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ON DISCRETIZATION OF DARBOUX INTEGRABLE SYSTEMS
ADMITTING SECOND-ORDER INTEGRALS

K. ZHELTUKHIN, N. ZHELTUKHINA

Abstract. We consider a discretization problem for hyperbolic Darboux integrable systems.
In particular, we discretize continuous systems admitting x- and y-integrals of the first and
second order. Such continuous systems were classified by Zhyber and Kostrigina. In the
present paper, continuous systems are discretized with respect to one of continuous variables
and the resulting semi-discrete system is required to be also Darboux integrable.

To obtain such a discretization, we take z- or y-integrals of a given continuous system
and look for a semi-discrete systems admitting the chosen integrals as n-integrals. This
method was proposed by Habibullin. For all considered systems and corresponding sets of
integrals we were able to find such semi-discrete systems. In general, the obtained semi-
discrete systems are given in terms of solutions of some first order quasilinear differential
systems. For all such first order quasilinear differential systems we find implicit solutions.
New examples of semi-discrete Darboux integrable systems are obtained. Also for each
of considered continuous systems we determine a corresponding semi-discrete system that
gives the original system in the continuum limit.
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1. INTRODUCTION

In the present paper we study the problem of the discretization of integrable equations so
that the integrability property is preserved. In particular, we consider hyperbolic systems

piy:fi(‘ray7p7pxupy> 1=1,....,m, (11)

where p = (p*, ..., p™), p. = (pL,...,p) and p, = (pll/, DY)

For such hyperbolic systems it is convenient to use Darboux integrability [I]. The above
system is said to be integrable if it admits m functionally independent non-trivial x-integrals
and m functionally independent non-trivial y-integrals. A function I(x,y,p, py, Dyy, - - -) is called
an z-integral of the system if

D, I(x,y,p, Dy, Pyys---) =0 for all solutions of (L.1)), (1.2)

where D, is the total derivative with respect to x. One can define y-integrals in a similar way.
Darboux integrable systems are extensively studied, see [2]-[11] and a review paper [12].

The extension of the notion of Darboux integrability to discrete and semi-discrete Darboux
integrable systems was developed by Habibullin and Pekcan [I3], see also [14]. In recent years
there is an interest in studying such systems, see [I5]-[25]. A semi-discrete system

Qiz:fi(xan;%%;%) izl,...,m, (13)
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where ¢ = (¢*,...,¢™), ¢z = (¢}, ..., ¢™) and q; = (¢*(z,n+1),...,¢™(z,n+1)), is called Dar-
boux integrable if it admits m functionally independent non-trivial z-integrals and m function-
ally independent non-trivial n-integrals. A function J(x,n,q, ¢z, @us, - - -) is called an n-integral

of the system (1.3)) if
DJ(z,n,q, 4z, Quas - --) = J (2,1, ¢, G, Quy - - ) for all solutions of (1.3)), (1.4)

where D is the shift operator, that is Dg = ¢;. Note that Dqr = qr1, K = 1,2,3,.... The
z-integrals I(x,n,q, q1,qa, . ..) for system (1.3 are defined in the same way as for continuous
systems.

A hypothesis states that any continuous Darboux integrable system can be discretized with
respect to one of the independent variables such that the resulting semi-discrete system is
Darboux integrable and admits the set of x- or y-integrals of the original system as n—integrals
[26]. The results of our work support the above conjecture. We complete the discretization
of continuous Darboux integrable equations derived by Zhiber and Kostrigina in [8]. In their
paper, Zhiber and Kostrigina considered the classification problem for continuous Darboux
integrable systems with two integrals of the first order and two integrals of the second order.
They found all such systems together with their z- and y-integrals. Following [8], we have two
types of systems. The first system is

Uy Uy 1 o
Ugy = + + 2 Uy Vy,s
uw—+v u+v u + a“v

1.5
a?v,v, N 1 N 1 (1.5)
Vpy = Uy Uy,
Y u+ay alu+v)  u+a2v) TV
with a being a nonzero constant. We mention that in the case o = 1, system (1.5 was

discretized in [26]. For a # 1, it possesses y-integrals

1 11—« —a
11:(1+_>U( s ) _%( U ) | (1.6)
o uU-+v U+ v

1
= e (0t et av, (1.7)

Uy a(u+v)

and the z-integrals have the same form in u, u,, u,, and v,v,, vy, variables.
The second system reads as

