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JOINT ESTIMATES FOR ZEROS AND
TAYLOR COEFFICIENTS OF ENTIRE FUNCTION

G.G. BRAICHEV

o
Abstract. In the paper, for an entire function f(z) = >  f,2", we provide asymptotic and
=0

uniform bounds of commensurability of the growth of z%roes and the decaying of the Taylor
coefficients one with respect to the other. As an initial point for these studies, the following
Hadamard statement serves: if the coefficients of the series obey the inequality |f,| < ¢(n)
with some function ¢(x), then the absolute values of the zeroes grows faster than 1/ {/¢(n).
In the present work we improve recently obtained lower bound for the joint growth of the
zeroes and the coefficients via the maximal term of the Taylor series of the function f(z) or
via the counting function of its zeroes. The employing of Hadamard-rectified coefficients
of the series give an opportunity to establish corresponding two-sided estimates. By the
methods developing classical ideas we find a numerical dependence of such estimates on
the sizes of the gaps of the power series representing the entire function. In particular, we
find asymptotic identities relating the zeroes and the coefficients of an entire function. The
obtained estimates are sharp and strengthen the known results by other authors.
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1. INTRODUCTION AND REVIEW OF KNOWN RESULTS

In the paper we consider entire transcendental functions that is, analytic in the entire complex
plane functions not coinciding with polynomials. Each such function is represented by its Taylor
series

o
F2) = fa2", fu= , z€C, (1)
n=0
containing infinitely many non-zero terms. We shall use the following characteristics usual in
the theory of entire functions:

My(r) = ?q'ax |f(2)] is the maximum of the absolute value of a function,

pr(r) = max | fn|r™ is the maximal term of series (1),
ne
ve(r) = max{n € Ng : | f,|[r" = us(r)} 1is the central index.

Let Ey be the class of entire functions possessing infinitely many zeroes. Without loss of
generality, we suppose that f(0) # 0 in series ([1)). The sequence Ay = {\,,}>°_; of zeroes of the
function f € Ej is written taking the multiplicities in the ascending order of absolute values:

0< = = oy ] < Pt = oo = Ao < - 2)
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while the counting and averaged counting functions of the zeroes are denoted by

r

t
TLf(?“) = max{m eN: ‘)\m| < r} and Nf(?”) _ / nft< ) dt,

0

respectively.

There are a lot of works devoted to studying the dependence of the growth of an entire
function on the decay rate of its Taylor coefficients or on the growth and distribution of its
zeroes on the complex plane. In most part of works, such characteristics of the growth of
In My(r) as order, type and others are calculated by the coefficients of series (1)), see [1]-[9].
In other works, a relative growth of In My(r) and of the counting function ns(r) is studied; a
wide list of references can be found in work by Valiron [I0]. However, just few attention was
paid on studying direct relations between the Taylor coefficients and the zeroes of an entire
function, although such relations is needed in special issues of the spectral theory of operators
and interpolation problems, where the spectrum or the intepolation nodes are zeroes of some
entire function and vice versa. Direct formulae expressing the zeroes via the coefficients and
vice versa are too bulky and provide no information on mutual behavior of these sequences [11],
[12]. This difficulty was overcome by Hadamard [I3], [I4] and he established that the absolute
values of the zeroes A, of a function f(z) grow faster that | fn|’%. He proposed a method
allowing one to compare relative behavior of Taylor coefficients and the zeroes. The approach
was extended by Borel [15], while Valiron transformed the estimates into a sharper form. Let
us provide one of the results by Valiron, see [6].

If the coefficients of series (1)) satisfy the condition

fn—lfn+1

T — 0, n — oo, (3)
then the following formulae relating the zeroes and the coefficients hold:
(=" fo
fn AlAQ---An7 nﬁm?
fnfl
Ay~ — T n — 0. (4)

It should be said that the functions with the coefficients obeying condition have a slow
growth, namely, they satisfy the condition
lim w = 0.
r—+oco  In°r
In his Habilitation thesis, Oskolkov [I6] has proved a following statement while he studied
the Newton interpolation problem for fast growing nodes.
If the zeroes {\,} of the function f(z) obey the condition

1
N0 e, (5)
then the coefficients of the Taylor series of this function satisfy the condition
lm /| fudida- - An] = 1. (6)
n—oo

