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JOINT ESTIMATES FOR ZEROS AND

TAYLOR COEFFICIENTS OF ENTIRE FUNCTION

G.G. BRAICHEV

Abstract. In the paper, for an entire function 𝑓(𝑧) =
∞∑︀
𝑛=0

𝑓𝑛𝑧
𝑛, we provide asymptotic and

uniform bounds of commensurability of the growth of zeroes and the decaying of the Taylor
coefficients one with respect to the other. As an initial point for these studies, the following
Hadamard statement serves: if the coefficients of the series obey the inequality |𝑓𝑛| 6 𝜙(𝑛)

with some function 𝜙(𝑥), then the absolute values of the zeroes grows faster than 1/ 𝑛
√︀
𝜙(𝑛).

In the present work we improve recently obtained lower bound for the joint growth of the
zeroes and the coefficients via the maximal term of the Taylor series of the function 𝑓(𝑧) or
via the counting function of its zeroes. The employing of Hadamard-rectified coefficients
of the series give an opportunity to establish corresponding two-sided estimates. By the
methods developing classical ideas we find a numerical dependence of such estimates on
the sizes of the gaps of the power series representing the entire function. In particular, we
find asymptotic identities relating the zeroes and the coefficients of an entire function. The
obtained estimates are sharp and strengthen the known results by other authors.

Keywords: Taylor coefficients, Hadamard-rectified zeroes of entire function.

Mathematics Subjects Classifications: 30D20

1. Introduction and review of known results

In the paper we consider entire transcendental functions that is, analytic in the entire complex
plane functions not coinciding with polynomials. Each such function is represented by its Taylor
series

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑓𝑛𝑧
𝑛, 𝑓𝑛 =

𝑓 (𝑛)(0)

𝑛!
, 𝑧 ∈ C, (1)

containing infinitely many non-zero terms. We shall use the following characteristics usual in
the theory of entire functions:

𝑀𝑓 (𝑟) = max
|𝑧|=𝑟

|𝑓(𝑧)| is the maximum of the absolute value of a function,

𝜇𝑓 (𝑟) = max
𝑛∈N

|𝑓𝑛|𝑟𝑛 is the maximal term of series (1),

𝜈𝑓 (𝑟) = max{𝑛 ∈ N0 : |𝑓𝑛|𝑟𝑛 = 𝜇𝑓 (𝑟)} is the central index.

Let 𝐸0 be the class of entire functions possessing infinitely many zeroes. Without loss of
generality, we suppose that 𝑓(0) ̸= 0 in series (1). The sequence Λ𝑓 = {𝜆𝑚}∞𝑚=1 of zeroes of the
function 𝑓 ∈ 𝐸0 is written taking the multiplicities in the ascending order of absolute values:

0 < |𝜆1| = . . . = |𝜆𝑚1| < |𝜆𝑚1+1| = . . . = |𝜆𝑚2| < . . . , (2)
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while the counting and averaged counting functions of the zeroes are denoted by

𝑛𝑓 (𝑟) = max{𝑚 ∈ N : |𝜆𝑚| 6 𝑟} and 𝑁𝑓 (𝑟) =

𝑟∫︁
0

𝑛𝑓 (𝑡)

𝑡
𝑑𝑡,

respectively.
There are a lot of works devoted to studying the dependence of the growth of an entire

function on the decay rate of its Taylor coefficients or on the growth and distribution of its
zeroes on the complex plane. In most part of works, such characteristics of the growth of
ln𝑀𝑓 (𝑟) as order, type and others are calculated by the coefficients of series (1), see [1]–[9].
In other works, a relative growth of ln𝑀𝑓 (𝑟) and of the counting function 𝑛𝑓 (𝑟) is studied; a
wide list of references can be found in work by Valiron [10]. However, just few attention was
paid on studying direct relations between the Taylor coefficients and the zeroes of an entire
function, although such relations is needed in special issues of the spectral theory of operators
and interpolation problems, where the spectrum or the intepolation nodes are zeroes of some
entire function and vice versa. Direct formulae expressing the zeroes via the coefficients and
vice versa are too bulky and provide no information on mutual behavior of these sequences [11],
[12]. This difficulty was overcome by Hadamard [13], [14] and he established that the absolute

values of the zeroes 𝜆𝑛 of a function 𝑓(𝑧) grow faster that |𝑓𝑛|−
1
𝑛 . He proposed a method

allowing one to compare relative behavior of Taylor coefficients and the zeroes. The approach
was extended by Borel [15], while Valiron transformed the estimates into a sharper form. Let
us provide one of the results by Valiron, see [6].

If the coefficients of series (1) satisfy the condition

𝑓𝑛−1𝑓𝑛+1

𝑓 2
𝑛

→ 0, 𝑛 → ∞, (3)

then the following formulae relating the zeroes and the coefficients hold:

𝑓𝑛 ∼ (−1)𝑛𝑓0
𝜆1𝜆2 · · ·𝜆𝑛

, 𝑛 → ∞,

𝜆𝑛 ∼ −𝑓𝑛−1

𝑓𝑛
, 𝑛 → ∞. (4)

It should be said that the functions with the coefficients obeying condition (3) have a slow
growth, namely, they satisfy the condition

lim
𝑟→+∞

ln𝑀𝑓 (𝑟)

ln2 𝑟
= 0.

In his Habilitation thesis, Oskolkov [16] has proved a following statement while he studied
the Newton interpolation problem for fast growing nodes.

If the zeroes {𝜆𝑛} of the function 𝑓(𝑧) obey the condition

ln𝑛

|𝜆𝑛|
↘ 0, 𝑛 → ∞, (5)

then the coefficients of the Taylor series of this function satisfy the condition

lim
𝑛→∞

𝑛
√︀
|𝑓𝑛𝜆1𝜆2 · · ·𝜆𝑛| = 1. (6)

Let us also provide in our terms some results obtained recently by Ukrainian mathematicians.
Pel’chars’ka and Sheremeta [17] proved the following. If 𝑓 ∈ 𝐸0, then

lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀
|𝑓𝑛| > 1. (7)
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There exists 𝑓 ∈ 𝐸0 such that

lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀
|𝑓𝑛| = 1.

In [18], Andrusyak obtained the following result. If 𝑓 ∈ 𝐸0, then

lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀

|𝑓𝑛| > 𝑒
lim

𝑟→+∞

ln𝜇𝑓 (𝑟)

𝜈𝑓 (𝑟) . (8)

There exists a function in the class 𝐸0, at which the identity is attained in (8).
Andrusyak and Filevich proved the following result [19]. If 𝑓 ∈ 𝐸0, then

lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀
|𝑓𝑛| > 𝑒

lim
𝑟→+∞

𝑁𝑓 (𝑟)

𝑛𝑓 (𝑟) . (9)

There exists a function in the class 𝐸0, at which the identity is attained in (9)1.
We are going to formulate a result of a non-asymptotic nature obtained in 1938 by Ostro-

vski [20]; the notations are introduced below in Section 2.
Let 𝑝 ∈ N. If an entire function possesses at least 𝑝 zeroes and |𝜆𝑝| 6 𝑅𝑝, then

𝑝∏︁
𝑛=1

(︂
1 − |𝜆𝑛|

𝑅𝑝

)︂
<

1

2
, |𝜆𝑝| >

(︃
1 −

(︂
1

2

)︂ 1
𝑝

)︃
𝑅𝑝;

here the second inequality follows the first inequality. The constants can not be improved for
each 𝑝.