Ugpy = Utz tly L + ! UUL V.
Y ww +d w+d  ofuv+c) e

(1.8)
UVLVy o 1
Ugy = + + VUg Uy,
uv +c (uv+d uv+c>
where «, ¢ and d are nonzero constants. For a = —1 it possesses y-integrals
_ (d — c)v*u? Uy (1.9)
2uv +d)?2 w+d
and
J, = Yeo (d — c)vu, — cuvx’ (1.10)

Uy c(uv + d)
where ¢ and d are non-zero constants and the z-integrals have the same form in w,u,, u,, and
V, Uy, Uy, variables.
For v # —1 it possesses y-integrals
2, B+1
uPuv, Bv2u?

I3 = 1.11
7 (w + d)P * (uv + d)P#+1 (L11)




172 K. ZHELTUKHIN, N. ZHELTUKHINA

and 5 N
Ugy Vg + UV,
Jg=—F — = 1.12
3 Uy + w+d (1.12)
where d and § = —a # 1 are nonzero constants, and the z-integrals have the same form in

U, Uy, Uyy aNd U, Uy, Uy, variables.

In order to discretize the systems and (L.8), we employ a method introduced
by Habibullin et. all [20], see also [24]-[26]. According to this approach, one takes the
x- or y-integrals of a system and looks for a semi-discrete system admitting such integrals as
n-integrals. In general, one gets a set of semi-discrete systems admitting these n-integrals.
For all sets of the y-integrals of systems and we obtain corresponding semi-discrete
systems. Note that initially we allow the parameters o, ¢ and d in integrals , and
— to depend on n. It turns out that only d may depend non-trivially on n in one
case. In all cases we are able to choose a semi-discrete system that gives the original system in
the continuum limit. Also in examples, where we can write a semi-discrete system explicitly,
we show that the system is Darboux integrable.

The following theorems are formulated for a hyperbolic type semi-discrete system
Ure = f(xa N, U, U, Uy, Uy, U, vl)a
Vig = g(xa n,u,V, Ug, Vg, U1, Ul))

(1.13)

where variables u,v depend on a continuous variable x € R and a discrete variable n € Z.

Theorem 1.1. Let o # 1. System (L.13) admits n-integrals (1.6)) and (1.7) if and only if it
15 of the form

+ -
Uy = o I UID? lurm
U+ v
1 (1.14)
a+1vDy  —uD
Vg = Uy + D10,
o U+ v

The function Dy is equal to 1 or given implicitly by H(n, K1, L1) = 0, where, for each n, the
symbol H denotes an arbitrary smooth function and

B avy DY — avDITT 4+ (1 — D Ny

K, = (Dr = 1)er ) (1.15)
_ o1 o1 _ o o
2 @Dt ()P (o DY - a4+ (=D )
DDy~ 1) (Df ™ — 1)t ' '
Let us construct some examples.
Example 1.1. In the case D1 = 1 system (1.14]) becomes
Uy + V1
Uy = Y )
u
1\ v — v (1.17)
Vig = (1+—) Uy + Vg
o) u+v

This system is Darbouz integrable. Indeed, it possesses two independent non-trivial n-integrals
(1.6), (1.7) and two independent non-trivial x-integrals

VvV — U1 Uy —u
Fi= and Fo=

v — Vg (vg — v)l%a

— a(v; —v)l%a. (1.18)

The x-integrals can be found by considering the x-ring corresponding to the system.

Example 1.2. Letting K1 =0 and a = —1, we get
up + vg

D, = .
Uy + v
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Using (L.14), we find the system

Uy + v
Uy = + o Ug,

U

w + vy (1.19)
Vig = o

Uy +v

This system is Darboux integrable. It possesses two independent non-trivial n-integrals (1.6)),
(1.7) and two independent non-trivial x-integrals

