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SIMPLE WAVES OF CONIC MOTIONS

S.V. KHABIROV, T.F. MUKMINOV

Abstract. Continuous media models of a gas dynamical type admit 11-dimensional Lie
algebra of Galileo group extended by an uniform dilatation of all independent variables. The
object of the study is the constructing of submodels of the chain of embedded subalgebras
with dimensions from 1 till 4 describing conical motions of the gas. For the chosen chain we
find consistent invariant in the cylindrical coordinate system. On their base we obtain the
representations for an invariant solution for each submodel in the chain. By substituting
them into the system of gas dynamics equations we obtain embedded invariant submodels
of ranks from 0 to 3. We prove that the solutions of submodels constructed by a subalgebra
of a higher dimension are solutions to submodels constructed by subalgebras of smaller
dimensions.

In the chosen chain, we consider a 4-dimensional subalgebra generating irregular partially
invariant solutions of rank 1 defect 1 in the cylindrical coordinates. In the gas dynamics, such
solutions are called simple waves. We study the compatibility of the corresponding submodel
by means of the system of alternative assumptions obtained from the submodel equations.
We obtain solutions depending on arbitrary functions as well as partial solutions which can
be invariant with respect to the subalgebras embedded into the considered subalgebra but
are not necessarily from the considered chain.

Keywords: gas dynamics, chain of embedded subalgebra, consistent invariants, invariant
submodels, partially invariant solutions.
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1. Inroduction

The equations of continuum mechanics in Euler variables should admit the Galileo group, in
particular, the gas dynamics equations admit 11-dimensional Lie algebra 𝐿11 [1], the basis of
which in the Cartesian coordinates consists of the following operators:
1) translations along the space

𝑋1 = 𝜕𝑥, 𝑋2 = 𝜕𝑦, 𝑋3 = 𝜕𝑧,

2) Galilean translations

𝑋4 = 𝑡𝜕𝑥 + 𝜕𝑢, 𝑋5 = 𝑡𝜕𝑦 + 𝜕𝑣, 𝑋6 = 𝑡𝜕𝑧 + 𝜕𝑤,

3) rotations

𝑋7 = 𝑦𝜕𝑧 − 𝑧𝜕𝑦 + 𝑣𝜕𝑤 − 𝑤𝜕𝑣,

𝑋8 = 𝑧𝜕𝑥 − 𝑥𝜕𝑧 + 𝑤𝜕𝑢 − 𝑢𝜕𝑤,

𝑋9 = 𝑥𝜕𝑦 − 𝑦𝜕𝑥 + 𝑢𝜕𝑣 − 𝑣𝜕𝑢,

4) translation in time

𝑋10 = 𝜕𝑡,

S.V. Khabirov, T.F. Mukminov, Simple waves of conic motions.

© Khabirov S.V., Mukminov T.F. 2022.

The work is financially supported of the federal budjet under the state task no. 0246-2019-0052.

Submitted March 5, 2021.

78

https://doi.org/10.13108/2022-14-2-78


SIMPLE WAVES OF CONIC MOTIONS 79

5) uniform dilatation

𝑋11 = 𝑡𝜕𝑡 + 𝑥𝜕𝑥 + 𝑦𝜕𝑦 + 𝑧𝜕𝑧.

A subalgebra of the algebra 𝐿11 is a linear subspace closed with respect to the commutator

𝑋, 𝑌 ∈ 𝐿11 ⇒ [𝑋, 𝑌 ] = 𝑋𝑌 − 𝑌 𝑋 ∈ 𝐿11.

Up to internal automorphisms, the subalgebras of various dimensions are given in [2], [7]. An
optimal system is the classes of similar subalgebras. The parameters of a class are invariants
of internal automorphisms.
In the table of the optimal system we adopt the following notations. The subalgebras are

indexed by 𝑘.𝑛, where 𝑘 is the dimension of a subalgebra, 𝑛 is the index of the subalgebra in
the given dimension.
We consider a chain of embedded subalgebras from the optimal system [3]:

1.6 ⊂ 2.5 ⊂ 3.2 ⊂ 4.3,

where the subalgebras are given by the bases of the differentiation operators

1.6 = {𝑋7 +𝑋10} ,
2.5 = {𝑋7, 𝑋10} ,
3.2 = {𝑋7, 𝑋10, 𝑋11} ,
4.3 = {𝑋1, 𝑋7, 𝑋10, 𝑋11},

which are admitted by the gas dynamics equations. In the class of subalgebras 4.3 the param-
eters are equal to zero. Let us choose the consistent invariants of this chain. The invariants of
a subalgebra of a smaller dimension should contain the invariants of a subalgebra of a higher
dimension [4].
For each subalgebra admitted by the differential equations, we can obtain a set of exact

solutions, which form a submodel. The classification of submodels is made by symmetry (group)
analysis [5]. The most developed analysis is for the model of ideal gas dynamics [6]. An
admissible Lie algebra 𝐿11 was found and its structure, the optimal system of subalgebras,
was studied. There were constructed invariant submodels [7], [8], [2] and regular partially
invariant submodels [9]. The symmetry analysis was made for some submodels, for instance
[10]–[12]. For some group solutions there was studied the motion of the gas particles [13]–[15].
Irregular partially invariant solutions [16], [17] and differentially invariant solutions [18] are
studied poorly.
The gas dynamics equations involve 4 independent variables: a time 𝑡, 𝑥⃗ ∈ R3 and 5 functions,

a speed 𝑢⃗, a pressure 𝑝 and a density 𝜌; in total these are 9 variables. Other thermodynamical
parameters, an entropy 𝑆, a temperature 𝑇 and an internal energy 𝜀, are determined by the
state condition and the thermodynamical identity [2], [20]. A subalgebra of dimension 𝑘 has
9−𝑘 point invariants. We choose 𝑟, 0 ⩽ 𝑟 < 4, invariants as new independent variables (a rank
of the submodel). If there are invariants depending only on original independent variables, they
should be among new independent variables. Other invariants are regarded as new functions
of the chosen invariants. The obtained identities allow to find some of the functions. The
functions not determined by the identities, are functions of originally general form, that is,
they depend on 𝑡, 𝑥⃗. The number of the such functions is called the defect of the submodel.
Thus, we obtain a representation for a solution, which we substitute into the gas dynamics

