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UNIVERSAL INEQUALITIES ON DOMAINS IN EUCLIDEAN

SPACE AND THEIR APPLICATIONS

F.G. AVKHADIEV

Abstract. In domains in Euclidean spaces, for test functions, we construct and prove
several new Gagliardo-Nirenberg type inequalities with explicit constants. These inequalities
are true in any domain, they are nonlinear, integrand functions involve the powers of the
absolute values of the gradient and the Laplacian of a test function 𝑢, as well as factors of
type 𝑓(|𝑢(𝑥)|), 𝑓 ′(|𝑢(𝑥)|), where 𝑓 is a continuously differentiable non-decaying function,
𝑓(0) = 0. As weight functions, the powers of the distance from a point to the boundary of
the domain serve as well as the powers of the varying hyperbolic (conformal) radius.

As applications of universal inequalities of Gagliardo-Nirenberg type we obtain new in-
tegral Rellich type inequalities in planar domains with uniformly perfect boundaries. For
these Rellich type 𝐿𝑝-inequalities we establish criteria of the positivity of the constants, ob-
tain two-sided estimates for these constants depending on the Euclidean maximal modulus
of the domain and on the parameter 𝑝 ⩾ 2. In the proof we use several scalar characteristics
for domains with uniformly perfect boundaries.

Keywords: Gagliardo-Nirenberg type inequality, distance to the boundary, hyperbolic
radius, uniformly perfect set.
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1. Introduction

Integral inequalities of Gagliardo-Nirenberg kind, see [1], [2], as well as [3] and [4], play an important
role in the theory of Sobolev spaces and their applications. They turn out to be valid in domains obeying
various functional and geometric conditions.

Our aim is to construct and prove new integral inequalities of Gagliardo-Nirenberg type for test
functions 𝑢 ∈ 𝐶2

0 (Ω) in 𝑛-dimensional domains Ω. The integrals in these inequalities involve the
absolute values of the function, its Laplacian and the gradient. Our main aim is to find special cases,
when the inequalities are universal in the sense that they are true for any domain of hyperbolic type
and involve no unknown constants.

We note that we use some ideas from the theory of inequalities of Hardy and Rellich type. In this field
a series of interesting results was obtained, the history can be seen in works [4]–[14]. Moreover, a large
amount of useful classes of domains was accumulated, for which corresponding integral identities are
satisfied. In particular, several inequalities of Hardy type were proved in domains of a fixed dimension
without any essential restrictions for the boundary of the domain. Such inequalities are referred to as
universal. An an example, we provide two results.

Suppose that
𝑛 ⩾ 2, 𝑝 ∈ [1,∞), 𝑠 ∈ (𝑛,∞).

Let Ω ⊂ R𝑛 be a domain, that is, a non-empty open connected domain, Ω ̸= R𝑛. Then the distance
𝜌(𝑥, 𝜕Ω) from a point 𝑥 ∈ Ω to the boundary of this domain is well-defined and for all functions

𝑢 : Ω → R, 𝑢 ∈ 𝐶1
0 (Ω),
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the following universal inequality holds:∫︁
Ω

|∇𝑢(𝑥)|𝑝 𝑑𝑥
𝜌𝑠−𝑝(𝑥, 𝜕Ω)

⩾
(𝑠− 𝑛)𝑝

𝑝𝑝

∫︁
Ω

|𝑢(𝑥)|𝑝 𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

, (1.1)

which was proved in paper [6]. We note that inequality 𝑠− 𝑛 > 0 is essential here.
The second example concerns planar domains. Let Ω ⊂ C be a domain in the complex plane.

Suppose that this domain possesses at least three boundary points. As it is well-known, see, for
instance, [15], such domain is called a domain of hyperbolic type and in such domain we can define
the Poincaré metric with a coefficient 𝜆(𝑧,Ω) and the Gaussian curvature equalling to

𝜅 =
∆ ln𝜆−1(𝑧,Ω)

𝜆2(𝑧,Ω)
= −4, 𝑧 = 𝑥+ 𝑖𝑦 ∈ Ω.

We denote 𝑅(𝑧,Ω) := 1/𝜆(𝑧,Ω). It is known that

𝜆( · ,Ω) ∈ 𝐶∞(Ω), 𝑅(𝑧,Ω) ⩾ 𝜌(𝑧, 𝜕Ω) := inf
𝑤∈C∖Ω

|𝑧 − 𝑤| ∀𝑧 ∈ Ω.

As we have proved in paper [8], for each domain Ω ⊂ C of hyperbolic type and for all functions
𝑢 : Ω → R, 𝑢 ∈ 𝐶1

0 (Ω), the following universal inequality holds:∫︁∫︁
Ω

|∇𝑢(𝑧)|
𝜌(𝑧, 𝜕Ω)

𝑑𝑥𝑑𝑦 ⩾ 2

∫︁∫︁
Ω

|𝑢(𝑧)|
𝑅2(𝑧,Ω)

𝑑𝑥𝑑𝑦. (1.2)

We note that a particular case of inequality (1.1) as

𝑛 = 2, 𝑝 = 1, 𝑠 ∈ (2,∞), Ω ⊂ C, Ω ̸= C,

can be written as the following inequality∫︁∫︁
Ω

|∇𝑢(𝑧)|
𝜌𝑠−1(𝑧, 𝜕Ω)

𝑑𝑥𝑑𝑦 ⩾ (𝑠− 2)

∫︁∫︁
Ω

|𝑢(𝑧)|
𝜌𝑠(𝑧, 𝜕Ω)

𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1
0 (Ω). (1.3)

It is useful to compare inequalities (1.2) and (1.3) with two close inequalities∫︁∫︁
Ω

|∇𝑢(𝑧)|
𝜌(𝑧, 𝜕Ω)

𝑑𝑥𝑑𝑦 ⩾ 𝑐2(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|
𝜌2(𝑧, 𝜕Ω)

𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1
0 (Ω), (1.4)

∫︁∫︁
Ω

|∇𝑢(𝑧)|
𝑅(𝑧,Ω)

𝑑𝑥𝑑𝑦 ⩾ 𝑐*2(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|
𝑅2(𝑧,Ω)

𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶1
0 (Ω). (1.5)

We suppose that the constant 𝑐2(Ω) ∈ [0,∞) in inequality (1.4) and the constant 𝑐*2(Ω) ∈ [0,∞) in
inequality (1.5) are chosen maximal possible.

Inequalities (1.4) and (1.5) are not universal, see, for instance, [8], since there exist domains Ω ⊂ C
of hyperbolic type, for which 𝑐2(Ω) = 𝑐*2(Ω) = 0, that is, there exist the domains, for which these
inequalities are meaningless. On the other hand, it is known that 𝑐2(Ω) > 0 and 𝑐*2(Ω) > 0 for each
domain Ω ⊂ C with a uniformly perfect boundary.