Foletulzw) o g mwlate) (1.20)
(w1 + v1)(vy — v2) (—uy + ug)(uy + v)
1
Example 1.3. Choosing K1 =0 and o = 5 we get
Dl _ 4U1 + 2U1 .
v+ /v? 4 16u2 + Sujv;
By (1.14), we obtain the system
( 2
up 4+ vy [0+ v+ 16ud + Sugv;
Uiy = Uy,
! U+ v duy + 21
2
o o v+ /02 + 16u? + Suyv;
v(4uy + 2v1)
(u+v)(v + /02 + 16u? + Suyvy)
4uq + 201
+ Vg
L v+ /02 + 16u2 + Sujv;
This system possesses two independent non-trivial n-integrals (1.6) and ((1.7)).
Example 1.4. Considering L1 =0 and o = —1/2, we get
p_ut v} + 16u2 + Suv
e 2v + 4u '
By (1.14) we then arrive at the system
2
( up + v 2v+ 4u
Uy = Uy
u+v \ v+ v} + 1602 + Suv
2
vy 20 + 4u v(vy + 1/} + 16u2 + Suw) (1.22)
Vip = — — Uy :
' u+v \ v + /v + 16u? + Suv (u—+v)(2v + 4u)
vy 4/} + 16u2 + Suv
\ 2v + 4u v

This system possesses two independent non-trivial n-integrals (1.6) and ((1.7)).

Remark 1.1. In both previous examples let us consider the corresponding x-rings. Let

0 0
X =D, Yi= -, Yo= o
! Ou, 2 0v,

Elz[YiaX]7 E2: [}/27X]7 E3: [E17E2]'
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We observe that
X :U$E1+UmE2+§/1+§/2.

The following multiplication table

|E;, E;] Eq Es Es
E1 0 E3 —2<U + ’U)_1E3
E, —FE5 0 —2(U + ’U)ilEg
E3 2(U+U>_1E3 2(U+U>_1E3 0

shows that the x-rings are finite-dimensional. Therefore, systems and are Darboux

integrable.

Remark 1.2. We consider the function Df‘_l defined implicitly by
H(Kl,Ll) = Kl = 0,
that is, by
av; DY — oD 4 (1= DY Dy =0,

and expand it into a series of the form
fo (u1,v,v1) E an(vy — )"

where the coefficients a,, depend on variables u; cmd v only. This yields

Df_l(ul,v,vl) =1+ mfﬁ@l —v)+ ;an vy — )"

and

OZ2

Dl(Uh’U Ul) = 1+ U,l—l——az

(v —v) + Zan (v — o)™
n=2
Letting uy = u + euy, v1 = v + v, and passing to the limit as € — 0, one can see that system

becomes .

Theorem 1.2. System (1.13) admits n-integrals (1.9) and (1.10) if and only if it is of the

form
v(ugvy + d)Dy
ule i — X
vi(uv + d)
, (1.23)
_— (d — c)vv (D3 — 1)u N
e 2c(uv +d)Dy " wDy °

The function Dy is defined implicitly by H(n, Ky, Ls) = 0, where, for each n, the symbol H
denotes an arbitrary smooth function and
vDy M

2d
Dy — 1) M~ e+d
oDz~ 1) . (—2cduqvy + wvDy M), Ly=—"—— (1.24)
v Dy U1

KQI

where
(C + d) (D2 — 1)’&11)1

M = 2cd
ca + D,
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Example 1.5. Let Ky = 0, then we get
(2cd + (¢ + d)uv)urvy
(2¢d + (¢ + d)ugvy)uv

=

Using (L1.23)), we obtain the system
( ui(uwvy + d)(2ed + (¢ + d)uw)

Mz = u(uwv + d)(2cd + (¢ + d)ugvy)
_(d=¢) (wvied+ (c+d)uv)  uv®(2ed 4 (¢ + d)usvy)
Vi  2¢(uv + d) ( u(2cd + (¢ + dyugv)  ui(2ed + (¢ + d)yuw) ) ta (1.25)

u(2¢d + (¢ + d)uyvy)
L u1(2¢d + (¢ + d)uv)
This system possesses two independent non-trivial n-integrals (1.9) and (1.10). One can confirm

that this system possesses also the following two n-integrals

(2¢cd + (¢ + d)uv)uy, . (¢ — d)uv?u, N UV,
u(uv + d) ’ 2 2c(uv 4 d)(2cd + (¢ + d)uv)  2ed + (c + d)uv’

Considering the corresponding x-ring we can also find the x-integrals given by

L=

U
Fi=—

u

2¢cd + (¢ + d)uw & 7, _ v - uw
2¢d + (¢ + d)ugvy ’ 27 Ugvg — un”
Example 1.6. Let Ky = 0, then

(et d)un
"~ 2cd + (¢ + d)uvy

2

Using we gel the system
(u _ (¢ + d)ugv(usvy + d)

