z)$ голоморфна в B_{1/r_m} по t. Кроме того, для

каждого $t \in B_{1/r_m}$ функция $g_m(t,z)$ голоморфна в B_{R_m} по z. По теореме Хартогса g_n голоморфна в $B_{1/r_m} \times B_{R_n}$. Поскольку функция ch(A) равна g_n на $\overline{B}_{1/r} \times B_{R_n}$, то ch(A) можно голоморфно продолжить в $B_{1/r_m} \times B_{R_n}$.

Основная цель настоящей работы — охарактеризовать операторы адамаровского типа в пространствах функций, голоморфных в шаре. Полагаем $f_{\alpha}(z) := z^{\alpha} := z_1^{\alpha_1} \cdots z_N^{\alpha_N}$, $\alpha \in \mathbb{N}_0^N$, $z \in \mathbb{C}^N$. Оператор $A \in \mathcal{L}(H(B_r), H(B_R))$, $r, R \in (0, \infty)$, называется оператором адамаровского типа (адамаровским), если все мономы f_{α} являются его собственными функциями, т.е. для любого $\alpha \in \mathbb{N}_0^N$ найдется $c_{\alpha} \in \mathbb{C}$, для которого $A(f_{\alpha}) = c_{\alpha}f_{\alpha}$. Через $\mathcal{L}_h(H(B_r), H(B_R))$ обозначим множество всех операторов адамаровского типа из $H(B_r)$ в $H(B_R)$. Ясно, что $\mathcal{L}_h(H(B_r), H(B_R))$ — подпространство $\mathcal{L}(H(B_r), H(B_R))$.

Как обычно, $\mathbb{C}[z]$ — пространство всех многочленов над \mathbb{C} переменных $z_1,...,z_N$. Полагаем $\partial_j f := \frac{\partial f}{\partial z_j}, \quad j \in P_N; \ |\alpha| := \sum_{j=1}^N \alpha_j$ для $\alpha \in \mathbb{N}_0^N$ (последнее обозначение совпадает с обозначением |z| для $z \in \mathbb{C}^N$, но это не приводит к недоразумениям). Нижний индекс у функционала показывает, по каким переменным он действует.

Теорема 2.1. Для $r, R \in (0, \infty)$ следующие утверждения равносильны: (i) $A \in \mathcal{L}_h(H(B_r), H(B_R))$.

(ii) Существует функционал $\varphi \in H(\overline{D}_{r/R})'$ такой, что $A(f)(z) = \varphi_t(f(tz))$ для любых $z \in B_R, f \in H(B_r)$.

Для любого $A \in \mathcal{L}_h(H(B_r), H(B_R))$ функционал $\varphi \in H(\overline{D}_{r/R})'$, для которого $A(f)(z) = \varphi_t(f(tz)), \quad z \in B_R, \quad f \in H(B_r), \ eduncmber edunc.$

Доказательство. Импликация (ii) \Rightarrow (i) доказывается стандартным образом. Зафиксируем строго убывающую последовательность чисел $(s_n)_{n\in\mathbb{N}}$, для которой $s_n\to r/R$. Прежде всего, для $f\in H(B_r)$, $z\in B_R$ функция $\varphi_t(f(tz))$ определена, так как существует $k\in\mathbb{N}$, для которого $s_k|z|< r$ (и тогда $z\overline{D}_{s_k}\subset B_r$). Кроме того, $\varphi_t(f(tz))$ голоморфна в любой точке $z\in B_R$. Действительно, выберем k для z, как выше. Из равенства

$$f(t(z+he^{(j)})) - f(tz) = \int_{0}^{1} (\partial_{j}f)(t(z+\xi he^{(j)}))ht_{j}d\xi, \quad t \in \overline{D}_{s_{k}},$$
$$h \in \mathbb{C}, \quad |h| < \frac{r-s_{k}|z|}{s_{k}},$$

следует, что существует равномерный по $t\in \overline{D}_{s_k}$ предел $\lim_{h\to 0} \frac{f(t(z+he^{(j)}))-f(tz)}{h}$, равный $t_j(\partial_j f)(tz)$. Отсюда следует, что функция $\varphi_t(f(tz))$ (комплексно) дифференцируема в B_R по каждой переменной, а значит, голоморфна в B_R . По теореме о замкнутом графике (линейный) оператор A непрерывен из $H(B_r)$ в $H(B_R)$. Поскольку $A(f_\alpha)=\varphi(f_\alpha)f_\alpha,\ \alpha\in\mathbb{N}_0^N$, то A — оператор адамаровского типа.