Let us also provide in our terms some results obtained recently by Ukrainian mathematicians.
Pel’chars’ka and Sheremeta [17] proved the following. If f € Ey, then

Tim A [{/] ] > 1. (7)
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There exists f € Ey such that
T (A /17 = 1.
In [I8], Andrusyak obtained the following result. If f € Ey, then
o p(r)
T (A 3/ f] > e Vi) (8)
n—oo
There exists a function in the class Ey, at which the identity is attained in .
Andrusyak and Filevich proved the following result [19]. If f € Ey, then
lim Nf(r)
Hm A/ fl = €7 ny(r) (9)
n—o0
There exists a function in the class Ey, at which the identity is attained in @DD
We are going to formulate a result of a non-asymptotic nature obtained in 1938 by Ostro-

vski [20]; the notations are introduced below in Section 2.
Let p € N. If an entire function possesses at least p zeroes and |\,| < R,, then

D 1
An] 1 INARN
H<1 7 <3 A > (1 5 R,;

n=1

here the second inequality follows the first inequality. The constants can not be improved for
each p.

The aim of the present work is to prove sharper lower bounds, which will imply all afore-
mentioned results. Moreover, we shall obtain two-sided estimates for the zeroes of the function
in terms of its Taylor coefficients extended some results by Valiron [6] on lacunary series. The
possibility of such extension was hinted by Hadamard [13]. In particular, we show that for
each entire function f € E, the Hadamard-rectified coefficients F,, of series (1)) (see a definition
below) satisfy the inequality:

m {/Fa M- Aa| > 1,

n—oo
as well as an inequality strengthening @:

Ny(r)

ny(r)

lim
lm F, /| > ereee

n—o0

We proceed to the main part of the work.

2. PRELIMINARIES

Let a function f be defined by series , that is,
F)y=) f2" fO)=fo=1 z€C,
n=0

the value f(0) = 1 is chosen for the convenience. Let y = G(x) be the equation of the Newton-
Hadamard polygon, that is, the equation of the boundary of the convex hull of the points
(n,—In|f.]), n € Ny = NU{0}. This polygon consists of straight segments connecting its
vertices (ng, —In|fy,|), & € Ny. Following Valiron, the abscissas of the vertices ng, k € Ny, are
called central indices of f, more precisely, of the Taylor series of the function f. We denote:

F, = e_G(”), nelNyg and Ry=1, R,= eG(”)_G(”_l), n € IN.

n works [I7]-[19] instead of the zeroes of the function f(z), its a-points were considered, that is, the zeroes
of the function f(z) — a.
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We obviously have:

Froa 1
d F—— N
Eo Bl R

Let us mention some known properties of the Newton-Hadamard polyline, see, for instance, [7].
The relations hold:

R, =

|fn]l < F,, nelNy and |f,|=F,, ke (10)
The functions f(z) = > fu.2" and F(z) = > F,2" possess the same maximal terms and
n=0 n=0

central indices:
pp(r) = max | fulr® = max Fur® = pp(r),
vi(r) =max{n € Ny : |f,|r" = ps(r)} = max{n € No : F,,r" = pp(r)} = vp(r),
and the relations hold:
fy ()

| ful < 711161]1NH T F,, n € N
0

The coefficients F,, are called Hadamard-rectified coefficients of the function f(z). A piece-wise
linearity of G(x) implies the relations:

ve(r)=0, r€[0,R,) and wvs(r)=mng, r€[Ry, Rn,,) keN, (11)
pp(r)=1, r€(0,R,) and pg(r)=F,r", re|R,, Ry, ), kel

Let, as above, Ay = {\,,}7°_; be the sequence of the zeroes of the function f taken counting
their multiplicities in the ascending order of their absolute values, see :

0<|M|l=...= | <A1l = =P < ...
The counting function of the zeroes Ay of the function f defined by the formula
n(r) =ng(r) =max{m € N : |\,,| < r},
is introduced by the following identities:
n(r) =0, re€l0,|An]|) and n(r)=mp, € [|Anl, | Aml), k€N,
Comparing with , we see that n(r) is a central index of the function

oo Zm
U(z) =1+ _
2
and hence, it possesses the same properties as v(r).