Y (ww + d)(2ed + (¢ + d)ugvy)

(d—c)v (c+ d)uyv? 2cd + (¢ + d)ujv;
Vi :2c(uv +d) (2Cd + (c+ duv; (c+ d)uy > ta
2cd + (¢ + d)uyvy

L (¢ + d)uqv
This system possesses two independent non-trivial n-integrals and and two inde-
pendent x-integrals

X

c+d c—d

1 (20d+ (c+d)ulvl> 2d L <2cd+ (c—i—d)uwl) 2d

Fi= —

L7 ¢ +d VU Uy VU
and

%t ctd

vug (2ed + (e + d)ugvy) 2d

v (2ed + (¢ + d) (wyvy + ugvy))

Remark 1.3. We consider a function Dy defined implicitly by
H(KQa LQ) - L2 — (2Cd)2d/(c+d) =0

and expand it into a series of the form

(o, ¢]
Do(ur,v,01) = Y an(vy — v)",
n=0
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where coefficients a,, depend on variables uy and v only. This gives:

Dso(uy,v,v1) =1+ (uvc+c v, — U +Zanv1—v

By letting uy = u+eu,, vi = v+ cv, and passing to the limit as € — 0 one can see that system

becomes @ with o = —1.
Theorem 1.3. System (1 admits n-integrals (L.11) and (1.12) if and only if it is of the

form

A U1V + d1 U
1.2
_BU% + BU2D§ + 'Dﬁ ( 6)
Vig = Uy Vg
! Di(uwv+d)  wv+d 3

The function Ds is given implicitly by H(n, K3, L3) = 0, where, for each n, the symbol H
denotes an arbitrary smooth function and

(Ul — UD§)671 (dlu — dung)

Ka = 1.27
3 DS ) ( )
Ly = (v, — vDB)1-95" (d DI —dy + (B — 1)us(vr — vpgf)). (1.28)
Here di = Dd and D is the shift operator.
Example 1.7. Considering K3 = 0, we find
1/
Yy
Dg — 1/5 .

Using (1.26)), we get the system
(uyvy + dy)vt/?
w + d)oi’?
( i (1.29)
Bv2ut/B Buu, v
Viz = | ~ /3 + Uy + —Vy.
oiP(wo +d)  v(uw +d) v

This system possesses two independent non-trivial n-integrals (1.11) and (1.12)) and two inde-
pendent x-integrals

lz — T

and

vB —wv P
One can confirm that this system possesses also the following two n-integrals

v/ By, Uy VUy
I3 = ——, J; = —+ b )
uv +d v uv +d

Example 1.8. Let K3 =0, we find

dlu
Dy = ——.
3 du1
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By (1.26]) we get the system
(urvy + dy)duy

Uy =

(uwv +d)dyu "
2 8,2, B, 3 (1-30)
Bdviuy Bdyvu diu
Vig = | — 3 Uy + — 5 V-
diu(uv +d)  dbuf (uv + d) dPu

This system possesses two independent non-trivial n-integrals (L.11)) and (1.12)) and two inde-
pendent x-integrals

B dPuPv — dPulv,

B dgufvl — dfugvg

Fi

and

(dPuPv — dPulv)) (ddPuPu — dydPulu + (1 — B)uuy)
ddluul

We confirm that this system possesses also the following two n-integrals

Fo=

dity, wPu, 2uPuy,
Ig* =% J:;k* _ + BU u-u '
u(uv + d) d?  dP(uv +d)
o . dy + R
Example 1.9. Considering Ly = 0 with = 2, we get D3 = 5 , where
uUlv

R = \/d% + 4U11}(U1’Ul — dl)
Then by (1.26]) we arrive at the system

(u _ (uwl + d1)<d1 - R) w
Y (w0 + d) (dy — wyvy)

2(R—d d? +2 —d iR "
o, = (GEZd) At 2ue(un —d) AR v (1.31)
dy — uqvg us uv + d
d% + QU1U(U1’U1 — dl) + le
+ 2,2 Vz-
L 2uiv
This system possesses two independent non-trivial n-integrals (1.11) and (1.12)).
Example 1.10. Considering L3 = 0 with § = 1/2, we see that
12 2dy +uvy + R
D3 —
2uqv
where
R = \/(le + U1U1)2 — 8d1U1U.
Employing (L.26]), we get the system
- (’U,1U1 -+ d1>(2d1 + uv; — R)Qu
A 16d2(uv + d) v (1.52)
- —’U%(2d1 + uiv1 — R)2 4 U(2d1 + uivp + R) Uy 2d1 + w1 + R '
e = 32d2 4y uv +d 2uqv v

This system possesses two independent non-trivial n-integrals (1.11) and (1.12)).