(i)
$$\Rightarrow$$
(ii): Пусть $A(f_{\alpha})=c_{\alpha}f_{\alpha},\,c_{\alpha}\in\mathbb{C},\,\alpha\in\mathbb{N}_{0}^{N}.$ Определим функционал

$$\varphi(f) := \sum_{\alpha \in \mathbb{N}_0^N} \frac{c_\alpha}{\alpha!} f^{(\alpha)}(0), \quad f \in H(\mathbb{C}^N).$$
 (2.1)

Докажем, что ряд в (2.1) абсолютно сходится для каждой функции $f \in H(\mathbb{C}^N)$. Вследствие непрерывности оператора A из $H(B_r)$ в $H(B_R)$ существуют $m \in \mathbb{N}$, постоянная C > 0 такие, что

$$\max_{|z| \le R_1} |A(f)(z)| \le C \max_{|z| \le r_m} |f(z)|, \quad f \in H(B_r).$$

Г

Для $f := f_{\alpha}$ получим:

$$|c_{\alpha}| \max_{|z| \le R_1} |z^{\alpha}| \le C \max_{|z| \le r_m} |z^{\alpha}| \le Cr_m^{|\alpha|}.$$

Отсюда следует, что $|c_{\alpha}| \left(\frac{R_{1}}{\sqrt{N}}\right)^{|\alpha|} \leq C r_{m}^{|\alpha|}$ и

$$|c_{\alpha}| \le C \left(\frac{r_m \sqrt{N}}{R_1}\right)^{|\alpha|}, \quad \alpha \in \mathbb{N}_0^N.$$
 (2.2)

Если $f \in H(\mathbb{C}^N)$, то $\lim_{|\alpha| \to \infty} \left(|f^{(\alpha)}(0)|/\alpha! \right)^{1/|\alpha|} = 0$, а значит, ряд (2.1) абсолютно сходится.

По теореме Банаха-Штейнгауза линейный функционал φ непрерывен на $H(\mathbb{C}^N)$. (Из (2.2) следует, что ряд $\sum_{\alpha\in\mathbb{C}^N}c_{\alpha}z^{\alpha}$ абсолютно сходится в некотором поликруге $D_{\rho},\ \rho>0.)$

Введем оператор $S(f)(z) = \varphi_t(f(tz)), z \in \mathbb{C}^N, f \in H(\mathbb{C}^N)$. Если $f(z) = \sum_{\alpha \in \mathbb{N}_0^N} a_{\alpha} z^{\alpha}, z \in \mathbb{C}^N$,

то для любого $z\in\mathbb{C}^N$ ряд $\sum_{\alpha\in\mathbb{N}_0^N}a_\alpha t^\alpha z^\alpha$ сходится по t абсолютно в \mathbb{C}^N и равномерно на любом компакте \mathbb{C}^N к f(tz). Поэтому $\varphi_t(f(tz))=\sum_{\alpha\in\mathbb{N}_0^N}a_\alpha \varphi(f_\alpha)z^\alpha$ для любого $z\in\mathbb{C}^N$, а значит,

 $S(f) \in H(\mathbb{C}^N)$ для всякой функции $f \in H(\mathbb{C}^N)$. Оператор S линеен и непрерывен в $H(\mathbb{C}^N)$ и совпадает с A на $\mathbb{C}[z]$, а, следовательно, и на $H(\mathbb{C}^N)$. Покажем, что функционал φ можно линейно и непрерывно продолжить на $H(\overline{D}_{r/R})$. Для этого, вследствие леммы 2.1, нужно показать, что функция $\widetilde{\varphi}$ продолжается голоморфно в $U_{R/r}$.