3.  MAIN RESULTS
The next theorem strengthens inequality .

Theorem 3.1. Given an entire function
f(2) =) fa" € Ey,
n=0

let F,, be the Hadamard-rectified coefficients of f(z). Then the inequality holds:
lim {/F, Mg An| > 1. (12)

n—o0
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Proof. According to Jensen theorem, for each r > 0 the identity holds:

rn(r)

1 .
1 =Nir)=— [1 91 de.
] = V=5 / u|f(re®)|

—T

For all » > 0 and all n € IN this implies the inequalities:
TTL

n—
‘)\1)\2 ... )\n’

Since for each h > 1 the condition

1 < Np(r) < InMg(r). (13)

Mg(r) = o(pys(hr)), r— 400,
holds, then for sufficiently large r we have:
My(r) < pg(hr), r>ro(h). (14)
An obvious corollary of inequalities and is the estimate
Ne(r) <lnpg(hr), h>1, r>nry(h).
By this estimate we get:

7 1 pr(hr)
< <
|)\1)\2...)\n|\“f<hr)’ Aida - Aa| ©

1 . pyg(hr)
. <h inf —_W'F,, 1.
Mo - Al roro(hy (hr)n n > no(h)

Here we have taken into account that the central index increases unboundedly as r grows. The

latter inequality implies the relations

FalMde-- Xl 207" n>mng(h),  lim /Fu Ay - A = A7

n—o0

Since h > 1 is arbitrary, we obtain needed estimate . The proof is complete. O

We observe that the estimate in the above proven theorem is sharp. Owing to the result
by Oskolkov, see @, this inequality becomes the identity, for instance, on the functions with
logarithmically convex coefficients (then |f,| = F,, n € INg), the zeroes of which obey condi-
tion ().

Taking into consideration the increasing of the sequence |\,|, we obtain the statement from
the Hadamard theorem [14]:

lim [A,|V/F, > 1.

n—oo

Moreover, employing , we obtain
T Al /7] 2 T Doy | 4/ | = T [, | 26/ Fry > Timm A/ > 1.
n—00 k—o0 k—ro0 n—00

that is, estimate (7)) holds:
lHm |f,| /| n] = 1.
n—o0

Finally, employing and the fact the upper D’Alembert limit is not less than the Cauchy
upper limitﬂ we get:

i Dol g pfAides

— Tim YFuvhg > 1L
wbos R~ noeo \| RyRy--- R, S/ F e |

IThis is implied by Stolz inequality.
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Thus, we arrive at the following corollary.

Corollary 3.1. Given f(z) = > f.2" € Ey, let F,, be the Hadamard-rectified coefficients of
n=0

f(2), R, = Fgl and {\,} be the sequence of all zeroes of this function taken in the ascending
order of their absolute values. Then the inequality holds:
|l
Pnl S
711220 R 1. (15)

The inequality in the above corollary is sharp, the identity is attained at some class of entire
functions with lacunary Taylor series. This will be seen from the results of the previous section,

in which we establish two-sided estimates of the quotients ’R—n‘, see, for instance, Theorem .

We are going to show that inequality implies estimate in work [I§] cited in the
introduction. Indeed, the assumption that estimate fails, implies that for some ¢ € (0, 1),
the inequality holds:

|Am| N Fon < qelnF:ZRm, m > my.

After some elementary transformations we arrive at the estimate
IAm| < qRm,  m > my,

which contradicts .
Our next step is to prove a result specifying estimate @ We first introduce the following
quantities:
v, = lim , vy = lim
rrtoo N (1) roo np(r)
called in work [21] respectively upper and lower relative densities of the sequence Ay.

Ny(r) = Ny(r)

Theorem 3.2. Given an entire function
f(z) =) fa2" € Ey,
n=0

let F, be the Hadamard-rectified coefficients of f(z), and v, be the lower relative density of its
zeroes. Then an inequality holds:

lim |\, |/ Fy > €. (16)

n—oo

Proof. We transform:

vy = lim

r—+too N f(T k—oo \ T€[Amy LI Amy 1 1) nf(T) k—oo Mk

Nf<r>:h_m( . Nf_<r>>:hm N (o)

NP _ gy M)

= lim ( inf —
k—oo \ME(mp—1,my] m
Here we have employed that |\,,| = |Am, | for m € (my_1, my]. Let M be the set of the indices,
on which the lower limit is attained in estimate , that is,

lim [\ Y/Fy = lm [ A| 3/ Fr.

m—0o0

Suppose that inequality fails. Then for some ¢ € (0,1) and all m € M, m > mqy we

have: -
M| V/ Fp < qe”

m—o0 m
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or, taking the mth power,

[Am|™
’)‘m|mFm < qmeN(\)\mD = qm—.
(Al [Am]
After dividing by |A,|™, we get:

m

¢
] [Am]

h_m m\/Fm|)\1"')\m|< h_ m\/Fm|/\1)\m|<q<1

m—oo meM

But this contradicts inequality of Theorem . The proof is complete. O]

Estimate involves lower limits. For the upper limits of the same quantities, the following
result holds true.