Remark 1.4. In both previous examples the corresponding x-rings have the following mul-
tiplication table
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(E;, ] Ey E, Es

2 0 B | gt

PRI R =
2v 2u

Es d+qu3 d+qu3 0

where the fields X, Yy, Yy, By, Fy and E3 are introduced in the same way as in Remark 1. This
shows that the x-rings are finite-dimensional and the corresponding systems (1.31)) and (1.32)

are Darboux integrable.

Remark 1.5. We consider a function D3 given implicitly by H(K3, Ls) = Ly = 0 and ezpand
it into a series of the form

o0
Ds(uy, v,01) = Y an(vr —v)",
n=0

where coefficients a,, depend on variables uy and v only. Then

i (v —v) + Z an(vy — )"

Buv —

u
Ds(uy,v,v1) =1+ -

n=2

By letting uy = u+€u,, vi = v +¢cv, and passing to the limit as € — 0 one can see that system
becomes (1.8). We observe that f = —a and constants «, ¢, d satisfy the identity d = oc.

2. PROOF OF THEOREM [L. ]
It follows from the identity DJ; = J; that

Utz (1 i) Ue Ve Uss (a+ 1ug + av,
Uiy o) up+vr ur v Uy alu+wv)
that is
Jo 4 futa + foa + furf + forg + fustlaw + fo Vae (1 N i) f
f o1/ U+
g Uz (@ + Duy + av, (2.1)
_ul—l—vl:u_x_ alu+v)
By comparing the coefficients at v,, and u,,, we get
fus 1
fo. =0 and 7 = w
Hence,
flz,myu, v, uy, 01, Uy, v) = Az, 0, u, v, Ut V1) Uy (2.2)

It follows from DI, = I; that

1 A l1—ay A —a1 1 11—« —«
Q) K Crerrd B Crerrd IR Gy Ceer) B e B
o7 U + vq U + U1 o U+ v U+ v

We first consider the case a; # a. We have:

g = Tuy + Mu:t*~* + Nyu®

where

T = (Hi) LI V. (1+1) plut o) ATy (vt
o1 ) up + vy « (ug 4 vy)™ (ug 4 vy)™
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Substituting the expression for g and f into (2.1) and comparing the coefficients at u?, u,, v,,

ult1= and v,u' "%, we get
Ay
— =0 2.3
A ? ( )
A, A, 1 A T 1 1
— 4+ A+ —T—[1+— — =—(1+— , (2.4)
A A o) up+v UL+ v a) u+v
A, 1
e 2.5
A 1
M2 -0 2.6
(%) -0 (2:6)
A 1
N L =0. 2.7
( A +v1> (2.7)
It follows from ((2.5)-(2.7)) that
A=" i UlS(n,u,ul),
U+ v

where S(n,u,up) is a function depending on n, u, u; only. Substitute this expression for A into
(2.4)), we find that

w (1+a)o(u +v1)2> S+MTU ) (28)

Sy
(u+v)(us +U1)§ + (uy +v1)*Sy, + (U1 — 04_1 _ -

Differentiating the last equation three times with respect to v, we get

(0%

1
—6 <1+—> S =0, hence, S=0.

€51

Hence, A = 0 is the only solution when o # ;.
Now we consider the case when « is a constant, that is « is independent of n. We have:

1 A AC “ “
g:<1+_)( b _ v (“*) >ux+<A“+“) (2.9)
«Q upt+vr u+v \u+ v u; + vg

We substitute the expressions for f and g into (2.1)) and compare the coefficients at v,, u, and
the free term. This gives:

Ay
— =0 2.10
A ) ( )
A, 1 U1 vA%¥A, u+v \” A
— + A, 14+ —1 A, — ! —
At 1+( +04>{ fup o A(uv) (U1+v1> uy + vy
A A® “ 1
B v v ( u+wv ) N ] 0, (2.11)
(ur +v1)?2  (u+v)(ug +v1) \ug + vy u+v
A, A, AY “ A “ 1
Ao Ao u+v B u+v n _0 (2.12)
A A U1 + U1 u; +v; \up + v u—+v
Let N
D, = ( utv ) A, (2.13)
U + U1
In terms of the function Dy, the equations (2.11)) and (2.12)) cast into the form
—1 +1 —1 —1
(+v) Dy + (ug + v1)D Dy, + —— (DY — DY) Dyy, — DD —1) =0, (2.14)
D
2 4 Dy, =0, (2.15)

D,
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The set of solutions of the above system is not empty. For example, D; = 1 is a singular

solution leading to Darboux integrable system (1.17)). Let D; # 1. It is convenient to regard

D; as a function of n, u, v, uy, vy defined implicitly by the equation as follows
W(n,u,v,uy,v1,D;) = 0.

Then in terms of function W = W (n, u, v, uy, vy, D1), equations (2.14) and (2.15)) can be rewrit-

ten as

—‘l_ 1 —1 —1
(u+0)Wy + (ur + 0D Wy, + S (D — vD))W,, + Di(D " — 1)Wp, =0, (2.16)
W,
+W,, =0. 2.17
Dl 1 ( )
Under the change of variables
U=, 0y = v1 — vDx, u=u, Uy = Uy, 2~71:271,

the above equations cast into the form
~ ~ 1 1 o~ 1 = -1 ~
(@ + 0)Wa + (T + 01 +9D1)DY Wy, + ((1 + E) 5Dy + EU(D}” — Dl)) Wi,
+ (D —Dy)Wp, =0,

W5 = 0.

We differentiate the first equation with respect to v, then use the identity W; = 0, and get two
new equations

~ -1 1 -~ -1 ~
Wﬁ —|— ID%+Q Wﬂl —|— —(,D%+a - IDl)ng - 0,

N 1 .
AW + (i + 50)D2 " Wa, + S5, D07 W, + (DM — D)W, = 0.

In the latter system, we make the change of variables
W= — D, vi=aDd o+ (1-DY iy, u=a, v'=0  Di=D
and we get:
Wy =0,
xa ! —1 x—a 1 * —1, kqyx—a !
((D1 Fa (1 =D Y+ a i Ds )Wu;
a+1
+

VD W + DD —1)Wpy = 0.

The last equation has a general solution H(n,Ky,Ly) = 0, where Kj, L; rewritten in old
variables are given by , and H is a smooth function for each n. Now, using
identities . and , we obtam system - This completes the proof.

3. PROOF OF THEOREM [[.2]
The identity DJ; = J, implies that

fx + fuua: + fvvaz + fu1f + fv1g + fuzua:x + fvzv:(:a: + (dl - Cl)vlf — Clu19g
/ c1(uivy + dy)

3.1
Uz (d — C)vuy — cuvy (3-1)
Uy c(uv + d)
Comparing the coefficients at u,, and v,, in the above identity, we get
" 1
fo. =0 and &:—.

f Ug
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Hence,
f=A(x,n,u,v,uy,v1)u,. (3.2)
The identity DI = I implies
(dy — c1)v? A%u, cAg (d — ¢)v?u, CU

— = — . 3.3
2(ugvy + dy)? u vy + d; 2uv +d)?  ww+d (3.3)
It follows from (3.3) that
_ (di —c)viA  (d—=cvi(wor + dy) ) c(uyvy + dl)v (3.4)
2¢1(ugv1 + dy) 2c1 A(uv + d)? YA +d) T '

Substituting the expressions for f and g into (3.1) and comparing the coefficients at u,, v, and
the free term, we get

A
=, (3.5)

A
Ay + A+ Ay wm (d —c)viA  (d—=c)v*(wor + dy)
A “ A wv +d; 2¢;1 (ugvy + dy) 2c1 A(uv + d)?

(dy — 1)1 A (d—c)

(3.6)

ci(uvy +dy)  cluv + d)
Ay cluvy +dy) Ay, Uy U
oo AL _ =0. 3.7
AT At d \ A motd) wrd l (3.7)
One can check that

Y

_ v(ugvr +d)
v (uv + d)
is a particular solution provided d; = d and ¢; = c.
Now assuming that
v(ugvy + d)
vi(uv +d)’

we introduce a new function
D vy (uv + d)
, =

Cw(ugvy +dy)
In terms of Dy, system (3.6 becomes

DQm = 07
v(ugvy + dp) Dy

(wv + d)Dsy, + - Do, + % ((dy — e1)Dy — (d — ¢)Dy ™) Dy,
1 1
—@D2+ (d1+Cl)UD22+U(d—C) :0,
c 2¢y 2cy

ClUDQ,DQU + C’U1D2U1 + (—CDQ -+ 01D22) = 0.

