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BOUNDEDNESS OF DISCRETE HILBERT TRANSFORM
ON DISCRETE MORREY SPACES

R.A. ALIEV, AAN. AHMADOVA

Abstract. The Hilbert transform plays an important role in the theory and practice
of signal processing operations in continuous system theory because of its relevance to
such problems as envelope detection and demodulation, as well as because of its use in
relating the real and imaginary components, and the magnitude and phase components of
spectra. The Hilbert transform is a multiplier operator and is widely used in the theory
of Fourier transforms. The Hilbert transform was the motivation for the development of
modern harmonic analysis. Its discrete version is also widely used in many areas of science
and technology and plays an important role in digital signal processing. The essential
motivation behind thinking about discrete transforms is that experimental data are most
frequently not taken in a continuous manner but sampled at discrete time values. Since
much of the data collected in both the physical sciences and engineering are discrete, the
discrete Hilbert transform is a rather useful tool in these areas for the general analysis of
this type of data.

The Hilbert transform has been well studied on classical function spaces Lebesgue, Mor-
rey, etc. But its discrete version, which also has numerous applications, has not been
fully studied in discrete analogues of these spaces. In this paper we discuss the discrete
Hilbert transform on discrete Morrey spaces. In particular, we obtain its boundedness on
the discrete Morrey spaces using boundedness of the Hilbert transform on Morrey spaces.

Keywords: discrete Hilbert transform, Morrey spaces, discrete Morrey spaces, bounded-
ness.

Mathematics Subject Classification: 44A15; 40A05; 46B45; 42B35

1. INTRODUCTION

We denote by 1,, p > 1, the class of scalar sequences b = {b, }nez satisfying the condition

16, = (Z |an”> < 00,

neZ
where Z is the set of integers. ) 3
Let b = {by}nez € lp, p = 1. The sequence b = {by, }necz, where

anz bm , ne,

n—m
m#n

is called the Hilbert transform of the sequence b = {bn}ﬁez-
M. Riesz proved (see [16]) that if b € [,, p > 1, then b € [, and the inequality

Bllz, < Cyllbl, (1.1)
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holds, where C), is an absolute constant. Weighted analogues of were studied investigated
in works [4-6,/9}/12},/13},15,20].

If b € [;, then the sequence b belongs to the class ﬂp>1 l,, but generally speaking, it does
not belong to the class [; (see [3]). In this case, R. Hunt, B. Muckenhoupt and R. Wheeden
(see |12]) proved that the distribution function

b(\) = Z 1
{n€Z: |by|>A}

of the Hilbert transform of the sequence b satisfies the weak condition
- C
O] < SClIbll, - for all: A >0,

where Cj is an absolute constant. In [3], it was proved that, if the sequence b € [; satisfies the

condition
Sh-0

nez
which is necessary for the summability of the discrete Hilbert transform, and

S bl nfe +[n]) < o,

nez

then b € [; and the following inequality holds:
16, <6 [bal In(e + [n]).
nez

In [2], the concept of Q-summability of series was introduced and by using this notion, it was
proved that the Hilbert transform of a sequence b € [; is Q-summable and its ()-sum is equal
to zero.

In this paper, we study the boundedness of the discrete Hilbert transform in the discrete
Morrey spaces.

2. DISCRETE MORREY SPACES

The classical Morrey spaces M) ,, 0 < A < g, 1 < p < oo (see [1L[7L|14,/17-19]), consist of the
functions f € Ly joc (]Rd), for which the following norm is finite

1 £l = Sup sup (T_A HfHLp(B(x;r))> :

We note that if A =0, then My, = L,; if A = %, then M), = Lo (see [1]). In the case p > 1,
0< A< 1%’ F. Chiarenza and M. Frasca [8] showed the boundedness of the Hardy—Littlewood
maximal operator, a fractional integral operator and a singular integral operator in the Morrey
spaces. In particular, this implies the boundedness of the Hilbert transform in the Morrey
spaces. It means that, in case p > 1,0 < A < ;lw for any f(t) € My, we have

(HF)(t) = %/tfgdr € My,

and there exist C), > 0 such that
1H fllay, < Crp

f”M)\,p
holds for all f € M,y,,.
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In [10], the authors introduced a discrete analogue of the Morrey spaces and studied their
inclusion properties. For m € Z and n € N U {0} we define

Smn ={k €Z: |k —m| <n}.

