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LAW OF LARGE NUMBERS FOR WEAKLY DEPENDENT

RANDOM VARIABLES WITH VALUES IN 𝐷 [0, 1]

O.Sh. SHARIPOV, A.F. NORJIGITOV

Abstract. Limit theorems in Banach spaces are important, in particular, because

of applications in functional data analysis. This paper is devoted to the law of large numbers

for the random variables with values in the space 𝐷 [0, 1]. This space is not separable

if we consider it with supremum norm and it is difficult to prove limit theorems in this space.

The law of large numbers is well-studied for the sequences of independent 𝐷 [0, 1]-valued
random variables. It is known that in the case of independent and identically distributed

random variables with values in 𝐷 [0, 1] the existence of the first moment of the norm

of random functions is a necessary and sufficient condition for the strong law of large

numbers. The law of large numbers for the sequences of independent and not necessarily

identically distributed random variables with values in 𝐷 [0, 1] were proved as well. Our

main goal is to prove the law of large numbers for the weakly dependent random variables

with values in the space 𝐷 [0, 1]. Namely, we consider the sequences of mixing random

variables with values in 𝐷 [0, 1]. Mixing conditions for 𝐷 [0, 1]-valued random variables

can be introduced in several ways. One can assume that random functions themselves

satisfy mixing conditions. We consider a slightly different condition. In fact we assume

that the finite dimensional projections of the 𝐷[0, 1]-valued random variables satisfy mixing

condition. This is a weaker condition than assuming that random functions themselves

satisfy mixing condition. In the paper the law of large numbers for 𝜌𝑚-mixing sequences of

𝐷 [0, 1]-valued random variables are proved.
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1. Introduction

The law of large numbers for sequences of random variables with values in Banach spaces
has been investigated by many authors, see [1]-[8]. It is known that the validity of the law of
large numbers (and also of the strong law of large numbers) depends mainly on the geometry
of Banach spaces, see [1],[2], [5], [6] and references therein. The aim of this note is to prove the
law of large numbers for weakly dependent random variables with values in 𝐷 [0, 1], which the
space of all real-valued functions that are right continuous and have left limits equipped with
the norm ‖𝑥(𝑡)‖ = sup

𝑡∈[0,1]
|𝑥(𝑡)| . We note that the space 𝐷 [0, 1] is not separable and does not

belong to the known types of Banach spaces, see [5].
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Let {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} be a sequence of 𝐷 [0, 1]-valued random variables. We say that
the sequence {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1}, with 𝐸𝑋𝑘(𝑡) = 0, satisfies the law of large numbers if

1

𝑛
(𝑋1(𝑡) + . . .+𝑋𝑛(𝑡)) → 0 in probability

as 𝑛 → ∞ in 𝐷 [0, 1] and we say that the sequence satisfies the strong law of large numbers if
the above convergence holds almost surely.

The laws of large numbers in 𝐷 [0, 1] for the sequences of independent random elements were
studied in [9]–[12]. The following theorems were proved in [9]–[11].

Theorem 1.1. [9]. Let {𝑋𝑘} be a sequence of independent and identically distributed random

variables with values in 𝐷 [0, 1]. Then {𝑋𝑘} satisfies the strong law of large numbers in 𝐷 [0, 1]
if and only if 𝐸 ‖𝑋1‖ <∞ and 𝐸𝑋1 = 0.

Theorem 1.2. [10]. Let {𝑋𝑛} be a sequence of independent convex dense random elements

in 𝐷 [0, 1] satisfying

sup
𝑛
𝐸 ‖𝑋𝑛‖𝑟 6 𝐶,

where 𝑟 > 1 and 𝐶 is a constant. Then, almost surely,

lim
𝑛→∞

𝑑

(︃
𝑛−1

𝑛∑︁
𝑘=1

𝑋𝑘, 𝑛
−1

𝑛∑︁
𝑘=1

𝐸𝑋𝑘

)︃
= 0,

where 𝑑 (𝑥, 𝑦) is Skorokhod’s metric.

