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ON MKDV EQUATIONS RELATED TO
KAC-MOODY ALGEBRAS A" AND 4%

V.S. GERDJIKOV

Abstract. We outline the derivation of the mKdV equations related to the Kac—-Moody
algebras Agl) and A(52). First we formulate their Lax representations and provide details how
they can be obtained from generic Lax operators related to the algebra si(6) by applying
proper Mikhailov type reduction groups Zjp. Here h is the Coxeter number of the relevant
Kac-Moody algebra. Next we adapt Shabat’s method for constructing the fundamental
analytic solutions of the Lax operators L. Thus we are able to reduce the direct and inverse
spectral problems for L to Riemann-Hilbert problems (RHP) on the union of 2h rays [,.
They leave the origin of the complex A-plane partitioning it into equal angles w/h. To
each [, we associate a subalgebra g, which is a direct sum of si(2)-subalgebras. In this
way, to each regular solution of the RIP we can associate scattering data of L consisting
of scattering matrices T, € G, and their Gauss decompositions. The main result of the
paper states how to find the minimal sets of scattering data Tg, kK = 1,2, from Ty and T}
related to the rays [y and l;. We prove that each of the minimal sets 77 and 75 allows
one to reconstruct both the scattering matrices T,,, v = 0,1,...2h and the corresponding
potentials of the Lax operators L.

Keywords: mKdV equations, Kac-Moody algebras, Lax operators, minimal sets of scat-
tering data.

Mathematics Subject Classification:17B67, 35P25, 35Q15, 35Q053

1. INTRODUCTION

This paper is a continuation of a series of papers on Kax-Moody algebras and mKdV equa-
tions [14], [15], [16], [17], [18] and two recent papers [19], [I3]. There we derived explicitly
the system of mKdV equations related to several particular choices of Kac-Moody algebras,
including some twisted ones like Df), s=1,2,3, Aél) and Ag).

The next natural steps to be considered are to develop the direct and inverse scattering
method for the relevant Lax operators and to construct their reflectionless potentials and, as
a consequence, soliton solutions to the mKdV systems. The methods for doing this have been
already developed in [7], [20], [8], [21], [22], [23], [39]. This is why it will not be difficult to
specify the construction of the fundamental analytic solutions (FAS) [32], [33] of the relevant Lax
operators and to formulate the corresponding Riemann-Hilbert problem (RHP). In constructing
the soliton solutions, the most effective method known to us is the dressing Zakharov-Shabat
method [37], [38].

The structure of the paper is as follows. In Section 2 we outline preliminary known results
about the structure of the Lax operators for the case of Agl) and AgQ) Kac-Moody algebras and

for the recursion operators, see [13]. Section 3 is devoted to the fundamental analytic solutions
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(FAS) and to the Riemann-Hilbert problems for both cases. In Section 4 we introduce the
minimal sets of scattering data and show by these set we can reconstruct both the potential
and the sewing functions of the RHP. In the appendices we discuss some algebraic details of
the structure of Kac-Moody algebras.

2. PRELIMINARIES

2.1. Lax representations: Aél) case. We suppose that the readers are familiar with the
theory of simple Lie algebras and Kac-Moody algebras, see [3], [24], [4] and their applications in
the studies of integrable nonlinear evolution equations [5], [6]. Details about the bases and the
gradings of the Kac-Moody algebras are given in the appendices. Here we consider a nonlinear
evolution equation with a simplest nontrivial dispersion law, which is fuxav(\) = A3 K.

In this section, following our previous papers, we define the Lax pairs whose potentials are
elements of the Aél) and Af.?) algebras for the mKdV equations. They represent the third
nontrivial member in the hierarchy of soliton equations related to these algebras. The results
presented here are derived in |[16], [14] for Aél) and in [13], [19] for A?).

We consider a Lax pair that is polynomial in the spectral parameter \:

L E(zg + Q(x,t) — )\J)w =0,
Ox
(2.1)

M) E(i% + Vo(z,t) + AVi(,t) + N2 Va(z,t) — )\3K)¢ = - \YK.

The zero-curvature condition [L, M] = 0 leads to a polynomial of fourth order in A, which
has to vanish identically. The Kac-Moody algebra Aél) is graded by the Coxeter automorphism
C1, see Appendix A below) The basis we use reads as

6 i '
| 1 if j+s<6
- ) B x Y,
J®) = Z € jtswWi Bt Cigts = {—1 if j+s>6
j=1 ’

B, ] = (wrms = o) ST, g — e,
(Js(k;))—l _ (Jgk))f'

The potential coefficients of the Lax pair are defined as

5 6
Q) =Y g t) 1", V(e t) =Y o @, T=J",
j=1 =1

) (2.2)

5
Va(r, t) =Y o2 (@, )12, Vola, ) =D v (x,0) 7", K =J.
=1 =1
The condition [L, M] = 0 leads us to a set of recurrent relations, see [20], [22], [9], which
allow us to determine V*)(x t) in terms of the potential Q(x,t) and its z-derivatives.
By using the choices for @, J and K from (2.2)) we get:

0 q1 q2 qs q4 45

—q 0 q1 qz g3 44

Q=| "% % 0 @ @ ¢

- —qu —¢ 0 @ @

—¢@ —q3 —q —q¢ 0 q

—q1 —@ —q3 —q1 —q5 O

J = diag (1,0, w*,w? w? w), K =diag(1,—1,1,—1,1, —1),
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where w = %" These equations admit the following Hamiltonian formulation:

dq; 9 ( SH
ot N ox 5q€5—i ’

The Hamiltonian density is:

0q, Ogs dqs
H__323x Oz +2(8x>

0 5 0q2 0
+ 8\/5( 2oz =t + 2¢5—— + (q1g2 + Q4Q5)a—(f + 243 " 9r — 2q3qa— - B

ox ox
+2g5 — 24(q1q5 + 4204) @3 + 16(q} — 3q14; — 30505 + 42) a3 + 24(q1q2 — qugs)*.