The aim of the present work is to prove sharper lower bounds, which will imply all afore-
mentioned results. Moreover, we shall obtain two-sided estimates for the zeroes of the function
in terms of its Taylor coefficients extended some results by Valiron [6] on lacunary series. The
possibility of such extension was hinted by Hadamard [13]. In particular, we show that for
each entire function 𝑓 ∈ 𝐸0 the Hadamard-rectified coefficients 𝐹𝑛 of series (1) (see a definition
below) satisfy the inequality:

lim
𝑛→∞

𝑛
√︀

𝐹𝑛|𝜆1𝜆2 · · ·𝜆𝑛| > 1,

as well as an inequality strengthening (9):

lim
𝑛→∞

𝐹𝑛
𝑛
√︀

|𝜆𝑛| > 𝑒
lim

𝑟→+∞

𝑁𝑓 (𝑟)

𝑛𝑓 (𝑟)
.

We proceed to the main part of the work.

2. Preliminaries

Let a function 𝑓 be defined by series (1), that is,

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑓𝑛𝑧
𝑛, 𝑓(0) = 𝑓0 = 1, 𝑧 ∈ C,

the value 𝑓(0) = 1 is chosen for the convenience. Let 𝑦 = 𝐺(𝑥) be the equation of the Newton-
Hadamard polygon, that is, the equation of the boundary of the convex hull of the points
(𝑛,− ln |𝑓𝑛|), 𝑛 ∈ N0 = N ∪ {0}. This polygon consists of straight segments connecting its
vertices (𝑛𝑘,− ln |𝑓𝑛𝑘

|), 𝑘 ∈ N0. Following Valiron, the abscissas of the vertices 𝑛𝑘, 𝑘 ∈ N0, are
called central indices of 𝑓 , more precisely, of the Taylor series of the function 𝑓 . We denote:

𝐹𝑛 = 𝑒−𝐺(𝑛), 𝑛 ∈ N0 and 𝑅0 = 1, 𝑅𝑛 = 𝑒𝐺(𝑛)−𝐺(𝑛−1), 𝑛 ∈ N.

1In works [17]–[19] instead of the zeroes of the function 𝑓(𝑧), its 𝑎-points were considered, that is, the zeroes

of the function 𝑓(𝑧)− 𝑎.
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We obviously have:

𝑅𝑛 =
𝐹𝑛−1

𝐹𝑛

and 𝐹𝑛 =
1

𝑅1𝑅2 · · ·𝑅𝑛

, 𝑛 ∈ N.

Let us mention some known properties of the Newton-Hadamard polyline, see, for instance, [7].
The relations hold:

|𝑓𝑛| 6 𝐹𝑛, 𝑛 ∈ N0 and |𝑓𝑛𝑘
| = 𝐹𝑛𝑘

, 𝑘 ∈ N0. (10)

The functions 𝑓(𝑧) =
∞∑︀
𝑛=0

𝑓𝑛𝑧
𝑛 and 𝐹 (𝑧) =

∞∑︀
𝑛=0

𝐹𝑛𝑧
𝑛 possess the same maximal terms and

central indices:

𝜇𝑓 (𝑟) = max
𝑛∈N0

|𝑓𝑛|𝑟𝑛 = max
𝑛∈N0

𝐹𝑛𝑟
𝑛 = 𝜇𝐹 (𝑟),

𝜈𝑓 (𝑟) = max{𝑛 ∈ N0 : |𝑓𝑛|𝑟𝑛 = 𝜇𝑓 (𝑟)} = max{𝑛 ∈ N0 : 𝐹𝑛𝑟
𝑛 = 𝜇𝐹 (𝑟)} = 𝜈𝐹 (𝑟),

and the relations hold:

|𝑓𝑛| 6 min
𝑛∈N0

𝜇𝑓 (𝑟)

𝑟𝑛
= 𝐹𝑛, 𝑛 ∈ N0.

The coefficients 𝐹𝑛 are called Hadamard-rectified coefficients of the function 𝑓(𝑧). A piece-wise
linearity of 𝐺(𝑥) implies the relations:

𝜈𝑓 (𝑟) = 0, 𝑟 ∈ [0, 𝑅𝑛1) and 𝜈𝑓 (𝑟) = 𝑛𝑘, 𝑟 ∈ [𝑅𝑛𝑘
, 𝑅𝑛𝑘+1

), 𝑘 ∈ N, (11)

𝜇𝑓 (𝑟) = 1, 𝑟 ∈ [0, 𝑅𝑛1) and 𝜇𝑓 (𝑟) = 𝐹𝑛𝑘
𝑟𝑛𝑘 , 𝑟 ∈ [𝑅𝑛𝑘

, 𝑅𝑛𝑘+1
), 𝑘 ∈ N.

Let, as above, Λ𝑓 = {𝜆𝑚}∞𝑚=1 be the sequence of the zeroes of the function 𝑓 taken counting
their multiplicities in the ascending order of their absolute values, see (2):

0 < |𝜆1| = . . . = |𝜆𝑚1| < |𝜆𝑚1+1| = . . . = |𝜆𝑚2 | < . . . .

The counting function of the zeroes Λ𝑓 of the function 𝑓 defined by the formula

𝑛(𝑟) = 𝑛𝑓 (𝑟) = max{𝑚 ∈ N : |𝜆𝑚| 6 𝑟},

is introduced by the following identities:

𝑛(𝑟) = 0, 𝑟 ∈ [0, |𝜆𝑚1|) and 𝑛(𝑟) = 𝑚𝑘, 𝑟 ∈ [|𝜆𝑚𝑘
|, |𝜆𝑚𝑘+1

|), 𝑘 ∈ N.

Comparing with (11), we see that 𝑛(𝑟) is a central index of the function

Ψ(𝑧) = 1 +
∞∑︁

𝑚=1

𝑧𝑚

|𝜆1 · · ·𝜆𝑚|
,

and hence, it possesses the same properties as 𝜈𝑓 (𝑟).

3. Main results

The next theorem strengthens inequality (7).

Theorem 3.1. Given an entire function

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑓𝑛𝑧
𝑛 ∈ 𝐸0,

let 𝐹𝑛 be the Hadamard-rectified coefficients of 𝑓(𝑧). Then the inequality holds:

lim
𝑛→∞

𝑛
√︀
𝐹𝑛|𝜆1𝜆2 · · ·𝜆𝑛| > 1. (12)
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Proof. According to Jensen theorem, for each 𝑟 > 0 the identity holds:

ln
𝑟𝑛(𝑟)

|𝜆1𝜆2 · · · 𝜆𝑛(𝑟)|
= 𝑁𝑓 (𝑟) =

1

2𝜋

𝜋∫︁
−𝜋

ln |𝑓(𝑟𝑒𝑖𝜃)| 𝑑𝜃.