In the same way as in the proof of Theorem , we introduce a function W(n,u, v, uq, vy, Ds).
For the function W = W (n, u,v,uy, vy, Dy) the last two equations become

d
(U’U + d)Wu + WDZWUI + % ((dl — Cl>D2 - (d - C)DQ_l) WU1
1 1
+ @DQ _ Mpf _ v(d——c) Wp, =0,
C 261 2Cl

D W, + coyWy, + (¢Dg — 011722)WDQ = 0.
In new variables

a:U, ’L~L1 = Uy, QNJ:U<01D2—C>, @1 :Ul(Clpg —C)DQ_I, 752 :DQ,
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the last system can be rewritten as
((Clﬁg — C)fb’f) + d(01152 — C)2> Wﬁ -+ g (ﬂlﬁlﬁg(clﬁg — C) + d1 (Clﬁg — C)2> VV{LI
(%1

~ ~ 2
+1~)2 (CldDQ _ (dl +01)D2 i C — d) Wi}

c 2 2

~ 2 ~
vop (= c)D2 Dy ctd W;, =0,
2 C1 2
Wy, = 0.

Special solutions of 1) may exist only when Dy = ¢; /c. We differentiate equation 1) with
respect to Dy three times and get the following system of three equations

~ _ d ~2 d ~ o~
(de? — cad)Wy + c2d1§Wﬂl Ll ; LG +2)”“l W, =0, (3.10)
1
(Cla’& - 2d01C)Wg - (leclcﬁg + Cﬂﬂj) Wﬁl + a CU Wf; - ¢ 1CUU1 Wf;l = O, (311)
1 1

d, 2V d 02 dy — ¢1)00
AW, + ( 1av c1a1@> w, — +261)“ w, 4+ & 261)“”1 Wi, =0, (3.12)
(%1
that has no solutions if ¢; # ¢ or d; # d. In the case ¢; = ¢ and d; = d the system becomes
W %3(2c%d + (¢ — d)uyv1) W 001 (2¢*d + (c + d)aﬂ{) Wy =0, (3.13)

20(@&1’[}’61 + cd(ﬂf) — ﬂlf}l)) v 26(@@1{)’51 + Cd(fbf} — ﬂlvl))
(=2 + (c+d)id) . B2Cd+ (—c+ d)id)

Wﬁ - ~ < <~ ~~ ~ < [ ~~ - ~ ~ ~
2¢(0t, 001 + cd(u0 — 6107)) 2¢(0ty 001 + cd(U0 — Uy07))

W;, = 0. (3.14)

Under the change of variables

2d_
UT = al; ’UT = 751, V¥ = g (262d -+ (C -+ d)alﬁl) etd R
U1
c—d _2d
ut = aty (2¢°d + (¢ + d)an ) 7 = 23da 0707 (2¢°d + (¢ + d)anty)
equations (3.13)) and (3.14) become W,+ = 0 and W,» = 0, respectively. We rewrite these first
1 1

integrals in old variables and get the general solution in an implicit form H(n, Ky, Ly) = 0,
where, for each n, H is a smooth function and K,, Ly are given by (1.24]). The form of system

(1.23) follows from (3.2)), (3.4) and (3.8)). The proof is complete.
4. PROOF OF THEOREM
The identity DJ; = J3 implies
_ fx + fuuac + fvvx + fulf + f'ulg + fuzuwz + fvzvxz +2U1f + ulg o _%_{_Qvuz + UVg

. (4.1
f w1 + dy Uy uv + d (4.1)
Comparing the coefficients at u,, and v,, in the above identity, we get
Ju 1
vy 07 _=—
o F o
Hence,
f=A(x,n,u,v,uy,v1)u,. (4.2)
It follows from the identity DI5 = I3 that
fg L T T o "

(uyvy + dp)P i (urvy +dp)Pr+t  (uv + d)P * (uv + d)s+1’
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First we consider the case 8 # 5. We have:
g = Toul =P + Mul™=% 1 Nu,,

where

Aiﬁl (uwl + d1)51 M= B’UQA*'Bl (uwl + dl)ﬂl 511)%14

T = N = —

(uv + d) ’ N (uv + d)B+1 ’ (uyvg +dy)

