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GROWTH OF ENTIRE FUNCTIONS OF

EXPONENTIAL TYPE AND CHARACTERISTICS

OF DISTRIBUTIONS OF POINTS ALONG

STRAIGHT LINE IN COMPLEX PLANE

A.E. SALIMOVA, B.N. KHABIBULLIN

Abstract. According a classical Weierstrass-Hadamard-Lindelöf theorem, for each distri-
bution of points with a finite upper density in the complex plane, there exists a non-zero
entire function of exponential type vanishing on the these points with the multiplicity taken
into account. In the beginning of 1960s, in a joint work by P. Malliavin and L.A. Rubel, the
following problem was completely solved. Given two distributions of points on the positive
half-line with finite upper densities, find relations between these distributions under which
for each non-zero entire function of exponential type vanishing on one of the distributions,
there exists a non-zero entire function of exponential type vanishing on the other distri-
bution and having the absolute value not exceeding that of the first function. A complete
solution of this problem going back to works by F. Carlson, T. Carleman, M. Cartwright,
L. Schwartz, J.-P. Kahane and many others, was given in terms of so-called logarithmic
characteristics of distributions of points, which are expressed via reciprocals to points in
these distributions. In this paper we extend these results on complex distributions of the
points separated from the imaginary axis by a pair of vertical angles of an arbitrary small
opening; here we develop logarithmic characteristics for complex distributions of points.
We consider three types of possible restrictions on the growth along the imaginary axis,
very strict ones, as by P. Malliavin and L.A. Rubel, and less restrictive as in previous works
by the second co-author. The main results are of a completed form and are formulated as
criterions.

Keywords: entire function of exponential type, distribution of zeroes, growth of entire
function, logarithmic characteristics and measures, Lindelöf condition.
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1. Introduction

1.1. Main results. For two point distributions Z and W of a finite upper density in the
complex plane C, the real axis of which is denoted by R, we provide several versions of necessary
and sufficient conditions for their location ensuring that for each entire function of exponential
type 𝑔 ̸= 0 vanishing on W, there exists an entire function of exponential type 𝑓 ̸= 0 vanishing
on Z and obeying one of the following three conditions:

1)
⃒⃒
𝑓(𝑖𝑦)

⃒⃒
6
⃒⃒
𝑔(𝑖𝑦)

⃒⃒
for all 𝑦 ∈ R, that is, everywhere on the imaginary axis 𝑖R;

2) ln
⃒⃒
𝑓(𝑖𝑦)

⃒⃒
6 ln

⃒⃒
𝑔(𝑖𝑦)

⃒⃒
+ 𝑜
(︀
|𝑦|
)︀

as 𝑦 → ±∞;
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3) for each number 𝜀 > 0 there exists an entire function of exponential type 𝑓 ̸= 0 vanishing
on Z and satisfying the inequality ln

⃒⃒
𝑓(𝑖𝑦)

⃒⃒
6 ln

⃒⃒
𝑔(𝑖𝑦)

⃒⃒
+ 𝜀|𝑦| for all 𝑦 ∈ R ∖ 𝐸, where

𝐸 ⊂ R is a set of a finite linear Lebesgue measure.

The present study is made in the framework of generalizing and developing a classical theorem
by P. Malliavin, L.A. Rubel proved in 1960s [1, Thm. 4.1], in which there was considered only
the case of location Z ⊂ R+ and W ⊂ R+ on the positive semi-axis R+ ⊂ R. The criterions
are given in terms of majorizing special logarithmic characteristic and (sub)measures for Z by
corresponding logarithmic characteristics and (sub)measures for W. At that, in the third option
there are additional restrictions for Z and W, while in the first and second options one has to
assume for Z and W an asymptotic separating by angles from the imaginary axis, or that W is
completely contained in the right or left half-plane, or a Lindelöf kind condition for W along
the imaginary axis 𝑖R on certain symmetricity of the imaginary parts of the reciprocals 1/w
for w ∈ W of form ⃒⃒⃒⃒

⃒⃒⃒ ∑︁
w∈W

16|w|6𝑟

Im
1

w

⃒⃒⃒⃒
⃒⃒⃒ = 𝑂(1) as 𝑟 → +∞.

We proceed to exact formulations.

1.2. Notation and convention. We shall often write one-point sets {𝑥} without curly
brackets, that is, simply as 𝑥. For instance, for the set of natural numbers N := {1, 2, . . . } we
let N0 := 0∪N = {0, 1, 2, . . . }. The set R of real numbers with standard ordering (6, sup / inf),
algebraic and topological structures is mostly considered as a real axis in the complex plane C;
𝑖R is the imaginary axis, R := −∞∪R∪+∞ is the extended real line with two ends ±∞ /∈ R,
completed by inequalities −∞ 6 𝑥 6 +∞ for each 𝑥 ∈ R and equipped with a natural order
topology, and N := N ∪ +∞, N0 := N0 ∪ +∞. Intervals in R are connected subsets in R, like
a segment [𝑎, 𝑏] := {𝑥 ∈ R : 𝑎 6 𝑥 6 𝑏} with ends 𝑎, 𝑏 ∈ R, where [𝑎, 𝑏] = ∅ is the empty set as
𝑎 < 𝑏, and also (𝑎, 𝑏] := [𝑎, 𝑏] ∖ 𝑎, [𝑎, 𝑏) := [𝑎, 𝑏] ∖ 𝑏 and an open interval (𝑎, 𝑏) := (𝑎, 𝑏] ∩ [𝑎, 𝑏).
By definition, inf ∅ := +∞ and sup∅ := −∞. Right and left open half-plane are denoted
respectively as Crh := {𝑧 ∈ C : Re 𝑧 > 0} and Clh := −Crh. By 𝐷(𝑟) :=

{︀
𝑧 ∈ C : |𝑧| 6 𝑟

}︀
we denote a closed circle of radius 𝑟 ∈ R+ centered at the origin. For 𝑥 ∈ 𝑋 ⊂ R we let
𝑥+ := sup{0, 𝑥}, 𝑋+ := {𝑥+ : 𝑥 ∈ 𝑋}. To an extended scalar function 𝑓 : 𝑆 → R we associate

its positive 𝑓+ : 𝑠 ↦−→
𝑠∈𝑆

(𝑓(𝑠))+ ∈ R+
and negative part 𝑓− := (−𝑓)+ : 𝑆 → R

+
. If in the writing

of the sum the upper limit is less than the lower one or the summing is made over an empty
set, then this sum is let to be zero.