For all 𝑟 > 0 and all 𝑛 ∈ N this implies the inequalities:

ln
𝑟𝑛

|𝜆1𝜆2 · · · 𝜆𝑛|
6 𝑁𝑓 (𝑟) 6 ln𝑀𝑓 (𝑟). (13)

Since for each ℎ > 1 the condition

𝑀𝑓 (𝑟) = 𝑜(𝜇𝑓 (ℎ𝑟)), 𝑟 → +∞,

holds, then for sufficiently large 𝑟 we have:

𝑀𝑓 (𝑟) 6 𝜇𝑓 (ℎ𝑟), 𝑟 > 𝑟0(ℎ). (14)

An obvious corollary of inequalities (13) and (14) is the estimate

𝑁𝑓 (𝑟) 6 ln𝜇𝑓 (ℎ𝑟), ℎ > 1, 𝑟 > 𝑟0(ℎ).

By this estimate we get:

𝑟𝑛

|𝜆1𝜆2 · · · 𝜆𝑛|
6 𝜇𝑓 (ℎ𝑟),

1

|𝜆1𝜆2 · · · 𝜆𝑛|
6

𝜇𝑓 (ℎ𝑟)

𝑟𝑛
,

1

|𝜆1𝜆2 · · · 𝜆𝑛|
6 ℎ𝑛 inf

𝑟>𝑟0(ℎ)

𝜇𝑓 (ℎ𝑟)

(ℎ𝑟)𝑛
= ℎ𝑛 𝐹𝑛, 𝑛 > 𝑛0(ℎ).

Here we have taken into account that the central index increases unboundedly as 𝑟 grows. The
latter inequality implies the relations

𝐹𝑛|𝜆1𝜆2 · · ·𝜆𝑛| > ℎ−𝑛, 𝑛 > 𝑛0(ℎ), lim
𝑛→∞

𝑛
√︀
𝐹𝑛|𝜆1𝜆2 · · · 𝜆𝑛| > ℎ−1.

Since ℎ > 1 is arbitrary, we obtain needed estimate (12). The proof is complete.

We observe that the estimate in the above proven theorem is sharp. Owing to the result
by Oskolkov, see (6), this inequality becomes the identity, for instance, on the functions with
logarithmically convex coefficients (then |𝑓𝑛| = 𝐹𝑛, 𝑛 ∈ N0), the zeroes of which obey condi-
tion (5).

Taking into consideration the increasing of the sequence |𝜆𝑛|, we obtain the statement from
the Hadamard theorem [14]:

lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀
𝐹𝑛 > 1.

Moreover, employing (10), we obtain

lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀

|𝑓𝑛| > lim
𝑘→∞

|𝜆𝑛𝑘
| 𝑛𝑘

√︁
|𝑓𝑛𝑘

| = lim
𝑘→∞

|𝜆𝑛𝑘
| 𝑛𝑘

√︀
𝐹𝑛𝑘

> lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀
𝐹𝑛 > 1,

that is, estimate (7) holds:

lim
𝑛→∞

|𝑓𝑛| 𝑛
√︀

|𝜆𝑛| > 1.

Finally, employing (12) and the fact the upper D’Alembert limit is not less than the Cauchy
upper limit1, we get:

lim
𝑛→∞

|𝜆𝑛|
𝑅𝑛

> lim
𝑛→∞

𝑛

√︃
|𝜆1𝜆2 · · ·𝜆𝑛|
𝑅1𝑅2 · · ·𝑅𝑛

= lim
𝑛→∞

𝑛
√︀
𝐹𝑛|𝜆1𝜆2 · · ·𝜆𝑛| > 1.

1This is implied by Stolz inequality.
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Thus, we arrive at the following corollary.

Corollary 3.1. Given 𝑓(𝑧) =
∞∑︀
𝑛=0

𝑓𝑛𝑧
𝑛 ∈ 𝐸0, let 𝐹𝑛 be the Hadamard-rectified coefficients of

𝑓(𝑧), 𝑅𝑛 = 𝐹𝑛−1

𝐹𝑛
and {𝜆𝑛} be the sequence of all zeroes of this function taken in the ascending

order of their absolute values. Then the inequality holds:

lim
𝑛→∞

|𝜆𝑛|
𝑅𝑛

> 1. (15)

The inequality in the above corollary is sharp, the identity is attained at some class of entire
functions with lacunary Taylor series. This will be seen from the results of the previous section,

in which we establish two-sided estimates of the quotients
|𝜆𝑛|
𝑅𝑛

, see, for instance, Theorem 4.1.

We are going to show that inequality (15) implies estimate (8) in work [18] cited in the
introduction. Indeed, the assumption that estimate (8) fails, implies that for some 𝑞 ∈ (0, 1),
the inequality holds:

|𝜆𝑚| 𝑚
√︀
𝐹𝑚 < 𝑞𝑒

ln𝐹𝑚𝑅𝑚
𝑚

𝑚 , 𝑚 > 𝑚0.

After some elementary transformations we arrive at the estimate

|𝜆𝑚| < 𝑞𝑅𝑚, 𝑚 > 𝑚0,

which contradicts (15).
Our next step is to prove a result specifying estimate (9). We first introduce the following

quantities:

𝜈𝑓 = lim
𝑟→+∞

𝑁𝑓 (𝑟)

𝑛𝑓 (𝑟)
, 𝜈𝑓 = lim

𝑟→+∞

𝑁𝑓 (𝑟)

𝑛𝑓 (𝑟)

called in work [21] respectively upper and lower relative densities of the sequence Λ𝑓 .

Theorem 3.2. Given an entire function

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑓𝑛𝑧
𝑛 ∈ 𝐸0,

let 𝐹𝑛 be the Hadamard-rectified coefficients of 𝑓(𝑧), and 𝜈𝑓 be the lower relative density of its
zeroes. Then an inequality holds:

lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀
𝐹𝑛 > 𝑒𝜈𝑓 . (16)

Proof. We transform:

𝜈𝑓 = lim
𝑟→+∞

𝑁𝑓 (𝑟)

𝑛𝑓 (𝑟)
= lim

𝑘→∞

(︃
inf

𝑟∈[|𝜆𝑚𝑘
|,|𝜆𝑚𝑘+1

|)

𝑁𝑓 (𝑟)

𝑛𝑓 (𝑟)

)︃
= lim

𝑘→∞

𝑁(|𝜆𝑚𝑘
|)

𝑚𝑘

= lim
𝑘→∞

(︂
inf

𝑚∈(𝑚𝑘−1,𝑚𝑘]

𝑁(|𝜆𝑚|)
𝑚

)︂
= lim

𝑚→∞

𝑁(|𝜆𝑚|)
𝑚

.

Here we have employed that |𝜆𝑚| = |𝜆𝑚𝑘
| for 𝑚 ∈ (𝑚𝑘−1, 𝑚𝑘]. Let 𝑀 be the set of the indices,

on which the lower limit is attained in estimate (16), that is,

lim
𝑚→∞

|𝜆𝑚| 𝑚
√︀
𝐹𝑚 = lim

𝑚∈𝑀
|𝜆𝑚| 𝑚

√︀
𝐹𝑚.