8Q4 g5 )

2.2. Lax representations: Aéz) case. Here we formulate the main results of a recent paper
[13], see also |11, [12], [14], [15], [I8]. The grading used here is described in Appendix B. It
uses the Coxeter automorphism C5 and splits A5 into 10 subspaces. The dispersion laws of the
nonlinear evolution equation to A?) are odd functions in \; therefore, NLS-type equations here
are not allowed. Thus, we are left with frxav(\) = N3 K.

The Lax pair is of the form

L =i0, + Q(x,t) — \J,
M =id, + VO (z, 1) + AWV D (z,8) + N2V (2, 1) — MK,
where
Q(z,t) € g, VW (z,1)eg®, Keg® JegW.
Here we choose J and K as follows:
J = diag (w3, w?,1,0,wS, ws), K =20J3,
where wy = e and choose

0 Sl 43 2 —q@1 —43
a0 @ - @ g
_ ©_ |- —a 0 @2 —q3 —q1
Q= Zq]sj e 2 e 0 @ g
@ @ ¢ —¢ 0 —a
s @ @ ¢ @ 0
Then we solve the recurrent relations obtaining the following result:

3
V=Y uuE p=210,  Vi=V+ouul

p
j=1

and obtain explicit expressions for v,,; in terms of ¢; and their z-derivatives, for details see [14],

[13]. The equations of motion

dq; _ Ovoy
ox or ’
can be cast in Hamiltonian form as follows:

8(]]' 0 5H 8’00.]' .
_— = = : :]. 2
g~ dwdq@)  ox LY

rerfvion (3) o () o0 (2

Jj=12,3,

where
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B dq _ Jq
+20 (e 45 + 3 q1gs — 26§ 43) a—xl —20 (5 g3 + c3 7 — 25 43) 3_;

oq
+40 (—¢5 g3 + ¢ G2) 2 A + 2003 + 400145(a3 — ¢) + 60(¢3 63 — ¢33 — 33

ox
and
2 2

5 =/24+ —, Co =412 — —.
? V5 ? V5

Let us now repeat the calculations using the second type of grading, see equation (B.2)). In
this equation, potential takes diagonal form while J becomes the sum of admissible roots. We

can do the grading using an alternative choice of the Coxeter automorphism given by (B.3),

(B.4). This gives:

C

. . 1 1.
=iy u(z, )&,  J=Eh+EH+ 50+ 560,

3

VO(r,t) =3 o€,

j=1 (2.3)
VO (z,t) = v\VEf + oiVeS, + 503 v\VES + U(1)81_57
VO (1) = —olPef — Vg — §v§2)5171,
K =5J%
where
o = <Bi(u tup+ug), v = <Biuy,  vf? = =5i(u — us — ug),

ou
’Ugl) :]_0 <U1U2 — 6-;) + UZ(,LI)7
(1)

0
oV =5 (u§ — uf 4 ugus + ugus + g (us +uz — u1)> UL

0
Uél) =5 (u§ — ug — u% + urus + o (uz + 2up — Ul)) + Uil)’

0
vf) =2uj + 2uf — 3uj — Suuy + %(5% — 4uy — 3ug).

For VO (z,t) we find:

(0w 9
v§0) =z< b—— 52 1 3u aiL'(3U2 + ug) — 2u} + 3un (uj + “§)>’

o OJus ouy ou

Uéo) = (—&E (dus + 3usz) + SUQ% —Yu—— Oz + Gug a; 2“3 + 3uy (U% + ug)) )
92 ou ouy Ous

vl = (8 5 (us + 3ug) — 6u38—$2 — U~ S 2u;3 + 3uz(uy + “2))

Finally, the set of mKdV equations takes the form:

0 0 0? 0
o :%(_ S %@mug)—2ui’+3ul<u§+u§>>’

Ous 0 ( 02 Ous Ouq

duz _ 9 4 =3
5t 9z \ggr e ¥ 3us) F3uaTys =g

3U1
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OJus
—+ 6U3 a 2U2 + 3U2(u1 -+ U3)>
dus _ 0 82 u Juy ou

These equations acquire Hamiltonian form:

Gui 0 (5[‘[) Gvo;i

ot 0x \ ou,

where the Hamiltonian is

1< 3o ou
4 1
H = / dx(—§ uz—i-zg Euu—l— ( >
i=1 j=1
1<J

8U2 8u3 2 8u2
-2 — = -3
(81’) (830) +8x 21 u3
3 aU3 2 8“2 8“3
—— 3 — 1.
* 2 Ox (v +3) - < Ox Ox
Using the second type of grading is in fact equivalent to the first one. One can check that the
two types of gradings are related by a similarity transformations of the form:

101 1 511
2, %, 2 2 2 )
w22 Wy ) 1 0 w22 wgl
~ = 1 N | 0 .
Wy Quy = Q, wy - Jwy = J. Wy = % w2t 0 W2 Wt
2 2 2 2
wi oW o1 0wyt wy?
2 2 2 2
1 1 1 —wvbH 1 1

Effectively we find that u; and ¢, are related linearly as follows:

1
up =c ¢+ ctgs, Uy = —=q2, uz = —c q1 + ¢ gs,
NG

N 10+ 2v/5 _ 10 — 2v/5
= ——- . =—",

10 ’ 10
2.3. Recursion relations and recursion operators A;. Our aim here is to describe the
hierarchies of equations in terms of the recursion operators A;. The idea is to treat the com-
patibility conditions as recurrent relations which will be solved using the recursion operators,

see [19], [13], [14], [I5], [I8]. The initial condition reads as
Vo = ad'[K, Q).