1.3. Points distribution in complex plane. To each distribution of points Z = {zj} in
C consisting of points zj ∈ C indexed by at most countably many indices j we associate a
counting measure [2, 0.1.2]

𝑛Z : 𝑆 ↦−→
𝑆⊂C

∑︁
zj∈𝑆

1 ∈ N0 (1.1)

is the number of points zj in 𝑆. The same notation

𝑛Z : 𝑧 ↦−→
𝑧 ∈ C

𝑛Z(𝑧) =
∑︁
zj=𝑧

1 ∈ N0 (1.2)

is used also for the counting function of distribution of points Z, and

𝑛rad
Z (𝑟)

(1.2)
:=

𝑟∈R+

∑︁
|𝑧|6𝑟

𝑛Z(𝑧) =
∑︁
|zj|6𝑟

1
(1.1)
= 𝑛Z

(︀
𝐷(𝑟)

)︀
∈ N0 (1.3)

is a radial counting function for Z over closed circles 𝐷(𝑟).
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Points distributions Z and Z′ coincides, or equal, which is written as Z = Z′, if they have

the same counting measures or functions 𝑛Z
(1.1)
= 𝑛Z′ , while the inclusion Z ⊂ Z′ means that

the inequality 𝑛Z

(1.2)

6 𝑛Z′ holds true. A union Z ∪ Z′ is defined by the counting measure or the
function 𝑛Z∪Z′ := 𝑛Z +𝑛Z′ , and as Z ⊂ Z′, a difference Z′ ∖Z is defined by the counting measure
or the function 𝑛Z′∖Z := 𝑛Z′ − 𝑛Z. A point 𝑧 ∈ C belongs to Z, that is, 𝑧 ∈ Z if 𝑛Z(𝑧) > 0 for
counting function (1.2), and 𝑧 /∈ Z if 𝑛Z(𝑧) = 0. For 𝑆 ⊂ C the intersection Z∩ 𝑆 is defined by
the restriction of 𝑛Z to 𝑆, while the inclusion Z ⊂ 𝑆 means that Z = Z ∩ 𝑆.

An upper density (at order 1) of distribution of points Z is denoted as [3]–[5]

dnsZ := lim sup
𝑟→+∞

𝑛rad
Z (𝑟)

𝑟
∈ R+

. (1.4)

In what follows, a key role will be played by logarithmic characteristics for points distribution
C introduced for positive distributions of points Z ⊂ R+ in a fundamental for our study paper
by P. Malliavin, L.A. Rubel [1], see also a monograph by L.A. Rubel [6], and extended for
arbitrary complex distributions of points Z ⊂ C in works by B.N. Khabibullin [7]–[10], [2, 3.2].

We define right and left characteristic logarithms for Z ⊂ C as

𝑙rhZ (𝑟) :=
∑︁

0<|z𝑘|6𝑟
z𝑘∈Crh

Re
1

z𝑘
=

∑︁
0<|z𝑘|6𝑟

Re+
1

z𝑘
∈ R+

, 0 < 𝑟 6 +∞, (1.5)

𝑙lhZ (𝑟) :=
∑︁

0<|z𝑘|6𝑟
z𝑘∈Clh

−Re
1

z𝑘
=

∑︁
0<|z𝑘|6𝑟

Re−
1

z𝑘
∈ R+

, 0 < 𝑟 6 +∞, (1.6)

and also right and left logarithmic measures of intervals (𝑟, 𝑅] ⊂ R
+

:

𝑙rhZ (𝑟, 𝑅)
(1.5)
:= 𝑙rhZ (𝑅) − 𝑙rhZ (𝑟) ∈ R+

, 0 < 𝑟 < 𝑅 6 +∞, (1.7)

𝑙lhZ (𝑟, 𝑅)
(1.6)
:= 𝑙lhZ (𝑅) − 𝑙lhZ (𝑟) ∈ R+

, 0 < 𝑟 < 𝑅 6 +∞, (1.8)

which generate a logarithmic submeasure of intervals (𝑟, 𝑅] ⊂ R
+

for Z

𝑙Z(𝑟, 𝑅) := max{𝑙lhZ (𝑟, 𝑅), 𝑙rhZ (𝑟, 𝑅)} ∈ R+
, 0 < 𝑟 < 𝑅 6 +∞, (1.9)

where for Z = ∅ by definition we let 𝑙∅(𝑟, 𝑅) ≡ 0 for all 0 < 𝑟 < 𝑅 6 +∞.

1.4. Entire functions, known results and formulations of problems. A ring Hol(C)
over C consists of all holomorphic functions on C, that is Hol(C) is a ring of entire functions. By
Hol*(C) :=

{︀
𝑓 ∈ Hol(C) : 𝑓 ̸= 0

}︀
we denote the set of all non-zero entire functions. By Zero𝑓

we denote the distribution of all zeroes of an entire function 𝑓 ̸= 0 with a counting function
𝑛Zero𝑓 in the sense of (1.2), and at each point 𝑧 ∈ C this counting function is equal to the
multiplicity of the zero of the function 𝑓 at the point 𝑧. An entire function 𝑓 ̸= 0 on C vanishes
on a distribution of points Z, which is written as 𝑓(Z) = 0, if Z ⊂ Zero𝑓 .

An entire function 𝑓 is called an entire function of exponential type, which is shortly written
as EFET, if its type (at order 1) is finite [3]–[5], [11, 2.1], [12, (1.1)]:

type𝑓 := lim sup
𝑧→∞

ln |𝑓(𝑧)|
|𝑧|

. (1.10)

Point distribution Z = {zj} ⊂ C generates an ideal [1], [6, Ch. 22], [12]

𝐼(Z) :=
{︀
𝑓 ∈ Hol(C) : 𝑓(Z) = 0

}︀
⊂ Hol(C)
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in the ring Hol(C) as well as an ideal in the ring of all EFETs1

𝐼1(Z) := 𝐼(Z) ∩
{︀
𝑓 ∈ Hol(C) : type𝑓

(1.10)
< +∞

}︀
,

after excluding the zero function from these ideals we denoted these sets as

𝐼*(Z) := 𝐼(Z) ∩ Hol*(C), 𝐼1* (Z) := 𝐼1(Z) ∩ Hol*(C).

Hereafter Z ⊂ C, W = {wj} ⊂ C are points distributions of finite upper density

dnsZ + dnsW < +∞. (1.11)

By mes we denote the linear Lebesgue measure of the Euclidean length on R.

Theorem 1.1 ([7, Main thm.], [8, Main thm.], [2, Thm. 3.2.1]). If W ⊂ Crh is located in
the right half-plane, then the following three statements are equivalent:

I. For each function 𝑔 ∈ 𝐼1* (W), for each 𝜀 ∈ R+ ∖ 0 there exist a function 𝑓 ∈ 𝐼1* (Z) and a
Borel set 𝐸 ⊂ R, for which

ln
⃒⃒
𝑓(𝑖𝑦)

⃒⃒
6 ln

⃒⃒
𝑔(𝑖𝑦)

⃒⃒
+ 𝜀|𝑦| for all 𝑦 ∈ R ∖ 𝐸 and mes𝐸 < +∞. (1.12)

II. For each 𝜀 ∈ R+ ∖ 0 there exist a pair of functions 𝑔 ∈ 𝐼1* (W) with Zero𝑔 ∩Crh = W and
𝑓 ∈ 𝐼1* (Z), as well as a Borel set 𝐸 ⊂ R, for which (1.12) holds.