Suppose that inequality (16) fails. Then for some 𝑞 ∈ (0, 1) and all 𝑚 ∈ 𝑀 , 𝑚 > 𝑚0 we
have:

|𝜆𝑚| 𝑚
√︀
𝐹𝑚 < 𝑞𝑒

𝑁(|𝜆𝑚|)
𝑚 ,
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or, taking the 𝑚th power,

|𝜆𝑚|𝑚𝐹𝑚 < 𝑞𝑚𝑒𝑁(|𝜆𝑚|) = 𝑞𝑚
|𝜆𝑚|𝑚

|𝜆1| · · · |𝜆𝑚|
.

After dividing by |𝜆𝑚|𝑚, we get:

𝐹𝑚 <
𝑞𝑚

|𝜆1| · · · |𝜆𝑚|
, 𝐹𝑚|𝜆1| · · · |𝜆𝑚| < 𝑞𝑚,

lim
𝑚→∞

𝑚
√︀

𝐹𝑚|𝜆1 · · ·𝜆𝑚| 6 lim
𝑚∈M

𝑚
√︀

𝐹𝑚|𝜆1 · · ·𝜆𝑚| 6 𝑞 < 1.

But this contradicts inequality (12) of Theorem 3.1. The proof is complete.

Estimate (16) involves lower limits. For the upper limits of the same quantities, the following
result holds true.

Theorem 3.3. Given an entire function

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑓𝑛𝑧
𝑛 ∈ 𝐸0,

let 𝐹𝑛 be the Hadamard-rectified coefficients of 𝑓(𝑧), and 𝜈𝑓 be the upper relative density of its
zeroes. Then an inequality holds:

lim
𝑛→∞

|𝜆𝑛+1| 𝑛
√︀
𝐹𝑛 > 𝑒𝜈𝑓 . (17)

Proof. We proceed as in the proof of inequality (16). In this case we have:

𝜈𝑓 = lim
𝑟→+∞

𝑁𝑓 (𝑟)

𝑛𝑓 (𝑟)
= lim

𝑘→∞

(︃
sup

𝑟∈[|𝜆𝑚𝑘
|,|𝜆𝑚𝑘+1

|)

𝑁𝑓 (𝑟)

𝑛𝑓 (𝑟)

)︃
= lim

𝑘→∞

𝑁𝑓 (|𝜆𝑚𝑘+1
|)

𝑚𝑘

=: lim
𝑘∈K

𝑁𝑓 (|𝜆𝑚𝑘+1
|)

𝑚𝑘

.

Here 𝐾 is the set of indices, on which the upper limit is attained in the latter identity. By
the definition of the upper relative density, for a small 𝜀 > 0 we find an index 𝑘0 such that for
𝑘 > 𝑘0, 𝑘 ∈ K, the inequality holds:

𝑁𝑓 (|𝜆𝑚𝑘+1
|)

𝑚𝑘

> 𝜈𝑓 − 𝜀. (18)

We shall also need the relation

𝑁𝑓 (|𝜆𝑚𝑘+1
|) −𝑁𝑓 (|𝜆𝑚𝑘

|) =

|𝜆𝑚𝑘+1
|∫︁

|𝜆𝑚𝑘
|

𝑛𝑓 (𝑡)

𝑡
𝑑𝑡 = 𝑚𝑘 ln

|𝜆𝑚𝑘+1
|

|𝜆𝑚𝑘
|

(19)

implied by the definition of 𝑁𝑓 (𝑟). Suppose that (17) fails, i.e.,

lim
𝑛→∞

|𝜆𝑛+1| 𝑛
√︀
𝐹𝑛 < 𝑒𝜈𝑓 .

Then for some 𝑞 ∈ (0, 1) and all sufficiently large 𝑛 > 𝑛0 we have:

|𝜆𝑛+1| 𝑛
√︀
𝐹𝑛 < 𝑞𝑒𝜈𝑓−𝜀.

Letting here 𝑛 = 𝑚𝑘, 𝑘 ∈ K, 𝑘 > 𝑘0, in view of (18) and (19) we obtain:

|𝜆𝑚𝑘+1
| 𝑚𝑘

√︀
𝐹𝑚𝑘

< 𝑞𝑒
𝑁𝑓 (|𝜆𝑚𝑘+1

|)
𝑚𝑘 = 𝑞

|𝜆𝑚𝑘+1
|

|𝜆𝑚𝑘
|
𝑒

𝑁𝑓 (|𝜆𝑚𝑘
|)

𝑚𝑘 ,

or, after cancellation and taking the 𝑚𝑘th power,

𝐹𝑚𝑘
<

𝑞𝑚𝑘

|𝜆1𝜆2 · · ·𝜆𝑚𝑘
|
.
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As in the proof of the previous theorem, this leads to a contradiction with inequality (12). The
proof is complete.

Taking into consideration the known relations between the orders and relative densities [22,
Thm. 2.6.1(d)]:

𝜈𝑓 6
1

𝜌𝑓
6

1

𝜆𝑓

6 𝜈𝑓 ,

where 𝜌𝑓 and 𝜆𝑓 are the order and the lower order of an entire function 𝑓 , respectively, by
Theorem 3.3 we obtain the following corollary.

Corollary 3.2. Let the assumptions of Theorem 3.3 be satisfied. Then the estimate

lim
𝑛→∞

|𝜆𝑛+1| 𝑛
√︀
𝐹𝑛 > 𝑒

1
𝜆𝑓

holds. In particular, for entire functions of zero lower order we have

lim
𝑛→∞

|𝜆𝑛+1| 𝑛
√︀

𝐹𝑛 = +∞.

Let us consider an example. Let 𝑓(𝑧) = 𝑒𝑧
𝜌 − 1, 𝜌 ∈ N. Then we have

𝑓(𝑧) =
∞∑︁
𝑘=1

𝑧𝜌𝑘

𝑘!

and simple calculations give:

𝑅𝑛 = 𝜌

√︂
𝑛

𝜌
, 𝜈(𝑟) = max {𝑛 : 𝑅𝑛 6 𝑟} = [𝜌𝑟𝜌] , ln𝜇(𝑟) ∼ ln𝑀(𝑟) = 𝑟𝜌, 𝑟 → ∞.