We note that the operator ad ; acting on each element X € g by the rule ad ;X = [J, X]| has
a non-trivial kernel and therefore, it could be inverted only if X belongs to its image. Hence,
while solving the recurrent relations, we need to split each V; into, roughly speaking, ‘diagonal’
and ‘off-diagonal‘ parts:

Vo=V, + V1
where V! € Tmad ; and V¢ is such that ad ;V! = 0. Then we have:

Vioi(z, t) =V (2,t) = Z a(K)

gp(z, 1) EM=D,
p=1 Oép(J) P

p
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Now we assume that s; is an exponent and split the third equation in (2.3 into diagonal and
off-diagonal parts. Evaluating the Killing form of this equation with 7-[?_81, we obtain:

wg, (z,t) = CLQ;l <[Q, stl], 7—[]11781> + const, Csy = <’H‘i1,H'{‘*sl> )

In what follows for simplicity we set all these integration constants to be 0. A diligent reader
can easily work out the more general cases when some of these constants do not vanish. The
off-diagonal part of the third equation in (2.4) gives:
i0:VE +[Q VI +[QwsH] = [J, V],
ie.
st—l =ad ;1 (iawvsf + [Qa st]f + [Q>wSHi1]) = A81Vj'

Thus, we have obtained an integro-differential operator A,, which acts on each Z = Zf € glsv)
as

AZ =ad;’ (z'@xZ +[Q. 2]+ CL[Q, H1'0, ([Q. Z],H?81>) .

51

If s is not an exponent, we have only to work out the off-diagonal part of the third equation
in (2:3):

Vi =ad ;' (i0,V; +[Q, Vi) = AoVy,

ANoZ =ad ;' (0,2 + [Q, Z]") .
Here Aq is a differential operator.

Now we can study the hierarchies related to Aél). Since the Coxeter number is 6 and the
exponents are 1, 2, 3, 4, 5, the results are as follows:

n =6ng + 1 8,Q =0, (A™Q(x,1)), FO) =AM,
n :6710 +a atQ :aa: (AnOAa—l s AOad ;1[ (117 Q(l’, t)]) ’ f(/\) :)‘Na%(la)v

where Na = 6n0 -+ a, a = 1, 2, ey 5and A = A1A2A3A4A5A0.
In the same way we can study the hierarchies related to Aé2). Here the Coxeter number is
10 and the exponents are 1, 3, 5, 7, 9. The results are

n =10ny + 1 8,0 =8, (A™Q(x, 1)),

n=10ng + 3 8,0 =0, (A"OAlead THD Q(a, t)]> ,

n =10ng + 5 8,Q =0, (A"OAlAOAgAOad D Q(a, t)]) ,

n=10ng + 7 8,Q =0, (A"°A1A0A3A0A5A0ad D Q(a, t)]) ,

n =10ng + 9 8,Q =0, (A”0A1A0A3A0A5AOA7AOad HO, Q(, t)]) ,

where A = AjAgA3AgAsAgA7AgAg Ay and the dispersion laws are given by f;(\) = )\10"0+”qu(@?,
n; = 2j — 1, being the exponents of Aéz).

3. RIEMANN-HILBERT PROBLEM

3.1. General aspects. The general methods for constructing the FAS of the Lax operators
were proposed in the pioneer papers by A.B. Shabat [32], |[33], in which he constructed the FAS
of a class of n x n Lax operators of type with J = diag(ay,...,a,) assuming that the
eigenvalues of J are real and are taken in the descending order. The continuous spectrum of
such L operator with a fast decaying potential @) fills up the real axis in the complex A-plane.
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One of the corresponding FAS x*(z, \) admits an analytic extension into the upper half plane
C; the other one x~(x, ) is analytic in the lower half plane C_ and on the real axis they are
related linearly:

Tz, t,\) = x" (2,8, \)Go(t, \), (3.1)
where the sewing function G(¢, \) is expressed by the Gauss factors of the corresponding scat-
tering matrix. A simple transformation from x*(z,\) to X (z,\) = xF(x, \)e*/* allows one
to reformulate RHP as follows:

EN (e, t, \) = € (2,6, )Gz, t, ), G(a,t,\) = e "Gyt N)e™. (3.2)

An advantage of RHP (3.2) is that it allows canonical normalization in the form
limy o0 £ (2,8, ) = 1.

Shabat and Zakharov developed further these ideas by discovering a deep relation between
RHP and the corresponding pair of Lax operators. They proved a theorem [37], [38]
stating that if ¢*(z,¢,\) satisfy RHP and the sewing function G(z,¢,\) has a proper
r—dependence, then the corresponding x*(z,¢, \) is FAS of the relevant Lax pair.

A next important step was that they devised a method of deriving a special class of singular
solutions to the RHP. Today it is known as the Zakharov-Shabat dressing method [37], [38],
[31]. It has several formulations and is one of the best known methods for constructing the
multi-soliton solutions of the integrable nonlinear linear evolution equation. Later Shabat’s
results were generalized to the class of Lax operators whose potentials () and J take values in
simple Lie algebras g [10].

A further progress in this direction was made by Beals and Coifman [2] who treated the
general case of n x n Lax operators with a complex-valued J. The substantial difference from
the Shabat’s case was that the continuous spectrum of L filled up a set of rays [,,, which splitted
the complex A-plane C into several sectors €2,. In each of these sectors, Beals and Coifman
succeeded to construct FAS &,(z, \). Let us assume that the sectors 2, and €, share the ray
l,, then we have a set of relations like

&, t,N) = &2, 6, )Gy, 1, 0),  Gp(x,t,0) = e TG (2, N)e™™,

where [, = Q, N Q,, p = 1,2,..., which is a generalized RHP. Zakharov-Shabat theorem
mentioned above and the dressing method can easily be extended to such generalized RHP.
And of course, the results of Beals and Coifman were generalized also to the case when Q(z, )
and .J took values in any simple Lie algebra g [23], [22], [21].