Найдется $M \ge r$ такое, что S можно продолжить (единственным образом) до линейного непрерывного оператора из $H(B_M)$ в $H(B_R)$ (обозначим его также через S), а φ — до линейного непрерывного функционала на $H(\overline{D}_{M/R})$. Продолженный оператор совпадает с Aна $H(B_M)$. По утверждению (i) этой теоремы оператор $f \mapsto \varphi_t(f(tz))$ линеен и непрерывен из $H(B_M)$ в $H(B_R)$, причем он совпадает с S на $\mathbb{C}[z]$. Значит, $S(f)(z) = \varphi_t(f(tz))$, $z \in B_R, f \in H(B_M)$. По лемме 2.2 для любого $z \in B_R$ существует $\rho(z) > 1/r$, для которого функция ch(A)(t,z) голоморфна в $B_{\rho(z)}$ по t. Для каждого $t \in B_{1/r}$ функция ch(A)(t,z)голоморфна в B_R по z. Для любого $z\in B_R$ найдется $\delta(z)\in (0,1/M)$ такое, что, если $|t| < \delta(z)$, выполняются равенства

$$\widetilde{\varphi}(tz) = \varphi_u\left(\frac{1}{1 - \langle tz, u \rangle}\right) = \varphi_u\left(\frac{1}{1 - \langle t, uz \rangle}\right) = \operatorname{ch}(S)(t, z) = \operatorname{ch}(A)(t, z).$$

Значит, для любого $z \in B_R^{(0)}$ функция $\widetilde{\varphi}$ продолжается голоморфно в выпуклую область $zB_{
ho(z)},$ содержащую точку 0. Вследствие принципа голоморфного продолжения [4, гл. 1, \S 6] $\widetilde{\varphi}$ продолжается голоморфно в $\bigcup_{z\in B_R^{(0)}}zB_{\rho(z)}$. Так как $\bigcup_{z\in B_R^{(0)}}zB_{\rho(z)}$ содержит множество

 $B_R^{(0)}\cdot \overline{B}_{1/r}=U_{R/r}$ (см. замечание 2.1), то \widetilde{arphi} продолжается голоморфно в $U_{R/r}$. Это влечет утверждение (іі).

Пусть $A \in \mathcal{L}_h(H(B_r), H(B_R))$ и $\varphi \in H(\overline{D}_{r/R})'$ — функционал, для которого $A(f)(z) = \varphi_t(f(tz)), z \in B_R, f \in H(B_r)$. Вследствие равенств $A(f_\alpha) = \varphi(f_\alpha)f_\alpha, \quad \alpha \in \mathbb{N}_0^N$ и плотности множества всех многочленов в $H(B_r)$ такой функционал φ единственен.

Замечание 2.2. (i) Пусть $\varphi - \phi$ ункционал, определенный равенством (2.1). Тогда существует $\varepsilon > 0$ такое, что $\widetilde{\varphi}(z) = \sum_{\alpha \in \mathbb{N}_0^N} \frac{c_{\alpha}|\alpha|!}{\alpha!} z^{\alpha}$, если $z \in D_{\varepsilon}$ (ряд абсолютно сходится в D_{ε} и функция $\widetilde{\varphi}$ голоморфна в D_{ε}).

(ii) Выделим отдельно утвержедение, справедливость которого была показана при доказательстве предыдущей теоремы. Пусть $A \in \mathcal{L}_h(H(B_r), H(B_R))$ и $A(f_\alpha) = c_\alpha f_\alpha$, $\alpha \in \mathbb{N}_0^N$. Тогда ряд $\sum_{\alpha \in \mathbb{N}_0^N} c_{\alpha} z^{\alpha}$ абсолютно сходится в некотором поликруге $D_{\rho}, \ \rho > 0,$

а голоморфная в точке 0 функция $\sum_{\alpha\in\mathbb{N}_r^N}c_{\alpha}\frac{|\alpha|!}{\alpha!}z^{\alpha}$ голоморфно продолжается в $U_{R/r}.$