equations written in a convenient coordinate system. It was proved that after excluding the
general functions, one obtains a system of equations only for new functions [1], [5]. If for the
chain of subalgebras we choose consistent invariants, then the corresponding obtained submod-
els are embedded one into another. This means that each solution of a submodel with a smaller
number of independent variables is an exact solution for the submodel with a greater number of
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independent variables for the submodels of the same defect. The general theory was considered
in [4].
An invariant submodel of a 4-dimensional subalgebra can have only trivial solutions. Non-

trivial solutions are irregularly partially invariant. The aim of our work is to find out whether
the reduction of the submodel of rank 1 and defect 1 of a 4-dimensional subalgebra is possible
to invariant submodels and to classify the found partially invariant solutions of this subalgebra.

2. Construction of invariant submodels

2.1. Passage to cylindrical coordinate system. The gas dynamics equations are deter-
mined by the momentum, mass and energy conservation laws [2], [20]

𝑢⃗𝑡 + (𝑢⃗ · ∇)𝑢⃗+ 𝜌−1∇𝑝 = 0,

𝜌𝑡 + 𝑢⃗ · ∇𝜌+ 𝜌∇ · 𝑢⃗ = 0,

𝜀𝑡 + 𝑢⃗ · ∇𝜀+ 𝑝𝜌−1∇ · 𝑢⃗ = 0.

(2.1)

The thermodynamical identity 𝑇𝑑𝑆 = 𝑑𝜀 + 𝑝𝑑𝜌−1 implies 𝜀 = 𝜀(𝑆, 𝜌), 𝑇 = 𝜀𝑆, 𝑝 = 𝜌−2𝜀𝜌 and
instead the last equation in system (2.1) we can take the equation

𝑆𝑡 + 𝑢⃗ · ∇𝑆 = 0.

The system is completed by the state equation 𝑝 = 𝑓(𝜌, 𝑆) = 𝜌−2𝜀𝜌. Here 𝑝 is a pressure, 𝜌 is
a density, 𝜀 is an internal energy, 𝑆 is an entropy, 𝑇 is a temperature.
Since among the operators of the chain of subalgebras there is the operator of rotation about

one of the axes, it is convenient to calculate the submodels of the chain of subalgebras in
cylindrical coordinates:

𝑦 = 𝑟 cos 𝜃, 𝑧 = 𝑟 sin 𝜃, 𝑢 = 𝑈, 𝑣 = 𝑉 cos 𝜃 −𝑊 sin 𝜃, 𝑤 = 𝑉 sin 𝜃 +𝑊 cos 𝜃,

the operator of the chain of subalgebras are

𝑋1 = 𝜕𝑥, 𝑋4 = 𝑡𝜕𝑥 + 𝜕𝑈 , 𝑋7 = 𝜕𝜃, 𝑋10 = 𝜕𝑡, 𝑋11 = 𝑡𝜕𝑡 + 𝑥𝜕𝑥 + 𝑟𝜕𝑟.

System (2.1) in cylindrical coordinates becomes

𝐷𝑈 + 𝜌−1𝑝𝑥 = 0,

𝐷𝑉 + 𝜌−1𝑝𝑟 = 𝑟−1𝑊 2,

𝐷𝑊 + 𝜌−1𝑟−1𝑝𝜃 = −𝑟−1𝑉𝑊,

𝐷𝜌+ 𝜌
[︀
𝑈𝑥 + 𝑉𝑟 + 𝑟−1(𝑉 +𝑊𝜃)

]︀
= 0,

𝐷𝑆 = 𝑆𝑡 + 𝑈𝑆𝑥 + 𝑉 𝑆𝑟 +𝑊𝑟−1𝑆𝜃 = 0, 𝑝 = 𝑓(𝜌, 𝑆).

(2.2)

2.2. Consistent invariants. We obtain consistent invariants of the considered chain, that
is, functionally independent invariants of a subalgebra of a smaller dimension should contain
the invariants of a subalgebra of a greater dimension.
The invariants of the subalgebra

{𝑋1 = 𝜕𝑥, 𝑋7 = 𝜕𝜃, 𝑋10 = 𝜕𝑡, 𝑋11 = 𝑡𝜕𝑡 + 𝑥𝜕𝑥 + 𝑟𝜕𝑟}
are calculated by means of system of equations 𝑋𝑖𝐼 = 0. We see that 𝐼 is independent of 𝑥, 𝜃,
𝑡, 𝑟 and independent invariants 𝑈 , 𝑉 , 𝑊 , 𝑝, 𝜌.
For the subalgebra {𝑋7, 𝑋10, 𝑋11} the invariants are independent 𝜃, 𝑡. The invariant for 𝑋11

is equal to 𝑥𝑟−1 = Φ. The other invariants are 𝑈 , 𝑉 , 𝑊 , 𝑝, 𝜌.
For {𝑋7, 𝑋10} the invariants are independent of 𝜃 and 𝑡. The consistent invariants read as

𝑟, Φ, 𝑈 , 𝑉 , 𝑊 , 𝑝, 𝜌.
For {𝑋7 +𝑋10} the consistent invariants are 𝜏 = 𝜃 − 𝑡, 𝑟, Φ, 𝑈 , 𝑉 , 𝑊 , 𝑝, 𝜌.
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Thus, we have obtained a chain of consistent invariants:

{𝑈, 𝑉, 𝑊, 𝑝, 𝜌} ⊂ {Φ, 𝑈, 𝑉, 𝑊, 𝑝, 𝜌}
⊂ {𝑟, Φ, 𝑈, 𝑉, 𝑊, 𝑝, 𝜌} ⊂ {𝜏, 𝑟, Φ, 𝑈, 𝑉, 𝑊, 𝑝, 𝜌}.