III. For each 𝜀 ∈ R+ ∖ 0 there exists a number 𝐶 ∈ R+, for which

𝑙Z(𝑟, 𝑅) 6 𝑙W(𝑟, 𝑅) + 𝜀 ln
𝑅

𝑟
+ 𝐶 for all 0 < 𝑟 < 𝑅 < +∞. (1.13)

In [9, (0.2)], a distribution of points Z = {zj} is called separated (by angles) from 𝑖R if

|Re zj| > 𝑑|zj| for all j and for some number 𝑑 > 0. (1.14)

Geometrically (1.14) condition means that all non-zero points in Z are located outside non-
empty open vertical angles containing 𝑖R ∖ 0. A distribution of points Z is asymptotically
separated by angles from 𝑖R if [12, (1.2)](︃

lim inf
j→∞

⃒⃒
Re zj

⃒⃒
|zj|

> 0

)︃
⇐⇒
or

(︃
lim sup
j→∞

⃒⃒
Im zj

⃒⃒
|zj|

< 1

)︃
. (1.15)

Geometrically, the pair of equivalent restrictions (1.15) means that there exists a pair of non-
empty open vertical angles containing 𝑖R ∖ 0, for which the points zj are located outside this
pair of angles for all j except finitely many of them.

Theorem 1.2 ([12, Main thm.]). Assume that under condition (1.11) both Z ⊂ C and W ⊂
Crh are asymptotically separated by angles from 𝑖R in the sense of (1.15). Then the following
three statements are equivalent:

I. For each function 𝑔 ∈ 𝐼1* (W) with the zeros distribution asymptotically separated by angles
from 𝑖R there exists a function 𝑓 ∈ 𝐼1* (Z) obeying the condition

ln
⃒⃒
𝑓(𝑖𝑦)

⃒⃒
6 ln

⃒⃒
𝑔(𝑖𝑦)

⃒⃒
+ 𝑜(|𝑦|) as 𝑦 → +∞. (1.16)

II. There exists a pair 𝑔 ∈ 𝐼1* (W) with Zero𝑔 ∩Crh = W and 𝑓 ∈ 𝐼1* (Z) satisfying (1.16).
III. There exist 𝐶 ∈ R+ and a bounded function 𝑑 : R+ → R+ with 𝑑(𝑥) =

𝑥→+∞
𝑜(1), for which

the inequalities hold:

𝑙Z(𝑟, 𝑅) 6 𝑙W(𝑟, 𝑅) + 𝑑(𝑅) ln
𝑅

𝑟
+ 𝐶 for all 0 < 𝑟 < 𝑅 < +∞. (1.17)

1In [1] and [6] the ideal 𝐼1(Z) is respectively denoted as ℱ(Z) and 𝐹 (Z).
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A motivating Theorems 1.1 and 1.2 result is a joint one by P. Malliavin, L.A. Rubel obtained
in the beginning of 1960 only for distributions of points located only on the positive semi-axis
R+, which are obviously separated by angles from the imaginary axis in the sense of (1.14).

Theorem 1.3 ([1, Thm. 4.1], [6, Ch. 22]). If under (1.11) both Z ⊂ R+ and W ⊂ R+ are
located on the positive semi-axis, then the following three statements are equivalent:

I. For each function 𝑔 ∈ 𝐼1* (W) there exists a function 𝑓 ∈ 𝐼1* (Z) obeying the restriction⃒⃒
𝑓(𝑖𝑦)

⃒⃒
6
⃒⃒
𝑔(𝑖𝑦)

⃒⃒
for all 𝑦 ∈ R. (1.18)

II. There exists a pair 𝑔 ∈ 𝐼1* (W) with Zero𝑔 ∩Crh = W and 𝑓 ∈ 𝐼1* (Z) satisfying (1.18).
III. There exist 𝐶 ∈ R+, for which

𝑙Z(𝑟, 𝑅) 6 𝑙W(𝑟, 𝑅) + 𝐶 for all 0 < 𝑟 < 𝑅 < +∞. (1.19)

Our paper is aimed on the following three problems.

1. Extension of Malliavin–Rubel theorem 1.3 from distribution of positive points to distri-
butions of complex points Z ⊂ C and W ⊂ Crh asymptotically separated by angles from
the imaginary axis 𝑖R; see Theorem 2.1 in Section 2.

2. The total omitting of the condition on location of W in the right half-plane in Theorem 1.1
under some reformulation of statement II in Theorem 4.1 Section 4.

3. Replacement of location of W in the right half-plane Crh in Theorems 1.2 and 2.1 by the
condition

sup
𝑟>1

⃒⃒⃒⃒ ∑︁
1<|wj|6𝑟

Im
1

wj

⃒⃒⃒⃒
< +∞ (1.20)

in Theorems 4.2 and 4.3 in Section 4 with some changes in intermediate statements II.
Condition (1.20) obviously covers all distributions of real points W ⊂ R and points distri-
butions symmetric with respect to the real axis or the origin.

A key role in the proofs of all theorems in Section 3 is played by Theorem 3.2 in Section 3
on relations between logarithmic (sub)measures fro distributions of points and various versions
of Lindelöf condition (3.1), (3.2) and (3.3) of genus 1 for distribution of points on C.

2. Extension of Malliavin-Rubel theorem on distributions of complex points

Theorem 2.1. Under condition (1.11), for all Z ⊂ C and W ⊂ Crh asymptotically separated
by angles from 𝑖R in the sense of (1.15), statements I–III in Theorem 1.3 are equivalent.

Proof. In order to prove the implication I=⇒II, it is sufficient to construct a non-zerom EFET
𝑔 with Zero𝑔 ∩Crh = W. As such function, we can choose EFET 𝑔 as an even canonical
Hadamard-Weierstrass product [3]–[5]:

𝑔(𝑧) :=
𝑧∈C

∏︁
j

(︁
1 − 𝑧2

w2
j

)︁
.

In order to prove the implication II=⇒III in notation

𝐽𝑖R(𝑟, 𝑅; ln |𝑓 |) :=
1

2𝜋

∫︁ 𝑅

𝑟

ln
⃒⃒
𝑓(𝑖𝑦)𝑓(−𝑖𝑦)|

𝑦2
d𝑦, 0 < 𝑟 < 𝑅 < +∞, (2.1)

for entire functions 𝑓 we shall employ the following statement.

Lemma 2.1 ([8, (1.3)], [9, (0.4)], [13, Prop. 4.1, (4.19)]). For each fixed number 𝑟0 > 0 and
for each EFET 𝑓 ̸= 0 the relation holds:

sup
𝑟06𝑟<𝑅<+∞

max
{︁⃒⃒

𝐽𝑖R(𝑟, 𝑅; ln |𝑓 |) − 𝑙rhZero𝑓 (𝑟, 𝑅)
⃒⃒
,
⃒⃒
𝐽𝑖R(𝑟, 𝑅; ln |𝑓 |) − 𝑙lhZero𝑓 (𝑟, 𝑅)

⃒⃒}︁
< +∞. (2.2)
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We take the logarithm of and integrating of inequality (1.18) in statement II of Malliavin-
Rubel theorem and then we integrate it over the segment [𝑟, 𝑅] and divide by 𝑦2 as in (2.1).
This gives the inequalities

𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑓 |

)︀
6 𝐽𝑖R

(︀
𝑟, 𝑅; ln |𝑔|

)︀
for all 𝑟0 6 𝑟 < 𝑅 < +∞. (2.3)