Following standard conventions, we denote the cardinality of a set S by |S|. Then we have

| S|l = 2n 4+ 1 for all m € Z and each n € IN U {0}. The discrete Morrey spaces m p,
0< AL é, 1 < p < o0, consist of the sequences b = {b,, }nez, for which the following norm is
finite

HmeA,p = sup sup |Sm7n|_>\ Z b |”

meZ neNU{0} s

In |11] it was proved the boundedness of the discrete Hardy-Littlewood maximal operators
and discrete Riesz potentials on discrete Morrey spaces. We observe that if

1
b:{bn}nezem,\,p, 1<p<oo, 0K<A<—,
p

then the series ) nb_—mm converges absolutely. Indeed, for each n € IN we have

bl o |0
P e S DR T

J=1 21-1g|n—m|<2J

=1
]:

m#n

|n—m|<27
1 (2.1)
o P
1 : 1—1
S Z i1 Z bl? ] (277 1)
Jj=1 |n—m|<27
Sl 4/|6|],
<Ay, 3 20700-D) < 6] "
1 1—-2""%»
It follows that if .
b:{bn}nGZem)\,;M 1<p<00, 0<>\<_7

then the Hilbert transform of the sequence b is well-defined.

3. BOUNDEDNESS OF DISCRETE HILBERT TRANSFORM ON DISCRETE MORREY SPACES

We present the main result of this paper.

Theorem 3.1. Let 1 < p < oo, 0 < A < L. For any b € my, we have b € my,, and there

exists cyp > 0 such that

S =

[bllms, < expllbllma,

holds for all b € my,.
We need the following auxiliary lemma.

Lemma 3.1. Ifr € (0,1) and [a,a + 2r] C [=3, 3] then

a+2r r

/ (n [¢]Pdt < 2/\1nt|pdt. (3.1)

a 0
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Proof. We begin with proving the inequalities

2r T
/]lnt\pdt < /|1nt\pdt, re(0,1), (3.2)
r 0
3 r
/ n P dt < 2/|1ntypdt, re(0,1). (3.3)
3—2r 0

For r € (0,3], inequality (3.2) holds thanks to the decreasing of the function |Int[” on the

(
interval [0, 1], while for » € (5,1) it is implied by the following estimates:

1 1
2 2
r 1/e 1/e
/|lnt]pdt> /]lnt|pdt2/|lnt\dt:—
0 0 0

Let us prove (3.3). We denote

T 3
CID(:U):Q/HntP’dt— / |IntPdt, x € [0,1].
0 3

—2x

Since
(0) = 0,
1 3
(1) :2/]1nt|”dt—/|lnt]pdt
0 1
1/e 1/3 e 3
> g/\lnt\pdt—i— (2—%) /\lnt\pdt—/ylnt|Pdt—/\1ntypdt
0 0 1 e
1/e 1/9 1/3 e 3
e 4—e
>§/\1nt|dt+T /|1nt|pdt+/|lnt|pdt —/]lnt\dt—/|lnt|pdt
0 0 1/9 1 e

4- 1 2
> 1+ Te {(21113)1)-§ + (1n3)P-§] —1—(3—¢)(In3)" >0,

1
'(z) =2(|InzfP — |In(3 —22)|") =0 & z=g or r =1,
P'(0) = +o0,

we get that
min ®(z) = min{®(0),P(1)} = 0.

z€[0,1]

This proves ((3.3)).
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Now let us prove (3.1)). We denote

+2r
U(z) = / ntPdt, e [0,3— 2.

x

It follows from (3.2)) and ({3.3]) that

2r r
(0) :/|lnt|pdt < 2/|1nt|pdt,
0 0

3 T
(3 - 2r) = / \lnt|pdt<2/|lnt|pdt,
3—2r 0

UV(z)=|In(x+2r))P - |lnz|P =0 & o= ——o,
(@) = lina+20)p ~ | In] e
U'(0) = —o0.

From here we get that

xz€[0,3—2r]

max V(z) = max{¥(0), V(3 —2r)} < 2/ | Int|Pdt.