Theorem 1.3. [11]. Let {𝑋𝑘} be a sequence of independent random variables with values in

𝐷 [0, 1]. Suppose that there exist nondecreasing continuous functions 𝜙 and 𝜓 on [0, 1], such

that for all 0 6 𝑠 6 𝑡 6 𝑢 6 1, the following conditions hold

𝐸𝑋2
𝑘(𝑡) <∞ for all 𝑡 ∈ [0, 1] , 𝑘 = 1, 2, . . .

1

𝑛2

𝑛∑︁
𝑘=1

𝐸
{︀
|𝑋𝑘(𝑠)−𝑋𝑘(𝑡)|2 ∧ |𝑋𝑘(𝑡)−𝑋𝑘(𝑢)|2

}︀
6 𝜙2(𝑢− 𝑠),∫︁ ∞

𝜙(𝑥−2)𝑑𝑥 <∞,

1

𝑛2

𝑛∑︁
𝑘=1

𝐸
{︀
|𝑋𝑘(𝑢)−𝑋𝑘(𝑠)|2

}︀
6 𝜓2(𝑢− 𝑠),∫︁ ∞

𝜓(𝑥−4)𝑑𝑥 <∞,

∞∑︁
𝑘=1

𝐸 ‖𝑋𝑘‖𝑝

𝑘𝑝
<∞, for some, 1 6 𝑝 6 2,

where 𝑎 ∧ 𝑏 = min {𝑎, 𝑏} . Then {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} satisfies the law of large numbers

in 𝐷 [0, 1] .

Our aim is to establish the law of large numbers for mixing sequences. Mixing coefficients
for a given sequence {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} of 𝐷 [0, 1]-valued random variables are defined
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as following:

𝜌 (𝑛) = sup

{︃
|𝐸(𝜉 − 𝐸𝜉)(𝜂 − 𝐸𝜂)|

𝐸
1
2 (𝜉 − 𝐸𝜉)2𝐸

1
2 (𝜂 − 𝐸𝜂)2

: 𝜉 ∈ 𝐿2(𝐹
𝑘
1 ), 𝜂 ∈ 𝐿2(𝐹

∞
𝑛+𝑘), 𝑘 ∈ N

}︃
,

𝜌𝑚 (𝑛) = sup
R𝑚

sup

{︃
|𝐸(𝜉 − 𝐸𝜉)(𝜂 − 𝐸𝜂)|

𝐸
1
2 (𝜉 − 𝐸𝜉)2𝐸

1
2 (𝜂 − 𝐸𝜂)2

: 𝜉 ∈ 𝐿2(𝐹
𝑘
1 (𝑚)), 𝜂 ∈ 𝐿2(𝐹

∞
𝑛+𝑘(𝑚))

}︃
,

where 𝐹 𝑏
𝑎 is a 𝜎-field generated by random processes 𝑋𝑎(𝑡), . . . , 𝑋𝑏(𝑡), 𝐹

𝑏
𝑎(𝑚) is a 𝜎-field

generated by random processes
∏︀

𝑚𝑋𝑎(𝑡), . . . ,
∏︀

𝑚𝑋𝑏(𝑡) and
∏︀

𝑚 : 𝐷 [0, 1] → R𝑚 is a projection
operator from𝐷 [0, 1] to R𝑚, 𝐿2(𝐹 ) is a space of all square integrable and 𝐹 -measurable random
variables.

We say that {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} is a 𝜌𝑚-mixing sequence if 𝜌𝑚(𝑛) → 0 as 𝑛 → ∞
for each 𝑚 = 1, 2, . . . and we say that {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} is 𝜌-mixing if 𝜌(𝑛) → 0 as
𝑛→ ∞. A 𝜌-mixing sequence is always 𝜌𝑚-mixing but in general, 𝜌𝑚-mixing sequence may not
be 𝜌-mixing.

We note that we in fact require that the 𝑚-dimensional projections of the sequence
{𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1}, which can be denoted by {𝑋𝑛(𝑡1), . . . , 𝑋𝑛(𝑡𝑚), 𝑛 > 1}, satisfy the
mixing conditions.

2. Main results

The main aim of this work is to prove the following theorems.