By Lemma 2.1 applied to EFET 𝑓 ̸= 0, for some number 𝐶𝑓 ∈ R+ we obtain:

𝑙Z(𝑟, 𝑅)
(1.9)

6 𝑙Zero𝑓 (𝑟, 𝑅)
(2.2)

6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑓 |

)︀
+ 𝐶𝑓

(2.3)

6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑔|

)︀
+ 𝐶𝑓

for each 𝑟0 6 𝑟 < 𝑅 < +∞. Again by Lemma 2.1 but applied to to EFET 𝑔 ̸= 0, we can
continue this chain of inequalities with some number 𝐶𝑔 ∈ R+ as follows:

𝑙Z(𝑟, 𝑅) 6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑔|

)︀
+ 𝐶𝑓

(2.2)

6 𝑙rhZero𝑔(𝑟, 𝑅) + 𝐶𝑔 + 𝐶𝑓 for all 𝑟0 6 𝑟 < 𝑅 < +∞. (2.4)

Definition (1.5) of the right logarithmic measure and condition Zero𝑔 ∩Crh = W ⊂ Crh of
statement II imply that the right hand side of the above relation reads as

𝑙rhW(𝑟, 𝑅) + 𝐶𝑔 + 𝐶𝑓 = 𝑙W(𝑟, 𝑅) + 𝐶𝑔 + 𝐶𝑓 .

Hence, according to definitions (1.7), (1.8) and (1.9), for the constant 𝐶 := 𝐶𝑔+𝐶𝑓 independent
of 𝑟 > 𝑟0 and 𝑅 > 𝑟, for sufficiently small 𝑟0 > 0 we can consider all 0 < 𝑟 < 𝑅 < +∞ and this
gives desired inequalities (1.19) and statement III.

To prove the implication III=⇒I, we make use of the following theorem.

Theorem 2.2 ([9, Main thm.]). Let 𝑔 ̸= 0 be an EFET and the distributions of zeroes Zero𝑔
and the distribution of points Z = {zj} are separated by angles from 𝑖R in the sense of (1.14).
Then there exists an EFET 𝑓 ̸= 0 vanishing on Z and obeying (1.18) if and only if there exists
a number 𝑀 ∈ R such that

𝑙Z(𝑟, 𝑅) 6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑔|

)︀
+ 𝑀 for all 1 6 𝑟 < 𝑅 < +∞. (2.5)

Suppose that under the assumptions of Statement III of Theorem 2.1, the assumptions of
Theorem 2.2 hold as well. Then for EFET 𝑔 ̸= 0 with W ⊂ Zero𝑔, by Lemma 2.1 there exists
a number 𝐶𝑔 ∈ R+, for which

𝑙Z(𝑟, 𝑅)
(1.19)

6 𝑙W(𝑟, 𝑅) + 𝐶 6 𝑙Zero𝑔(𝑟, 𝑅) + 𝐶
(2.2)

6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑔|

)︀
+ 𝐶𝑔 + 𝐶

for all 𝑟0 6 𝑟 < 𝑅 < +∞. Hence, for 𝑟0 := 1 we obtain (2.5) and by the sufficiency in
Theorem 2.2 there exists an EFET 𝑓 ̸= 0 with 𝑓(Z) = 0 satisfying (1.18).

Let the points distributions Z and Zero𝑔 ⊃ W be just asymptotically separated by angles
from 𝑖R in the sense of (1.15). We can always choose a finite distribution of points Z0 ⊂ Z
and a finite distribution of points G0 ⊂ Zero𝑔 such that Z∞ := Z ∖ Z0 and G∞ := Zero𝑔 ∖ G0

are separated by angles from 𝑖R in the sense of (1.14). At that, in view of the finiteness
of distribution of points G0, according to the definitions of logarithmic functions of intervals
(1.5)–(1.6) and (1.7)–(1.9), there exists a number 𝐶0 ∈ R+, for which 𝑙G0(𝑟, 𝑅) 6 𝐶0 for all
0 < 𝑟 < 𝑅 < +∞ and this yields:

𝑙Z∞(𝑟, 𝑅) 6 𝑙Z(𝑟, 𝑅)
(1.19)

6 𝑙W(𝑟, 𝑅) + 𝐶 6 𝑙Zero𝑔(𝑟, 𝑅) + 𝐶
(1.9)

6 𝑙G∞(𝑟, 𝑅) + 𝑙G0(𝑟, 𝑅) + 𝐶

6 𝑙G∞(𝑟, 𝑅) + 𝐶0 + 𝐶 for all 0 < 𝑟 < 𝑅 < +∞.
(2.6)

We consider an EFET 𝑔∞ := 𝑔/𝑔0 ̸= 0, where 𝑔0 is some polynomial with zeroes distribution
G0 and 𝑔∞(G∞) = 0. By the already proven version of the implication III=⇒I for 𝑔∞ as 𝑔 and
G∞ as W, in view of (2.6), there exists an EFET 𝑓∞ ̸= 0 with 𝑓∞(Z∞) = 0 obeying condition
(1.18) in the form

⃒⃒
𝑓∞(𝑖𝑦)

⃒⃒
6
⃒⃒
𝑔∞(𝑖𝑦)

⃒⃒
for all 𝑦 ∈ R and by our constructions, this implies:⃒⃒

(𝑔0𝑓∞)(𝑖𝑦)
⃒⃒
6
⃒⃒
(𝑔0𝑔∞)(𝑖𝑦)

⃒⃒
=
⃒⃒
𝑔(𝑖𝑦)

⃒⃒
for all 𝑦 ∈ R and (𝑔0𝑓∞)(Z∞) = 0. (2.7)
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Let the number of points in Z0 be equal to 𝑁 , that is, 𝑁
(1.1)
:= 𝑛Z0(C), and 𝑓0 be some polynomial

of degree 𝑁 with zeroes distribution Z0. Then for a sufficiently small number 𝑎 > 0 the absolute
value restriction of the function

𝑓𝑎(𝑧) :=
𝑧∈C

𝑎𝑓0(𝑧)
(︁sin 𝑖𝑧

𝑧

)︁𝑁
to 𝑖R is bounded by one and by (2.7) for the EFET 𝑓 := 𝑓𝑎𝑔0𝑓∞ ̸= 0 vanishing on Z = Z0∪Z∞
we have:

|𝑓(𝑖𝑦)| =
⃒⃒
(𝑓𝑎𝑔0𝑓∞)(𝑖𝑦)

⃒⃒ (2.7)
6
⃒⃒
𝑔(𝑖𝑦)

⃒⃒
for all 𝑦 ∈ R and this completes the proof of the implication III=⇒I and Theorem 2.1.

Remark 2.1. By analyzing the proofs of Theorems 1.1 and 1.2, as well as of Theorem 2.1
we see that in the proof of the implications III=⇒I in each of these theorems the location of the
distribution of points W exactly in the right half-plane Crh is not used. Thus, the condition W ⊂
Crh in Theorems 1.1, 1.2 and 2.1 is employed only in the proof of the implications I=⇒II=⇒III.
It is clear the condition W ⊂ Crh in these theorems can be replaced by the location of W ⊂ Clh

in the left half-plane by means of the mirror symmetry with respect to 𝑖R.