This shows that (3.1)) holds for a > 0.
We proceed to the case a < 0. If a < 0, a+r > 0, then for each ¢ € [|al, ] we have

1 1
n > max{2r —t, m}
Therefore, in this case,
a+2r r ] 2r—|al T
/ |1n|t||pdt—2/|lnt|pdt:/|1nt|pdt—|— / |1nt|”dt—2/!lnt|”dt
a 0 0 0 0
2|l

/ |1nt]pdt—/\lnt|pdt

lal

:/|ln(2r—t)|pdt—/\lnt]pdtgO,

|al |al

and hence, (3.1) holds. If a+r < 0, a + 2r > 0, then for each ¢t € [2r — |a|, 7] we have

1
7 > max{2r — t, 5 t}
and in this case we get:
a+2r T |al 2r—|al T
/ I [¢]|dt — 2/ (In t[Pdt :/|lnt\pdt + / (n t[Pdt — Q/Hnt\pdt
a 0 0 0 0
|al T

:/|1nt|pdt— / | In¢[Pdt

r 2r—|al
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_ / (2 —t)Pdt — [ |nePdt <o,

2r—|al 2r—|al

that is (3.1)) holds. Since the function |In |||’ is even, then in the case a + 2r < 0 inequality
(3.1]) follows from the already proved case a > 0. This completes the proof of Lemma . O

Proof of Theorem[3.1. We define the function f(z) to be 2rb, for z € [k — 1, k+ 1], k € Z and
0 elsewhere. First we are going to show that f € M, ,. Indeed, for each x € [k — %, k+ %),
keZ,ifre(0,1], then

x+r %
1
Ml =r / |FOPdE | < vt (2r|2mb]?) P (3.4)

257 by < 2557 |blmy
if r € (4,1], then

r4r » 1 %
- - (1
Pl By =77 / [f)Pde | < (5 > |27Tbk+j|p) 5

=1

< A2 (b |+ [bel? + b [P)F < 122277 [b]l oy

if r € (n,n+ 1], n € N, then

hSA

x+r

1 n+1 %
T_)\”fHLp(B(x;r)) = T_)\ / |f(t)|Pdt < T_A <§ Z |27Tbk+]|p>
—-r j:—n—l
z (3.6)
< n—/\21*%77 Z |bk+j|p < n—A2lf%ﬂ_(2n + 3)>\||b||m>\p

JESk,nt1

<5207 |blm,

It follows from inequalities (3.4)), (3.5)), (3.6) that f € M, , and

1
Hf”M)\,p = Sup Sglg (7’_/\||f||Lp(B(x;r))) < 12)‘21+pﬂ-||b||m)\,p'
Therefore, H f € M), and there exist dy > 0 such that
1H fllary, < dol[b]m,,- (3.7)

We define the function F(z) to be by for = € [k — $.k+1),keZ, and

G(x) = (Hf)(x) = F(x). (3.8)
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We are going to prove that G(z) € My,. Foreach z € [n— 3, n+ 1), v #n+t 1, neZ, we
have

m—i—l
1 f(t) ~ 1 27bh,, b
G = [ —~dt—-b, = — Zdt —
(z) ™ T —t WZ T —t Zn—m
R memei m#n
m+i J n+i g b
t t m
_ Z2bm/—+2bn/— -3
= m,;x_t n,;x_t fmn—m (3.9)
4 4
m+i ) . n+i p
t
Yo, /( - )dt Lo /—
ol r—t n-— —

Let m % n. Since for each z € [n — 2, n+ 1) and t € [m — 1, m + 1]

eonl<g  dmetl<g et ln—ml~lr—n~|m > [n—m| -
z—n| <3, m <7 T >In—m|—|zr—n|—|m 2 [n—m| =,
then we get
1 In—x+t—m] %+i
t—t n—-m |x—t| In—m| In—m|(jn—m|—3)
B 3 3
~n=m|-(@n—m|=3) ~ jn—mf’
Therefore, for each z € [n — S, n+ 1), v #n+ 1
m—l—f
3[bm|
G 2 b dt < . 3.10
Gilal < 32 |/ L aey Al 3.10)
m#n 1 m#n
It follows from inequalities (3.10)) and ( - ) that
Blbm| _ 12[[b]lm,
Gi(z)| < < L 3.11
< 2 o < T (3.1)
If r € (0,1), then by (3.11]) we obtain:
T+r %
r Gyl oy =17 G1(x)Pdx
1| Lp(B(z;r)) 1
(3.12)
12/ L 122
-\ mxp £
P (2r)r < m“ [P
Forre [k —1,k), k€ N, k > 2, by (3.10) and the Holder inequality we have:
- H ntk+3 >
Gl ey / GiPds | < | [ (G

1
k-1
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ik 13 ’ ntk 3(b,.| 5
= / G1(z)Pdx <r
Z | 1 | Z n%ﬁ-:] |] — m|2

jnk’l j=n—k

< 3 % PP b1 |[” S pp—— A
h li-mP?) \&li-mP m|2

j=n—k
1 1
n+k ‘b ‘ 1 '
<ot (8 ) e (e ¥
=k ¢J|J—m| % onikgm T
e m j—n|<k,j#m
n+2k ‘b ‘p %
A =
< 12r b |” - 4+Z > 92i-3];
m=n— 2k i=1 2k<m—n|<2H1k
1
= 202K bl \
A ik
< 12r~ (4 (4k + 1) bl Z 923 :
16 »
< 12(k = 1) KMNBllm,, (4 5pk+m)
and hence
R 16 a
r NG L BEny < 24blln,, (204 o — ) (3.13)