While comparing inequalities (1.2), (1.4) and (1.5), it is necessary to take into consideration that
the hyperbolic radius 𝑅(𝑧,Ω) and the distance 𝜌(𝑧, 𝜕Ω) from a point to the boundary of the domain
are close quantities. The quantitative characteristics of the domains with uniformly perfect boundaries
will be described below in Section 3 and appropriate citations will be provided.

2. Universal inequalities of Gagliardo-Nirenberg type

By the symbol 𝐶2
0 (Ω) we denote a standard family of twice continuously differentiable functions

𝑢 : Ω → R, the compact supports of which are contained in the domain Ω. By ∇𝑢(𝑥) ∈ R𝑛 and
∆𝑢(𝑥) we denote respectively the gradient and the Euclidean Laplacian of a function. For the vectors
𝑥 = (𝑥1, 𝑥2, . . . 𝑥𝑛) ∈ R𝑛 and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ R𝑛 we employ the Euclidean norm

|𝑥| =
(︀
𝑥21 + 𝑥22 + . . .+ 𝑥2𝑛

)︀1/2
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and the scalar product

(𝑥, 𝑦) = 𝑥1𝑦1 + 𝑥2𝑦2 + . . .+ 𝑥𝑛𝑦𝑛.

For the sake of definiteness we note that 𝑑𝑥 = 𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛 is a volume differential in 𝑛-dimensional
integrals of form

∫︀
Ω

𝐹 (𝑥) 𝑑𝑥, as well as

|∇𝑢(𝑥)| :=

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

(︂
𝜕𝑢(𝑥)

𝜕𝑥𝑗

)︂2

, ∆𝑢(𝑥) :=

𝑛∑︁
𝑗=1

𝜕2𝑢(𝑥)

𝜕𝑥2𝑗
.

Together with these notations, we employ also a complex variable 𝑧 = 𝑥+ 𝑖𝑦 and an area differential
𝑑𝑥𝑑𝑦 in double integrals, see above formulae in inequalities (1.2), (1.3) and (1.5).

The following theorem on universal inequalities of Gagliardo-Nirenberg type in arbitrary domains
Ω ⊂ R𝑛 is true.

Theorem 2.1. Let Ω ⊂ R𝑛 be a domain 𝑛 ⩾ 2. Suppose that 𝑝 ∈ (1,∞), 𝑞 = 𝑝/(𝑝− 1), 𝜀 ∈ (0,∞),
𝑔 : Ω → (0,∞) is a continuous function, 𝑓 : [0,∞) → [0,∞) is a function satisfying the following
conditions 𝑓 ∈ 𝐶1([0,∞)), 𝑓(0) = 0, 𝑓 ′(𝑡) ⩾ 0 for all 𝑡 ∈ [0,∞).

Then for each real-valued function 𝑢 ∈ 𝐶2
0 (Ω) the following inequalities hold:∫︁

Ω

𝑓 ′(|𝑢(𝑥)|)|∇𝑢(𝑥)|2 𝑑𝑥 ⩽
∫︁
Ω

𝑓(|𝑢(𝑥)|) |∆𝑢(𝑥)| 𝑑𝑥, (2.1)

∫︁
Ω

𝑓 ′(|𝑢(𝑥)|)|∇𝑢(𝑥)|2 𝑑𝑥 ⩽

⎛⎝∫︁
Ω

𝑓 𝑞(|𝑢(𝑥)|)
𝑔𝑞(𝑥)

𝑑𝑥

⎞⎠1/𝑞 ⎛⎝∫︁
Ω

𝑔𝑝(𝑥)|∆𝑢(𝑥)|𝑝 𝑑𝑥

⎞⎠1/𝑝

, (2.2)

∫︁
Ω

𝑓 ′(|𝑢(𝑥)|)|∇𝑢(𝑥)|2𝑑𝑥 ⩽
1

𝑞𝜀𝑞/𝑝

∫︁
Ω

𝑓 𝑞(|𝑢(𝑥)|)
𝑔𝑞/𝑝(𝑥)

𝑑𝑥+
𝜀

𝑝

∫︁
Ω

𝑔(𝑥)|∆𝑢(𝑥)|𝑝𝑑𝑥. (2.3)

Proof. For real-valued functions

𝑢 ∈ 𝐶2
0 (Ω), 𝑣 ∈ 𝐶1(Ω)

by the Green’s formula we have:∫︁
Ω

𝑣(𝑥)∆𝑢(𝑥) 𝑑𝑥+

∫︁
Ω

(∇𝑣(𝑥),∇𝑢(𝑥)) 𝑑𝑥 = 0. (2.4)

We defined a function 𝑣 : Ω → R by the identity

𝑣(𝑥) = 𝑓(|𝑢(𝑥)|) sgn(𝑢(𝑥)), 𝑥 ∈ Ω.

It is east to see that 𝑣 = 𝑓(|𝑢|) sgn(𝑢) ∈ 𝐶(Ω). In view of conditions

𝑢 ∈ 𝐶2
0 (Ω), 𝑓 ∈ 𝐶1([0,∞)), 𝑓(0) = 0,

we obtain that 𝑣 = 𝑓(|𝑢|) sgn(𝑢) ∈ 𝐶1(Ω) since

∇|𝑢(𝑥)| = ∇𝑢(𝑥) sgn(𝑢(𝑥)), 𝑥 ∈ Ω,

and

∇𝑣(𝑥) = 𝑓 ′(|𝑢(𝑥)|)∇|𝑢(𝑥)| sgn(𝑢(𝑥)) = 𝑓 ′(|𝑢(𝑥)|)∇𝑢(𝑥), 𝑥 ∈ Ω.

But then ∫︁
Ω

(∇𝑣(𝑥),∇𝑢(𝑥)) 𝑑𝑥 =

∫︁
Ω

𝑓 ′(|𝑢(𝑥)|)|∇𝑢(𝑥)|2 𝑑𝑥

and Green’s formula (2.4) imply the identity∫︁
Ω

𝑓 ′(|𝑢(𝑥)|)|∇𝑢(𝑥)|2 𝑑𝑥+

∫︁
Ω

𝑓(|𝑢(𝑥)|) sgn(𝑢(𝑥))∆𝑢(𝑥) 𝑑𝑥 = 0 (2.5)

valid for all functions 𝑢 ∈ 𝐶2
0 (Ω).
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By the assumptions of the theorem we have: 𝑓(𝑡) ⩾ 0 and 𝑓 ′(𝑡) ⩾ 0 for all 𝑡 ∈ [0,∞). This is why
identity (2.5) implies identity (2.1) valid for all functions 𝑢 ∈ 𝐶2

0 (Ω). Since 𝑔(𝑥) > 0 for all 𝑥 ∈ Ω,
inequality (2.1) can be written as∫︁

Ω

𝑓 ′(|𝑢(𝑥)|)|∇𝑢(𝑥)|2 𝑑𝑥 ⩽
∫︁
Ω

𝑓(|𝑢(𝑥)|)
𝑔(𝑥)

|∆𝑢(𝑥)|
(𝑔(𝑥))−1

𝑑𝑥. (2.6)

Estimating from above the integral in the right hand side of (2.6) by means of the Hölder inequality,
we obtain estimate (2.2).