Интерпретируем предыдущие результаты в терминах адамаровского произведения голоморфных функций. Пусть H_0 обозначает пространство ростков всех функций, голоморфных в точке 0. Для функций $b(z)=\sum\limits_{\alpha\in\mathbb{N}_0^N}b_{\alpha}z^{\alpha},\ c(z):=\sum\limits_{\alpha\in\mathbb{N}_0^N}c_{\alpha}z^{\alpha}$ из H_0 их адамаровское произведение определяется равенством

$$(b*c)(z) := \sum_{\alpha \in \mathbb{N}_0^N} b_{\alpha} c_{\alpha} z^{\alpha}.$$

Если ряд $\sum_{\alpha\in\mathbb{N}_0^N}b_{\alpha}z^{\alpha}$ абсолютно сходится в поликруге D_r , а ряд $\sum_{\alpha\in\mathbb{N}_0^N}c_{\alpha}z^{\alpha}$ абсолютно сходится в D_{ρ} , где $r, \rho>0$, то ряд $\sum_{\alpha\in\mathbb{N}_0^N}b_{\alpha}c_{\alpha}z^{\alpha}$ абсолютно сходится в $D_{r\rho}$, а значит, функция b*c голоморфна в $D_{r\rho}$. Из интегральной формулы Коши следует, что, если $f_n \in H(D_r)$, $n\in\mathbb{N}$, и $f_n\to 0$ в $H(D_r)$, то для любой функции $c\in H(D_\rho)$ также $f_n*c\to 0$ в $H(D_{r\rho})$.

Следствие 2.1. Пусть $r, R \in (0, \infty)$, функция $c(z) := \sum_{\alpha \in \mathbb{N}_0^N} c_{\alpha} z^{\alpha}$ голоморфна в точке 0 (ряд абсолютно сходится в некотором поликруге $D_{\varepsilon}, \ \varepsilon > 0$). Следующие утверждения равносильны:

- (i) Для любой голоморфной в B_r функции $b(z)=\sum_{\alpha\in\mathbb{N}_0}b_{\alpha}z^{\alpha}$ адамаровское произведение b*cголоморфно продолжается в B_R .
- (ii) Функция $\sum_{\alpha\in\mathbb{N}_{\mathbb{A}}^N} \frac{c_{\alpha}|\alpha|!}{\alpha!}z^{\alpha}$ голоморфно продолжается в $U_{R/r}.$

 \mathcal{A} оказательство. (i) \Rightarrow (ii): Пусть A — оператор, ставящий в соответствие функции $b \in H(B_r)$ голоморфное продолжение b * c в B_R . Вследствие однозначности голоморфного продолжения A однозначный. Ясно, что оператор A из $H(B_r)$ в $H(B_R)$ линеен. Покажем, что график A замкнут. Пусть $f_n \in H(B_r), n \in \mathbb{N}, f_n \to 0$ в $H(B_r)$ и $A(f_n) \to g$ в $H(B_R)$. Существует $\rho \in (0,R)$ такое, что $f_n * c \to 0$ в $H(D_\rho)$. Значит, $g \equiv 0$ на \overline{D}_ρ и поэтому $g \equiv 0$ в B_R . По теореме о замкнутом графике $A \in \mathcal{L}(H(B_r), H(B_R))$. Поскольку $A(f_\alpha) = c_\alpha f_\alpha$ для любого $\alpha \in \mathbb{N}_0^N$, то оператор A адамаровский. По замечанию 2.2 выполняется утверждение

(ii) \Rightarrow (i): Отметим, что ряд $\sum_{\alpha \in \mathbb{N}_0^N} \frac{c_\alpha |\alpha|!}{\alpha!} z^\alpha$ абсолютно сходится в некотором поликруге D_δ , $\delta > 0$, и функция $d(z) = \sum_{\alpha \in \mathbb{N}_0^N} \frac{c_\alpha |\alpha|!}{\alpha!} z^\alpha$ голоморфна в D_δ . Пусть d голоморфно продолжается