2.3. Embedded invariant submodels. We are going to construct an invariant model for
each subalgebra in the chosen chain. In the invariants of the subalgebra 1.6, 𝜏 , 𝑟, Φ, 𝑈 , 𝑉 ,
𝑊 , 𝑝, 𝜌 the first 3 are expressed via original independent variables and this is why we can take
them as new independent variables. Other invariants are treated as functions of 𝜏 , 𝑟, Φ

𝑈 = 𝑈(𝜏, 𝑟, Φ), 𝑉 = 𝑉 (𝜏, 𝑟, Φ), 𝑊 = 𝑊 (𝜏, 𝑟, Φ), 𝑝 = 𝑝(𝜏, 𝑟, Φ), 𝜌 = 𝜌(𝜏, 𝑟, Φ).

We make the change of the variables 𝑡, 𝜏 , 𝑟, Φ in the operator

𝐷 = 𝜕𝑡 +
(︀
𝑊𝑟−1 − 1

)︀
𝜕𝜏 + 𝑉 𝜕𝑟 + 𝑟−1(𝑈 − 𝑉 Φ)𝜕Φ.

System (2.2) involves only the invariants of the subalgebra 1.6

𝐷𝑈 + (𝑟𝜌)−1𝑝Φ = 0,

𝐷𝑉 + 𝜌−1
(︀
𝑝𝑟 − Φ𝑟−1𝑝Φ

)︀
= 𝑟−1𝑊 2,

𝐷𝑊 + (𝑟𝜌)−1𝑝𝜏 = −𝑟−1𝑉𝑊,

𝐷𝜌+ 𝜌
[︀
𝑉𝑟 + 𝑟−1(𝑈Φ − Φ𝑉Φ + 𝑉 +𝑊𝜏 )

]︀
= 0,

𝐷𝑆 = 0, 𝑝 = 𝑓(𝜌, 𝑆).

(2.3)

We have constructed an invariant submodel of rank 3.
We proceed to the subalgebra 2.5. The found invariants 𝑟, Φ, 𝑈 , 𝑉 , 𝑊 , 𝑝, 𝜌 determine a

representation for an invariant solution

𝑈 = 𝑈(𝑟, Φ), 𝑉 = 𝑉 (𝑟, Φ), 𝑊 = 𝑊 (𝑟, Φ), 𝑝 = 𝑝(𝑟, Φ), 𝜌 = 𝜌(𝑟, Φ).

Original system (2.2) becomes

𝐷𝑈 + (𝑟𝜌)−1𝑝Φ = 0,

𝐷𝑉 + 𝜌−1
(︀
𝑝𝑟 − Φ𝑟−1𝑝Φ

)︀
= 𝑟−1𝑊 2,

𝐷𝑊 = −𝑟−1𝑉𝑊,

𝐷𝜌+ 𝜌
[︀
𝑉𝑟 + 𝑟−1(𝑈Φ − Φ𝑉Φ + 𝑉 )

]︀
= 0,

𝐷𝑆 = 0, 𝑝 = 𝑓(𝜌, 𝑆).

(2.4)

We have obtained an invariant submodel of rank 2 of subalgebra 2.5. It is easy to see that the
submodel could be constructed by submodel (2.3) of subalgebra 1.6. It is sufficient to suppose
that the functions 𝑈 , 𝑉 , 𝑊 , 𝑝 and 𝜌 are independent of 𝜏 . This is implied by the fact that
we have chosen consistent invariants. The solutions of submodel (2.4) of subalgebra 2.5 are
particular solutions of submodel (2.3) of subalgebra 1.6.
In the same way we construct an invariant submodel of subalgebra 3.2. Among the invariants

only one depends on original independent variables and this is why the invariant model is of
rank 1. We substitute the representation for an invariant solution

𝑈 = 𝑈(Φ), 𝑉 = 𝑉 (Φ), 𝑊 = 𝑊 (Φ), 𝑝 = 𝑝(Φ), 𝜌 = 𝜌(Φ)
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into (2.2). We then obtain the following system of ordinary differential equations

𝐷1𝑈 + 𝜌−1𝑝Φ = 0,

𝐷1𝑉 − Φ𝜌−1𝑝Φ = 𝑊 2,

𝐷1𝑊 = −𝑉𝑊,
𝐷1𝜌+ 𝜌(𝑈Φ − Φ𝑉Φ + 𝑉 ) = 0,

𝐷1𝑆 = 0, 𝑝 = 𝑓(𝜌, 𝑆),

(2.5)

where 𝐷1 = (𝑈 − Φ𝑉 )𝜕Φ.
All functions depend only on Φ. The submodel of ordinary differential equations as 𝑈 ̸= Φ𝑉

possesses the integrals

𝐴𝜌(𝑈 − Φ𝑉 ) = 𝑊 2,

𝑈2 + 𝑉 2 +𝑊 2 + 2

∫︁
𝜌−1𝑑𝑝 = 𝐵2,

𝑆 = 𝑆0,

where 𝐴, 𝐵 and 𝑆0 are constants, and it is reduced to the system of conical motions [2]:

Φ𝑈 ′ + 𝑉 ′ = 𝜎𝐴𝜌,[︀
(𝑈 − Φ𝑉 )2 − 𝑓𝜌

]︀
𝑈 ′ + Φ𝑓𝜌𝑉

′ = 𝑉 𝑓𝜌,

where 𝜎 = sign(𝑈 − Φ𝑉 ).
As 𝑈 = Φ𝑉 , it follows from the equations in system (2.5) that

𝑝 = 𝑝0, 𝑈 = 𝑉 = 𝑊 = 0, 𝑝0 = 𝑓(𝜌, 𝑆).

The solutions of the obtained submodel are particular solutions of submodel (2.4).
The subalgebra 4.3 has no invariant depending on original independent variables. This is

why the representation for the invariant solution is provided by the constants 𝑈 , 𝑉 , 𝑊 , 𝑝, 𝜌.
By (2.2) we get:

𝑊 2 = 0, 𝑉 𝑊 = 0, 𝜌𝑉 = 0, 𝑝 = 𝑓(𝜌, 𝑆).

The invariant solutions 𝑈 = 𝑈0, 𝑉 = 𝑊 = 0, 𝜌 = 𝜌0 ̸= 0, 𝑝 = 𝑝0 = 𝑓(𝜌0, 𝑆0), 𝑆 = 𝑆0 of rank 0
are trivial solutions to system (2.5).