The integrand in the integral in the right hand side of (2.1) can be represented as

𝑓(|𝑢(𝑥)|) |∆𝑢(𝑥)| = 𝑎𝑝−1𝑏,

where

𝑎𝑝−1 =
𝑓(|𝑢(𝑥)|)

𝜀1/𝑝 𝑔1/𝑝(𝑥)
, 𝑏 = 𝜀1/𝑝 𝑔1/𝑝(𝑥) |∆𝑢(𝑥)|.

We have:
1

𝑝− 1
=

𝑞

𝑝
,

(︂
1− 1

𝑝

)︂
𝑎𝑝 =

1

𝑞 𝜀𝑞/𝑝
𝑓 𝑞(|𝑢(𝑥)|)
𝑔𝑞/𝑝(𝑥)

,
𝑏𝑝

𝑝
=

𝜀

𝑝
𝑔(𝑥)|∆𝑢(𝑥)|𝑝.

In order to obtain inequality (2.3), it is sufficient to estimate from above the integrand in the integral
in the right hand side of (2.1) by means of Young inequality

𝑎𝑝−1𝑏 ⩽

(︂
1− 1

𝑝

)︂
𝑎𝑝 +

𝑏𝑝

𝑝

in view of the above formulae for (1− 1/𝑝) 𝑎𝑝 and 𝑏𝑝/𝑝. This completes the proof.

We note that in the case 𝑛 = 2, 𝑓(𝑡) = 𝑡𝑠, 𝑠 ⩾ 1, inequality (2.1) and identity (2.5) were justified in
paper [9].

Letting 𝑓(𝑡) = arctan 𝑡 and 𝑓(𝑡) = 𝑡/(1 + 𝑡) in (2.1) and using simple inequalities arctan 𝑡 ⩽ 𝜋/2,
𝑡/(1 + 𝑡) ⩽ 1 for 𝑡 ∈ [0,∞), we obtain the following statement.

Corollary 2.1. Let 𝑛 ⩾ 2, Ω ⊂ R𝑛 be a domain. Then for each real-valued function 𝑢 ∈ 𝐶2
0 (Ω) the

inequalities hold: ∫︁
Ω

|∇𝑢(𝑥)|2

1 + 𝑢2(𝑥)
𝑑𝑥 ⩽

𝜋

2

∫︁
Ω

|∆𝑢(𝑥)| 𝑑𝑥

and ∫︁
Ω

|∇𝑢(𝑥)|2

(1 + |𝑢(𝑥)|)2
𝑑𝑥 ⩽

∫︁
Ω

|∆𝑢(𝑥)| 𝑑𝑥.

In what follows we shall make use of the distance function

𝜌(𝑥, 𝜕Ω) = dist(𝑥, 𝜕Ω) := inf
𝑦∈R𝑛∖Ω

|𝑥− 𝑦|, 𝑥 ∈ Ω,

where Ω ⊂ R𝑛 is a domain such that Ω ̸= R𝑛. The distance function 𝜌( · , 𝜕Ω) is rather well-studied,
see, for instance, [7], [16]–[19]. In particular, for each domain Ω ⊂ R𝑛, Ω ̸= R𝑛, the distance function
satisfies the following Lipschitz condition

|𝜌(𝑥, 𝜕Ω)− 𝜌(𝑦, 𝜕Ω)| ⩽ |𝑥− 𝑦|, ∀𝑥, 𝑦 ∈ Ω.

Therefore, by the Rademacher theorem [16], this function is differentiable almost everywhere in the
domain Ω. We note, see, for instance, [7, Ch. 2], that |∇𝜌(𝑥, 𝜕Ω)| = 1 almost everywhere in Ω.

The distance function 𝜌(𝑥, 𝜕Ω) and its properties are often used in forming the classes of domains,
for which various embedding theorems of Sobolev spaces hold, see, for instance, works [3], [4], [7], [20].
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Corollary 2.2. Let 𝜌(𝑥, 𝜕Ω) be the distance from a point 𝑥 ∈ Ω ⊂ R𝑛 to the boundary of the domain
Ω ̸= R𝑛, 𝑛 ⩾ 2, 𝑝 ∈ [2,∞), 𝑞 = 𝑝/(𝑝 − 1), 𝑠 ∈ R, 𝜀 ∈ (0,∞). Then for each real-valued function
𝑢 ∈ 𝐶2

0 (Ω) the inequalities hold:

∫︁
Ω

|𝑢(𝑥)|𝑝−2|∇𝑢(𝑥)|2 𝑑𝑥 ⩽
𝑞

𝑝

⎛⎝∫︁
Ω

|𝑢(𝑥)|𝑝 𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

⎞⎠1/𝑞 ⎛⎝∫︁
Ω

|∆𝑢(𝑥)|𝑝 𝑑𝑥
𝜌𝑠(1−𝑝)(𝑥, 𝜕Ω)

⎞⎠1/𝑝

(2.7)

and ∫︁
Ω

|𝑢(𝑥)|𝑝−2|∇𝑢(𝑥)|2𝑑𝑥 ⩽
1

𝑝𝜀𝑞/𝑝

∫︁
Ω

|𝑢(𝑥)|𝑝 𝑑𝑥
𝜌𝑠(𝑥, 𝜕Ω)

+
𝑞𝜀

𝑝2

∫︁
Ω

|∆𝑢(𝑥)|𝑝𝑑𝑥
𝜌−𝑠𝑝/𝑞(𝑥, 𝜕Ω)

. (2.8)

Proof. Inequality (2.2) implies (2.7) in the case

𝑓(𝑡) = 𝑡𝑝−1, 𝑔(𝑥) = 𝜌𝑠/𝑞(𝑥, 𝜕Ω).

Inequality (2.8) corresponds to (2.3) for 𝑓(𝑡) = 𝑡𝑝−1, 𝑔(𝑥) = 𝜌𝑠𝑝/𝑞(𝑥, 𝜕Ω).

Corollary 2.3. Suppose that 𝜌(𝑥, 𝜕Ω) is the distance from a point 𝑥 ∈ Ω ⊂ R𝑛 to the boundary of
the domain Ω ̸= R𝑛, 𝑛 ⩾ 2, 𝜀 ∈ (0,∞). Then for each real-valued function 𝑢 ∈ 𝐶2

0 (Ω) the inequality
holds:∫︁

Ω

|𝑢(𝑥)|𝑛|∇𝑢(𝑥)|2𝑑𝑥 ⩽ 𝐴

∫︁
Ω

𝜌(𝑥, 𝜕Ω)|∇𝑢(𝑥)|𝑛+2 𝑑𝑥+𝐵

∫︁
Ω

𝜌(𝑛−1)2(𝑥, 𝜕Ω)|∆𝑢(𝑥)|𝑛+2𝑑𝑥, (2.9)

where

𝐴 =
(𝑛+ 2)𝑛+1

𝜀1/(𝑛+1)
, 𝐵 =

𝜀

(𝑛+ 1)(𝑛+ 2)
.