F, < Fol |- | < ¢™,

Theorem 3.3. Given an entire function
f(2) =) fa" € Ey,
n=0

let F,, be the Hadamard-rectified coefficients of f(z), and Uy be the upper relative density of its
zeroes. Then an inequality holds:

Hm A1 |/ F, > €. (17)
n—oo
Proof. We proceed as in the proof of inequality . In this case we have:
— N — N — Ni(|Am Ne(|Am
vy = lim s(r) = lim su s(r) = lim —f(’ ri1l) =: lim —f(‘ k“D.
r—+400 nf(r) k—ro0 T’EHAkaP‘mk-‘-lD nf(r) k—ro0 myg kekK my

Here K is the set of indices, on which the upper limit is attained in the latter identity. By
the definition of the upper relative density, for a small € > 0 we find an index ky such that for
k > ko, k € K, the inequality holds:

Nf(|)\mk+1 D —
—_— —c. 18
— >TUp—¢ (18)
We shall also need the relation
|/\mk+1|
NiPm) = Nyl = [ 25 dt = oy e (19)
my
[ Ay, |

implied by the definition of Ny(r). Suppose that fails, i.e.,
m |)\n+1| n\/ Fn < Gﬁf.
n—0o0

Then for some g € (0,1) and all sufficiently large n > ny we have:

A1 v/ Fn < g’ =,
Letting here n = my, k € K, k > kg, in view of and we obtain:

Ny(Amy g D |)\m | Ny (Ixmy D)
m m J— k m
Mol Py <ae 7 = gl
mg
or, after cancellation and taking the m;th power,
m
Fpp < — 2

[AMAg - A |
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As in the proof of the previous theorem, this leads to a contradiction with inequality . The
proof is complete. O

Taking into consideration the known relations between the orders and relative densities [22,
Thm. 2.6.1(d)]:

1 1
v, < — < — <7y,

where py and Ay are the order and the lower order of an entire function f, respectively, by
Theorem [3.3| we obtain the following corollary.

Corollary 3.2. Let the assumptions of Theorem[3.3 be satisfied. Then the estimate

1

hm A1 V/ Ep = er

holds. In particular, for entire functions of zero lower order we have
lim |\, 1| Y/ F, = +oo.
n—oo

Let us consider an example. Let f(z) = e* — 1, p € N. Then we have

oo Zpk
f2)=2_ 57
k=1
and simple calculations give:
R,=¢ ﬁ, v(r)=max{n: R, <r}=[pr], Inu(r)~InM(@r)=r" r— occ.
p

The zeroes of functions are found by the condition z” = 27wki, where k € 7. All zeroes
are simple except the zero z = 0 of multiplicity p. The circumference of the radius /27 |k|,
k € 7.\ {0}, centered at the origin contains 2p zeroes. For non-trivial zeroes indexed by n € IN
in the ascending order of their absolute values we write

-1
|An| = ”2%(1—1—{” })N(/ﬂ, n — 0o,
2p P

where [z] denotes the integer part of a number x. The above calculations lead us to the formulae

lim M = {r, v:= lim In pi(r) 1

n—00 n r—+00 V(?”)
lim |\, |V F, = hm Ans1| V Fn = hm \Xom| X E o = hm /T™m \/ = {/me.
n—oo

We note that the Taylor series of the considered function is lacunary with lacunas of size p. At
that, each of general formulae — differs from the corresponding formula in the above
formula by the factor ¢/7 tending to one as p grows unboundedly. This tendency will arise in
the next section devoted to lacunary series, see Theorem 4 below. The sharpness of the above
obtained results is also ensured by an example considered in [23] Thm. 3|; this function was

f(z) =€ g(2) +a,

where p € N, a € C and g(z) is an entire function of the minimal type at order p.
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4. ESTIMATES FOR LACUNARY TAYLOR SERIES