Let us also mention briefly how the analyticity properties of &, (z,t,\) are proved. Since
Xv(z,t, \) are fundamental solutions of the above operators L and M, then &,(x,t,\) are
fundamental solutions of the related operators:

Lo =19 4 QU 16, 1,1, ) = MJ.6] =0,

X
S . : (3:3)
My, =i—=2+ V(6 (e, 6,0) = MK 6] =0, V() = ,; V,(, ) NP

We already made special choices for both Q(x,t) and J using two different specific gradings of
As ~ sl(6). Each of these choices can be viewed as a realization of Mikhailov reduction group
Zh [27]

C(Q(x,t) = AJ) = Q(x,t) — M\, C(V(x,t,\) = NK) =V(z,t, \w) — N’W’K, (3.4)

with a properly chosen Coxeter automorphism C such that C"* = 1 and h is the Coxeter
number. In other words, the Lax pairs with Z;, reductions of Mikhailov type [27] provide an
important class of Lax operators with complex-valued J. It is also natural to recall that in fact
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the potentials Q(z,t) — AJ and V(z,t,\) — A*K of these Lax pairs take values in a Kac-Moody
algebras, which are based on the simple Lie algebras graded by Coxeter automorphisms [3], [6],
5], [25], [].

The derivation of the FAS of equation (3.3) is based on the set of integral equations which
incorporate also the asymptotic behavior of &,(z,t,\) as x — +oo. These equations have the
form, see 2], [23], [22], [21]:

xT

(& (@, t, A))rj =0j + i / dy (Qy, )&, (y. 1, N)),, e M)y,

for AeQ, and ImA(J,—J;) <0,
v (3.5)

(& (2,1, A))xs :i/ dy (Q(y, )& (Y, T, A))y, e~ A= J5)@=y)
for A€, and ImA(J,—J;)>0,

where the index v in the inequalities in (3.5) means that we restrict A € Q,.

Roughly speaking, our first task in analyzing the integral equations is to determine
the lines in the complex A-plane, on which the exponential factors in the integrands oscillate.
Normally these lines constitute the continuous spectrum of L. They would be determined by
Im A(J, — J;) = 0, which can be written in the form:

Im Aa(J) =0, (3.6)

where o = e, — e; is a root of As. The set of equations (3.6)), where o runs over the root
system A of As, are simple algebraic equations. Their solutions are collected in Tablefor Aél)

and in Table (3| for A?). Thus, we establish that the continuous spectrum of L fills up all rays
l,=argA=vr/h,v=0,1,...,2h — 1.

Lemma 3.1. To each pair of rays 1, Ulsy,_,, there corresponds a subalgebra g, C sl(6), which
in the case of Aél) is isomorphic either to sl(2) @ sl(2) or to sl(2) @ sl(2) & sl(2). In the case
of Af.?) it is isomorphic either to sl(2) @ sl(2) or to sl(2).

Proof. 1t is obvious that if « is a solution to equation , then —« is also a solution. It
remains to confirm that any two non-proportional roots related to each pair of rays [, U ls,_,
are mutually orthogonal. Inspecting Table , we prove the lemma, for Af-)l). Similarly, inspecting
Table , we prove the lemma for A?. The proof is complete. O

Theorem 3.1. The solution &,(x,t,\) of eq. s an analytic function of X for X € Q.
In addition,
C&(x,t,N) = &aalx, t, Aw). (3.7)

Idea of the proof. The solutions of the conditions Im A(J, — J;) <0 for A € €, in the case

of Aél) are listed in Table [2 as the subsets 6. All other roots of As for A\ € Q, satisfy the
condition Im A(J, —J;) > 0. As aresult, it is easy to see that the exponential factors in equation

decrease exponentially for all x and A € €),. In particular, this means that the integrals
converge for each A € €, which guarantees the existence of &, (x,t, \).

Let us now consider the integral equations for the derivatives %f,,(x,t, A). The integrands
of these equations will contain, besides the exponential factors, also polynomial factors in z and
y of order s. Again the decaying exponential factors ensure the convergence of the integrals
in the right hand side, which means that &, (z, ¢, \) possesses the derivatives of all orders with
respect to A in the sector €2,. This is one of the basic properties of the analytic functions.

Finally, equation follows directly from Mikhailov reduction condition (3.4)). O]
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Qs Q

lg Z14

Figure 1: Continuous spectrum of the Lax operators and contours of the RHP
for Aél) (left panel) and Aéz) (right panel).

I, lo U lg li Ul
a | t(eg —eq), E(ea —e3), (5 —eg) | (€1 — e3), (eq — €g)
I, Iy Ulg I3 Ul
a | t(e; —ea), £(es —eg), H(eg —e5) | £(ea — eg), E(e3 — e5)
ll, l4 U ll() l5 U lll
a | t(e; —eg), £(ea —e5), (e3 —eq) | £(eq —e5), H(e2 — ey4)

Table 1: The roots of Aél) related to the rays [,, v = 0,.
see the left panel of Figure

11,

The corresponding generalized RHP can be written as follows:
(b, N) =& 1 (0, b, NGy (o, N), Gy, N) = e TG0t N e, (3.8)

where A € [, and the rays [, are determined as arg A\ = vn/h, v = 0,...2h — 1, and h is the
Coxeter number. The sector €, is determined by the rays [, and [, see Figure [I] In fact,

A.V. Mikhailov, developing his ideas on the reduction groups in [27], came very close to such
formulation of the RHP.