Proof. Letting 𝑠 = 𝑛+ 1, 𝑝 = 𝑛+ 2 in inequality (1.1), we obtain:∫︁
Ω

𝜌(𝑥, 𝜕Ω)|∇𝑢(𝑥)|𝑛+2 𝑑𝑥 ⩾
1

(𝑛+ 2)𝑛+2

∫︁
Ω

|𝑢(𝑥)|𝑛+2 𝑑𝑥

𝜌𝑛+1(𝑥, 𝜕Ω)
.

This inequality and (2.8) for 𝑠 = 𝑛+ 1, 𝑝 = 𝑛+ 2 imply (2.9).

In the two-dimensional case on the base of Theorem 2.1 we can obtain new conformally invariant
integral inequalities in domains of hyperbolic type. We recall that a domain Ω ⊂ R2 is of hyperbolic
type if and only if possesses at least three boundary points.

We shall employ a complex variable 𝑧 = 𝑥+ 𝑖𝑦 and the symbol C to denote the plane for the variable
𝑧. As it is known, in a domain Ω ⊂ C of hyperbolic type the Poincaré metrics with a coefficient 𝜆(𝑧,Ω)
is well defined with the Gaussian curvature being equal to 𝜅 = −4. We shall make use of a hyperbolic
(conformal) radius defined by the formula

𝑅(𝑧,Ω) =
1

𝜆(𝑧,Ω)
, 𝑧 = 𝑥+ 𝑖𝑦 ∈ Ω ⊂ C.

It is known that 𝑅( · ,Ω) ∈ 𝐶∞(Ω), 𝑅(𝑧,Ω) ⩾ 𝜌(𝑧, 𝜕Ω) at each point 𝑧 ∈ Ω, see, for instance, [21].

Corollary 2.4. Assume that Ω ⊂ C is a domain of hyperbolic type, 𝑅(𝑧,Ω) is a hyperbolic radius
of this domain at a point 𝑧 ∈ Ω, 𝑝 ∈ [2,∞), 𝑞 = 𝑝/(𝑝 − 1), 𝜀 ∈ (0,∞). Then for each real-valued
function 𝑢 ∈ 𝐶2

0 (Ω) the following conformal invariant inequalities hold:

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩽
𝑞

𝑝

⎛⎝∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

⎞⎠1/𝑞 ⎛⎝∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2−2𝑝(𝑧,Ω)

⎞⎠1/𝑝

(2.10)

and ∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ⩽
1

𝑝𝜀𝑞/𝑝

∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

+
𝑞𝜀

𝑝2

∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2−2𝑝(𝑧,Ω)

. (2.11)
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Proof. Inequality (2.10) is implied by inequality (2.2) in the case

𝑓(𝑡) = 𝑡𝑝−1, 𝑔(𝑧) = 𝑅2/𝑞(𝑧,Ω).

Inequality (2.11) is equivalent to (2.3) as 𝑓(𝑡) = 𝑡𝑝−1, 𝑔(𝑧) = 𝑅2𝑝/𝑞(𝑧,Ω).

Corollary 2.5. Let Ω ⊂ C be a simply connected or a double-connected domain of a hyperbolic type,
𝑅(𝑧,Ω) be a hyperbolic radius of this domain at a point 𝑧 ∈ Ω, 𝑝 ∈ [2,∞). Then for each real-valued
function 𝑢 ∈ 𝐶2

0 (Ω) the following conformally invariant inequalities hold:∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2−2𝑝(𝑧,Ω)

⩾
4𝑝(𝑝− 1)𝑝

𝑝2𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

(2.12)

and ∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2−2𝑝(𝑧,Ω)

⩾
4𝑝−1(𝑝− 1)𝑝

𝑝2(𝑝−1)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦. (2.13)

Proof. We first mention that as 𝑝 = 2, inequality (2.12) was justified in paper [9].
Let Ω ⊂ C be a simply-connected or a double-connected of a hyperbolic type. As it is known, see,

for instance, [5], [8], [9], then the inequality holds:∫︁∫︁
Ω

|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩾
∫︁∫︁
Ω

|𝑢(𝑧)|2 𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

∀𝑢 ∈ 𝐶1
0 (Ω). (2.14)

If 𝑝 > 2, it is easy to make sure that |𝑢|𝑝/2 ∈ 𝐶1
0 (Ω). Then we can replace 𝑢(𝑧) by the function |𝑢(𝑧)|𝑝/2

in inequality (2.14). As a result, we get the inequality:

𝑝2

4

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩾
∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

∀𝑢 ∈ 𝐶1
0 (Ω). (2.15)

It follows from (2.10), (2.14) and (2.15) that for each real-valued function 𝑢 ∈ 𝐶2
0 (Ω) the inequality

holds:

4(𝑝− 1)

𝑝2

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

⩽

⎛⎝∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2(𝑧,Ω)

⎞⎠1−1/𝑝⎛⎝∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝑅2−2𝑝(𝑧,Ω)

⎞⎠1/𝑝

.

This inequality obviously implies (2.12).
Employing inequalities (2.10), (2.14) and (2.15), we obtain that, for each real-valued function 𝑢 ∈

𝐶2
0 (Ω),

(𝑝− 1)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦 ⩽

⎛⎝𝑝2

4

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦

⎞⎠1−1/𝑝⎛⎝∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝𝑑𝑥𝑑𝑦
𝑅2−2𝑝(𝑧,Ω)

⎞⎠1/𝑝

.

This inequality yields (2.13) and completes the proof.

Example 2.1. Let 𝐷′ = {𝑧 ∈ C : 0 < |𝑧| < 1} be a circle with a punctured center. It is well-known
that 𝑅(𝑧,𝐷′) = 2|𝑧| ln(1/|𝑧|) for this two-dimensional domain. By inequalities (2.12) and (2.13), for
each 𝑝 ∈ [2,∞) and each real-valued function 𝑢 ∈ 𝐶2

0 (𝐷
′) we have the following inequalities:∫︁∫︁

0<|𝑧|<1

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
|𝑧|2−2𝑝 ln2−2𝑝(1/|𝑧|)

⩾
(𝑝− 1)𝑝

𝑝2𝑝

∫︁∫︁
0<|𝑧|<1

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
|𝑧|2 ln2(1/|𝑧|)

and ∫︁∫︁
0<|𝑧|<1

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
|𝑧|2−2𝑝 ln2−2𝑝(1/|𝑧|)

⩾
(𝑝− 1)𝑝

𝑝2(𝑝−1)

∫︁∫︁
0<|𝑧|<1

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2𝑑𝑥𝑑𝑦.
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3. Inequalities in domains with uniformly perfect boundaries

In the geometric theory of functions there are about fifteen different definitions and criteria of
the uniform perfectness of sets. This is why we need to provide the definitions and characteristics,
which we shall employ. We are interesting in three quantitative characteristics with uniformly perfect
boundaries. Namely, we shall need the known definitions of the maximal modules 𝑀(Ω) and 𝑀0(Ω)
for the domains Ω ⊂ C, as well as the quantities

𝛼(Ω) := inf
𝑧∈Ω

𝜌(𝑧, 𝜕Ω)

𝑅(𝑧,Ω)

for domains Ω ⊂ C of hyperbolic type.
By the symbol C = C∪{∞} we denote the extended complex plane, that is, the Riemannian sphere.