в $U_{R/r}$. По лемме 2.1 функционал $\varphi := \Phi^{-1}(d)$ линеен и непрерывен на $H(\overline{D}_{r/R})$, а по теореме 2.1 оператор $A(f)(z) := \varphi_t(f(tz))$ линеен и непрерывен из $H(B_\rho)$ в $H(B_{(\rho R)/r})$ для любого $\rho > 0$. Возьмем функцию $b(z) = \sum_{\alpha \in \mathbb{N}_0^N} b_\alpha z^\alpha$, голоморфную в B_r . Найдется $\rho \in (0,r)$,

для которого последний ряд сходится абсолютно в пространстве $H(B_{\rho})$. Рассматривая оператор A как оператор из $H(B_{\rho})$ в $H(B_{(\rho R)/r})$ (обозначим его через A_0), получим, что

$$A_0(b)(z) = A_0\left(\sum_{\alpha \in \mathbb{N}_0} b_\alpha f_\alpha\right)(z) = \sum_{\alpha \in \mathbb{N}_0} b_\alpha A_0(f_\alpha) z^\alpha = (b * c)(z), \quad z \in B_{(\rho R)/r}.$$

Голоморфная в B_R функция A(b) (рассматриваем теперь A как оператор из $H(B_r)$ в $H(B_R)$) является голоморфным продолжением b * c в B_R .

2.2. О топологическом изоморфизме. Пусть $r, R \in (0, \infty)$. Символ $\mathcal{L}_h(H(B_r), H(B_R))_b$ обозначает пространство $\mathcal{L}_h(H(B_r), H(B_R))$ с топологией равномерной сходимости на семействе $\mathcal{B}(H(B_r))$ всех ограниченных подмножеств $H(B_r)$. Множество преднорм

$$q_{T,n}(A) := \sup_{f \in T} \max_{|z| \le R_n} |A(f)(z)|, \ T \in \mathcal{B}(H(B_r)), \quad n \in \mathbb{N},$$

является фундаментальной системой непрерывных преднорм в $\mathcal{L}_h(H(B_r), H(B_R))_b$. Введем множество $T_0 := \{p_u \mid u \in \overline{B}_{1/r}\}$. Поскольку для любых $u \in \overline{B}_{1/r}, n \in \mathbb{N}$

$$\sup_{|z| \le r_n} |p_u(z)| = \sup_{|z| \le r_n} \frac{1}{|1 - \langle u, z \rangle|} \le \frac{1}{1 - r_n/r},$$

то множество T_0 ограничено в $H(B_r)$.

Пусть $(\delta_n)_{n\in\mathbb{N}}$ — строго возрастающая последовательность положительных чисел такая, что $\delta_n\to R/r$. Последовательность норм $\max_{z\in\overline{U}_{\delta_n}}|f(z)|,\ n\in\mathbb{N}$, задает топологию простран-

ства Фреше $H(U_{R/r})$. Зафиксируем строго убывающую последовательность чисел $(s_n)_{n\in\mathbb{N}}$ такую, что $s_n \to r/R$, и положим

$$||f||_n := \max_{z \in \overline{D}_{s_n}} |f(z)|, \quad f \in H_c(D_{s_n}), \quad n \in \mathbb{N}.$$

Определим также

$$\|\varphi\|_n^* := \sup_{\|f\|_n \le 1} |\varphi(f)|, \quad \varphi \in H(\overline{D}_{r/R})', \quad n \in \mathbb{N}.$$

Последовательность $(\|\cdot\|_n^*)_{n\in\mathbb{N}}$ является фундаментальной последовательностью непрерывных преднорм в пространстве Фреше $H(\overline{D}_{r/R})_b'$. Для $\varphi\in H(\overline{D}_{r/R})'$ полагаем $A_{\varphi}(f)(z):=\varphi_t(f(tz)), z\in B_R, f\in H(B_r)$.

Теорема 2.2. (i) Отображение $\chi(\varphi) := A_{\varphi}$ является линейным топологическим изоморфизмом $H(\overline{D}_{r/R})'_b$ на $\mathcal{L}_h(H(B_r), H(B_R))_b$.

(ii) Пространство $\mathcal{L}_h(H(B_r), H(B_R))_b$ линейно топологически изоморфно $H(U_{R/r})$.