3. Lindelöf condition of kind 1

Point distribution Z = {zj}j∈J satisfies Lindelöf condition (of kind 1) if

sup
𝑟>1

⃒⃒⃒⃒ ∑︁
1<|zj|6𝑟

1

zj

⃒⃒⃒⃒
< +∞; (3.1)

satisfies R-Lindelöf condition (of kind 1) if

sup
𝑟>1

⃒⃒⃒⃒ ∑︁
1<|zj|6𝑟

Re
1

zj

⃒⃒⃒⃒
< +∞; (3.2)

satisfies 𝑖R-Lindlöf condition (of kind 1) if (see (1.20))

sup
𝑟>1

⃒⃒⃒⃒ ∑︁
1<|zj|6𝑟

Im
1

zj

⃒⃒⃒⃒
< +∞. (3.3)

A special role of Lindelöf condition (3.1) of kind 1 is due to Hadamard-Lindelöf theorem.

Theorem 3.1 ([4], [5], [3, 2.10]). If 𝑓 ̸= 0 is EFET, then the zeroes distribution Zero𝑓 has a
finite upper density and satisfies Lindelöf condition (3.1). Vice versa, if a distribution of points
Z is of a finite upper density and satisfies Lindelöf condition (3.1), then there exists an EFET
𝑓 ̸= 0 with Zero𝑓 = Z.

The next follows immediately definitions (3.1), (3.2) and (3.3).

Proposition 3.1. Let Z ⊂ C be a distribution of complex points.

[L1] Z satisfies Lindelöf condition (3.1) if and only if Z satisfies simultaneously R-Lindelöf
condition (3.2) and 𝑖R-Lindelöf condition (3.3).

[L2] The following three statements are equivalent:
(i) Z satisfies R-Lindelöf condition (3.2);
(ii) for right and left logarithmic measures (1.7) and (1.8) the relation holds:

sup
16𝑟<𝑅<+∞

⃒⃒
𝑙rhZ (𝑟, 𝑅) − 𝑙lhZ (𝑟, 𝑅)

⃒⃒
< +∞; (3.4)

(iii) for logarithmic submeasure (1.9) the relation holds:

sup
16𝑟<𝑅<+∞

(︁⃒⃒
𝑙lhZ (𝑟, 𝑅) − 𝑙Z(𝑟, 𝑅)

⃒⃒
+
⃒⃒
𝑙Z(𝑟, 𝑅) − 𝑙rhZ (𝑟, 𝑅)

⃒⃒)︁
< +∞; (3.5)
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(iv) the rotation 𝑖Z := {𝑖zj} ⊂ C by the angle 𝜋
2
satisfies 𝑖R-Lindelöf condition (3.3).

Point distribution Z is separated (with respect to the distance) if there exists a number 𝑑 > 0
such that the distance between each two points in Z is at least 𝑑.

In the proof of the next three theorems we shall employ the following theorem.

Theorem 3.2. Let Z ⊂ C be a distribution of points of a finite upper density. Then there
exist separated distribution of real points X ⊂ R and Y ⊂ R having finite upper densities such
that the union Z∪X satisfies R-Lindelöf condition (3.2), the union Z∪ 𝑖Y satisfies 𝑖R-Lindelöf
condition (3.3) and

sup
16𝑟<𝑅<+∞

(︀
𝑙Z∪X(𝑟, 𝑅) − 𝑙Z(𝑟, 𝑅)

)︀
< +∞, (3.6)

sup
16𝑟<𝑅<+∞

(︀
𝑙(𝑖Z)∪Y(𝑟, 𝑅) − 𝑙𝑖Z(𝑟, 𝑅)

)︀
< +∞. (3.7)

At that, the union Z ∪ X ∪ 𝑖Y satisfies Lindelöf condition (3.1).

Proof. We consider a binary sequence 𝑟𝑘 := 2𝑘 with 𝑘 ∈ N0.
In order to construct distributions of points X = {xj} ⊂ R, for each 𝑘 ∈ N0 we make the

following choice of the intervals 𝐼±𝑘 and points xj ∈ 𝐼±𝑘 forming X:

[+] If 𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) 6 𝑙lhZ (𝑟𝑘, 𝑟𝑘+1), then we let 𝐼+𝑘 := (𝑟𝑘, 𝑟𝑘+1] ⊂ R+. It is obvious that we can
choose a finite subset in 𝑁𝑘 ∈ N of mutually disjoint points xj ∈ 𝐼+𝑘 , which includes the
point 𝑟𝑘+1 and partitions 𝐼+𝑘 into subintervals of equal lengths (𝑟𝑘+1 − 𝑟𝑘)/𝑁𝑘 such that

𝑙Z(𝑟𝑘, 𝑟𝑘+1)
(1.9)
= 𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) 6 𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) +

∑︁
xj∈𝐼+𝑘

1

xj

6 𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) +
1

𝑟𝑘

(1.9)
= 𝑙Z(𝑟𝑘, 𝑟𝑘+1) +

1

𝑟𝑘
.

(3.8)

[–] If 𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) < 𝑙rhZ (𝑟𝑘, 𝑟𝑘+1), then we let 𝐼−𝑘 := [−𝑟𝑘+1,−𝑟𝑘) ⊂ −R+, where we choose a
finite subset in 𝑁𝑘 ∈ N0 of mutually disjoint points xj ∈ 𝐼−𝑘 including the point −𝑟𝑘+1 and
partitioning 𝐼−𝑘 into subintervals of equal length (𝑟𝑘+1 − 𝑟𝑘)/𝑁𝑘 such that

𝑙Z(𝑟𝑘, 𝑟𝑘+1)
(1.9)
= 𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) 6 𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) +

∑︁
xj∈𝐼−𝑘

1

−xj

6 𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) +
1

𝑟𝑘

(1.9)
= 𝑙Z(𝑟𝑘, 𝑟𝑘+1) +

1

𝑟𝑘
.

(3.9)

First we are going to show that the distribution of points X has a finite upper density.
By construction, the upper bounds in (3.8) and (3.9) with the concluding identity imply:

𝑁𝑘
1

𝑟𝑘+1

6
∑︁
xj∈𝐼±𝑘

1

|xj|
6 𝑙Z(𝑟𝑘, 𝑟𝑘+1) +

1

𝑟𝑘

(1.1)

6
∫︁
𝐷(𝑟𝑘+1)∖𝐷(𝑟𝑘)

⃒⃒⃒
Re

1

𝑧

⃒⃒⃒
d𝑛Z(𝑧) +

1

𝑟𝑘
,

where 𝑛Z is a counting measure in (1.1). Passing to the radial counting function (1.3), we can
continue inequalities as