Theorem 2.1. Let {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} be a sequence of random variables with values

in 𝐷 [0, 1]. Suppose that there exist a nondecreasing continuous function 𝐻 (𝑡) on [0, 1] such
that for all 0 6 𝑠 6 𝑢 6 1, 𝑛 > 1 and some 𝜀 > 0 the following conditions hold:

𝐸𝑋𝑘(𝑡) = 0, 𝐸 |𝑋𝑘(𝑡)|2 < 𝐴 for some 𝐴 > 0, 𝑡 ∈ [0, 1], 𝑘 = 1, 2, . . . ,

1

𝑛2

𝑛∑︁
𝑘=1

𝐸(𝑋𝑘(𝑢)−𝑋𝑘(𝑠))
2 6 (𝐻 (𝑢)−𝐻 (𝑠)) log−(3+𝜀)

(︀
1 + (𝐻 (𝑢)−𝐻 (𝑠))−1)︀ ,

∞∑︁
𝑘=1

𝜌𝑚
(︀
2𝑘
)︀
<∞, 𝑚 = 1, 2, . . .

Then {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} satisfies the law of large numbers in 𝐷 [0, 1] .

Theorem 2.2. Let {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} be a sequence of random variables with values

in 𝐷 [0, 1]. Suppose that there exist a nondecreasing continuous function 𝐻 (𝑡) on [0, 1] such
that for all 0 6 𝑠 6 𝑢 6 1, 𝑛 > 1 and some 𝜀 > 0 the following conditions hold:

𝐸𝑋𝑘(𝑡) = 0, 𝐸 |𝑋𝑘(𝑡)|2+𝜀 < 𝐴, for some 𝐴 > 0, 𝑡 ∈ [0, 1], 𝑘 = 1, 2, . . . ,

1

𝑛
2+𝜀
2

max
16𝑘6𝑛

𝐸|𝑋𝑘(𝑢)−𝑋𝑘(𝑠)|2+𝜀 6 (𝐻 (𝑢)−𝐻 (𝑠)) log−(3+2𝜀)
(︀
1 + (𝐻 (𝑢)−𝐻 (𝑠))−1)︀ ,

𝑛∑︁
𝑘=1

𝜌
2

2+𝜀
𝑚

(︀
2𝑘
)︀
<∞, 𝑚 = 1, 2, . . .

Then {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} satisfies the law of large numbers in 𝐷 [0, 1] .

The following corollaries are immediate consequences of Theorems 2.1, 2.2.
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Corollary 2.1. Let {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} be a sequence of random variables with values

in 𝐷 [0, 1]. Suppose that there exist a nondecreasing continuous function 𝐻 (𝑡) on [0, 1] such
that for all 0 6 𝑠 6 𝑢 6 1 and some 𝜀 > 0 the following conditions hold:

𝐸𝑋𝑘(𝑡) = 0, 𝐸 |𝑋𝑘(𝑡)|2 < 𝐴 for some 𝐴 > 0, 𝑡 ∈ [0, 1], 𝑘 = 1, 2, . . . ,

𝐸 (𝑋𝑘(𝑢)−𝑋𝑘(𝑠))
2 6 (𝐻 (𝑢)−𝐻 (𝑠)) log−(3+𝜀)

(︀
1 + (𝐻 (𝑢)−𝐻 (𝑠))−1)︀ ,

∞∑︁
𝑘=1

𝜌𝑚
(︀
2𝑘
)︀
<∞ , 𝑚 = 1, 2, . . .

Then {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} satisfies the law of large numbers in 𝐷 [0, 1] .

Corollary 2.2. Let {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} be a sequence of random variables with values

in 𝐷 [0, 1]. Suppose that there exist a nondecreasing continuous function 𝐻 (𝑡) on [0, 1] such
that for all 0 6 𝑠 6 𝑢 6 1 and some 𝜀 > 0 the following conditions hold:

𝐸𝑋𝑘(𝑡) = 0, 𝐸 |𝑋𝑘(𝑡)|2+𝜀 < 𝐴 for some 𝐴 > 0, 𝑡 ∈ [0, 1], 𝑘 = 1, 2, . . . ,

𝐸|𝑋𝑘(𝑢)−𝑋𝑘(𝑠)|2+𝜀 6 (𝐻 (𝑢)−𝐻 (𝑠)) log−(3+2𝜀)
(︀
1 + (𝐻 (𝑢)−𝐻 (𝑠))−1)︀ ,

𝑛∑︁
𝑘=1

𝜌
2

2+𝜀
𝑚

(︀
2𝑘
)︀
<∞, 𝑚 = 1, 2, . . .