Доказательство. (i): По теореме 2.1 линейное отображение χ биективно. Зафиксируем множество $T \in \mathcal{B}(H(B_r))$ и $n \in \mathbb{N}$. Найдутся $k \in \mathbb{N}$ и $m \in \mathbb{N}$, для которых $R_n s_k \leq r_m$, а значит, $B_{R_n} \cdot \overline{D}_{s_k} = B_{R_n s_k} \subset B_{r_m}$. Тогда для любого $\varphi \in H(\overline{D}_{r/R})'$

$$q_{T,n}(A_{\varphi}) = \sup_{f \in T} \max_{|z| \le R_n} |\varphi_t(f(tz))|$$

$$\leq \|\varphi\|_k^* \sup_{f \in T} \sup_{|z| \le R_n} \max_{t \in \overline{D}_{s_k}} |f(tz)| \le \left(\sup_{f \in T} \max_{|u| \le r_m} |f(u)|\right) \|\varphi\|_k^*.$$

Отсюда следует, что $\chi: H(\overline{D}_{r/R})_b' \to \mathcal{L}_h(H(B_r), H(B_R))_b$ непрерывно.

Покажем теперь, что отображение $\chi^{-1}: \mathcal{L}_h(H(B_r), H(B_R))_b \to H(\overline{D}_{r/R})_b'$ непрерывно. Зафиксируем $k \in \mathbb{N}$. Так как по лемме 2.1 преобразование Фантапье Ф является топологическим изоморфизмом $H(\overline{D}_{r/R})_b'$ на $H(U_{R/r})$, то найдутся $m \in \mathbb{N}$ и постоянная C > 0, для которых

$$\|\varphi\|_k^* \le C \max_{v \in \overline{U}_{\delta_m}} |\widetilde{\varphi}(v)|, \ \varphi \in H(\overline{D}_{r/R})'.$$

Выберем $n \in \mathbb{N}$ такое, что $\delta_m \leq R_n/r$. Поскольку для любого $\varphi \in H(\overline{D}_{r/R})'$

$$q_{T_0,n}(A_{\varphi}) = \sup_{|u| \le 1/r} \max_{|z| \le R_n} \left| \varphi_t \left(\frac{1}{1 - \langle u, tz \rangle} \right) \right|$$

$$= \sup_{|u| \le 1/r} \max_{|z| \le R_n} \left| \varphi_t \left(\frac{1}{1 - \langle t, zu \rangle} \right) \right| = \sup_{|u| \le 1/r} \max_{|z| \le R_n} \left| \widetilde{\varphi}(zu) \right|$$

и $\overline{B}_{1/r}\cdot\overline{B}_{R_n}=\overline{U}_{R_n/r}\supset\overline{U}_{\delta_m}$, то для всякого $arphi\in H(\overline{D}_{r/R})'$

$$q_{T_0,n}(A_{\varphi}) \ge \max_{v \in \overline{U}_{\delta_m}} |\widetilde{\varphi}(v)|.$$

Значит, для любого $\varphi \in H(\overline{D}_{r/R})'$ выполняется неравенство

$$\|\varphi\|_k^* \le Cq_{T_0,n}(A_\varphi).$$

Таким образом, отображение $\chi^{-1}: \mathcal{L}_h(H(B_r), H(B_R))_b \to H(\overline{D}_{r/R})_b'$ непрерывно.

(ii): Топологическим изоморфизмом $\mathcal{L}_h(H(B_r), H(B_R))_b$ на $H(U_{R/r})$ является $\Phi \chi^{-1}$.

Поскольку при доказательстве непрерывности χ^{-1} в предыдущей теореме достаточно выбирать одно ограниченное в $H(B_r)$ множество T_0 , то получим