The zeroes of functions are found by the condition 𝑧𝜌 = 2𝜋𝑘𝑖, where 𝑘 ∈ Z. All zeroes
are simple except the zero 𝑧 = 0 of multiplicity 𝜌. The circumference of the radius 𝜌

√︀
2𝜋|𝑘|,

𝑘 ∈ Z ∖ {0}, centered at the origin contains 2𝜌 zeroes. For non-trivial zeroes indexed by 𝑛 ∈ N
in the ascending order of their absolute values we write

|𝜆𝑛| = 𝜌

√︃
2𝜋

(︂
1 +

[︂
𝑛− 1

2𝜌

]︂)︂
∼ 𝜌

√︂
𝜋𝑛

𝜌
, 𝑛 → ∞,

where [𝑥] denotes the integer part of a number 𝑥. The above calculations lead us to the formulae

lim
𝑛→∞

|𝜆𝑛|
𝑅𝑛

= 𝜌
√
𝜋, 𝜈 := lim

𝑟→+∞

ln𝜇(𝑟)

𝜈(𝑟)
=

1

𝜌
,

lim
𝑛→∞

|𝜆𝑛| 𝑛
√︀

𝐹𝑛 = lim
𝑛→∞

|𝜆𝑛+1| 𝑛
√︀

𝐹𝑛 = lim
𝑚→∞

|𝜆𝜌𝑚| 𝜌𝑚
√︀

𝐹𝜌𝑚 = lim
𝑚→∞

𝜌
√
𝜋𝑚

𝜌𝑚

√︂
1

𝑚!
= 𝜌

√
𝜋𝑒.

We note that the Taylor series of the considered function is lacunary with lacunas of size 𝜌. At
that, each of general formulae (15)–(17) differs from the corresponding formula in the above
formula by the factor 𝜌

√
𝜋 tending to one as 𝜌 grows unboundedly. This tendency will arise in

the next section devoted to lacunary series, see Theorem 4 below. The sharpness of the above
obtained results is also ensured by an example considered in [23, Thm. 3]; this function was

𝑓(𝑧) = 𝑒𝑧
𝜌

𝑔(𝑧) + 𝑎,

where 𝜌 ∈ N, 𝑎 ∈ C and 𝑔(𝑧) is an entire function of the minimal type at order 𝜌.
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4. Estimates for lacunary Taylor series

In this section we improve the methods going back to Hadamard, Borel and Valiron and we
obtain asymptotic and uniform estimates relating the zeroes and Taylor coefficients of entire
lacunary power series:

𝑓(𝑧) =
∑︁
𝑛∈N1

𝑓𝑛𝑧
𝑛, 𝑓𝑛 ̸= 0, 𝑛 ∈ N1 = {𝑛𝑖} ⊂ N. (20)

We employ the above introduced notations: 𝐹𝑛 are the Hadamard-rectified coefficients, 𝑅𝑛 =
𝐹𝑛−1

𝐹𝑛
, and 𝑚𝑘 are the central indices (20). We also let

𝛼𝑘 =
𝑅𝑚𝑘+1

𝑅𝑚𝑘

, 𝛾𝑖 = 𝑛𝑖 − 𝑛𝑖−1, 𝑛𝑖 ∈ N1.

Central lacunas are lacunas adjoint with the central indices 𝑚𝑘 of the function 𝑓 . Here we
mean the lacunas

𝛾′
𝑘 = 𝑚𝑘 − 𝑛′

𝑘, 𝛾′′
𝑘 = 𝑛′′

𝑘 −𝑚𝑘, 𝛾𝑘 = min{𝛾′
𝑘, 𝛾

′′
𝑘},

where

𝑛′
𝑘 = max {𝑛 ∈ N1 : 𝑛 < 𝑚𝑘} , 𝑛′′

𝑘 = min {𝑛 ∈ N1 : 𝑛 > 𝑚𝑘} .

Now we are in position to formulate our result.

Theorem 4.1. Let series (20) have unbounded central lacunas, namely, let the condition
hold:

lim
𝑘→∞

𝛾𝑘 = ∞. (21)

Let also the following conditions on the coefficients be satisfied:

𝑅𝑚𝑘+1

𝑅𝑚𝑘

:= 𝛼𝑘 >

(︂
1 +

ln 𝛾𝑘
𝛾𝑘

)︂2

, 𝑘 ∈ N. (22)

Then function (20) has infinitely many zeroes 𝜆𝑛, 𝑛 ∈ N, and an asymptotic relation holds:

|𝜆𝑛| ∼ 𝑅𝑛, 𝑛 → ∞. (23)

Proof. We fix 𝑘 ∈ N. For the values 𝑟 ∈ [𝑅𝑚𝑘
, 𝑅𝑚𝑘+1

), as a central index of the function 𝑓 ,
the quantity 𝜈𝑓 (𝑟) = 𝑚𝑘 serves, while the maximal term is 𝜇𝑓 (𝑟) = |𝑓𝑚𝑘

|𝑟𝑚𝑘 . We partition the
series in (20) as follows:

𝑓(𝑧) =
∑︁
𝑛∈N1

𝑓𝑛𝑧
𝑛 =

∑︁
𝑛<𝑚𝑘,𝑛∈N1

𝑓𝑛𝑧
𝑛 + 𝑓𝑚𝑘

𝑧𝑚𝑘 +
∑︁

𝑛>𝑚𝑘,𝑛∈N1

𝑓𝑛𝑧
𝑛.

We choose numbers 𝑝𝑘, 𝑞𝑘 in the interval (0, 1) so that 𝑝𝑘𝑞𝑘 > 𝛼−1
𝑘 and let us estimate the sums

𝑆1(𝑧) :=
∑︁

𝑛<𝑚𝑘,𝑛∈N1

𝑓𝑛𝑧
𝑛, 𝑆2(𝑧) :=

∑︁
𝑛>𝑚𝑘,𝑛∈N1

𝑓𝑛𝑧
𝑛
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on the circumferences |𝑧| = 𝑟 = 𝛼𝑅𝑚𝑘
, where 𝛼 ∈

[︁
1
𝑝𝑘
, 𝑞𝑘𝛼𝑘

)︁
. We have

|𝑆1(𝑧)|
𝜇𝑓 (𝑟)

6
∑︁

𝑛<𝑚𝑘,𝑛∈N1

⃒⃒⃒⃒
𝑓𝑛
𝑓𝑚𝑘

⃒⃒⃒⃒
1

𝑟𝑚𝑘−𝑛
6

∑︁
𝑛<𝑚𝑘,𝑛∈N1

𝐹𝑛

𝐹𝑚𝑘

1

𝑟𝑚𝑘−𝑛

6
∑︁

𝑛<𝑚𝑘,𝑛∈N1

𝑅𝑛+1 · · ·𝑅𝑚𝑘

𝑟𝑚𝑘−𝑛
6

∑︁
𝑛<𝑚𝑘,𝑛∈N1

(︂
𝑅𝑚𝑘

𝑟

)︂𝑚𝑘−𝑛

=
∑︁

𝑛<𝑚𝑘,𝑛∈N1

(︂
1

𝛼

)︂𝑚𝑘−𝑛

6

(︂
1

𝛼

)︂𝑚𝑘−𝑛′
𝑘

∞∑︁
𝑖=0

𝛼−𝑖

=

(︀
1
𝛼

)︀𝑚𝑘−𝑛′
𝑘

1 − 𝛼−1
6

𝑝
𝑚𝑘−𝑛′

𝑘
𝑘

1 − 𝑝𝑘
.