3. Submodel of rank 1 defect 1 and classification of solutions

In work [19] for all 48 types of 4-dimensional subalgebras there were calculated the bases of
point invariants and there were considered examples of simplest partially invariant solutions of
rank 1 defect 1. The subalgebra 4.3 was not considered. The feature of the present work is why
while calculating the invariants for the considered subalgebra, we employ a chain of embedded
subalgebras of smaller dimensions in order to find reductions to invariants submodels of the
chain.
This is why in the representation for the solution

𝑈 = 𝑈(𝛼), 𝑉 = 𝑉 (𝛼), 𝑊 = 𝑊 (𝛼), 𝑝 = 𝑝(𝛼), 𝜌 = 𝜌(𝛼), 𝑆 = 𝑆(𝛼),

𝛼 = 𝛼(𝑡, 𝑟, Φ, 𝜏), Φ = 𝑥𝑟−1, 𝜏 = 𝜃 − 𝑡,

we use a basis of invariants different from that in work [19]. In the gas dynamics, such irregular
partially invariant solutions are called simple waves. As 𝛼 we can take an arbitrary non-constant
gas dynamics function.
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The substitution of representation into (2.2) gives rise to an overdetermined system of equa-
tions

𝑟𝑈 ′𝐷𝛼 + 𝜌−1𝑝′𝛼Φ = 0,

𝑟𝑉 ′𝐷𝛼 + 𝜌−1𝑝′ (𝑟𝛼𝑟 − Φ𝛼Φ) = 𝑊 2,

𝑟𝑊 ′𝐷𝛼 + 𝜌−1𝑝′𝛼𝜏 = −𝑉𝑊,
𝑟𝜌−1𝜌′𝐷𝛼 + (𝑈 ′ − 𝑉 ′Φ)𝛼Φ + 𝑉 ′𝑟𝛼𝑟 + 𝑉 +𝑊 ′𝛼𝜏 = 0,

𝑆 ′𝐷𝛼 = 0, 𝑝 = 𝑓(𝜌, 𝑆).

(3.1)

where 𝑟𝐷 = 𝑟𝜕𝑡 + (𝑊 − 𝑟)𝜕𝜏 + 𝑉 𝑟𝜕𝑟 + (𝑈 − 𝑉 Φ)𝜕Φ.
We shall classify the solutions by means of alternative assumptions forming a binary tree.

The index of each assumption will follow the indices of preceding assumptions separated by the
points. This is the originality of the method for studying the compatibility of the overdeter-
mined system.
The fifth equation of system (3.1) produces two cases.
1. 𝐷𝛼 = 0. System (3.1) becomes

𝑝′𝛼Φ = 0,

𝑝′ (𝑟𝛼𝑟 − Φ𝛼Φ) = 𝜌𝑊 2,

𝑝′𝛼𝜏 = −𝜌𝑉𝑊,
(𝑈 ′ − 𝑉 ′Φ)𝛼Φ + 𝑉 ′𝑟𝛼𝑟 + 𝑉 +𝑊 ′𝛼𝜏 = 0.

(3.2)

The first equation in system (3.2) gives the following alternative assumption.
1.1 𝑝′ ̸= 0. As 𝛼 we can take the function 𝑝. Then we can represent other unknowns as the

functions of 𝑝 and system (3.2) casts into the form:

𝑝Φ = 0, 𝑟𝑝𝑟 = 𝜌𝑊 2, 𝑝𝜏 = −𝜌𝑉𝑊 = 𝑝𝑡, 𝜌𝑊 (𝑉 ′𝑊 −𝑊 ′𝑉 ) + 𝑉 = 0. (3.3)

We have 𝑊 ̸= 0 otherwise 𝑝 = const. System (3.3) gives the solution

𝑉 = 0,

∫︁
𝜌−1𝑊−2𝑑𝑝 = ln 𝑟 + 𝐶, 𝑝 = 𝑓(𝜌(𝑝), 𝑆(𝑝)),

depending on three arbitrary functions 𝑈(𝑝), 𝜌(𝑝) and one constant 𝐶. This solution satisfies
system (2.4). We have made a reduction to an invariant solution.
1.2 𝑝′ = 0 ⇒ 𝑝 = 𝑝0. The second equation in system (3.2) implies 𝑊 = 0. We form a new

system of the fourth equation in (3.2) and the identity 𝐷𝛼 = 0:

(𝑈 ′ − 𝑉 ′Φ)𝛼Φ + 𝑉 ′𝑟𝛼𝑟 + 𝑉 = 0, 𝛼𝑡 − 𝛼𝜏 + 𝑉 𝛼𝑟 + 𝑟−1(𝑈 − 𝑉 Φ)𝛼Φ = 0. (3.4)

If 𝑉 is a constant, then system (3.4) implies 𝑉 = 0,

𝑈 ′𝛼Φ = 0, 𝛼𝑡 − 𝛼𝜏 + 𝑟−1𝑈𝛼Φ = 0

and we obtain two solutions. The first solution is 𝑉 = 𝑊 = 0, 𝑝 = 𝑝0 = 𝑓(𝜌, 𝑆) as 𝛼Φ = 0
with three arbitrary functions 𝑈(𝛼), 𝑆(𝛼), 𝛼(𝜃, 𝑟) is invariant with respect to the subalgebra
{𝑋1, 𝑋10} from another chain of subalgebras. The second solution 𝑈 = 𝑉 = 𝑊 = 0, 𝑝 = 𝑝0 =
𝑓(𝜌, 𝑆) with two arbitrary functions 𝑆(𝛼), 𝛼(𝜃,Φ, 𝑟) is invariant with respect to the subalgebra
𝑋10 from another chain of subalgebras.
If 𝑉 ′ ̸= 0, we can assume that 𝛼 = 𝑉 and it follows from (3.4) that

(𝑈 ′(𝑉 )− Φ)𝑉Φ + 𝑟𝑉𝑟 + 𝑉 = 0, 𝑉𝑡 − 𝑉𝜏 + 𝑉 𝑉𝑟 + 𝑟−1(𝑈(𝑉 )− 𝑉 Φ)𝑉Φ = 0.