We consider a domain Ω ⊂ C, the boundary of which contains at least two points. As it is known, if
Ω2 ⊂ C is a double-connected domain, then it can be conformally and univalently mapped onto some
concentric annulus of form

𝐴(Ω2) = {𝑧 ∈ C : 𝑎 < |𝑧| < 𝑏}, 0 ⩽ 𝑎 < 𝑏 ⩽ ∞.

We recall that for such double-connected domain Ω2 the conformal module is defined by the identity

𝑀(Ω2) =
1

2𝜋
ln

𝑏

𝑎
∈ (0,∞]

with a natural convention that 𝑀(Ω2) = ∞ as 𝑎 = 0 or 𝑏 = ∞.
Let us give the definition of the conformal maximal module 𝑀(Ω) for a domain Ω ⊂ C.

Definition 3.1. Let Ω ⊂ C be a domain, the boundary of which contains at least two points. The
conformal maximal module 𝑀(Ω) is defined as follows.

1) If Ω is a simply-connected domain, we let 𝑀(Ω) = 0.
2) If Ω is a double-connected domain, then 𝑀(Ω) is equal to the conformal module of this double-

connected domain, that is,

𝑀(Ω) =
1

2𝜋
ln

𝑏

𝑎
∈ (0,∞],

under the assumption that the domain Ω is conformally equivalent to a concentric annulus {𝑧 ∈ C :
𝑎 < |𝑧| < 𝑏}, 0 ⩽ 𝑎 < 𝑏 ⩽ ∞.

3) If the domain Ω is multiple-connected, we let

𝑀(Ω) := sup
Ω2

𝑀(Ω2),

where the supremum is taken over all double-connected domains Ω2 such that Ω2 ⊂ Ω and Ω2 partitions
the boundary of the domain Ω, that is, the set Ω ∖ Ω2 is not connected.

It was proved in in paper [22] by A.F. Beardon and C. Pommerenke that

𝑀(Ω) < ∞ ⇐⇒ 𝛼(Ω) > 0 (3.1)

for domains Ω ⊂ C of hyperbolic type.
It is easy to see that the conformal maximal module 𝑀(Ω) is a conformal invariant characteristics

of the domain. Calculation or estimation of 𝑀(Ω) is a difficult problem. From the point of view of
estimating, the quantity 𝑀0(Ω) is much simpler to treat; we call it an Euclidean maximal module.

To define the Euclidean maximal module 𝑀0(Ω), we need a set A𝑛𝑛(Ω) of concentric annuli
𝐴 = 𝐴(𝑧0; 𝑎, 𝑏) := {𝑧 ∈ C : 𝑎 < |𝑧 − 𝑧0| < 𝑏},

possessing the following properties:
1) The annulus 𝐴(𝑧0; 𝑎, 𝑏) is located in the domain Ω and 0 < 𝑎 < 𝑏 < ∞;
2) The centers of annuli 𝑧0 lie on the boundary of the domain, that is, on the set 𝜕Ω;
3) The annulus 𝐴(𝑧0; 𝑎, 𝑏) partitions the boundary of the domain Ω, that is, each of two domains

{𝑧 ∈ C : |𝑧 − 𝑧0| < 𝑎}, {𝑧 ∈ C : |𝑧 − 𝑧0| > 𝑏}
contains at least one boundary point of the domain Ω.

It is obvious that the set A𝑛𝑛(Ω) can be empty.
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Definition 3.2. Suppose that Ω ⊂ C is a domain, the boundary of which contains at least two points.
Let A𝑛𝑛(Ω) stand for the above introduced set of annuli. The Euclidean maximal module 𝑀0(Ω) is
defined as follows.

1) If A𝑛𝑛(Ω) = ∅, then we let 𝑀0(Ω) = 0.
2) If A𝑛𝑛(Ω) is not an empty set, we let

𝑀0(Ω) := sup
𝐴∈A𝑛𝑛(Ω)

1

2𝜋
ln

𝑏

𝑎
, (𝐴 = 𝐴(𝑧0; 𝑎, 𝑏)).

The definition𝑀0(Ω) is not related with conformal mappings and it can be shown that the Euclidean
maximal module 𝑀0(Ω) is not a conformally invariant quantity in the general situation.

It follows easily from the above definitions that 0 ⩽ 𝑀0(Ω) ⩽ 𝑀(Ω). L. Carleson, T.W. Gamelin [23]
showed the following wonderful property of the maximal modules 𝑀(Ω) and 𝑀0(Ω):

𝑀0(Ω) < ∞ ⇐⇒ 𝑀(Ω) < ∞. (3.2)

If 𝑀0(Ω) < ∞, then, following C. Pommerenke [24], we say that the boundary of the domain Ω is
an uniformly perfect set. By (3.2) the condition 𝑀0(Ω) < ∞ can be replaced by an equivalent one:
𝑀(Ω) < ∞.

We observe that the equivalence of (3.2) was specified in a series of works. In particular, it was
proved in the book by the author and K.-J. Wirths [21] that

𝑀0(Ω) ⩽ 𝑀(Ω) ⩽ 𝑀0(Ω) +
1

2
(3.3)

for each domain Ω ⊂ C, the boundary of which contains at least two points.
In a recent paper [25] by A. Golberg, T. Sugawa, M. Vuorinen a generalization of inequalities (3.3) for

a multi-dimensional case as well as a series of other definitions of uniformly perfect sets were provided.
If ∞ ∈ Ω, the following analogue of inequality (3.3) holds:

𝑀0(Ω) ⩽ 𝑀(Ω) ⩽ 2𝑀0(Ω) + 1, ∞ ∈ Ω,

for each domain Ω ⊂ C, the boundary of which contains at least two points, see [8].
Let 𝑝 ∈ [2,∞). In a domain Ω ⊂ C, Ω ̸= C, for functions 𝑢 : Ω → R we consider the following

Rellich type inequality∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

⩾ 𝐶*
𝑝(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶2
0 (Ω), (3.4)

where 𝜌(𝑧, 𝜕Ω) is the distance from a point 𝑧 = 𝑥+𝑖𝑦 ∈ Ω to the boundary of this domain; the constant
𝐶*
𝑝(Ω) is introduced as the maximal possible, that is,

𝐶*
𝑝(Ω) := inf

𝑢∈𝐶2
0 (Ω),𝑢 ̸≡0

∫︀∫︀
Ω

𝜌2𝑝−2(𝑧, 𝜕Ω) |∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦∫︀∫︀
Ω

𝜌−2(𝑧, 𝜕Ω)|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
∈ [0,∞).