Thus, estimate

|𝑆1(𝑧)| 6 𝜇𝑓 (𝑟)
𝑝
𝛾′
𝑘

𝑘

1 − 𝑝𝑘
, |𝑧| = 𝑟 = 𝛼𝑅𝑚𝑘

∈ [𝑝−1
𝑘 𝑅𝑚𝑘

, 𝑅𝑚𝑘+1
) (24)

is true. For the same 𝑧 ∈ C : |𝑧| = 𝑟 = 𝛼𝑅𝑚𝑘
we have:⃒⃒⃒⃒

𝑓𝑛
𝑓𝑚𝑘

𝑧𝑛−𝑚𝑘

⃒⃒⃒⃒
6

𝐹𝑛

𝐹𝑚𝑘

𝑟𝑛−𝑚𝑘 =
𝑟𝑛−𝑚𝑘

𝑅𝑚𝑘+1
· · ·𝑅𝑛

6

(︂
𝑟

𝑅𝑚𝑘+1

)︂𝑛−𝑚𝑘

=

(︂
𝛼

𝛼𝑘

)︂𝑛−𝑚𝑘

,

|𝑆2(𝑧)|
𝜇𝑓 (𝑟)

6
∑︁

𝑛>𝑚𝑘, 𝑛∈N1

⃒⃒⃒⃒
𝑓𝑛
𝑓𝑚𝑘

𝑧𝑛−𝑚𝑘

⃒⃒⃒⃒
6

∑︁
𝑛>𝑚𝑘, 𝑛∈N1

(︂
𝛼

𝛼𝑘

)︂𝑛−𝑚𝑘

6

(︂
𝛼

𝛼𝑘

)︂𝑛′′
𝑘−𝑚𝑘 ∞∑︁

𝑖=0

(︂
𝛼

𝛼𝑘

)︂𝑖

=

(︁
𝛼
𝛼𝑘

)︁𝑛′′
𝑘−𝑚𝑘

1 − 𝛼
𝛼𝑘

6
𝑞
𝑛′′
𝑘−𝑚𝑘

𝑘

1 − 𝑞𝑘
.

Thus, the estimate holds

|𝑆2(𝑧)| 6 𝜇𝑓 (𝑟)
𝑞
𝛾′′
𝑘

𝑘

1 − 𝑞𝑘
, |𝑧| = 𝑟 = 𝛼𝑅𝑚𝑘

∈ [𝑅𝑚𝑘
, 𝑞𝑘𝑅𝑚𝑘+1

). (25)

Combining estimates (24) and (25), we conclude

|𝑆1(𝑧)| + |𝑆2(𝑧)| 6 𝜇𝑓 (𝑟)𝑇 (𝑝𝑘, 𝑞𝑘), |𝑧| = 𝑟 ∈ [𝑝−1
𝑘 𝑅𝑚𝑘

, 𝑞𝑘𝑅𝑚𝑘+1
), (26)

where

𝑇 (𝑝𝑘, 𝑞𝑘) =
𝑝
𝛾′
𝑘

𝑘

1 − 𝑝𝑘
+

𝑞
𝛾′′
𝑘

𝑘

1 − 𝑞𝑘
.

Making estimates more rough and assuming for simplicity that 𝑝𝑘 6 𝑞𝑘, 𝑘 ∈ N, we hence obtain

𝑇 (𝑝𝑘, 𝑞𝑘) 6 2
𝑞𝛾𝑘𝑘

1 − 𝑞𝑘
.

Let us show that it is possible to choose 𝑞𝑘 to satisfy the conditions

𝑞−2
𝑘 6 𝛼𝑘,

𝑞𝛾𝑘𝑘
1 − 𝑞𝑘

→ 0, 𝑘 → ∞. (27)

In order to do this, we denote 𝜀𝑘 =
ln 𝛾𝑘
𝛾𝑘

and we let 𝑞−1
𝑘 = 1 + 𝜀𝑘. Indeed,

𝑞−2
𝑘 = (1 + 𝜀𝑘)2 6 𝛼𝑘,
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and the first condition in (27) is satisfied. Since 𝜀𝑘 → 0 as 𝑘 → ∞, then 𝑞𝑘 → 1 and we get:

𝑞𝛾𝑘𝑘
1 − 𝑞𝑘

=
1

𝑞𝑘

(1/𝑞𝑘)−𝛾𝑘

1/𝑞𝑘 − 1
∼ 1

𝜀𝑘
(1 + 𝜀𝑘)−𝛾𝑘 =

1

𝜀𝑘

[︁
(1 + 𝜀𝑘)

1
𝜀𝑘

+1
]︁ −𝛾𝑘

1
𝜀𝑘

+1

<
1

𝜀𝑘
𝑒

−𝛾𝑘
1
𝜀𝑘

+1 <
2

𝜀𝑘
𝑒−𝛾𝑘𝜀𝑘 =

2𝛾𝑘
ln 𝛾𝑘

𝑒
− 𝛾𝑘 ln 𝛾𝑘

𝛾𝑘 =
2

ln 𝛾𝑘
→ 0, 𝑘 → ∞,

and we see that the second condition in (27) is satisfied as well. Taking into considerations
estimates (26) and (27), we conclude

|𝑆1(𝑧)| + |𝑆2(𝑧)| < 𝜇𝑓 (𝑟), |𝑧| = 𝑟 ∈ [𝑝−1
𝑘 𝑅𝑚𝑘

, 𝑞𝑘𝑅𝑚𝑘+1
), 𝑘 > 𝑘0. (28)

According Rouché theorem, as 𝑘 > 𝑘0, in the circle |𝑧| < 𝑝−1
𝑘 𝑅𝑚𝑘

the function 𝑓(𝑧) =
𝑆1(𝑧) +𝑆2(𝑧) + 𝑓𝑚𝑘

𝑧𝑚𝑘 has the same amount of zeroes as the function 𝑓𝑚𝑘
𝑧𝑚𝑘 does, that is, 𝑚𝑘

zeroes, while in the circle |𝑧| < 𝑞−1
𝑘−1𝑅𝑚𝑘

it has 𝑚𝑘−1 zeroes. This implies that for sufficiently
large 𝑘, the annulus

𝑞−1
𝑘−1𝑅𝑚𝑘

< |𝑧| < 𝑝−1
𝑘 𝑅𝑚𝑘

, 𝑘 > 𝑘0, (29)

contains 𝑚𝑘 −𝑚𝑘−1 zeroes of the function 𝑓(𝑧). Therefore, for the zeroes 𝜆𝑛 of this function
with the indices 𝑛 ∈ (𝑚𝑘−1,𝑚𝑘], the inequalities hold:

𝑞−1
𝑘−1 <

|𝜆𝑛|
𝑅𝑚𝑘

< 𝑝−1
𝑘 , 𝑛 ∈ (𝑚𝑘−1,𝑚𝑘], 𝑘 > 𝑘0.

However, for such indices 𝑛 we have 𝑅𝑛 = 𝑅𝑚𝑘
and we finally obtain:

𝑞−1
𝑘−1 <

|𝜆𝑛|
𝑅𝑛

< 𝑝−1
𝑘 , 𝑛 ∈ (𝑚𝑘−1,𝑚𝑘], 𝑘 > 𝑘0.