A general solution to the second equation is of the form

𝑟(𝑈(𝑉 )− 𝑉 Φ) = 𝐹 (𝜃, 𝑟1, 𝑉 ), 𝑟1 = 𝑟 − 𝑡𝑉, 𝜃 = 𝑡+ 𝜏.



84 S.V. KHABIROV, T.F. MUKMINOV

We differentiate the obtained identity in Φ and 𝑟 and substitute the derivatives of the func-
tions 𝑉 into the first equation:

𝑟1(2𝑉 𝑈
′ − 2𝑈 + 𝐹𝑟1) + 𝐹 − 𝑉 𝐹𝑉 + 2𝑡𝑉 (𝑉 𝑈 ′ − 𝑈 + 𝐹𝑟1) = 0.

In this identity the variable 𝑡 is free. Splitting in 𝑡 and equating the coefficients to zero, we
obtain:

𝐹𝑟1 = 𝑈 − 𝑉 𝑈 ′, 𝑉 𝐹𝑉 = 𝐹 + 𝑟1(𝑉 𝑈
′ − 𝑈).

The first identity gives the representation for 𝐹 = 𝑟1(𝑈 −𝑉 𝑈 ′)+𝐺(𝑉, 𝜃). We substitute it into
the second equation and split in 𝑟1:

𝑉 (𝐺𝑉 − 𝑟1𝑉 𝑈
′′) = 𝐺 ⇒ 𝑈 ′′ = 0, 𝑉 𝐺𝑉 = 𝐺 ⇒ 𝑈 = 𝐶𝑉 + 𝐶1, 𝐺 = 𝑉 𝐻(𝜃).

We substitute the obtained expression into the solution of the second equation:

𝑟(𝐶 − Φ)− 𝐶1𝑡 = 𝐻(𝜃).

This is an identity of independent variables, which is a contradiction.

4. Solutions with constant entropy

We consider an alternative to the first case.
2. 𝐷𝛼 ̸= 0 ⇒ 𝑆 ′ = 0, 𝑆 = 𝑆0. In system (3.1) the last equation holds also for 𝑝 = 𝑓(𝜌).
2.1 𝑝′ ̸= 0. As 𝛼 we take 𝑝. By the first three equations in (3.1) we find the derivatives of

the function 𝑝
𝑝Φ = −𝑈 ′𝜌𝑟𝐷𝑝,

𝑟𝑝𝑟 = 𝜌
[︀
𝑊 2 − 𝑟𝐷𝑝(𝑈 ′Φ + 𝑉 ′)

]︀
,

𝑝𝜏 = −𝜌(𝑉𝑊 +𝑊 ′𝑟𝐷𝑝).

(4.1)

We substitute the obtained expressions into the fourth equation in (3.1)

𝑟𝐷𝑝
(︀
(𝜌−1)′ + 𝑈 ′2 + 𝑉 ′2 +𝑊 ′2)︀ = 𝜌−1𝑉 +𝑊 (𝑉 ′𝑊 − 𝑉𝑊 ′). (4.2)

2.1.1 𝜌′ ̸= 𝜌2 (𝑈 ′2 + 𝑉 ′2 +𝑊 ′2) ⇒ 𝜌𝑊 (𝑉 ′𝑊 − 𝑉𝑊 ′) + 𝑉 ̸= 0. By (4.2) we find 𝑟𝐷𝑝 =
𝑇 (𝑝) ̸= 0, by (4.1) and (4.2) we obtain the expressions for all derivative of the function 𝑝

𝑝Φ = −𝜌𝑈 ′𝑇,

𝑟𝑝𝑟 = 𝜌
[︀
𝑊 2 − 𝑇 (𝑈 ′Φ + 𝑉 ′)

]︀
,

𝑝𝜏 = −𝜌(𝑉𝑊 +𝑊 ′𝑇 ),

𝑟𝑝𝑡 = −𝑟𝜌(𝑉𝑊 +𝑊 ′𝑇 ) + 𝑇 + 𝑇𝜌𝑢⃗ · 𝑢⃗′,

where 𝑢⃗ = (𝑈, 𝑉,𝑊 ). Calculating the mixed second derivatives, we obtain six equations

(𝑇𝑈 ′)′(𝑉𝑊 + 𝑇𝑊 ′) = 𝑇𝑈 ′(𝑉𝑊 + 𝑇𝑊 ′)′, (4.3)

(𝑇𝑈 ′)′(𝑊 2 − 𝑇𝑉 ′) = 𝑇𝑈 ′[𝜌−1 + (𝑊 2 − 𝑇𝑉 ′)′], (4.4)

(𝑉𝑊 + 𝑇𝑊 ′)′(𝑊 2 − 𝑇𝑉 ′) = (𝑉𝑊 + 𝑇𝑊 ′)(𝑊 2 − 𝑇𝑉 ′)′, (4.5)

𝑈 ′′(𝜌−1 + 𝑢⃗ · 𝑢⃗′) = 𝑈 ′(𝜌−1 + 𝑢⃗ · 𝑢⃗′)′, (4.6)

(𝑉𝑊 + 𝑇𝑊 ′)′𝑇 (𝜌−1 + 𝑢⃗ · 𝑢⃗′) = (𝑉𝑊 + 𝑇𝑊 ′)(𝑇 (𝜌−1 + 𝑢⃗ · 𝑢⃗′))′, (4.7)

(𝜌−1 + (𝑊 2 − 𝑇𝑉 ′)′)𝑇 (𝜌−1 + 𝑢⃗ · 𝑢⃗′) = (𝑇 (𝜌−1 + 𝑢⃗ · 𝑢⃗′))′(𝑊 2 − 𝑇𝑉 ′). (4.8)

2.1.1.1 𝑉𝑊 + 𝑇𝑊 ′ ̸= 0. Then it follows from (4.4), (4.5) by (4.3) that 𝑈 ′ = 0 and relations
(4.3), (4.4), (4.6) are identically satisfied, while (4.5) and (4.7) imply the identities

𝑊 2 − 𝑇𝑉 ′ = 𝐶(𝑉𝑊 + 𝑇𝑊 ′), 𝑇 (𝜌−1 + 𝑢⃗ · 𝑢⃗′) = 𝐸(𝑉𝑊 + 𝑇𝑊 ′),
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where 𝐶, 𝐸 are constants and 𝑈 can be vanished by a Galilean translation. By these identities
it follows from (4.8) that

𝜌−1 + 𝑢⃗ · 𝑢⃗′ = 0, 𝐸 = 0.