Remark 3.1. For technical reasons in Tables [3 and [{] we list the roots of As. Their root
vectors E;; can easily be expressed in terms of the root vectors of A?) taking into account the

relations from Appendiz B. Indeed,
L s 5
Eij = 5(5:; + 5@‘)7 Eﬁ =

wherel<i<j<3andl;::7—k.
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QV 5j ;

Qo | (e1 — ea), (€2 —e3), —(e5 — es) (e1 —es5), (e2 — e4)

0 (61 - 65), (62 - 64) (61 - 66)7 (62 - 65), (63 - 64)
Q (61 - 66)7 (62 - 65), (63 - 64) (62 — 66)7 (63 — 65)

3 (62 - 66), (63 - 65) —(61 - 6’2)7 (63 - 66)7 (64 - 65)
Oy —(61 - 62), (63 - 66); (64 - 65) —(61 - 63)7 (64 — 66)

Qs —(62 — 63), (6’4 — 66) —(62 - 63), (65 - 66), —(81 - 64)

Table 2: The root subsystems d= of Aél) related to the sectors Q,, v =0,...,11,
see the left panel of Figure

a | t(es—eq) | £(eg —e2),E(e3 —es5) | £(eqs —e5) | £(ex —e5), £(e3 — eg)
L] laUly Is Ulis le Ulis l7 Ulig

a | t(es—ey) | (e —e5),£(ea —ep) | (eq —eg) | £(e1 — es), (€2 — e3)
Ly | lsUlis lg Ulig

a | t(e; —eq) | £(eg —e3), (e5 — e5)

Table 3: The roots of As related to the rays [, v =

0,...,19 with

J = diag (wq, w3, —1,0,w), w?), see the right panel of Figure [l and Remark

Q, o 5, Q, oF 5

Qo (61 - 64) —(61 - 63), —(65 - 66) 0 (6’1 - 65)7 (62 - 64) —(61 — 64)
Qy —(61 - 64) —(61 - 66)7 —(62 - 63) Q3 —(61 - 66)7 —(62 - 63) —(64 - 66)
Q| —(es—es) | —(e1—e5), —(e2—eg) || 25 | —(e1 —e5), —(e2 —eg) | —(e2 — e4)
Qg —(62 - 64) —(62 - 65), —(63 - 66) Q7 —(62 - 65), —(63 — 66) —(64 — 65)
Qg —(64 - 65) (61 - 62), —\€3 — 65) Qy (61 - 62)7 —(63 - 65) —(63 - 64)

Table 4: The root subsystems 6+ of Aj related to the sectors 2, v =0,...,9,
see the left panel of Figure [[ and Remark 3.1}

It is obvious that all the information about the scattering data of L (or L) is hidden in
the sewing functions G,(x,t, \). For the Lax operators we are considering it is not possible
to introduce Jost solutions without imposing additional severe restrictions on Q(x,t), such as
tending to 0 as  — 400 faster than each exponential e=“*! for each positive ¢, or even assuming
that Q(x,t) has a compact support. However, we can use the limits of &, (x,t, \) as © — Fo0
and A € [,. They are given by [22], |21]:

lim ey, (2,6, \) = S (1, ),

rT——00

lim ™%y, (z,t,\) = T, (t, \) D (\),

T—00

lim ey, _i(x,t,\) = S, (L, \),

T—r—00

lim e™"x, 1 (2,1, 0) = T, (t, A) Dy (M),

T—r0o0

e e,

e e,
e le ™ (3.9

Nele ™,
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where v =0,1,...,2h — 1 and S%, TF and DF are of the form

Sr(\) =exp | > su(MEza |,

aes)

Tr(\) =exp [ Y 75 (VEza |,

aest

Dy(\) =exp | ) dy,(\Ha

acdt

Remark 3.2. Formally one can introduce an analogue of the scattering matriz for each pair
of rays l, Ulp., as follows:

T,(t,\) = T, (£, \)DF(NSF(#,N) = TF(t, D, (NS, (8, )),  Ael,. (3.10)

Note that T,(t,\) belongs to the subgroup G, C SL(6) whose root system is 6,7 U0, . Then
TE(t, N\), SE(t,N\) and DE(X) can be regarded as the Gauss factors of T,(t,\). Another peculiar
fact is that to each sector ), we relate a specific ordering of the root systems, i.e. specific choice
of the positive and negative roots, see [22], [21].

Lemma 3.2. i) The t-dependence of the scattering data for the mKdV equations is given by:

jﬂi +
D v e =0, 2 i sz ) =0,
A1
2P0 i 2L 33 (1, 0)] =0 .
815 Y at sy v \" Y

ii) The function D} (\) (respectively, D, (X)) is analytic in X € Q, (respectively, in X € Q,_1).
They are generating functionals of the integrals of motion for the mKdV hierarchy.

Proof. i) We multiply the second equation in (3.3) by /% and take the limits for x — oo and
xr — —oo. Takin into account equation (3.9)) and the fact that Q(z,t) and V(z,t, \) vanish fast
enough as x — 00, we easily obtain the equations ((3.11)).

ii) The analyticity properties of DX()\) were proven in [21] for generic Kac-Moody algebras.
As generating functionals of the integrals of motion, it is more convenient to consider dia(A).
Their asymptotic expansions

(N =) ALY
p=1

provide integrals of motion L(,f’c)l whose densities are local in Q(z,t), i.e. depend only on Q(z,1)
and its z-derivatives. The proof is complete. O

4. MINIMAL SET OF SCATTERING DATA

Here we reformulate the basic results of [22], [2I] for the specific Kac-Moody algebras used
above. It is natural to expect that these sets are expressed in terms of the sewing functions of
the RHP. Our considerations are relevant only for the cases when the solution of the RHP is
regular. This means that the spectra of the corresponding Lax operators contain no discrete
eigenvalues.
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4.1. The Aél) case. We introduce two minimal sets of scattering data for the Aél) Kac-Moody
algebra as follows, see Table [2}

Ti = {soaM\ 1), a€df, Al U{si (\1), acdf, Nel},
T ={m.(\1), a€df, XeltU{r,(\t), aecdf, Xel}.

Theorem 4.1. Assume that the potential of the Lax operator Q(x,t) is a Schwartz-type
function of x and is such that the corresponding RHP is reqular. Then each of the minimal sets
Ti, i = 1,2 determines uniquely:

i) all sewing functions G,(x,t,\) forv=0,1,...,11;

ii) all scattering matrices T,,, v =0,1,...,11;

iii) Ti ~ Ta;

iv) the potential Q(z,t).