In this section we improve the methods going back to Hadamard, Borel and Valiron and we
obtain asymptotic and uniform estimates relating the zeroes and Taylor coefficients of entire
lacunary power series:

f(z) = Z 2", fn #0, ne N, ={n} CIN. (20)

nelNy

We employ the above introduced notations: F), are the Hadamard-rectified coefficients, R, =

F}:, and my, are the central indices (20). We also let

R,
k
—= Vi = Ny — N1, n; € IN;.

o = 9
R,

Central lacunas are lacunas adjoint with the central indices my of the function f. Here we

mean the lacunas

! / /! 1/ ~ . / "
Ve = Mg — Ny Ve = N — M, Vi = mln{’Yka’Vk}a

where
n, =max{n € Ny :n <my}, n{=min{neNy:n>my}.
Now we are in position to formulate our result.

Theorem 4.1. Let series have unbounded central lacunas, namely, let the condition
hold:

lim 7 = oo. (21)

k—oo

Let also the following conditions on the coefficients be satisfied:

Rmk+1 > <1 + In ’?k)Q kelN (22)
— =y > — 1, :
Rmk g Vi

Then function has infinitely many zeroes \,, n € N, and an asymptotic relation holds:
|An| ~ Ry, n — 0o. (23)

Proof. We fix k € IN. For the values © € [R,,,, Rn,,,), as a central index of the function f,
the quantity v;(r) = my, serves, while the maximal term is i (r) = | f,,, [r"*. We partition the
series in as follows:

=Y ft = Y A Y R

n€lNy n<myg,n€lNy n>my,n€lNy

We choose numbers py, gi in the interval (0, 1) so that prgp > a,:l and let us estimate the sums

Si(z) == Z fn2", Sa(z) == Z fn2"

n<mpg,n€lNy n>my,neElNy
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1

on the circumferences |z| = r = aR,,,, where a € [pk,

qkak>. We have
Z F, 1
ka rmeg—n
Z Rmk mg—n
r

mg—nj, 0
=0

|51(2)] < ¥ | 1 <
3 g | 7
’uf( n<mpg,n€lNy Mk n<myg,n€ENy
< Z Rn-&-lrr;k'_'ank <
n<my,nelNy r n<my,nelNy
1\™ " 1
ROt
n<myg,nelNy a a
(l)mk—n;C m—nj
— \a k ]
l—a ! ~ 1—p
Thus, estimate
P
151(2)] < :uf(m 1 _kpk7 2| =7 = Ry, € [pI;Ime Rmk+1)
is true. For the same z € C: |z| = r = aR,,, we have:
ﬁznfmk < Fn ,rn*mk _ rnfmk <
fmk ka Rmk+1 e RTL
n—mri
’uf(r) n>my,n€lNy fmk n>my, n€lNy Xk

o

n—mg
T (0%
Rmk+1 (077

. . nj —mp, .
o ng—my o % (Oé_k> q:k—mk
oy — \ 1 o 1 —q

Thus, the estimate holds

S < —r

S2()] < pslr) 2

Combining estimates and , we conclude
[S1(2)] =+ [92(2)] < s (r)T (P ),

[l =7 = AR, € [Ru, 01 Bony).

’Z‘ =rec [pllemMQkRmkH)a

(24)

(25)

(26)

where , }

s a0

o @) =5 - l—aq
Making estimates more rough and assuming for simplicity that pi < qx, k € IN, we hence obtain
T <o O
(pkan) X 1— qk-

Let us show that it is possible to choose g, to satisfy the conditions

Vi

q,:2 < ay, el —0, k— oo
1 — gk
In i

In order to do this, we denote ¢, =

Vi
ai° = (1+e)” <

and we let ¢;' = 1 + &;. Indeed,

g,
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and the first condition in is satisfied. Since ¢, — 0 as £ — oo, then ¢ — 1 and we get:

T Yk } A
L) D Ly gy en L[ ega ] E

l—qe  qu lgr—1 & Ek
1 == 92 2%, Tklndk )
< —eutt <« Do = Lfge Bk =—— =0, k— oo,
€k €k In In

and we see that the second condition in is satisfied as well. Taking into considerations
estimates and , we conclude