The first equation determines 𝑇 . The second identity gives the Bernoulli integral with the
state equation 𝜌 = 𝑔(𝑝)

2𝑖(𝜌) + 𝑞2 = 𝐵2, 𝑞 = |𝑢⃗|, 𝑖 =

∫︁
𝜌−1𝑑𝑝.

The derivatives of the function 𝑝 determine the integral

𝐽 = 𝜃 − 𝐶 ln 𝑟, 𝐽(𝑞) =

∫︁
𝑊−1(𝑑𝑉 + 𝐶𝑑𝑊 ).

The submodel is defined by the Bernoulli integral and nonlinear equation (4.2):

[(𝜌−1)′ + 𝑉 ′2 +𝑊 ′2]𝑊 (𝑊 − 𝐶𝑉 ) = (𝑉 ′ + 𝐶𝑊 ′)(𝑉 𝜌−1 +𝑊 (𝑊𝑉 ′ − 𝑉𝑊 ′)).

2.1.1.2 𝑉𝑊 + 𝑇𝑊 ′ = 0. Identities (4.3), (4.5), (4.7) hold identically. If 𝑊 2 − 𝑇𝑉 ′ = 0,
then by (4.4) and (4.8) we obtain 𝑈 ′ = 0, 𝜌−1 + 𝑢⃗ · 𝑢⃗′ = 0. Multiplying by 𝑇 , we arrive
at a contradictory identity 𝜌−1 = 0. Hence, 𝑊 2 − 𝑇𝑉 ′ ̸= 0 and it follows from (4.4) that
𝑇𝑈 ′ = 𝐶(𝑊 2 − 𝑇𝑉 ′). The derivatives of the function 𝑝 become

𝑝Φ = −𝐶𝜌(𝑊 2 − 𝑇𝑉 ′), 𝑝𝜏 = 0, 𝑟𝑝𝑟 = 𝜌(𝑊 2 − 𝑇𝑉 ′)(1− 𝐶Φ).

For an auxiliary function 𝐽 =
∫︀
𝜌−1(𝑊 2 + 𝑇𝑉 ′)𝑑𝑝 its derivatives are calculated by (4.8):

𝐽Φ = −𝐶, 𝑟𝐽𝑟 = 1− 𝐶Φ ⇒ 𝐶 = 0, 𝑈 = 0, 𝑟𝐽𝑡 = 𝐺𝑒𝐽 .

This gives 𝐽 = ln(𝑟|𝑡|−1) up to an additive constant. Once we know the dependence 𝐽(𝑝),
we can determine the dependence 𝑝(𝑟|𝑡|−1). Excluding 𝑇 from (4.8) and (4.2), we obtain a
submodel for finding 𝑉 (𝑝), 𝑊 (𝑝) by a given state equation 𝜌(𝑝). If 𝑊 ̸= 0, then the submodel
is defined by the equations

𝑊 ′

𝑊
=
𝑉 ′

𝑉
𝜌𝑢⃗ · 𝑢⃗′ − (𝑢⃗ · 𝑢⃗′)′

1 + 𝑢⃗ · 𝑢⃗′
, 𝑢⃗ · 𝑢⃗′ = 𝑉 𝑉 ′ +𝑊𝑊 ′, (𝜌−1)′ + 𝑉𝑊 ′𝜌−1 +𝑊𝑉 ′(𝑢⃗ · 𝑢⃗′) = 0.

If 𝑊 ′ = 0, then the submodel is determined by the identity

(𝜌−1)′ = 𝑉 𝑉 ′′ − (𝑉 ′)2.

2.1.2 (𝜌−1)′ + |𝑢′|2 = 0, 𝑉 𝜌−1 +𝑊 (𝑊𝑉 ′ − 𝑉𝑊 ′) = 0. System (4.1) becomes

𝑈 ′(𝑟𝑝𝑡 + (𝑊 − 𝑟)𝑝𝜏 + 𝑉 𝑟𝑝𝑟) + (𝑈 ′(𝑈 − 𝑉 Φ) + 𝜌−1)𝑝Φ = 0,

𝑉 ′(𝑟𝑝𝑡 + (𝑊 − 𝑟)𝑝𝜏 ) + (𝑉 𝑉 ′ + 𝜌−1)𝑟𝑝𝑟 + (𝑉 ′(𝑈 − 𝑉 Φ)− 𝜌−1Φ)𝑝Φ = 𝑊 2,

𝑊 ′(𝑟𝑝𝑡 + 𝑉 𝑟𝑝𝑟 + (𝑈 − 𝑉 Φ)𝑝Φ) + (𝑊 ′(𝑊 − 𝑟) + 𝜌−1)𝑝𝜏 = −𝑉𝑊.
(4.9)

2.1.2.1 𝑈 ′ = 0 ⇒ 𝑝Φ = 0, 𝑈 = 0, 𝑊 ̸= 0. It follows from (4.1) that

𝑢⃗ · 𝑢⃗′𝑟𝑝𝑡 + 𝑉 (𝜌−1 + 𝑢⃗ · 𝑢⃗′)𝑟𝑝𝑟 + (𝑊 (𝜌−1 + 𝑢⃗ · 𝑢⃗′)− 𝑟𝑢⃗ · 𝑢⃗′)𝑝𝜏 = 0,

𝑊 ′𝑟𝑝𝑟 − 𝑉 ′𝑝𝜏 = 𝜌𝑊𝑢⃗ · 𝑢⃗′.
(4.10)

After the change 𝑉 = 𝑞 cos𝜗, 𝑊 = 𝑞 sin𝜗, the identities cast into the form

𝑞′𝑟𝑝𝑡 + (𝜌−1 + 𝑞𝑞′) cos𝜗𝑟𝑝𝑟 + ((𝜌−1 + 𝑞𝑞′) sin𝜗− 𝑟𝑞′)𝑝𝜏 = 0,

(𝑞′ + 𝑞3𝜗′2𝜌)𝑟𝑝𝑟 − 𝜌𝑞2𝜗′(𝑞′ − 𝑞𝜗′)𝑝𝜏 = 𝜌𝑞2𝑞′,

(𝜌−1)′ + 𝑞′2 + 𝑞2𝜗′2 = 0, 𝜌𝑞2𝜗′ = cot𝜗.