Idea of the proof. The fact that the solution of the RHP is regular means that the corresponding

Lax operator L has no discrete eigenvalues. In other words, the functions DE()) have neither
zeroes nor poles in their regions of analyticity.

i) Let us now demonstrate that the sets Ty, k = 0,1 allow us to construct all SE(\,t) and
T=(\,t). It is obvious that

Sg- =exp (5514 F+(e1—ea) T 5023 F % (ea—es) + 0567 (e5—e0) ) -
Ty =exp (7,14 B (e1—ea) + To23 Bt (ea—es) T Tos6 Er(es—cs)
St =exp (5113B%(e1—c5) + 5146 B (ea—eo)) -
T = eXp (Tli;13Ejz(61—e3) + Tli;46Ei(64766)) .
Note that the reduction condition (3.7) on the FAS reflects also on their asymptotics
for x — 00 as follows:
C"(SE(z,t,\) =S5, (x,t, \w"”), C¥ (ST (2,1, \)) =S54 (2,8, M),
CY(T§ (w,t, ) =T5 (2, t, \w"”), C¥(TE(z, 1, N)) =T55 4 (2,1, Aw"),
for v = 0,1...,11. Thus, we have recovered all S¥(\,t) and TF(\,t).

ii) It remains to recover D} (A) and D (A) (or d, (X)) using the fact that they are analytic
functions of A in the sector 2, and €2,_1, respectively. In addition, it follows from equation

B10) that

Ao — ey =In (L =57 055, A €ly, a €5,

dfj;a —d,., =In (1 - T:aTl;a), = a €60,
for v =0,1...,11, which follow from eqgs. (3.10)). In particular for & =0, 1:
i — do =In (1 — 55,50 o), A € lo, a € {e; —eq,e9 —e3,—(e5 — €6)},
di, —di, =In (1= s7,57,), €l a € {eg —e3,eq — €5},

and similar expressions in terms of 7,7 and 7, __, k=0, 1.
iii) Comparing the asymptotics (3.9)) of the FAS for x — 400 we easily find that the sewing
functions G, in (3.8) are given by:

Gro(\t) = Sy (M 1)SE(N ) = Dy (NTF (N T (AL O)DF(N), ANely, k=0,1.
Thus we know the left hand side of the relation:
Dy WGro\ DD (A0 = T L OT (A, k=01, (4.1)
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and the construction of T;°(\,¢) reduces to decomposing the left hand side of into
Gauss factors, which has unique solution. This means that knowing 7; we can recover 7s.
Quite analogously one can prove that knowing 75 we can uniquely recover 7;.

iv) The RHP has unique regular solution. Suppose we have constructed the solution &, (x,t, \)
in the sector €2,. Then we recover the potential from the well known relation:

Q(x,t) = )\h_)m AT =& JE (=8, N) .

This result is independent of v due to reduction condition (3.4) and to the fact that
C(Q(z,1)) = Q(x,1).
]

4.2. The Ag) case. We introduce two minimal sets of scattering data for the Aé2) Kac-Moody
algebra as follows, see Table [d}

Ti = {soaM\ 1), a€df, AeltU{si (A1), acdf, Nel},
T ={m.(\1), aedf, XeltU{r,(\t), aedf, xel}.

Theorem 4.2. Assume that the potential Q(x,t) in Lax operator 1s a Schwartz-type
function of x and is such that the corresponding RHP is reqular. Then each of the minimal sets
Ti, 1 = 1,2 determines uniquely:

i) all sewing functions G,(x,t,\) forv=0,1,...,19;

ii) all scattering matrices T,,, v =0,1,...,19;

iii) Ti ~ Ta;

iv) the potential Q(z,t).

Idea of the proof. The fact that the solution of the RHP is regular means that the corresponding
Lax operator L has no discrete eigenvalues. In other words, the functions DE()) have neither
zeroes nor poles in their regions of analyticity.

i) Let us now demonstrate that the sets Ty, k = 0,1 allow us to construct all SE(\,t) and
TE(\t). It is obvious that
(3(1):;14Ei(e1—e4)) ’
Ty =exp (7514Ei<ere4>) ,
(81;15E:|:(e1—65) + Si%Ei(eQ—m)) ;
T = exp (Ti75 B4 (e1—e5) + TioaBer—es))
Note that the reduction condition on the FAS reflects also on their asymptotics
for x — 00 as follows:
C"(SE(z,t,\) =S5 (x,t, \w"”), C¥(SE(2,t,\)) =S54 (2,8, A",
CY(T§ (x,t,\)) =T55 (2, t, \w”), CY(TiE (z,t,N)) =Tg iy (2,1, A",
for v =0,1...,19. Thus, we have recovered all S¥(\,t) and TF(\, t).

i) Tt remains to recover D;f(X) and D, (X) (or df, (X)) using the fact that they are analytic
functions of X\ in the sector €2, and €2,_; respectively. In addition, it follows from from

equation (3.10) that (see Table

Ao = ey =In (1 =55 15, ), A €ly, a €5,
dfe — e =In (L= 7,7 ,7,), A €ly, a €6/,

forv =0,1...,19, which follow from equations (3.10). In particular, for & = 0,1 we have:
i — do.o =In (1 = 55,50 o), A € lo, a € {e; —eq},
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diy — diq =In (1 —s7,s7,), A E Ly, a € {e; —e5,e9 — €4},

and similar expressions in terms of T]::a and 7, k=0,1
iii) Comparing asymptotics (3.9) of the FAS for z — +oo we easily find that the sewing
functions G, in (3.8) are

Gro\t) = S\ 1SN ) = Dy (NTF (N )T (LD (N, Ael,, k=01
Thus we know the left hand side in the relation
Dy (NCra\DF (A1) = T (L OT (A ), k=0,1, (4.2)

and the construction of 77 (), t) is reduced to decomposing the left hand side of into
Gauss factors, which has a unique solution. This means that knowing 7; we can recover
T5. Quite analogously one can prove that knowing 75 we can uniquely recover 7.

iv) The RHP has unique regular solution. Suppose we have constructed the solution &, (x,t, \)
in the sector €2,. Then we recover the potential from the well known relation

Q(z,t) = )\ILm AT =&JE (2,8, M) .