𝑁𝑘 6 𝑟𝑘+1

∫︁ 𝑟𝑘+1

𝑟𝑘

1

𝑡
d𝑛rad

Z (𝑡)+2 6 𝑟𝑘+1
1

𝑟𝑘

∫︁ 𝑟𝑘+1

𝑟𝑘

d𝑛rad
Z (𝑡)+2 6 2

(︀
𝑛rad
Z (𝑟𝑘+1)−𝑛rad

Z (𝑟𝑘)+1
)︀
, (3.10)

and by summing this over 𝑘 we get the inequalities

𝑛rad
X (𝑟𝑛+1) 6

𝑘=𝑛∑︁
𝑘=0

2
(︀
𝑛rad
Z (𝑟𝑘+1) − 𝑛rad

Z (𝑟𝑘) + 1
)︀
6 2𝑛rad

Z (𝑟𝑛+1) + 2(𝑛 + 1) for all 𝑛 ∈ N.
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Hence, for each 𝑛 ∈ N and for all 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1] we obtain

𝑛rad
X (𝑟)

𝑟
6 2

𝑛rad
X (𝑟𝑛+1)

𝑟𝑛+1

6 4
𝑛rad
Z (𝑟𝑛+1)

𝑟𝑛+1

+ 4
𝑛 + 1

2𝑛+1
= 𝑂(1) as 𝑛 → ∞ and 𝑟 → +∞,

and this proves that the upper density of the distribution of points X is finite.
Moreover, it follows from (3.10) and the finiteness of the upper density of Z that there exists

𝐷 ∈ R+ ∖ 0, for which 𝑁𝑘 6 2𝑛rad
Z (𝑟𝑘+1) + 2 6 𝐷𝑟𝑘+1 for all 𝑘 ∈ N0. Therefore,

𝑟𝑘+1 − 𝑟𝑘
𝑁𝑘

>
𝑟𝑘+1 − 𝑟𝑘
𝐷𝑟𝑘+1

=
1

2𝐷
for all 𝑘 ∈ N.

By constructions [±] this means that the distribution of points X is separated.
Let us show that the union Z ∪ X satisfies condition (3.6).
As 𝑛 < 𝑁 , by construction [+] of a part of distribution of points X located on the positive

semi-axis R+, the additivity of right (1.7) and left (1.8) logarithmic measures and the middle
inequality in (3.8) imply

𝑙rhZ∪X(𝑟𝑛, 𝑟𝑁)
(1.7)
=

𝑁−1∑︁
𝑘=𝑛

𝑙rhZ∪X(𝑟𝑘, 𝑟𝑘+1)
(3.8)

6
𝑁−1∑︁
𝑘=𝑛

(︁
𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) +

1

𝑟𝑘

)︁
=

𝑁−1∑︁
𝑘=𝑛

𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) +
𝑁−1∑︁
𝑘=𝑛

1

𝑟𝑘

(1.8)
= 𝑙lhZ (𝑟𝑛, 𝑟𝑁) +

𝑁−1∑︁
𝑘=𝑛

1

2𝑘

(1.9)

6 𝑙Z(𝑟𝑛, 𝑟𝑁) + 2.

(3.11)

In the same way, by construction [–] of the part of distribution of points X located on the
negative semi-axis −R+, the additivity of left (1.8) and right (1.7) logarithmic measures and
the middle inequality (3.9) imply

𝑙lhZ∪X(𝑟𝑛, 𝑟𝑁)
(1.8)
=

𝑁−1∑︁
𝑘=𝑛

𝑙lhZ∪X(𝑟𝑘, 𝑟𝑘+1)
(3.9)

6
𝑁−1∑︁
𝑘=𝑛

(︁
𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) +

1

𝑟𝑘

)︁
=

𝑁−1∑︁
𝑘=𝑛

𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) +
𝑁−1∑︁
𝑘=𝑛

1

𝑟𝑘

(1.7)
= 𝑙rhZ (𝑟𝑛, 𝑟𝑁) +

𝑁−1∑︁
𝑘=𝑛

1

2𝑘

(1.9)

6 𝑙Z(𝑟𝑛, 𝑟𝑁) + 2.

(3.12)

By (3.11)-(3.12) and definition (1.9) of the logarithmic submeasure we find:

𝑙Z∪X(𝑟𝑛, 𝑟𝑁)
(1.9)
= max

{︁
𝑙lhZ∪X(𝑟𝑛, 𝑟𝑁), 𝑙rhZ∪X(𝑟𝑛, 𝑟𝑁)

}︁
6 𝑙Z(𝑟𝑛, 𝑟𝑁) + 2. (3.13)

Hence, for all 𝑛 6 𝑁 , for all 𝑟𝑛 < 𝑟 6 𝑟𝑛+1 and 𝑟𝑁 < 𝑅 6 𝑟𝑁+1 we obtain:

𝑙Z(𝑟, 𝑅) 6 𝑙Z∪X(𝑟, 𝑅) 6 𝑙Z∪X(𝑟, 𝑟𝑛+1) + 𝑙Z∪X(𝑟𝑛+1, 𝑟𝑁) + 𝑙Z∪X(𝑟𝑁 , 𝑟)

(3.13)

6
1

𝑟𝑛
𝑛rad
Z∪X(𝑟𝑛+1) +

(︀
𝑙Z(𝑟𝑛+1, 𝑟𝑁) + 2

)︀
+

1

𝑟𝑁
𝑛rad
Z∪X(𝑟𝑁+1)

6 𝑙Z(𝑟, 𝑅) +
(︁

2 + 2
𝑛rad
Z∪X(𝑟𝑛+1)

𝑟𝑛+1

+ 2
𝑛rad
Z∪X(𝑟𝑁+1)

𝑟𝑁+1

)︁
.

In view of the proven finiteness of the upper density of the distribution of points X, the latter
quantity in the brackets is bounded with respect to all 0 6 𝑛 6 𝑁 < +∞ and this proves (3.6).

Finally, let us confirm that the union Z ∪ X satisfies R-Lindelöf condition (3.2).
Consructions [±] show that the intervals 𝐼+𝑘 ⊂ R+ and −𝐼−𝑘 ⊂ R+ are disjoint and cover

entire ray [1,+∞) ⊂ R+.
In case [+], in view of identities

𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) +
∑︁
xj∈𝐼+𝑘

1

xj
= 𝑙rhZ∪X(𝑟𝑘, 𝑟𝑘+1) for all intervals (𝑟𝑘, 𝑟𝑘+1] = 𝐼+𝑘 ⊂ R+,
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by the middle inequality (3.8) we obtain:

0 6 𝑙rhZ∪X(𝑟𝑘, 𝑟𝑘+1) − 𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) 6
1

𝑟𝑘
=

1

2𝑘
,

abd 𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) = 𝑙lhZ∪X(𝑟𝑘, 𝑟𝑘+1) since in no points of distributions of points X were chosen in
the opposite interval −𝐼+𝑘 ⊂ −R+ in construction [+]. Thus,

0 6 𝑙rhZ∪X(𝑟𝑘, 𝑟𝑘+1) − 𝑙lhZ∪X(𝑟𝑘, 𝑟𝑘+1) 6
1

2𝑘
for all intervals (𝑟𝑘, 𝑟𝑘+1] = 𝐼+𝑘 ⊂ R+. (3.14)