Hence, we conclude that

1 = lim
𝑘→∞

𝑞−1
𝑘−1 6 lim

𝑛→∞

|𝜆𝑛|
𝑅𝑛

6 lim
𝑛→∞

|𝜆𝑛|
𝑅𝑛

6 lim
𝑘→∞

𝑝−1
𝑘 = 1,

and relation (23) holds true. The proof is complete.

We note that asymptotics (23) proves the sharpness of estimate (15) in Corollary 3.1 from
Theorem 3.1. Now we have two remarks.

Remark 4.1. The quantity of the initial term 𝑓0 in series (20) makes no influence on the
asymptotics of the zeroes of the function 𝑓 and this is why the statement of Theorem 4.1 is true
not only for the zeroes, but also for all 𝑎-points of the function 𝑓 , that is, for the zeroes of the
function 𝑓 − 𝑎, 𝑎 ∈ C.

Remark 4.2. Condition (21) of Theorem 4.1 is obviously satisfied if all but not only central
lacunas in series (20) are unbounded, that is, if

lim
𝑖→∞

𝛾𝑖 = lim
𝑖→∞

(𝑛𝑖 − 𝑛𝑖−1) = ∞.

The condition in the latter remark is easier for checking since it does not require finding
the values of the central index of the series. Such checking is even not needed if the sequence
{|𝑓𝑛|}, where 𝑛 ∈ N1, is strictly logarithmically convex since then N1 = {𝑚𝑘}, that is, this set
consists of all central indices of series (20). In this case we can specify the location of zeroes.
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Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied and moreover, the sequence
{|𝑓𝑛|}, where 𝑛 ∈ N1, is strictly logarithmically convex. Then the zeroes {𝜆𝑛} of function (20)
satisfies the asymptotic formula:

𝜆𝑛 =

(︂
−
𝑓𝑚𝑘−1

𝑓𝑚𝑘

)︂ 1
𝑚𝑘−𝑚𝑘−1

(1 + 𝑜(1)) , 𝑛 ∈ (𝑚𝑘−1,𝑚𝑘], 𝑘 → ∞, (30)

where the exponent is chosen depending on 𝑛.

Proof. Indeed, in the considered case the set over which series (20) is summed up consists of
the values of the central indices: N1 = {𝑚𝑘}. This is why the identities hold:

|𝑓𝑚𝑘
| = 𝐹𝑚𝑘

, 𝛾𝑘 = 𝑚𝑘 −𝑚𝑘−1, 𝑅𝑚𝑘
=

⃒⃒⃒⃒
𝑓𝑚𝑘−1

𝑓𝑚𝑘

⃒⃒⃒⃒ 1
𝛾𝑘

, 𝑘 ∈ N.

We represent the series in (20) as∑︁
𝑛∈N1

𝑓𝑛𝑧
𝑛 =

∑︁
𝑛<𝑚𝑘−1,𝑛∈N1

𝑓𝑛𝑧
𝑛 + 𝑓𝑚𝑘−1

𝑧𝑚𝑘−1 + 𝑓𝑚𝑘
𝑧𝑚𝑘 +

∑︁
𝑛>𝑚𝑘,𝑛∈N1

𝑓𝑛𝑧
𝑛

=: 𝑆 ′
1(𝑧) + 𝑓𝑚𝑘−1

𝑧𝑚𝑘−1 + 𝑓𝑚𝑘
𝑧𝑚𝑘 + 𝑆2(𝑧).

It is obvious that the sum 𝑆 ′
1 admits same estimate (24) as 𝑆1 does; the sum 𝑆2 and its

estimate (25) remain the same. This is why estimate (26) also remains true:

|𝑆 ′
1(𝑧)| + |𝑆2(𝑧)| 6 𝜇𝑓 (𝑟)𝑇 (𝑝𝑘, 𝑞𝑘), |𝑧| = 𝑟 ∈ [𝑝−1

𝑘 𝑅𝑚𝑘
, 𝑞𝑘𝑅𝑚𝑘+1

).

Taking into consideration this estimate, for 𝑧, satisfying the inequality

|𝑓𝑚𝑘−1
𝑧𝑚𝑘−1 + 𝑓𝑚𝑘

𝑧𝑚𝑘 | > |𝑓𝑚𝑘
𝑧𝑚𝑘 |,

we obtain:

|𝑓(𝑧)| = |𝑆 ′
1(𝑧) + 𝑓𝑚𝑘−1

𝑧𝑚𝑘−1 + 𝑓𝑚𝑘
𝑧𝑚𝑘 + 𝑆2(𝑧)|

> |𝑓𝑚𝑘−1
𝑧𝑚𝑘−1 + 𝑓𝑚𝑘

𝑧𝑚𝑘 | − (|𝑆 ′
1(𝑧)| + |𝑆2(𝑧)|) > 𝜇𝑓 (𝑟)(1 − 𝑇 (𝑝𝑘, 𝑞𝑘)) > 0

as 𝑘 > 𝑘0. Therefore, the zeroes of the function 𝑓 lie in the intersection of annuli (29) and the
sets ⃒⃒⃒⃒

𝑓𝑚𝑘−1

𝑓𝑚𝑘

+ 𝑧𝑚𝑘−𝑚𝑘−1

⃒⃒⃒⃒
< 𝑟𝑚𝑘−𝑚𝑘−1 , |𝑧| = 𝑟, 𝑘 > 𝑘0.

Each such set is the pre-image of the half-plane

⃒⃒⃒⃒
𝑓𝑚𝑘−1

𝑓𝑚𝑘

+ 𝑡

⃒⃒⃒⃒
< |𝑡| under the mapping by the

function 𝑡 = 𝑧𝑚𝑘−𝑚𝑘−1 = 𝑧𝛾𝑘 . Denoting

𝜙𝑘 = arg

(︂
−
𝑓𝑚𝑘−1

𝑓𝑚𝑘

)︂
,

in this half-plane we have arg 𝑡 ∈ (𝜙𝑘 − 𝜋/2, 𝜙𝑘 + 𝜋/2). Returning back to the plane of the
variable 𝑧, for the zeroes 𝜆𝑛 we obtain, that for some integer 𝑠𝑛 ∈ [0, 𝛾𝑘) we have:

arg 𝜆𝑛 ∈
(︂
𝜙𝑘 + 2𝜋𝑠𝑛

𝛾𝑘
− 𝜋

2𝛾𝑘
,
𝜙𝑘 + 2𝜋𝑠𝑛

𝛾𝑘
+

𝜋

2𝛾𝑘

)︂
.

Here for each 𝑛 we choose some corresponding number 𝑠𝑛 ∈ [0, 𝛾𝑘) fixing the value of the root.

This completes the proof since
𝜋

2𝛾𝑘
→ 0, 𝑘 → ∞.