Then {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1] , 𝑛 > 1} satisfies the law of large numbers in 𝐷 [0, 1] .

3. Proof of results

We are going to prove the weak convergence 𝑆𝑛(𝑡) ⇒ 0 as 𝑛→ ∞, where

𝑆𝑛(𝑡) =
1

𝑛

𝑛∑︁
𝑘=1

𝑋𝑘(𝑡).

This will imply the convergence in probability since in the limit we have a degenerate distri-
bution. We employ the approaches from [14]-[15] used there in the proof of the central limit
theorem.
First let us prove that the family of distributions 𝑃𝑆𝑛 is dense. The proof is based on the

following lemmata.

Lemma 3.1. [14]. Let 𝑋1(𝑡), 𝑋2(𝑡), . . . , 𝑋𝑛(𝑡), . . . be a random variables with values in

𝐷 [0, 1]. Assume that there exist nondecreasing continuous function 𝐻 on [0, 1] and positive

numbers 𝛾1, 𝐶, 𝜀 such that for all 𝜆 > 0 and 0 6 𝑠 6 𝑡 6 𝑢 6 1

𝑃 (|𝑋𝑛 (𝑡)−𝑋𝑛 (𝑠)| ∧ |𝑋𝑛 (𝑢)−𝑋𝑛 (𝑡)| > 𝜆) 6 𝐶𝜆−2𝛾1𝑔2𝛾1+1+𝜀 (𝐻(𝑢)−𝐻(𝑠))

where 𝑔𝑝(𝑢) = 𝑢 |log 𝑢|−𝑝
, 𝑝 > 0. Then the family of probability measures 𝑃𝑆𝑛 is dense.

Lemma 3.2. [13]. Let {𝑋𝑖, 𝑖 > 1} be a sequence of real-valued random variables with

𝜌-mixing and for some 𝑞 > 2

𝐸𝑋𝑖 = 0, 𝐸 |𝑋𝑖|𝑞 <∞,
𝑛∑︁

𝑘=1

𝜌
2
𝑞
(︀
2𝑘
)︀
<∞.

Then there exists a constant K such that the inequality

𝐸 |𝑋1 + . . .+𝑋𝑛|𝑞 6 𝐾

(︂
𝑛𝑞/2 max

16𝑖6𝑛

(︀
𝐸𝑋2

𝑖

)︀𝑞/2
+ 𝑛 max

16𝑖6𝑛
𝐸𝑋𝑞

𝑖

)︂
holds true.
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Proof of Theorem 2.1. The proof is based on Lemma 3.1. It is sufficient to show that

𝑃 (|𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)| ∧ |𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)| > 𝜆) 6𝑃
(︀
|𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)|2 ∧ |𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)|2 > 𝜆2

)︀
6𝑃

(︀
|𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)| |𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)| > 𝜆2

)︀
6𝐶𝜆−2𝑔3+𝜀 (𝐻 (𝑢)−𝐻 (𝑠))

where 𝜆 ∈ (0, 1] , 0 6 𝑠 6 𝑡 6 𝑢 6 1, 𝜀 > 0.
Note that we can assume 𝐻 (𝑢) − 𝐻(𝑠) 6 1

4
. In what follows, by 𝐶 we denote various

constants, possibly depending on different parameters, that may be different even in the same
chain of inequalities. We have

𝐽 = |𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)| |𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)|

=

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑢)−𝑋𝑘(𝑡))

⃒⃒⃒⃒
⃒

= 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2

+ 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑢)−𝑋𝑘(𝑡))

⃒⃒⃒⃒
⃒
2

= 𝐽1 + 𝐽2.

In the last line, we have used the following notation:

𝐽1 = 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2

, 𝐽2 = 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑢)−𝑋𝑘(𝑡))

⃒⃒⃒⃒
⃒
2

.

We have

𝑃
(︀
𝐽 > 𝜆2

)︀
6 𝑃

(︂
𝐽1 >

1

2
𝜆2
)︂
+ 𝑃

(︂
𝐽2 >

1

2
𝜆2
)︂
.