In case [–], in view of identities

𝑙lhZ (𝑟𝑘, 𝑟𝑘+1) +
∑︁
xj∈𝐼+𝑘

1

−xj
= 𝑙lhZ∪X(𝑟𝑘, 𝑟𝑘+1), for all intervals (𝑟𝑘, 𝑟𝑘+1] = −𝐼−𝑘 ⊂ R+,

by the middle inequality in (3.9) we obtain:

0 6 𝑙lhZ∪X(𝑟𝑘, 𝑟𝑘+1) − 𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) 6
1

𝑟𝑘
=

1

2𝑘
,

and 𝑙rhZ (𝑟𝑘, 𝑟𝑘+1) = 𝑙rhZ∪X(𝑟𝑘, 𝑟𝑘+1) since no points for the distribution of points X was chosen in
the opposite interval −𝐼−𝑘 ⊂ R+ in construction [–]. Thus,

0 6 𝑙lhZ∪X(𝑟𝑘, 𝑟𝑘+1) − 𝑙rhZ∪X(𝑟𝑘, 𝑟𝑘+1) 6
1

2𝑘
for all intervals (𝑟𝑘, 𝑟𝑘+1] = −𝐼−𝑘 ⊂ R+. (3.15)

As 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1], we sum over 𝑘 6 𝑛 and on the base of (3.14) and (3.15) we get:⃒⃒
𝑙lhZ∪X(1, 𝑟) − 𝑙rhZ∪X(1, 𝑟)

⃒⃒
6

𝑛−1∑︁
𝑘=0

⃒⃒
𝑙lhZ∪X(𝑟𝑘, 𝑟𝑘+1) − 𝑙rhZ∪X(𝑟𝑘, 𝑟𝑘+1)

⃒⃒
+
⃒⃒
𝑙lhZ∪X(𝑟𝑛, 𝑟)

⃒⃒
(3.14),(3.15)

6
𝑛−1∑︁
𝑘=0

1

2𝑘
+

1

𝑟𝑛
𝑛rad
Z∪X(𝑟𝑘+1) 6 2 + 2

𝑛rad
Z∪X(𝑟𝑘+1)

𝑟𝑛+1

= 𝑂(1)

for all 𝑛 ∈ N and 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1]. By the equivalence (ii)⇐⇒(i) of part L2 in Proposition 3.1 and
by relation (3.4), this means that the distribution of points Z∪X satisfies R-Lindelöf condition
(3.2).

The existence of the distributions of points Y with required properties including (3.7) follows
immediately from the proven part of Theorem 3.2 for X after the rotation of 𝑖Z by the angle 𝜋

2
in view of the equivalence (i)⇐⇒(iv) in part [L2] of Proposition 3.1. Lindelöf condition (3.1)
for the union Z ∪ X ∪ 𝑖Y is implied part [L1] of proposition 3.1.

Corollary 3.1. Let a distribution of points W ⊂ C possesses a finite upper density. Then:

(a) There exists an EFET 𝑔 ̸= 0 with properties 𝑔(W) = 0 and

sup
16𝑟<𝑅<+∞

(︁
𝑙Zero𝑔(𝑟, 𝑅) − 𝑙W(𝑟, 𝑅)

)︁
< +∞. (3.16)

(b) If the distribution of points W is asymptotically separated by angles from 𝑖R in the sense
of (1.15) and satisfies 𝑖R-Lindelöf condition (1.20), then the EFET 𝑔 ̸= 0 satisfying si-
multaneously two properties of W ⊂ Zero𝑔 and (3.16) can be chosen with an asymptotically
separated by angles from 𝑖R zeroes distribution Zero𝑔.

Proof. By Theorem 3.2, there exist distributions of points X ⊂ R and 𝑖Y ⊂ 𝑖R of a finite upper
density, for which W ∪ X ∪ 𝑖Y satisfies Lindelöf condition (3.1) and (3.6) holds with W instead
of Z. By Hadamard-Lindelöf theorem 3.1, there exists an EFET 𝑔 ̸= 0 with zeroes distribution
Zero𝑔 = W ∪ X ∪ 𝑖Y vanishing on W, for which by (3.6) with W instead of Z relation (3.16)
holds since the distribution of imaginary points 𝑖Y ⊂ 𝑖R makes no influence on the logarithmic
submeasure. The proof of part (a) is complete.
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In order to prove part (b), it is sufficient to consider the union W ∪ X with the above choice
of the distribution of real points X ⊂ R. By 𝑖R-Lindelöf condition (1.20) for W, the union
W∪X satisfies Lindelöf condition (3.1) by part [L1] of Proposition 3.1. By Hadamard-Lindelöf
theorem 3.1 there exists an EFET 𝑔 ̸= 0 with zeroes distribution Zero𝑔 = W ∪ X vanishing on
W, for by (3.6) with W instead of Z inequality (3.16) holds. It is obvious that Zero𝑔 = W ∪ X
is still asymptotically separated by angles from 𝑖R since this holds both for W by assumptions
and for the distribution of real points X ⊂ R.

4. Versions of Theorems 1.1, 1.2 and 2.1 without condition of
location of distribution of points W in right half-plane Crh

Below we provide a version of Theorem 1.1 with an arbitrary distribution of points W of a
finite upper density.

Theorem 4.1. Condition (1.11) of finiteness of the upper density of Z and W is sufficient
for each of statements I and III in Theorem 1.1 to be equivalent to a statement:̂︀II. For each 𝜀 ∈ R+ ∖ 0 there exists a pair of functions 𝑔 ∈ 𝐼1* (W) with property (3.16) and

𝑓 ∈ 𝐼1* (Z) and a Borel subset 𝐸 ⊂ R satisfying (1.12).

Proof. According to part (a) of Corollary 3.1, there exists an EFET 𝑔 ̸= 0 with the proper-

ties formulated in Statement ̂︀II, while by Statement I in Theorem 1.1 there exists 𝑓 ∈ 𝐼1* (Z)

satisfying (1.12). This proves the implication I=⇒ ̂︀II.
If ̂︀II holds, then by integrating (1.12) we get:

𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑓 |

)︀
6 𝐽𝑖R

(︀
𝑟, 𝑅; ln |𝑔|

)︀
+ 𝜀 ln

𝑅

𝑟
+ 𝐶 for all 1 6 𝑟 < 𝑅 < +∞. (4.1)

By Lemma 2.1 twice applied respectively to EFET 𝑓 ̸= 0 and EFET 𝑔 ̸= 0, for some positive
numbers 𝐶𝑓 , 𝐶𝑔, 𝑀 we obtain:

𝑙Z(𝑟, 𝑅)
(1.9)

6 𝑙Zero𝑓 (𝑟, 𝑅)
(2.2)

6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑓 |

)︀
+ 𝐶𝑓

(4.1)

6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑔|

)︀
+ 𝜀 ln

𝑅

𝑟
+ 𝐶 + 𝐶𝑓

(2.2)

6 𝑙Zero𝑔(𝑟, 𝑅) + 𝐶𝑔 + 𝜀 ln
𝑅

𝑟
+ 𝐶 + 𝐶𝑓

(3.16)

6 𝑙W(𝑟, 𝑅) + 𝑀 + 𝐶𝑔 + 𝜀 ln
𝑅

𝑟
+ 𝐶 + 𝐶𝑓

for all 1 6 𝑟 < 𝑅 < +∞, where we have employed condition (3.16) from ̂︀II. Redenoting the
sum 𝑀 + 𝐶𝑔 + 𝐶 + 𝐶𝑓 by 𝐶, we arrive at relation (1.13) in Statement III in Theorem 1.1.