183

(4.4)

We substitute this expression for g into equation (4.1) and compare the coefficients at u?, u,,

uP=P1 v, ulP=P1 in the resulting equation. This gives:

Ay

a0

é—i—A +Av1N+ 2Av, N u N _ 2v
A b A U101+d1 U1U1+d1 uv+d’
A, u

A w+d

<A’Ul + L) — 07
U1V + d1

A
AU Uy
M Ly —— | =0.
<A +U101+d1) !

(4.5)
(4.6)
(4.7)

(4.8)

(4.9)

If T=0o0or M =0, then A = 0. Hence, in order to have A # 0, we assume that TM # 0. If

TM # 0, then equations (4.7))-(4.9) imply
uv +d
uvy +dg

where S = S(n,u,u;) is a function depending on n, u and u; only. We substitute the above

expression for A into (4.6)) and we find that

Su
(urv1 + dp)?*(uv + d)g + (uyvy + dy) (uv + d)2S,, + vi(uv + d)?S — v(ugvy +di)? = 0. (4.10)

Then we differentiate the last equation twice with respect to v; and we obtain:
S,
2u3 (uv + d)gu —2uiv =0,

that is,
Sy, v

S ww+d
This contradicts to the fact that S is independent of v, v;. Hence, 8; = .
We proceed to the case when [ is a constant, that is, £ is independent of n. Let

. U1V + dl
T Aluwv + d)

Then it follows from (4.3) that

pui Bv*Dy 3
= [ — + + Dhv,.
g ( Dg( + ) Uy + D3 v

w+d)  (ww+d
Being rewritten in terms of Dj, identity (4.1)) casts into the form

D3, <D3u uvy +dy 5(”2D§ - U%D:?l) U1 v
D +
3

D B
+ ( v 4 pf 1D3v1) v, = 0.
Ds

w1 v T —
Dy Dl(ww+d) Dy(ww+d) " Dyluwv+d)  (uwv+d)

(4.11)

(4.12)

>ux
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We compare the coefficients at u,, v, and the free term and we get:

D3a: = 07
uv + d uv, + dq 51}2175 — ﬁvagl U1
Dy, Ds., Dy + — — v =0, 413
D, ° D2 D; s T p, Y (4.13)
Ds, + DyDs,, = 0. (4.14)

We introduce a function I in the same way as in the proof of Theorem |1.1]and in new variables
1~)1 :vl—va, INJZU7 INL:U, ﬂlzul, 253:2)3,

equations 1) and 1} for the function W = W (n, @, 0,1y, 91, D3) can be rewritten as
follows

W5 =0,
Dyt 4 d)W; + (a1 (01 + 0D + dy) W,
+ D3(8(D3 — D5) — 1) Wp, — B (i1 + 0D5) Wy, = 0.
We differentiate the latter equation with respect to v, employ the identity W; = 0, and get a
new system of equations:

@DsW;y + i Dy W, + (D? — 155+1)W~ — By DEW;, = 0,

dDsWy + (01 + dy)Wa, — Dstn Wp, — B02Ws, = 0,
which can be rewritten as
diDs — di D + Dyiy dio, D1
W, + & ~3 1/813 + ~3Nu1~vlwﬁ3— _ g 1~Uﬁ1~ 3 W, =0,
dvu — dD5 1y + Uty 0y dvu — dD5uq + 4ty vy
W, Ds(dDs — dD5 + ) - By (dDS — i) S

dyii — dD2Gy + Wiy dvii — dDSTy + Gy by

In these equations, we make the change of variables

u* _a~1/5d1/ ddﬁ/l /3 ~ ~1/5
D; — 651—5)/5'D§*1 o 179—5)/5 + (6 . 1)d lalﬁi/ 7
uy = Uy, vt =1, v = 01,

and these equations become W,» = 0 and W,,: = 0, respectively. We rewrite these first integrals
in old variables and get that the general solution is given implicitly by H(n, K3, L3) = 0, where,
for each n, the symbol H denotes an arbitrary smooth function and K3, L3 are given by ([1.27)),

(1.28). The form of system (1.26)) follows from (4.2)), (4.12)) and (4.11]). The proof is complete.
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