It follows from ([3.12)) m ) that Gy € M)y,

||G1HM)\p = sup Slip [ HGluLp(B(I;’I‘))] < d1|‘b‘|m)\7p, (314)
where L 1
12-2» 16 P
dl = max{m, 24 (20+m) }

Let us show that Gy € M),
For each n € Z we partition the set

into four parts:

Ifxen—3%n—1), then
n-‘,—%
1 1
Go(z) = 2b, / :vd—tt = 2b,[—In(n + i z) +In(n — 1 x)].
=

For each x € R and § > 0, the identity
z+0 1)
dt du
V.p. — = V.p. — =0
—1 —U
z—0 -0
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holds. Therefore, if x € (n — }1, n|, then

s at(e—n+]) ntl
dt dt dt
= 2b,, - v.p. = 2b, | v.p.
Ga() Vp/m—t VP / a:—t+ / T —1
n—% J:—(J:—n—‘r%) z—l—(z—n—i—i)
n—&-%
dt 1 1
= 2b, / x_t:2bn(—ln<n—|—1—x)—i—ln(m—n—I—Z)).
2x—n+i
If 2 € (n,n+ §), then
n+% xf(nJrifx) x+(n+%fx)
dt dt dt
G = 2b, - V.p. = 2b, | v.p.
2(7) Vp/x—t v-P / x—t+ / r—1t
nfi nfi :vf(n+ifz)

dt 1 1
= 2b, / x—t_an(_ln<n+Z_x)+ln(x_n+1>)'

n+i
dt 1 1

This shows that for each x € [n — %,n + %), r#nt }l, we have

1 1
Go(x) = 2b, (—ln r—n-— —‘ +1In $—n+—')
4 4
and, hence,
1 1
|Go(2)| < [2b,] [ In - +1n = | - (3.15)
v —n—3| @ = n+ ]
Thus, for each n € Z,
n—l—%
/ Ga() P < da|by P, (3.16)
gt

n
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Letz € [n—1n+1), 2#£n+1 Ifre(0,1), then it follows from (3.15) and from Lemma
that

3=

x+r

M Gallz, (B / |Go(t)|Pdt
xT+r %
1 11\ ?
/|25n_1\p lnt—(n—l)—z +1nt—(n—1)+Z dt
T+r %
Y 1 1\?
+r 12b,,|7 ( [In t—n—z + |In t—n+Z dt (3.17)

-r

3=

x+r

s ([ bl (

T

1
In Injit—(n+1)+ -

i

1
t— 014—1)-— Z“+_

P
>dt

<24[b oy 7 / tPdt | < dsbloy
0

where

ds := 24 sup r* /\lnt]pdt < 0o0.

0<r<1

Ifrelk—1,k), ke N, k>2 then it follows from (3.16]) that

Ttr v ntkt g z
A Galli, sy = 7 / Go(w)Pde | < / Gola)Pde
— _f—1

2

Y
<r (
j=n—k

1
< (k- 1) [6llms, (2 + 1)* < 52 dZ [[b]my

By (3.17)), (3.18]) we find that Go € M) ,:

1G2lary, = supsup [r M Gillz, )] < dallbllmy (3.19)

xz r>0

I
<
>
3
gk
B
<
k-\H'T
P!
no
¥
=
8
8
\_/ N——
S =
N
gk
>
SN
>
MQ‘
=
N——
|=
@
—_
X

where
1
dy = max {5*d}, ds}.
Hence, owing to (3.9), (3.14) and (3.19)), we conclude that G € M),
Gy, < (dr + da)[[6]my - (3.20)
Since F'(z) = (Hf)(x) — G(x), by (3.7) and (3.20) we get that F' € M, ,:
1E[a1,, < (do + di + da)[[bl|m, -
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Therefore, for each m € Z and n € IN(J{0},

1 1
P
P m~+n-+ 2

Sual | 3 B | =m0 [ P@Pds | =@ )l e

kesm,n —n—l
2

1
<@n+ D+ )0 1F sy, <27(do + di + da) b, -

It follows that b € m,, and

10llms,, < 27 (do + i+ da) - [[Bllny

This completes the proof of Theorem O
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