The validity of the implication III=⇒I in Theorem 1.1 has already been mentioned in Re-
mark 2.1 for arbitrary points distributions Z and W of a finite upper density.

A version of Theorem 1.2 with 𝑖R-Lindelöf condition (1.20) for W instead of 𝑊 ⊂ Crh is as
follows.

Theorem 4.2. Assume that under (1.11) both Z and W are asymptotically separated by
angles from 𝑖R in the sense of (1.15) and the distribution of points W satisfies 𝑖R-Lindelöf
condition (1.20). Then each of Statements I and III in Theorem 1.2 is equivalent to a statement:̂︀II. There exists a pair of functions 𝑔 ∈ 𝐼1* (W) with (3.16) and 𝑓 ∈ 𝐼1* (Z) satisfying (1.16).

Proof. By part (b) of Corollary 3.1 there exists an EFET 𝑔 ̸= 0 with the properties formulated

in Statement ̂︀II, while by Statement I of Theorem 1.2 there exists 𝑓 ∈ 𝐼1* (Z) satisfying (1.16)

and this proves the implication I=⇒ ̂︀II.
If Statement ̂︀II holds, then we integrate as in (2.1), and for each 𝑟0 ∈ R+ ∖ 0, for some

bounded function 𝑄 : [𝑟0,+∞) → R+ satisfying the condition

lim
𝑥→+∞

𝑄(𝑥)

𝑥
= 0, (4.2)
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and for some number 𝐶0 ∈ R+ in relation (1.16) we obtain:

𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑓 |

)︀
6 𝐽𝑖R

(︀
𝑟, 𝑅; ln |𝑔|

)︀
+

∫︁ 𝑅

𝑟

𝑄(𝑦)

𝑦2
d𝑦 +𝐶0 for all 0 < 𝑟0 6 𝑟 < 𝑅 < +∞. (4.3)

Lemma 4.1 ([12, Cor. 2.1]). Let 𝑟0 ∈ R+ ∖ 0. If the function

𝑄 : [𝑟0,+∞) → R+

satisfies (4.2), then there exists a decreasing function 𝑑 : [𝑟0,+∞) → R+, for which∫︁ 𝑅

𝑟

𝑄(𝑥)

𝑥2
d𝑡 6 𝑑(𝑅) ln

𝑅

𝑟
for all 𝑟0 6 𝑟 < 𝑅 < +∞, (4.4)

lim
𝑅→+∞

𝑑(𝑅) = 0. (4.5)

If the function 𝑑 : [𝑟0,+∞) → R+ satisfies (4.5), then there exists an increasing function
𝑄 : [𝑟0,+∞) → R+ satisfying (4.2) and

𝑑(𝑅) ln
𝑅

𝑟
6
∫︁ 𝑅

𝑟

𝑄(𝑥)

𝑥2
d𝑥 for all 𝑟0 6 𝑟 < 𝑅 < +∞. (4.6)

By the first part of Lemma 4.1, inequality (4.3) can be rewritten as

𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑓 |

)︀
6 𝐽𝑖R

(︀
𝑟, 𝑅; ln |𝑔|

)︀
+ 𝑑(𝑅) ln

𝑅

𝑟
+ 𝐶0 for all 𝑟0 6 𝑟 < 𝑅 < +∞, (4.7)

where 𝑑 is some bounded function with property (4.5).
By Lemma 2.1 twice applied respectively to the EFET 𝑓 ̸= 0 and to the EFET 𝑔 ̸= 0, for

some positive numbers 𝐶𝑓 , 𝐶𝑔, 𝑀 we obtain:

𝑙Z(𝑟, 𝑅)
(1.9)

6 𝑙Zero𝑓 (𝑟, 𝑅)
(2.2)

6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑓 |

)︀
+ 𝐶𝑓

(4.7)

6 𝐽𝑖R
(︀
𝑟, 𝑅; ln |𝑔|

)︀
+ 𝑑(𝑅) ln

𝑅

𝑟
+ 𝐶0 + 𝐶𝑓

(2.2)

6 𝑙Zero𝑔(𝑟, 𝑅) + 𝐶𝑔 + 𝑑(𝑅) ln
𝑅

𝑟
+ 𝐶0 + 𝐶𝑓

(3.16)

6 𝑙W(𝑟, 𝑅) + 𝑀 + 𝐶𝑔 + 𝑑(𝑅) ln
𝑅

𝑟
+ 𝐶0 + 𝐶𝑓

for all 𝑟0 6 𝑟 < 𝑅 < +∞, where we have employed property (3.16) in ̂︀II. Letting 𝐶 :=
𝑀 + 𝐶𝑔 + 𝐶0 + 𝐶𝑓 , we obtain relation (1.17) in Statement III of Theorem 1.2.

The validity of implication III=⇒I in Theorem 1.2 has already been mentioned in Remark 2.1
for arbitrary distributions of points Z and W of finite upper density.

A version of Theorem 2.1, extending Malliavin-Rubel theorem 1.3, with 𝑖R-Lindelöf condition
(1.19) for W instead of location of W in the right half-plane reads as follows.

Theorem 4.3. Let the assumptions of Theorem 4.2 be satisfied. Then each of Statements I
and III in Malliavin-Rubel theorem 1.2 is equivalent to the following statement:̂︀II. There exist a pair of functions 𝑔 ∈ 𝐼1* (W) with (3.16) anf 𝑓 ∈ 𝐼1* (Z) satisfying (1.18).

Proof. By part (b) of Corollary 3.1 there exists an EFET 𝑔 ̸= 0 with the properties formulated

in Statement ̂︀II, while by Statement I in Malliavin-Rubel theorem 1.2 there exists 𝑓 ∈ 𝐼1* (Z)

satisfying (1.18) and this proves the implication I=⇒ ̂︀II.
If ̂︀II holds, then we take the logarithm of inequality (1.18) and integrate it over the segment

[𝑟, 𝑅] and divide as in (2.1). This gives inequalities (2.3) and the passage to (2.4) exactly in the
same way as in the proof of the implication II=⇒III in Theorem 2.1. Applying condition (3.16)

in Statement ̂︀II, we can continue (2.4) with some number 𝐶0 ∈ R+ as

𝑙Z(𝑟, 𝑅) 6 𝑙Zero𝑔(𝑟, 𝑅) + 𝐶𝑔 + 𝐶𝑓

(3.16)

6 𝑙W(𝑟, 𝑅) + 𝐶0 + 𝐶𝑔 + 𝐶𝑓 for all 𝑟0 6 𝑟 < 𝑅 < +∞,

and for 𝐶 := 𝐶0 + 𝐶𝑔 + 𝐶𝑓 ∈ R+ this gives III from Malliavin-Rubel theorem 1.2 with (1.19).
The validity of the implication III=⇒I has already been mentioned in Remark 2.1.
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