In the next theorem we provide explicit lower bounds for the constant 𝐶*
𝑝(Ω) in the domain Ω ⊂ C

having uniformly perfect boundaries.

Theorem 3.1. Assume that 𝑝 ∈ [2,∞) and Ω ⊂ C is a domain. Then the following statements
hold:

if Ω is a simply-connected domain with a uniformly perfect boundary, then

𝐶*
𝑝(Ω) ⩾

(𝑝− 1)𝑝

4𝑝𝑝2𝑝
; (3.5)

if Ω is a double-connected domain with a uniformly perfect boundary, then

𝐶*
𝑝(Ω) ⩾

(𝑝− 1)𝑝

𝑝2𝑝
(︀
2𝑀0(Ω) + 1 +

√
2
)︀2𝑝 ; (3.6)

if Ω is an arbitrary domain with a uniformly perfect boundary, then

𝐶*
𝑝(Ω) ⩾

(𝑝− 1)𝑝

4𝑝𝑝2𝑝 (𝜋𝑀0(Ω) + 𝑐0)
4𝑝 , (3.7)
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where

𝑐0 =
Γ4(1/4)

4𝜋2
< 3 +

√
2,

Γ is the Euler Gamma function.

Proof. For a domain Ω ⊂ C, Ω ̸= C, as 𝑛 = 2, 𝑞 = 𝑝/(𝑝− 1) and 𝑠 = 2, inequality (2.7) implies that

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩽
𝑞

𝑝

⎛⎝∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

⎞⎠1/𝑞 ⎛⎝∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

⎞⎠1/𝑝

∀𝑢 ∈ 𝐶2
0 (Ω).

(3.8)
Let Ω ⊂ C be a simply-connected domain with an uniformly perfect boundary. Then, as A. An-

cona [5] proved, the inequality is valid:∫︁∫︁
Ω

|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩾
1

16

∫︁∫︁
Ω

|𝑢(𝑧)|2 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω). (3.9)

If 𝑝 > 2, then |𝑢|𝑝/2 ∈ 𝐶1
0 (Ω). Replacing 𝑢(𝑧) by a function |𝑢(𝑧)|𝑝/2 in inequality (3.9), we obtain:

𝑝2

4

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩾
1

16

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω). (3.10)

It follows from inequalities (3.8), (3.9) and (3.10) that

𝑝− 1

4𝑝2

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

⩽

⎛⎝∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

⎞⎠1/𝑞 ⎛⎝∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

⎞⎠1/𝑝

∀𝑢 ∈ 𝐶2
0 (Ω).

This is why for each function 𝑢 ∈ 𝐶2
0 (Ω), 𝑢 ̸≡ 0, the inequality

(𝑝− 1)𝑝

4𝑝𝑝2𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

⩽
∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

holds true. This implies inequality (3.5) due to the definition of the constant 𝐶*
𝑝(Ω) as the maximal

possible in inequality (3.4).
Let us prove (3.6). Let Ω ⊂ C be a double-connected domain with a uniformly perfect boundary.

As we proved in [10], in this case the inequality holds:∫︁∫︁
Ω

|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩾
1

4
(︀
2𝑀0(Ω) + 1 +

√
2
)︀2 ∫︁∫︁

Ω

|𝑢(𝑧)|2 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω).

As in the previous case, we obtain that for each 𝑝 ∈ [2,∞)

𝑝2

4

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩾
1

4
(︀
2𝑀0(Ω) + 1 +

√
2
)︀2 ∫︁∫︁

Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω). (3.11)

Combining (3.8) and (3.11), we obtain that for each function 𝑢 ∈ 𝐶2
0 (Ω), 𝑢 ̸≡ 0, the inequality holds:

(𝑝− 1)𝑝

𝑝2𝑝
(︀
2𝑀0(Ω) + 1 +

√
2
)︀2𝑝 ∫︁∫︁

Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

⩽
∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

.

This inequality implies (3.6) due to the definition of the constant 𝐶*
𝑝(Ω).

It remains to prove inequality (3.7). Let Ω ⊂ C be an arbitrary domain with an uniformly perfect
boundary. We proved in [6] and [8] that in this case the inequality∫︁∫︁

Ω

|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩾ 𝛼4(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|2 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω)
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holds. Therefore, for each 𝑝 ∈ [2,∞),

𝑝2

4

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩾ 𝛼4(Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶1
0 (Ω). (3.12)

In what follows we shall make use of a specified estimate by A.F. Beardon, C. Pommerenke, see [22]
and [21]:

𝛼(Ω) ⩾
1

2𝜋𝑀0(Ω) + 2𝑐0
. (3.13)

Combining (3.8), (3.12) and (3.13), we see that for each function 𝑢 ∈ 𝐶2
0 (Ω), 𝑢 ̸≡ 0, the inequality

holds:
(𝑝− 1)𝑝

4𝑝𝑝2𝑝 (𝜋𝑀0(Ω) + 𝑐0)
4𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

⩽
∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

.

This implies inequality (3.7) and completes the proof.

It is obvious that 𝑀(Ω) = 0 if and only if Ω is a simply-connected domain conformally equivalent
to the unit circle.

The next example from paper [13] shows that the Euclidean maximal module 𝑀0(Ω) can be zero
for multiple-connected domains.

Example 3.1. Let K be a classical Cantor set located on the segment [0, 1] and let

Ω0 := {𝑥+ 𝑖𝑦 ∈ C : |𝑥| < ∞, |𝑦| < 1}.
We consider the following multiple-connected domain

Ω(K) = Ω0 ∖ {𝑥+ 𝑖𝑦 ∈ C : 𝑥 ∈ K, |𝑦| ⩽ 3/4}.
Then 𝑀0(Ω(K)) = 0, since A𝑛𝑛(Ω(K)) = ∅.

It is easy to see that there exists a wide family of domains Ω ⊂ C possessing the property𝑀0(Ω) = 0.
This is why inequality (3.4) corresponding to this important case is treated as a separate corollary.

Corollary 3.1. Let 𝑝 ∈ [2,∞) and Ω ⊂ C be a domain with a uniformly perfect boundary. If the
Euclidean maximal module satisfies 𝑀0(Ω) = 0, then∫︁∫︁

Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

⩾
43𝑝𝜋8𝑝(𝑝− 1)𝑝

𝑝2𝑝Γ16𝑝(1/4)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2(𝑧, 𝜕Ω)

for each real-valued function 𝑢 ∈ 𝐶2
0 (Ω), where Γ is the Euler Gamma function.