1S1(2) + [S2(2)] < py(r), Nzl =7 € [ B @ BRomy 1), b > o, (28)

According Rouché theorem, as k > ko, in the circle |z| < p.'R,,, the function f(z) =
S1(2) 4+ S2(2) + fin, 2™ has the same amount of zeroes as the function f,, 2™ does, that is, my
zeroes, while in the circle |z] < q,:llec it has my_; zeroes. This implies that for sufficiently
large k, the annulus

gt 1 Bony, < |2| < pp ' Ry, k> ko, (29)

contains my — my_1 zeroes of the function f(z). Therefore, for the zeroes A, of this function
with the indices n € (myg_1,my], the inequalities hold:
R —

Gh< o< n€(meum], k> ko
mi

However, for such indices n we have R, = R,,, and we finally obtain:

_ A _
qk_ll < M < pk;lv n € (mp—1,mz), k> ko.

R,
Hence, we conclude that

Al o A
1= lim —1<1im’”<1im "< limpit=1
k—o00 U1 n—ooo Iip = oo R, = k—>oopk ’

and relation holds true. The proof is complete. O

We note that asymptotics proves the sharpness of estimate in Corollary from
Theorem 3.1l Now we have two remarks.

Remark 4.1. The quantity of the initial term fy in series makes no influence on the
asymptotics of the zeroes of the function f and this is why the statement of Theorem[{.1] is true
not only for the zeroes, but also for all a-points of the function f, that is, for the zeroes of the
function f —a, a € C.

Remark 4.2. Condition of Theorem 1s obuviously satisfied if all but not only central
lacunas in series are unbounded, that is, if

lim v; = lim (n; — n;_1) = oo.
1—00 1—00
The condition in the latter remark is easier for checking since it does not require finding
the values of the central index of the series. Such checking is even not needed if the sequence
{Ifn}, where n € INy, is strictly logarithmically convex since then INy = {my}, that is, this set
consists of all central indices of series . In this case we can specify the location of zeroes.
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Theorem 4.2. Let the assumptions of Theorem[{.1] be satisfied and moreover, the sequence
{|fnl}, where n € Ny, is strictly logarithmically convex. Then the zeroes {\,} of function (20)
satisfies the asymptotic formula:

>\n - <_%> o (]' + 0<]')) ’ n e (mk—la mk]7 k — o0, (30)

where the exponent is chosen depending on n.

Proof. Indeed, in the considered case the set over which series is summed up consists of
the values of the central indices: INy = {my}. This is why the identities hold:

1
fmk,1
J

Tk

, keNl.

|fmk| :me Ve = Mg — M1, Rmk =

We represent the series in (20)) as
Sk = X R S S Y

nelNy n<mp_1,n€EN n>mg ,neENy
=: 51(2) + fin_ 2™+ [, 2™+ Sa(2).

It is obvious that the sum S| admits same estimate as 57 does; the sum Sy and its
estimate remain the same. This is why estimate also remains true:

1S1(2)] + [S2(2)] < py ()T (prsar), 12l =1 € [P R @i By, -
Taking into consideration this estimate, for z, satisfying the inequality
| fre 27570+ i 2™ 2 | o 2™,
we obtain:
[F () = 191(2) + freoy 2™+ fimy 27 + Sa(2)]
2 [ foeey 270 fin 2™ = (191(2)] + [S2(2)]) > pap (r)(L = T(prs ) > 0

as k > kg. Therefore, the zeroes of the function f lie in the intersection of annuli and the
sets
f mg_—1

fmk

Each such set is the pre-image of the half-plane

+ MR T T L |z| =r, k> k.

fmk*l

+t| < |t| under the mapping by the

function t = 2™k~ "™Mk-1 = 2% Denoting

———
fo )

in this half-plane we have argt € (¢ — /2, ¢ + 7/2). Returning back to the plane of the
variable z, for the zeroes A, we obtain, that for some integer s,, € [0, %) we have:

ors,, ors,,
arg ), € (W_W_L,W_M+L).
Vi 2 Vi 2%
Here for each n we choose some corresponding number s,, € [0,~;) fixing the value of the root.
This completes the proof since QL — 0, k — oo. O
Yk