If 𝑞′ = 0, then 𝑞 = 𝑞0 ̸= 0, 𝜗′ ̸= 0, and there remains one equation for determining the function
𝑝:

𝑝𝑟 cos𝜗+ 𝑝𝜏 sin𝜗 = 0 ⇒ 𝑞0𝜏 − 𝑎(𝜌) ln 𝑟 = 𝜒(𝑡, 𝜌),



86 S.V. KHABIROV, T.F. MUKMINOV

where 𝑎 is the sound speed (𝑎2 = 𝑝′(𝜌)). By other identities we find:

𝑊 = 𝐶𝑞0𝜌, 𝑉 = 𝑞0
√︀

1− 𝐶2𝜌2

and the state equation

𝑝 = 𝑝0 + 𝑞20

(︂
−𝜌+ 1

2𝐶
ln

⃒⃒⃒⃒
1 + 𝐶𝜌

1− 𝐶𝜌

⃒⃒⃒⃒)︂
, 0 < 𝜌 < 𝐶−1.

If 𝑞′ ̸= 0, then in the case 𝜗 ̸= 𝜋/2 the first equation for 𝑝 has a common integral

cot(𝜏 + 𝑡)− ln 𝑟 = 𝜙(𝐼, 𝑝), 𝐼 = 𝑟 − 𝑡(𝑞 + (𝑞′𝜌)−1) cos𝜗.

Substituting the derivative of the function 𝑝 found by this identity into the second equation
produces the identity

(𝑞′ + 𝑞3𝜌𝜗′2)(1 + 𝑟𝜙𝐼) + 𝜌𝑞2𝜗′(𝑞′ − 𝑞𝜗′) cot𝜗

+ 𝜌𝑞2𝑞′
[︂
𝜙𝑝 − 𝜙𝐼(𝑟 − 𝐼) ln

⃒⃒
cos𝜗(𝑞 + (𝜌𝑞′)−1)

⃒⃒
+
𝜗′(𝜙+ ln 𝑟)

sin𝜗 cos𝜗

]︂
= 0.

Here the variable 𝑟 is free. Equating to zero the coefficient at ln 𝑟, we obtain 𝜗′ = 0. The latter
identity determines 𝜗 = 𝜋/2, which is a contradiction. Hence, as 𝑞′ ̸= 0, we necessarily have
𝜗 = 𝜋/2 ⇒ 𝑉 = 0. In this case equations (4.10) become

𝑟𝑝𝑟 = 𝜌𝑊 2, 𝑊 ′𝑟𝑝𝑡 + (𝜌−1 +𝑊 ′(𝑊 − 𝑟))𝑝𝜏 = 0.

We substitute the general integral of the first equation∫︁
𝜌−1𝑊−2𝑑𝑝 = ln 𝑟 − ln𝜓(𝑡, 𝜏)

into the second equation and split in the variable 𝑟

𝜓𝑡 − 𝜓𝜏 = 0 ⇒ (𝜌−1 +𝑊𝑊 ′)𝜓′(𝜃) = 0.

If 𝜓′ = 0, we obtain a stationary radial solution∫︁
𝜌−1𝑊−2𝑑𝑝 = ln 𝑟 + 𝐶, 𝜌′ = 𝜌2𝑊 ′2,

invariant with respect to the subalgebra {𝑋1, 𝑋10, 𝑋7} from another chain of subalgebras.
If 𝜓′ ̸= 0, then the solution reads as

𝑊 = 𝐶(𝑝− 𝑝0) ̸= 0, 𝑝− 𝑝0 = 𝑟−1𝜓(𝜃)

for the state equation 𝑝 = 𝑝0 − 𝐶−2𝜌−1 and it is invariant with respect to the subalgebra
{𝑋1, 𝑋10} from another chain of subalgebras.
2.1.2.2 𝑈 ′ ̸= 0. By system (4.9) we find the derivatives

𝑟𝑝𝑟 = (𝑉 ′𝑈 ′−1 + Φ)𝑝Φ + 𝜌𝑊 2,

𝑝𝜏 = 𝑊 ′𝑈 ′−1𝑝Φ − 𝜌𝑉𝑊,

𝑟𝑝𝑡 = 𝑈 ′−1(𝑟𝑊 ′ − 𝜌−1 − 𝑢⃗ · 𝑢⃗′)𝑝Φ − 𝑟𝜌𝑉 𝑊.

(4.11)

For a homogeneous equation

𝑉 𝑟𝑝𝑟 +𝑊𝑝𝜏 −
[︀
𝑉 (𝑉 ′𝑈 ′−1 + Φ) +𝑊𝑊 ′𝑈 ′−1

]︀
𝑝Φ = 0

as 𝑉 ̸= 0 we write a general solution

𝜏 = 𝑊𝑉 −1 ln 𝑟 + 𝜓(𝑡, 𝑝, 𝐼), 𝐼 = 𝑟

(︂
Φ +

𝑉 𝑉 ′ +𝑊𝑊 ′

𝑉 𝑈 ′

)︂
.
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We calculate the derivatives of the function 𝑝 and substitute it into the second equation in
system (4.11)

1 +
𝑊 ′

𝑈 ′ 𝑟𝜓𝐼 + 𝑉𝑊𝜌

[︂(︂
𝑊

𝑉

)︂′

ln 𝑟 + 𝜓𝑝 + 𝑟𝜓𝐼

(︂
𝑉 𝑉 ′ +𝑊𝑊 ′

𝑉 𝑈 ′

)︂′]︂
= 0.