This result is independent on v due to reduction condition (3.4) and to the fact that
C(Q(z, 1)) = Q(x, ).
m

5. DISCUSSION AND CONCLUSIONS

We specified in [I3] the choice od the corresponding Kac-Moody algebras and formulated
the specific Lax operators and the corresponding direct and scattering problems. In each of
the cases one needs to take into account specific peculiarities. For example, in the case of Ag),
after taking the average on the Coxeter automorphism, the elements B[2k — 1,4] belong to the
center of the algebra instead to its Cartan subalgebra.

The constructions that we outlined allow one to apply the dressing Zakharov-Shabat method
and derive the soliton solutions of the corresponding mKdV and 2-dimensional Toda field
theories. Omne may expect additional difficulties in this, due to the fact that the Coxeter
symmetries require that even the simplest dressing factors must contain at leat 2h simple poles
(that is, 12 and 20 poles) whose residues P, must be related by the Coxeter automorphism.
Therefore, it is important that deriving the projectors we must strictly stick to the construction
of the FAS in each of the sectors of analyticity.

The main ideas in this and many previous publications of the author, see e.g. [8], [9], [10])
are based on the notion of fundamental analytic solution introduced by A.B. Shabat [32], [33].

Another important trend started by A.B. Shabat and his collaborators concerns the classifi-
cation of the integrable NLEE, see [28§], [34], [36], [1], [35], [29], [30] and the numerous references
therein. The idea is based on the theorem that if a given nonlinear evolution equation possesses
a master symmetry, then it has an infinite number of integrals of motion and therefore, it should
be integrable.

The final remark here concerns the fact that the one-to-one correspondence between the
minimal sets of scattering data and the potential Q(z,t) follows also from the expansions over
the squared solutions of L, see [§], [10], [9], [22], [21]. These ideas will be published elsewhere.
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Figure 2: Dynkin diagrams (DD) of A5 and related Kac-Moody algebras:
a) DD of A5 ~ si(6); b) extended DD of As; ¢) DD of A?).

A. DBASIS AND GRADING OF Aél)

The rank of the algebra Aél) >~ sl(6) is 5, the Coxeter number is h = 6 and its exponents are

1, 2, 3, 4, 5. The root system and the set of simple roots a; of Aél) ~ sl(6) are
A=ATUAT, A* = {+(ej —er), 1<j<k<6},
Q; =€5 — €541, ]:1,,5

The Cartan-Weyl basis of Aél) in the typical representation is as follows:
He]-—ek. = Ejj - Ekk> E = Ejk:a E o= Eg;a

ej—eg

[ch Eﬁ] - (aaﬁ)Eﬁa [EOH Eﬂ] = Na,ﬁEa—&—B‘

The numbers N, g = —Ng, are non-vanishing if and only if o + 8 € A.

The Dynkin diagram of A; algebra and the extended Dynkin diagrams of Aél) and Ag) are
shown in Figure

Let us now briefly outline how to define Kac-Moody algebra starting from a simple Lie
algebra g which in our case is chosen to be A; ~ sl(6). First we use a Coxeter automorphism
to introduce a grading in the Lie algebra As:

[L=¥
I
L@
[s=¥

2

5
g= @ gV,
k=0
where the linear subspaces are such that

OXCit=wi*X, Xeg®,  OYCil=wtY, Y e€g,,

27
6

‘. Each of the gradings satisfies
(6", g™ € g™™, (8, 8)] € Botps (A.1)

where (k+m) and (s + p) are understood modulo 6. The indices for Aél) are everywhere taken
modulo 6. Using this grading, we can now construct polynomials in A and A\~! such that

where w; = ¢

N
XN = > XX, X,eg¥, (A.2)

which are the elements of the Kac-Moody algebra [25], [4]. Here the upper index of the subspace
s is evaluated modulo 6. Obviously the commutator of two such polynomials in A and A~ due
to the properties of grading will again be of form (A.2)). Of course, the rigorous definition
of Kac-Moody algebra requires additional structures, which we do not mention now.

For the case of Aj5 algebra, two different types of Coxeter’s automorphisms are possible. This
produces two Kac-Moody algebras Aél) with height 1 and AE)Q) with height 2.
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There are two standard choices C; and C’l for the Coxeter automorphism for the algebra
g ~ As. This is Zg automorphism. With this automorphism we effectively work with Kac-
Moody algebra Aél). Indeed, each of these choices satisfies C¢ = 1, C® = 1 and each of these
automorphisms induces a grading in g.

In what follows, the choice of the automorphisms is specified by

0 10000 1 0 0 0 0 0
0 01000 0w 0 0 0 0

o oo0o100 = 00 «w 0 0 0

“=1oo00010]° “=|oo 0 w2 0 0 (A-3)
0 00001 00 0 0 wH 0
100000 00 0 0 0 uf

Obviously, C% = C® = 1. Below we also use also the notations C; = Jl(o) and C; = Jél) along

with the more general ones J§k), which provide a convenient basis in Aél) which satisfies the
above gradings, see [3], [24], [4], [25]:

6 . .
k(i 1 if j+s<6
J(k) == € s Sw k(] 1)E . . € s —
s ;1: 3,J+s*1 J,J+s J,J+ 1 if j—i— k> 6.