We note that formula (30]) is an analogue of Valiron formula obtained for series with
no lacunas.
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Remark 4.3. It is possible that condition 15 not necessary for the wvalidity of Theo-
rem [{.1. However, the author has not succeeded to exclude it from the formulation. Neverthe-
less, this condition can be weakened a little by assuming that for some a € (0,1), the inequality

R, In (3. /1n4,.) \ 2
B _ s (1 MOOTNT N sk,
Rmk Vi

holds.
Remark 4.4. Analysing the proof of Theorem we see that if condition and
lim min {7, 7, 1} = +oo,
k—o00
are satisfied, where in the latter condition the upper limit is attained at the set of the indices
k € K C NN, then asymptotics remains true on the set K:
’)‘n‘ ~ Rn7 ne (mkamk+1]7 K>k — oo.

Now we consider the case when instead of , the lacunas of series , more precisely, its
central lacunas, satisfy the condition

lim v, = p < +00. (31)

k—o00

It is obvious that p € IN. We introduce the function

.y
oplr) = o) = T Te01),
and by 7, we denote the root of the equation ¢(7) = 1/2, that is, the root of the equation
2P +7—-1=0 (32)
in (0,1). It is easy to confirm that
1 1
7-1:§, 7'225, 7'3:05897,

and in general, 7, /1 as p € IN grows unboundedly.

Theorem 4.3. Let the lacunas of series satisfy condition and its coefficients obey

the condition
R

%>5>T;2, keN, k> ko, (33)
My
in which 7, is the oot of equation . Then the zeroes A, of function satisfy inequalities

An| _ 1
Zp < - < R n > Ny,
R, z,

where x, is the largest root of the equation
1 P (Bx)t=r
o)+ o(o5) = 1o + (34)

Proof. We denote by G a domain bounded by the curves defined by the equations yz = 1/ and
o(r) + p(y) =1, x € (0,1). Condition (33)) ensures that this domain is non-empty. We shall
employ the estimates obtained in the proof of Theorem letting there pr = p, qx = q with

1

constants p, ¢ obeying the condition — < . Since in the considered case 7, > p, estimate
pq

becomes

1Su ()| + [S2(2)| < py(r)T(p,q), |2l =7 € [p7" Rinys Ry ),
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P’ q°

where T'(p, q) = ] + T—o Estimate also remains true and casts into the form
-Pp —q

1S1()]+192(2)] < ps(r), |zl =7 € P Runy, qRonyry), b > ko,

once we suppose that (p,q) € G, i.e., once the condition
T P < 1
Q) = + = o(p) +plq) <
(p.a) = 5 T, e(p) + ¢(q)
is satisfied. As above, basing on the Rouché theorem, we obtain the inequalities:
Pal
q< I <p, n € (mg_1,mg], k> ko.

To complete the proof, it remains to approach by the point (p,q) € G the intersections of the
curves enveloping the domain GG. The proof is complete. O

Since the domain G is symmetric with respect to the bisectrix of the first coordinate quarter,
the inequality 7, < x, holds. This allows us to formulate a result not requiring finding the root

of equation (34).

Corollary 4.1. Let the assumptions of Theorem [[.3 hold. Then the zeroes A, of func-

tion satisfy inequalities
Auf _ 1

R, Tp7
where 7, € (0,1) is the root of equation 277 + 1 — 1 = 0.

In particular, for even (odd) entire functions with logarithmically convex Taylor coefficients
satisfying, for sufficiently large k € IN, the condition

Rojpto > B4 (R2k+1 S h> 4>

T, < n = ng,

Roy Rok—1 ~

we can state a two-sided estimate
Ll
2 R,

We note that in the case p = 1, for instance, as the lacunas in series are absent, by
Theorem [4.3| we obtain the result by Hadamard [I3] improved then by Valiron [6], who weakened
the restriction # > 9 in condition to the condition $ > 4.8. In this, as for series with
unbounded lacunas, Theorem can be specified by providing the angles in the complex plane
free of the zeroes of the function f(z). For instance, if coefficients of series are positive
and logarithmically convex, then under the assumptions of Theorem all zeroes f(z) are
located in the left half-plane. Some specifications of Theorem obtained by other methods

Mh41

< 2, n = ng.

for polynomials and entire functions satisfying the condition > [ for various 3 can be

found in work [24]. However, one fails to achieve here a desired .sharpness and this problem
still waits for being resolved.
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