4. Criteria of positivity 𝐶*
𝑝(Ω) and 𝐶**

𝑝 (Ω) with arbitrary 𝑝 ∈ [2,∞)

In paper [26] we have proved a criterion of positivity of 𝐶*
2 (Ω). In the following theorem we extend

this criterion to the constant 𝐶*
𝑝(Ω) with an arbitrary 𝑝 ⩾ 2.

Theorem 4.1. Let 𝑝 ∈ [2,∞) and Ω ⊂ C be a domain, Ω ̸= C. Then
𝑀0(Ω) < ∞ ⇐⇒ 𝐶*

𝑝(Ω) > 0,

that is, the constant 𝐶*
𝑝(Ω) is positive if and only if the boundary of the domain Ω ⊂ C is an uniformly

perfect set.

Proof. As a corollary of Theorem 3.1 we obtain the positivity of 𝐶*
2 (Ω) for a domain with a uniformly

perfect boundary. This is why it is sufficient to show just the inverse implication, that is,

𝐶*
𝑝(Ω) > 0 =⇒ 𝑀0(Ω) < ∞.

Let 𝐶*
𝑝(Ω) > 0. We denote:

𝜎*
𝑝 :=

𝜋∫︀
0

|𝑣0(𝑡)|𝑝 𝑑𝑡

𝜋∫︀
0

|𝑣′′0(𝑡)|𝑝 𝑑𝑡
,
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where 𝑣0 : (0, 𝜋) → R is a fixed function 𝑣0 ∈ 𝐶2
0 (0, 𝜋) such that 𝜎*

𝑝 ∈ (0,∞). We are going to show
that

𝑀0(Ω) ⩽ 𝑚 :=
1

2(𝜎*
𝑝 𝐶

*
𝑝(Ω))

1/(2𝑝)
.

We suppose the opposite, that is, 𝑀0(Ω) ∈ (𝑚,∞]. Then by the definition of the Euclidean maximal
module, there exists an annulus

𝐴0 = {𝑧 ∈ C : 𝑎 < |𝑧 − 𝑧0| < 𝑏} ⊂ Ω

such that 𝑧0 ∈ 𝜕Ω, 0 < 𝑎 < 𝑏 < ∞ and

𝑚 < 𝑀(𝐴0) :=
1

2𝜋
ln

𝑏

𝑎
< 𝑀0(Ω). (4.1)

Since 𝑧0 ∈ 𝜕Ω, then 𝜌(𝑧, 𝜕Ω) ⩽ |𝑧− 𝑧0| for each point 𝑧 ∈ Ω. This is why it follows from (3.4) that for
each real-valued function 𝑢 ∈ 𝐶2

0 (𝐴0) the inequality holds:∫︁∫︁
𝐴0

|𝑧 − 𝑧0|2𝑝−2|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦 ⩾ 𝐶*
𝑝(Ω)

∫︁∫︁
𝐴0

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
|𝑧 − 𝑧0|2

. (4.2)

We introduce polar coordinates centered at the point 𝑧0 ∈ 𝜕Ω and pass to these coordinates in the
integrals in inequalities (4.2). At the same time, we lessen the family of considered functions, namely,
we shall consider only radial functions defined by the identities

𝑢(𝑧) = 𝑢ℎ(𝑧) ≡ 𝑢ℎ(𝑧0 + |𝑧 − 𝑧0|) =: ℎ(𝑟), 𝑟 = |𝑧 − 𝑧0| ∈ (𝑎, 𝑏),

where ℎ ∈ 𝐶2
0 (𝑎, 𝑏), therefore, 𝑢ℎ ∈ 𝐶2

0 (𝐴0).
Simple calculations show that

∆𝑢ℎ(𝑧) = ∆ℎ(𝑟) = ℎ′′(𝑟) + ℎ′(𝑟)/𝑟

and inequality (4.2) for the functions 𝑢 = 𝑢ℎ ∈ 𝐶2
0 (𝐴0) is equivalent to the following relation:

𝑏∫︁
𝑎

|𝑟ℎ′′(𝑟) + ℎ′(𝑟)|𝑝 𝑟𝑝−1 𝑑𝑟 ⩾ 𝐶*
𝑝(Ω)

𝑏∫︁
𝑎

|ℎ(𝑟)|𝑝

𝑟
𝑑𝑟 ∀ℎ ∈ 𝐶2

0 (𝑎, 𝑏). (4.3)

We transform the integrals in this inequality by means of new change of variables. Namely, we introduce
functions 𝑣 ∈ 𝐶2

0 (0, 𝜋) defined by the identities 𝑣(𝑡) = ℎ(𝑟), where

𝑟 = 𝑏 𝑒−2𝑀(𝐴0) 𝑡, 0 ⩽ 𝑡 ⩽ 𝜋.

Straightforward calculations lead to the inequality

1

22𝑝𝑀2𝑝(𝐴0)

𝜋∫︁
0

|𝑣′′(𝑡)|𝑝 𝑑𝑡 ⩾ 𝐶*
𝑝(Ω)

𝜋∫︁
0

|𝑣(𝑡)|𝑝𝑑𝑡 ∀𝑣 ∈ 𝐶2
0 (0, 𝜋),

which is equivalent to (4.3). Therefore, we have the inequality

1

22𝑝𝑀2𝑝(𝐴0)
⩾ 𝜎*

𝑝 𝐶
*
𝑝(Ω),

and this is why

𝑀(𝐴0) ⩽
1

2 (𝜎*
𝑝 𝐶

*
𝑝(Ω))

1/(2𝑝)
= 𝑚,

where the number 𝑚 satisfies inequalities (4.1). This is a contradiction and it completes the proof.

Example 4.1. Let 𝐷′ = {𝑧 ∈ C : 0 < |𝑧| < 1} be a circle with a punctured center. It is easy to see
that 𝑀0(𝐷

′) = ∞. Then 𝐶*
𝑝(𝐷

′) = 0 by Theorem 4.1. This means that for each 𝑝 ∈ [2,∞) and each

number 𝜀 ∈ (0,∞) there exists a real-valued function 𝑢 ∈ 𝐶2
0 (𝐷

′), for which the inequality holds:∫︁∫︁
0<|𝑧|<1

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
(min{|𝑧|, 1− |𝑧|})2−2𝑝

< 𝜀

∫︁∫︁
0<|𝑧|<1

|𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
(min{|𝑧|, 1− |𝑧|})2

.
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We are going to introduce one more characteristics of the domain Ω ⊂ C, namely, a constant 𝐶**
𝑝 (Ω)

similar to the constant 𝐶*
𝑝(Ω).

Let again 𝑝 ∈ [2,∞). In the domain Ω ⊂ C, Ω ̸= C, for real-valued functions 𝑢 ∈ 𝐶2
0 (Ω) we consider

the following analogue of inequality (3.4):∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

⩾ 𝐶**
𝑝 (Ω)

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ∀𝑢 ∈ 𝐶2
0 (Ω), (4.4)

where the constant 𝐶**
𝑝 (Ω) is defined as maximal possible, that is,

𝐶**
𝑝 (Ω) := inf

𝑢∈𝐶2
0 (Ω),𝑢̸≡0

∫︀∫︀
Ω

𝜌2𝑝−2(𝑧, 𝜕Ω) |∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦∫︀∫︀
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦
∈ [0,∞).