Let us estimate each of these terms separately. Using Markov inequality and Lemma 3.2, we
get

𝑃

(︂
𝐽1 >

1

2
𝜆2
)︂

=𝑃

⎛⎝ 1

𝑛2

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2

>
1

2
𝜆2

⎞⎠
62𝐶𝜆−2 1

𝑛2
𝐸

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2

62𝐶𝜆−2 1

𝑛2

𝑛∑︁
𝑘=1

𝐸 |𝑋𝑘(𝑡)−𝑋𝑘(𝑠)|2

62𝐶𝜆−2 (𝐻(𝑡)−𝐻(𝑠)) log−(3+𝜀)
(︀
1 + (𝐻(𝑡)−𝐻(𝑠))−1)︀ .

In the same way for 𝐽2 we get

𝑃

(︂
𝐽2 >

1

2
𝜆2
)︂

=𝑃

⎛⎝ 1

𝑛2

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑢)−𝑋𝑘(𝑡))

⃒⃒⃒⃒
⃒
2

>
1

2
𝜆2

⎞⎠
62𝐶𝜆−2 (𝐻(𝑢)−𝐻(𝑡)) log−(3+𝜀)

(︀
1 + (𝐻(𝑢)−𝐻(𝑡))−1)︀ .

Hence,

𝑃
(︀
𝐽 > 𝜆2

)︀
6 4𝐶𝜆−2 (𝐻(𝑢)−𝐻(𝑠)) log−(3+𝜀)

(︀
1 + (𝐻(𝑢)−𝐻(𝑠))−1)︀ .

By the assumptions of Theorem 2.1 and by the inequality

log−1
(︀
1 + (𝐻 (𝑢)−𝐻 (𝑠))−1)︀ 6 2 |log (𝐻 (𝑢)−𝐻 (𝑠))|−1



LAW OF LARGE NUMBERS FOR WEAKLY DEPENDENT RANDOM VARIABLES . . . 131

for 𝐻 (𝑢)−𝐻 (𝑠) 6 1
4
we have

𝑃
(︀
(|𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)| ∧ 1) (𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)) > 𝜆2

)︀
6 4𝐶𝜆−2 (𝐻(𝑢)−𝐻(𝑠)) log−(3+𝜀)

(︀
1 + (𝐻(𝑢)−𝐻(𝑠))−1)︀

6 4𝐶𝜆−2𝑔3+𝜀 (𝐻(𝑢)−𝐻(𝑠)) .

In order to complete the proof of the theorem, it remains to prove the convergence of finite
dimensional distributions of 𝑆𝑛(𝑡). In view of Cramer-Wold theorem [16], to establish this, it
is sufficient to prove the law of large numbers for

𝑦𝑛(𝑡1, . . . , 𝑡𝑘) =
𝑘∑︁

𝑖=1

𝑝𝑖𝑋𝑛(𝑡𝑖),

for each 𝑝𝑖 ∈ R, 𝑖 = 1, 2, . . . and 𝑡1, . . . , 𝑡𝑘 ∈ [0, 1].
The sequence {𝑦𝑛(𝑡1, . . . , 𝑡𝑘), 𝑛 > 1} satisfies the 𝜌𝑚-mixing condition and by the Chebyshev

inequality and the assumptions of Theorem 2.1 and Lemma 3.2 we have

𝑃

(︃⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

𝑦𝑖(𝑡1, . . . , 𝑡𝑘)

⃒⃒⃒⃒
⃒ > 𝜀

)︃
6

1

𝑛2𝜀2
𝐸

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝑦𝑖(𝑡1, . . . , 𝑡𝑘)

⃒⃒⃒⃒
⃒
2

6
𝐶𝑛

𝑛2𝜀2
→ 0,

for all 𝑡1, . . . , 𝑡𝑘 ∈ [0, 1], 𝜀 > 0, 𝑘 = 1, 2, . . . with some constant 𝐶. The proof is complete.