Here the variable 𝑟 is free. The splitting leads to the relation 𝑉 = 𝐶𝑊 and the assumption of
Item 2.1.2 imply 𝑉 = 0, a contradiction. Hence, in the present item 𝑉 = 0. Then the equations

𝑟𝑝𝑟 = Φ𝑝Φ + 𝜌𝑊 2,

𝑝𝜏 = 𝑊 ′𝑈 ′−1𝑝Φ,

𝑟𝑝𝑡 = 𝑝Φ𝑈
′−1(𝑟𝑊 ′ − 𝜌−1 − 𝑢⃗ · 𝑢⃗′)

are satisfied. We substitute the general solution of the second equation

Φ = −𝑊 ′𝑈 ′−1𝜏 + 𝜓(𝑡, 𝑟, 𝑝)

into two remaining equations and split in the free variable 𝜏 . We obtain the equation of
submodel

𝑊 ′

𝑈 ′ + 𝜌𝑊 2

(︂
𝑊 ′

𝑈 ′

)︂′

= 0

and two equations for the function 𝜓

(𝑟𝜓)𝑟 = −𝜌𝑊 2𝜓𝑝, (𝑟𝜓)𝑡 = −𝑟𝑊
′

𝑈 ′ +
𝜌−1 + 𝑢⃗ · 𝑢⃗′

𝑈 ′ .

The compatibility of these equations gives one more equation in the submodel

𝑊

(︂
𝜌−1 + 𝑢⃗ · 𝑢⃗′

𝑈 ′

)︂′

= 0.

If 𝑊 = 0, the formulae of Item 2.1.2 define a one dimensional simple wave

𝑥 = 𝑟Φ = 𝑡(𝑈 + 𝑎) +𝐺(𝑝), 𝜌𝑎𝑈 ′ = 1,

where 𝑎 is the sound speed, 𝐺(𝑝) is an arbitrary function.
If 𝑊 ̸= 0, then up to a Galilean translation, the Bernoulli integral 𝜌−1 + 𝑢⃗ · 𝑢⃗′ = 0, the

assumptions of the item (𝜌−1)′ + 𝑈 ′2 +𝑊 ′2 = 0 and the compatibility equation

𝜌−1𝑊−2𝑊 ′ + 𝑈 ′(𝑊 ′𝑈 ′−1)′ = 0

are satisfied. These relations imply the identities

𝑈𝑈 ′′ +𝑊𝑊 ′′ = 0, 𝑊−1𝑊 ′ + 𝑈 ′−1𝑈 ′′ = 0 ⇒ 𝑊𝑈 ′ = 𝐷 ̸= 0.

These equations are integrated by quadratures:

𝐷𝑑𝑝 = 𝑊𝑑𝑈 =
𝑊𝑑𝑊

𝜒(𝑊 )
,

𝑑𝑊

𝑊
=

𝑑𝜒√︀
𝜒2 + 2 ln𝜒+ 𝐸

.

The Bernoulli integral determines the state equation. The dependence of the gas dynamics
functions on independent variables is given by the formula

Φ + 𝜒(𝑊 )(𝑡+ 𝜏) = 𝑟−1𝜔(𝑟𝜒(𝑊 )),

where 𝜔(𝐼) is an arbitrary function.
2.2 𝑝′ = 0. This is a motion with constant thermodynamical parameters 𝑝 = 𝑝0, 𝑆 = 𝑆0,

𝜌 = 𝜌0. System (3.1) becomes

𝑈 ′ = 0, 𝑟𝑉 ′𝐷𝛼 = 𝑊 2, 𝑟𝑊 ′𝐷𝛼 = −𝑉𝑊 ⇒ 𝑉 𝑉 ′ +𝑊𝑊 ′ = 0,

𝑉 ′(𝑟𝛼𝑟 − Φ𝛼Φ) +𝑊 ′𝛼𝜏 + 𝑉 = 0, 𝑟𝐷 = (𝑊 − 𝑟)𝜕𝜏 + 𝑟𝜕𝑡 + 𝑉 𝑟𝜕𝑟 − Φ𝑉 𝜕Φ.
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Up to a Galilean translation this implies

𝑈 = 0, 𝑉 = 𝑞0 cos𝜗, 𝑊 = 𝑞0 sin𝜗, 𝜗 ̸= const.

As 𝛼 we can take 𝜗. The general solution to differential equations is given implicitly:

𝜏 + 𝜗+ 𝑞−1
0 𝑟 cos𝜗+ 𝜓(𝐼, 𝑞−1

0 𝑥), 𝐼 = 𝑡− 𝑞−1
0 𝑟 cos𝜗.

Here 𝜓 is an arbitrary function.
We summarize the made calculations as the following statement.

Theorem 4.1. The classification of partially invariant solutions of rank 1 defewct 1 on the

subalgebra 4.3 up to the transformations from the group with the algebra 𝐿11 is as follows.

1. Solutions reduced to invariant ones in the considered chain of subalgebras from Item 1.1.

2. Solutions reduced to invariant ones from another chain of subalgebras from Items 1.2

and 2.1.2.1.

3. Submodels of nonlinear ordinary differential equations from Items 2.1.1.1, 2.1.1.2.

4. Simple waves with arbitrary functions from Items 2.1.2.2 and 2.2.

5. Conclusion

In the present work we consider a chain of embedded subalgebras of 11-dimnensional Lie al-
gebra for an ideal model of gas dynamical type. For subalgebra we choose consistent invariants.
On its base we construct a chain of invariant submodels. We prove that the solutions of the
submodels construced by a subalgebra of a greater dimension are solutions to the submodels
constructed by subalgebras of smaller dimensions in the considered chain.
We consider an irregular submodel of rank 1 defect 1 in 4-dimensional subalgebra in the

considered chain. We find partially invariant solutions and we classify them by the method of
alternative assumptions. We obtain new solutions, which can be partial solutions of invariant
submodels with respect to the subalgebras embedded into the considered 4-dimensional sub-
algebra and not necessarily in the considered chain. We obtain closed submodels of nonlinear
ordinary differential equations as well as solutions of simple wave kind.
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