Theorem 4.2. Let 𝑝 ∈ [2,∞) and Ω ⊂ C be a domain, Ω ̸= C. Then
𝑀0(Ω) < ∞ ⇐⇒ 𝐶**

𝑝 (Ω) > 0,

that is, the constant 𝐶**
𝑝 (Ω) is a positive number if and only if the boundary of the domain Ω ⊂ C is a

uniformly perfect set. In particular, the inequalities

𝐶**
𝑝 (Ω) ⩾ (𝑝− 1)(𝐶*

𝑝(Ω))
1−1/𝑝 > 0 (4.5)

hold in each domain Ω ⊂ C with a uniformly perfect boundary.

Proof. Let 𝑝 ∈ [2,∞) and 𝑀0(Ω) < ∞. Then 𝐶*
𝑝(Ω) > 0 by Theorem 3.1. By (3.4) and (3.8) with

𝑞 = 𝑝/(𝑝− 1) we find:∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩽
𝑞

𝑝

(︂
1

𝐶*
𝑝(Ω)

)︂1/𝑞 ∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶2
0 (Ω).

This is why

(𝑝− 1)(𝐶*
𝑝(Ω))

1−1/𝑝

∫︁∫︁
Ω

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦 ⩽
∫︁∫︁
Ω

|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦
𝜌2−2𝑝(𝑧, 𝜕Ω)

∀𝑢 ∈ 𝐶2
0 (Ω),

and this implies estimate (4.5) in view of the definition of the constant 𝐶**
𝑝 (Ω) as maximal possible

in inequality (4.4). Thus, the constant 𝐶**
𝑝 (Ω) is a positive number for each domain Ω ⊂ C with a

uniformly perfect boundary.
It remains to prove the opposite implication:

𝐶**
𝑝 (Ω) > 0 =⇒ 𝑀0(Ω) < ∞.

We prove this fact following the lines of the proof of the previous theorem.
Let 𝐶**

𝑝 (Ω) > 0. We denote:

𝜎**
𝑝 :=

𝜋∫︀
0

|𝑣0(𝑡)|𝑝−2|𝑣′0(𝑡)|2 𝑑𝑡

𝜋∫︀
0

|𝑣′′0(𝑡)|𝑝 𝑑𝑡
,

where 𝑣0 : (0, 𝜋) → R is a fixed function 𝑣0 ∈ 𝐶2
0 (0, 𝜋) such that 𝜎**

𝑝 ∈ (0,∞). Arguing by contradic-
tion, we are going to prove the inequality

𝑀0(Ω) ⩽ 𝑚1 :=
1

2 (𝜎**
𝑝 𝐶**

𝑝 (Ω))1/(2𝑝−2)
.

Suppose that 𝑀0(Ω) ∈ (𝑚1,∞]. By the definition of the Euclidean maximal module there exists an
annulus

𝐴0 = {𝑧 ∈ C : 𝑎 < |𝑧 − 𝑧0| < 𝑏} ⊂ Ω

possessing the following properties: 𝑧0 ∈ 𝜕Ω, the inequalities 0 < 𝑎 < 𝑏 < ∞ hold and

𝑚1 < 𝑀(𝐴0) :=
1

2𝜋
ln

𝑏

𝑎
< 𝑀0(Ω). (4.6)
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Since 𝑧0 ∈ 𝜕Ω, the inequality holds 𝜌(𝑧, 𝜕Ω) ⩽ |𝑧 − 𝑧0| for each point 𝑧 ∈ Ω. This is why it follows
from inequality (4.4) that for each real-valued function 𝑢 ∈ 𝐶2

0 (𝐴0) the inequality holds:∫︁∫︁
𝐴0

|𝑧 − 𝑧0|2𝑝−2|∆𝑢(𝑧)|𝑝 𝑑𝑥𝑑𝑦 ⩾ 𝐶**
𝑝 (Ω)

∫︁∫︁
𝐴0

|𝑢(𝑧)|𝑝−2|∇𝑢(𝑧)|2 𝑑𝑥𝑑𝑦. (4.7)

In what follows, we shall simplify this inequality twice. First, we pass to polar coordinates centered
at the point 𝑧0 ∈ 𝜕Ω in the integral in inequality (4.7). As in the proof of the previous theorem, we
lessen the family of the considered functions. We again consider only radial functions defined by the
formulae

𝑢(𝑧) = 𝑢ℎ(𝑧) ≡ 𝑢ℎ(𝑧0 + |𝑧 − 𝑧0|) =: ℎ(𝑟), 𝑟 = |𝑧 − 𝑧0| ∈ (𝑎, 𝑏),

where ℎ ∈ 𝐶2
0 (𝑎, 𝑏), and this is why 𝑢ℎ ∈ 𝐶2

0 (𝐴0). Since ∇𝑢ℎ(𝑧) = ∇ℎ(𝑟) = ℎ′(𝑟) and ∆𝑢ℎ(𝑧) = ∆ℎ =
ℎ′′(𝑟) + ℎ′(𝑟)/𝑟, then inequality (4.7) for the functions 𝑢 = 𝑢ℎ ∈ 𝐶2

0 (𝐴0) becomes

𝑏∫︁
𝑎

|𝑟ℎ′′(𝑟) + ℎ′(𝑟)|𝑝 𝑟𝑝−1 𝑑𝑟 ⩾ 𝐶**
𝑝 (Ω)

𝑏∫︁
𝑎

|ℎ(𝑟)|𝑝−2|ℎ′(𝑟)|2𝑟 𝑑𝑟 ∀ℎ ∈ 𝐶2
0 (𝑎, 𝑏). (4.8)

We again simplifies this inequality transforming the integrals by a new change of variables. We
define the functions 𝑣 ∈ 𝐶2

0 (0, 𝜋) by the identities 𝑣(𝑡) = ℎ(𝑟), where

𝑟 = 𝑏 𝑒−2𝑀(𝐴0) 𝑡, 0 ⩽ 𝑡 ⩽ 𝜋.

By straightforward calculations we obtain that inequality (4.8) is equivalent to the following one:

1

22𝑝−2𝑀2𝑝−2(𝐴0)

𝜋∫︁
0

|𝑣′′(𝑡)|𝑝 𝑑𝑡 ⩾ 𝐶**
𝑝 (Ω)

𝜋∫︁
0

|𝑣(𝑡)|𝑝−2|𝑣′(𝑡)|2 𝑑𝑡 ∀𝑣 ∈ 𝐶2
0 (0, 𝜋).

Therefore, we have the inequality

1

22𝑝−2𝑀2𝑝−2(𝐴0)
⩾ 𝜎**

𝑝 𝐶**
𝑝 (Ω),

and this contradicts (4.6). The proof is complete.
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