Proof of Theorem 2.2. We follow the lines of the previous proof. It follows from Lemma 3.1
that it is sufficient to prove

𝑃 (|𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)| ∧ |𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)| > 𝜆)

6 𝑃
(︁
|𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)|

2+𝜀
2 |𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)|

2+𝜀
2 > 𝜆2+𝜀

)︁
6 𝐶𝜆−(2+𝜀)𝑔3+2𝜀 (𝐻 (𝑢)−𝐻 (𝑠)) ,

where 𝜆 ∈ (0, 1], 0 6 𝑠 6 𝑡 6 𝑢 6 1, 𝜀 > 0.
We note that we can assume that 𝐻 (𝑢)−𝐻(𝑠) 6 1

4
. We have:

𝐽 = |𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)|
2+𝜀
2 |𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)|

2+𝜀
2

=

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2+𝜀
2
⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑢)−𝑋𝑘(𝑡))

⃒⃒⃒⃒
⃒
2+𝜀
2

6 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2+𝜀

+ 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑢)−𝑋𝑘(𝑡))

⃒⃒⃒⃒
⃒
2+𝜀

= 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2+𝜀

+ 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑢)−𝑋𝑘(𝑡))

⃒⃒⃒⃒
⃒
2+𝜀

= 𝐽1 + 𝐽2.

Here we have used the following notation:

𝐽1 = 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2+𝜀

, 𝐽2 = 𝐶

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑢)−𝑋𝑘(𝑡))

⃒⃒⃒⃒
⃒
2+𝜀

.

We get:

𝑃
(︀
𝐽 > 𝜆2+𝜀

)︀
6 𝑃

(︂
𝐽1 >

1

2
𝜆2+𝜀

)︂
+ 𝑃

(︂
𝐽2 >

1

2
𝜆2+𝜀

)︂
.
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We shall estimate each of these terms separately. Using Markov inequality and Lemma 3.2, we
obtain

𝑃

(︂
𝐽1 >

1

2
𝜆2+𝜀

)︂
= 𝑃

⎛⎝ 1

𝑛2+𝜀

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2+𝜀

>
1

2
𝜆2+𝜀

⎞⎠
6 2𝐶𝜆−(2+𝜀) 1

𝑛2+𝜀
𝐸

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑘=1

(𝑋𝑘(𝑡)−𝑋𝑘(𝑠))

⃒⃒⃒⃒
⃒
2+𝜀

6 4𝐶𝜆−(2+𝜀) (𝐻(𝑡)−𝐻(𝑠)) log−(3+2𝜀)
(︀
1 + (𝐻(𝑡)−𝐻(𝑠))−1)︀ .

In the same way, for 𝐽2 we get

𝑃

(︂
𝐽2 >

1

2
𝜆2+𝜀

)︂
6 4𝐶𝜆−(2+𝜀) (𝐻(𝑢)−𝐻(𝑡)) log−(3+2𝜀)

(︀
1 + (𝐻(𝑢)−𝐻(𝑡))−1)︀ ,

𝑃
(︀
𝐽 > 𝜆2+𝜀

)︀
6 8𝐶𝜆−(2+𝜀) (𝐻(𝑢)−𝐻(𝑠)) log−(3+2𝜀)

(︀
1 + (𝐻(𝑢)−𝐻(𝑠))−1)︀ .

By the assumptions of Theorem 2.2 and by the inequality

log−1
(︀
1 + (𝐻 (𝑢)−𝐻 (𝑠))−1)︀ 6 2 |log (𝐻 (𝑢)−𝐻 (𝑠))|−1

for 𝐻 (𝑢)−𝐻 (𝑠) 6 1
4
, as in the proof of previous theorem, we find:

𝑃
(︁
|𝑆𝑛 (𝑡)− 𝑆𝑛 (𝑠)|

2+𝜀
2 |𝑆𝑛 (𝑢)− 𝑆𝑛 (𝑡)|

2+𝜀
2 > 𝜆2+𝜀

)︁
6 4𝐶𝜆−(2+𝜀) (𝐻(𝑢)−𝐻(𝑠)) log−(3+2𝜀)

(︀
1 + (𝐻(𝑢)−𝐻(𝑠))−1)︀

6 4𝐶𝜆−(2+𝜀)𝑔3+2𝜀 (𝐻(𝑢)−𝐻(𝑠)) .

This proves the required density. The convergence of finite-dimensional distributions of 𝑆𝑛(𝑡)
follows from Cramer-Wold theorem [16] as in the proof of Theorem 2.1. The proof is complete.
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