We note that formula (30) is an analogue of Valiron formula (4) obtained for series (1) with
no lacunas.
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Remark 4.3. It is possible that condition (22) is not necessary for the validity of Theo-
rem 4.1. However, the author has not succeeded to exclude it from the formulation. Neverthe-
less, this condition can be weakened a little by assuming that for some 𝑎 ∈ (0, 1), the inequality

𝑅𝑚𝑘+1

𝑅𝑚𝑘

= 𝛼𝑘 >

(︂
1 +

ln (𝛾𝑘/ ln𝑎 𝛾𝑘)

𝛾𝑘

)︂2

, 𝑘 ∈ N, 𝑘 > 𝑘0,

holds.

Remark 4.4. Analysing the proof of Theorem 4.1, we see that if condition (22) and

lim
𝑘→∞

min {𝛾𝑘, 𝛾𝑘−1} = +∞,

are satisfied, where in the latter condition the upper limit is attained at the set of the indices
𝑘 ∈ K ⊂ N, then asymptotics (23) remains true on the set K:

|𝜆𝑛| ∼ 𝑅𝑛, 𝑛 ∈ (𝑚𝑘,𝑚𝑘+1], K ∋ 𝑘 → ∞.

Now we consider the case when instead of (21), the lacunas of series (20), more precisely, its
central lacunas, satisfy the condition

lim
𝑘→∞

𝛾𝑘 = 𝜌 < +∞. (31)

It is obvious that 𝜌 ∈ N. We introduce the function

𝜙𝜌(𝜏) = 𝜙(𝜏) =
𝜏 𝜌

1 − 𝜏
, 𝜏 ∈ [0, 1),

and by 𝜏𝜌 we denote the root of the equation 𝜙(𝜏) = 1/2, that is, the root of the equation

2𝜏 𝜌 + 𝜏 − 1 = 0 (32)

in (0, 1). It is easy to confirm that

𝜏1 =
1

3
, 𝜏2 =

1

2
, 𝜏3 = 0.5897 . . . ,

and in general, 𝜏𝜌 ↗ 1 as 𝜌 ∈ N grows unboundedly.

Theorem 4.3. Let the lacunas of series (20) satisfy condition (31) and its coefficients obey
the condition

𝑅𝑚𝑘+1

𝑅𝑚𝑘

> 𝛽 > 𝜏−2
𝜌 , 𝑘 ∈ N, 𝑘 > 𝑘0, (33)

in which 𝜏𝜌 is the root of equation (32). Then the zeroes 𝜆𝑛 of function (20) satisfy inequalities

𝑥𝜌 6
|𝜆𝑛|
𝑅𝑛

6
1

𝑥𝜌

, 𝑛 > 𝑛0,

where 𝑥𝜌 is the largest root of the equation

𝜙(𝑥) + 𝜙

(︂
1

𝑥𝛽

)︂
=

𝑥𝜌

1 − 𝑥
+

(𝛽𝑥)1−𝜌

𝛽𝑥− 1
= 1. (34)

Proof. We denote by 𝐺 a domain bounded by the curves defined by the equations 𝑦𝑥 = 1/𝛽 and
𝜙(𝑥) + 𝜙(𝑦) = 1, 𝑥 ∈ (0, 1). Condition (33) ensures that this domain is non-empty. We shall
employ the estimates obtained in the proof of Theorem 4.1 letting there 𝑝𝑘 = 𝑝, 𝑞𝑘 = 𝑞 with

constants 𝑝, 𝑞 obeying the condition
1

𝑝𝑞
< 𝛽. Since in the considered case 𝛾𝑘 > 𝜌, estimate (26)

becomes

|𝑆1(𝑧)| + |𝑆2(𝑧)| 6 𝜇𝑓 (𝑟)𝑇 (𝑝, 𝑞), |𝑧| = 𝑟 ∈ [𝑝−1𝑅𝑚𝑘
, 𝑞𝑅𝑚𝑘+1

),
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where 𝑇 (𝑝, 𝑞) =
𝑝𝜌

1 − 𝑝
+

𝑞𝜌

1 − 𝑞
. Estimate (28) also remains true and casts into the form

|𝑆1(𝑧)| + |𝑆2(𝑧)| < 𝜇𝑓 (𝑟), |𝑧| = 𝑟 ∈ [𝑝−1𝑅𝑚𝑘
, 𝑞𝑅𝑚𝑘+1

), 𝑘 > 𝑘0,

once we suppose that (𝑝, 𝑞) ∈ 𝐺, i.e., once the condition

𝑇 (𝑝, 𝑞) =
𝑝𝜌

1 − 𝑝
+

𝑞𝜌

1 − 𝑞
= 𝜙(𝑝) + 𝜙(𝑞) < 1

is satisfied. As above, basing on the Rouché theorem, we obtain the inequalities:

𝑞 <
|𝜆𝑛|
𝑅𝑛

< 𝑝−1, 𝑛 ∈ (𝑚𝑘−1,𝑚𝑘], 𝑘 > 𝑘0.

To complete the proof, it remains to approach by the point (𝑝, 𝑞) ∈ 𝐺 the intersections of the
curves enveloping the domain 𝐺. The proof is complete.

Since the domain 𝐺 is symmetric with respect to the bisectrix of the first coordinate quarter,
the inequality 𝜏𝜌 < 𝑥𝜌 holds. This allows us to formulate a result not requiring finding the root
of equation (34).

Corollary 4.1. Let the assumptions of Theorem 4.3 hold. Then the zeroes 𝜆𝑛 of func-
tion (20) satisfy inequalities

𝜏𝜌 <
|𝜆𝑛|
𝑅𝑛

<
1

𝜏𝜌
, 𝑛 > 𝑛0,

where 𝜏𝜌 ∈ (0, 1) is the root of equation 2𝜏 𝜌 + 𝜏 − 1 = 0.
In particular, for even (odd) entire functions with logarithmically convex Taylor coefficients

satisfying, for sufficiently large 𝑘 ∈ N, the condition

𝑅2𝑘+2

𝑅2𝑘

> 𝛽 > 4,

(︂
𝑅2𝑘+1

𝑅2𝑘−1

> 𝛽 > 4

)︂
we can state a two-sided estimate

1

2
<

|𝜆𝑛|
𝑅𝑛

< 2, 𝑛 > 𝑛0.

We note that in the case 𝜌 = 1, for instance, as the lacunas in series (20) are absent, by
Theorem 4.3 we obtain the result by Hadamard [13] improved then by Valiron [6], who weakened
the restriction 𝛽 > 9 in condition (33) to the condition 𝛽 > 4.8. In this, as for series (20) with
unbounded lacunas, Theorem 4.3 can be specified by providing the angles in the complex plane
free of the zeroes of the function 𝑓(𝑧). For instance, if coefficients of series (20) are positive
and logarithmically convex, then under the assumptions of Theorem 4.3 all zeroes 𝑓(𝑧) are
located in the left half-plane. Some specifications of Theorem 4.3 obtained by other methods

for polynomials and entire functions satisfying the condition
𝑅𝑚𝑘+1

𝑅𝑚𝑘
> 𝛽 for various 𝛽 can be

found in work [24]. However, one fails to achieve here a desired sharpness and this problem
still waits for being resolved.
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10. G. Valiron. Fonctions entières et mèromorphes d’une varable. Mémorial des sciences
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