Следствие 2.2. Пространство $\mathcal{L}_h(H(B_r), H(B_R))_b$ является пространством Фреше с фундаментальной последовательностью непрерывных преднорм $q_{T_0,n}$, $n \in \mathbb{N}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Л.А. Айзенберг. Общий вид непрерывного функционала в пространствах функций, голоморфных в выпуклых областях \mathbb{C}^N // Докл. АН СССР. **166**:5, 1015–1018 (1966).
- 2. А.В. Братищев. О линейных операторах, символ которых является функцией произведения своих аргументов // Докл. РАН. **365**:1, 9–12 (1999).
- 3. А.В. Братищев. Об операторах обобщенного дифференцирования Гельфонда-Леонтьева // Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз. **153**, 29–54 (2018).
- 4. В.С. Владимиров. *Методы теории функций многих комплексных переменных*. М.: Наука. 1964.
- 5. О.А. Иванова, С.Н. Мелихов. Операторы почти адамаровского типа и оператор Харди-Литтлвуда в пространстве целых функций многих комплексных переменных // Матем. заметки. **110**:1, 52–64 (2021).
- 6. С.С. Линчук. Диагональные операторы в пространствах аналитических функций и их приложения // Актуальные вопросы теории функций. Ростов-на-Дону: изд-во РГУ, 118–121 (1987).
- 7. В.В. Напалков. Уравнения свертки в многомерных пространствах. М.: Наука. 1982.
- 8. А.П. Робертсон, В.Дж. Робертсон. Топологические векторные пространства. М.: Мир. 1967.
- 9. P. Domański, M. Langenbruch. Representation of multipliers on spaces of real analytic functions // Analysis. 32, 137–162 (2012).
- 10. P. Domański, M. Langenbruch. Algebra of multipliers on the space of real analytic functions of one variable // Studia Math. 212, 155-171 (2012).
- 11. P. Domański, M. Langenbruch. *Hadamard multipliers on spaces of real analytic functions* // Adv. Math. **240**, 575–612 (2013).
- 12. P. Domański, M. Langenbruch. Multiplier projections on spaces of real analytic functions in several variables // Comp. Var. Elliptic Equ. 62, 241-268 (2017).
- 13. P. Domański, M. Langenbruch. Surjectivity of Hadamard type operators on spaces of smooth functions // Revista de la Real Acad. de Ciencias Ex. Fis. y Naturales Serie A-Mat. 113, 1625–1676 (2019).

- 14. P. Domański, M. Langenbruch, D. Vogt. *Hadamard type operators on spaces of real analytic functions in several variables* // J. Funct. Anal. **269**, 3868–3913 (2015).
- 15. L. Hörmander. Notions of Convexity. Birkhäuser. 1994.
- 16. G. Köthe. Dualität in der Funktionentheorie // J. Reine Angew. Math. 191:1-2, 30-49 (1953).
- 17. A. Martineau. Sur la topologie des espaces de fonctions holomorphes // Math. Annalen. 163:1, 62–88 (1966).
- 18. M. Trybula. $Hadamard\ multipliers\ on\ spaces\ of\ holomorphic\ functions\ //\ Int.\ Equ.\ Oper.\ Theory.\ 88, 249–268\ (2015).$
- 19. D. Vogt. Hadamard type operators on spaces of smooth functions // Math. Nachr. 288, 353–361 (2015).
- 20. D. Vogt. Hadamard operators on $\mathcal{D}'(\mathbb{R}^N)$ // Studia Math. 237, 137–152 (2017).
- 21. D. Vogt. Hadamard operators on $\mathcal{D}'(\Omega)$ // Math. Nachr. **290**, 1374–1380 (2017).
- 22. D. Vogt. \mathcal{E}' as an algebra by multiplicative convolution // Funct. Approx. Comment. Math. **59**:1, 117–128 (2018).
- 23. D. Vogt. Hadamard type operators on temperate distributions // J. Math. Anal. Appl. 481:2, 123499 (2020).

Ольга Александровна Иванова,

Южный федеральный университет, Институт математики, механики и компьютерных наук им. И.И. Воровича,

ул. Мильчакова, 8а,

344090, г. Ростов-на-Дону, Россия

E-mail: ivolga@sfedu.ru

Сергей Николаевич Мелихов,

Южный федеральный университет, Институт математики, механики и компьютерных наук им. И.И. Воровича,

ул. Мильчакова, 8а,

344090, г. Ростов-на-Дону, Россия,

Южный математический институт ВНЦ РАН,

ул. Ватутина, 53,

362025, г. Владикавказ, Россия

E-mail: snmelihov@sfedu.ru, snmelihov@yandex.ru