Here 6 x 6 matrices Ej,, are defined as (Ej,,)sp = 0ksOmp- The elements of this basis satisfy the
commutation relations

0,97 = o = ) I

It is also easy to confirm that

CrluWe, =witg® o Cr e = wrs gk

S
and

m —sm 7(k+m
Js(k)J;S ):Wl Js(+p )7

(JN)h = (T
Using this, the bases in each of the linear subspaces can be specified as follows

gM =lc. {J®,  s=1,...,6}, ge=lc. {J®, k=1,...6}.

S

The basis that we constructed for Aél) is

o e A 1Y 0 Y, oW e (V1Y a0 D Y
0@ e A7 1Y B TP P Y o e (0 0 D 0 I,
R RO Y ) S 0 T L R 0 S S S 3

B. BASIS AND GRADING OF A

Let us now briefly outline the gradings for A?). Now, as Coxeter automorphism, we employ
Cs = C1 oV, which is a composition of C'; with the external automorphism V of A5, and V is
generated by the symmetry of its Dynkin diagram. In the five-dimensional space of roots, the
mapping V acts as V 1 e, — —er_g, k=1,...,6. On any of the root vectors X, V act as

V(X)=—-SX"5", Sy =FEi6— FEos+ F34— FEy3+ Eso— Fg .
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Note that S, ' = —S,. Obviously, V splits the Lie algebra g ~ As into two: g = go U g;, whose
bases, corresponding to the positive roots, are given as follows:

g {Z], 5”, é’t 1<i<j<3},

g(l) : { z]? 5137 1 7’ < ] 3} (B]‘)
glj; =F;F (—1)i_jEj7g, 51.3 = Ez‘j + (—1)1 ]Ej 7, Et = Ej3~
Here we can identify the root vectors:
E:t _ g:l: E:I:

e;—ej 1] e;te;

=£&:, Ej =&l

2e;

Obviously, Ee _ej) E;Z +e; and E;;j are the generators of sp(6) corresponding to its positive
roots; E_

ci—e; and E¢ . provide the positive roots of g;. It is easy to confirm that they satisty
standard commutation relations, taking into account the Z,-grading such as
[Ey,E*=H,., [HE]|=aH)E,, |E  E;jl=n,,El,  [E;,Efl=n},E_
etc. Let us now take into account the Coxeter automorphism which is given by

Cy(X) = OV (X)Ct = —=C1 S, X1 St
One can check that C1° = 1, so the Coxeter number is hy = 10. This automorphism Cj splits
the roots of Aj into three orbits each containing 10 roots. The grading condition is
[g(k)7 g(l)] C g(k+l)7 k7l = 17 et 107

where k£ + 1 is taken modulo 10. We assume that the orbits start from the root vectors Eis, E34
and Fi3. We consider also the action of (5 also on the Cartan generators. The basis for each
of the subspaces g*) is obtained by taking the weighted average over the action of Cy:

9 9
- ngkscg(Eij)a Hgk) = sz_kscgs(En), Wy = e%.

s=0

It is easy to check that CQ(E,’Z-(;C )= wQSU , Co(HP) = WP e, Si(f) and H¥ belong to g*).
We will provide this basis explicitly:

—3k

0 1 0 0 —w, 0
—wy; 0 w00 0
o) _ 0 —w;,™ 0 0 0 —w™
12 0 0 0 0 0 0 ’
wy 3k 0 0 0 0 —wy ¥
0 0 w0 wyo 0
0 0 0 wy %0 0
0 0 0  —w ¥ 0 0
5352) O—k 93k O—5k ! (—)Qk O—m
—Wy " Wy —W, 0 W —Ww, ’
0 0 0 —wy*™ 0 0
0 0 0 wy k0 0
0 0 1 0 0 —wy*
0 0 0 0 —w*F —wy?
e _ —wy* 0 0 0 —w;* 0
B0 0 0 0 0 0 ’
0 w™ w™ 0 0 0
wy O ws™ 0 0 0 0
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(k) _ . —5k  —Tk , —9k -3k  —k
%1 _CH,kdlag <w2 ) w2 ) w2 9 07 w2 ) w2 )7

where cpj = w5"7 - 1 Since ws = —1 it is easy to see that cur # 0 for k=1, 3,5, 7and9.
Thus, the subspace g'? has a nontrivial section with the Cartan subalgebra if and only if p is
an exponent of A5 . It is easy to confirm that 6’; provides a basis for the subalgebra sp(6) of

Ag). Then the basis in each of the subspaces g¥) is as follows
g(O) =l.c. {glﬁag;%g;g ) g( =l.c. {52175327543757}
g =lc. {&31, €y €t g% =lc. {514752&51_3» 24}
§(4) =le {&), €, €3}, g =le. {5167 61> 511, 33 — 2_2}, (B.2)
g(ﬁ) =l.c. {51—27 52_17 83_2}7 g _1 C. {5417 52 5_17 4_}
Q(B) =l.c. {glJr?n 8227 8471}7 g(9 =l.c. {5127 5237 5 Ej}

As a result, the rank of AéQ) is 3, h = 10 and its exponents are 1, 3, 5, 7, 9, see [5], [4].

An alternative grading of Aéz) can be achieved by using a realization of the Coxeter automor-
phism as an element of the Cartan subgroup. More precisely, one can use the automorphism
02 [5]

Cy(X) = =S, XTS5, Sy = diag (1, —wy, w3, —ws, Wy, —w5), We = €10 (B.3)

and where the transposition is taken with respect to the second diagonal of the matrix. With
choice for the Coxeter automorphism, the set of admissible roots of Aéz) acquires the form

¢

5,80 :§(E1,5 + E2,6)a S—ﬁo :2(E571 + E6,2)C_1> Hp, =H1+ Ho,
Es, =C(Eiy1: + Er_io—i), E_p, =(Eii1+ E6fz',7—z')€k717 Hp, =Hir1 — Hi, (B.4)
853 :CE473, 5753 :E3,4C71, ngi - — Hg + 7’[4,

where ¢ = 1, 2, (Ekm)ab = 6ka5mb and 7‘[1 = Ei,z’ — E?—i,?—z’-
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