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ON GEOMETRIC PROPERTIES OF MORREY SPACES

H. GUNAWAN, D.I. HAKIM, A.S. PUTRI

Abstract. The study of Morrey spaces is motivated by many reasons. Initially, these
spaces were introduced in order to understand the regularity of solutions to elliptic partial
differential equations [I. In line with this, many authors study the boundedness of various
integral operators on Morrey spaces. In this article, we are interested in their geometric
properties, from functional analysis point of view. We show constructively that Morrey
spaces are not uniformly non-£} for any n > 2. This result is sharper than earlier results,
which showed that Morrey spaces are not uniformly non-square and also not uniformly non-

octahedral. We also discuss the n-th James constant C§n) (X) and the n-th Von Neumann-
n)

Jordan constant C’I(\U (X) for a Banach space X, and obtain that both constants for any
Morrey space M5 (R?) with 1 < p < ¢ < 0o are equal to n.

Keywords: Morrey spaces, uniformly non-fl-ness, n-th James constant, n-th Von
Neumann-Jordan constant.
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1. INTRODUCTION

For 1 < p < ¢ < oo, the Morrey space Ml = M’;(Rd) is the set of all measurable functions
f such that

1l = sup rB<a,R>|i—%( / \f(y)lpdy>p<oo,

a€R4,R>0
B(a,R)

where | B(a, R)| denotes the Lebesgue measure of the open ball B(a, R) in R¢, with center a and
radius R. Morrey spaces are Banach spaces (see, e.g., [12]). For p = ¢, the space M is identical

with the space L? = LI(R%), the space of ¢-th power integrable functions on R? Knowledge
of Morrey spaces is important in studying regularity of solutions to elliptic partial differential
equations [I].

In [4], three geometric constants have been computed for Morrey spaces. The first two
constants, namely Von Neumann-Jordan constant and James constant, are closely related to
the notion of uniformly non-squareness of (the unit ball in) a Banach space [3], [6, [§]. For a
general Banach space (X, | - ||x), the constants are defined by

Ons(X) == Sup{ L1,y € X\{O}},

|z + yllx +llz - yll%
2([l= (1% + llyll%)

and
Cy(X) = sup{min{”x +yllx, |z —yllx}:x,y € SX},

respectively. Here Sx := {z € X : ||z||x = 1} denotes the unit sphere in X. A few basic facts
about these constants are:

e 1 < COny(X) <2and Cny(X) =1if and only if X is a Hilbert space [7].

e V2 < O5(X) <2and C3(X) =+/2if X is a Hilbert space [3].
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Note also that, for 1 < p < 0o, we have 2] 3]:
Cny(LP) = max{ﬁfl, 215 and Cy(LP) = maX{Z%, 217%}.

The two constants measure the non-squareness of (the unit ball in) a Banach space. The
larger the constants, the lesser round the unit ball. We note from [5] 8] that a Banach space X
is uniformly non-square if and only if C;(X) < 2 or, equivalently, Cn;(X) < 2.

In this paper, the main objects of our study are Morrey spaces. We know that Morrey spaces
M? contain Lebesgue spaces L?. While L? are uniformly non-square for 1 < ¢ < oo, we have the
following result which tell us that MY are not uniformly non-square whenever 1 < p < ¢ < co.

Theorem 1.1. ([4]). For 1 <p < ¢ < oo, we have Cx;(M?) = C3(M?) = 2.

In [11], it was shown that Morrey spaces are not uniformly non-octahedral, that is, there
exists no 0 > 0 such that

min [| f & g & bl yz < 3(1 = 9)
for all f,g,h € M? with
1fllae = lgllae = [hllae = 1.

Here the minimum is taken over all choices of signs in the expression f + g+ h. We recall that
a Banach space (X, || - ||x) is uniformly non-octahedral if there exists a § > 0 such that

min ||z £y + z||x < 3(1—9)

for every x,y, 2z € Sx. Precisely, we have the following theorem.
Theorem 1.2. ([11]). Let 1 < p < g < co. Then, for every § > 0, there exist f,g,h € M?

depending on ¢ with

1fllaeg = Mlgllaeg = lAllaeg =1
such that

If £ 9=+ hlpmg >3(1—0)

for all choices of the signs.
+, see [B,
Definition 2.1]. The result is not only more general than the previous ones, but also sharper

than knowing results stating that Morrey spaces are neither uniformly non-square nor uniformly
non-octahedral; if X is not uniformly non-£} for n > 3, then X is not uniformly non-£. ;. In

In this paper we show constructively that Morrey spaces are not uniformly non-£}

addition, given a Banach space X, we discuss the n-th Von Neumann-Jordan constant C’l(\InJ) (X)

and the n-th James constant C’}n) (X) for n > 2. These two constants were studied in [9] and
[10], respectively. We show that for each Morrey space M? with 1 < p < ¢ < 0o both constants
are equal to n. We also indicate that Morrey spaces are not uniformly n-convex for n > 2.

2. M? ARE NOT UNIFORMLY NON-/},

Before we present our main theorems, we prove several lemmata. Unless otherwise stated,
we assume that 1 < p < ¢ < 0.

Lemma 2.1. Let f(z) := |z| 9. Then f € M? with

Il = (2)* ()

where wq_1 denotes the ‘area’ of the unit sphere in RY.
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Proof. For each r > (0, one may compute that

1_1 _ % Wd—1 % q %
O (f )

which is independent of r. Since the integral of f over B(a,r) is less than that over B(0,r) for
each a € R?, we conclude that

£l = (52) 7 ()7,

as claimed. n

Lemma 2.2. Let f(z) := |z|~%% and R > 1. Then, for any c1,c; > 0, we have

1

Banl ([ f@)Pde)” = (Bl ( [ F)Pdr)’, (2)
{:E:Cl<‘$‘<ClR} {IEZCQ<‘IE|<02R}

where B, g and B.,r are balls centered at the origin with radit c;R and coR.

Proof. 1t suffices to prove that (2.1]) holds for arbitrary ¢; > 0 and ¢o = 1. But this is immediate
by the change of variable x = ¢;2'. O]

As a consequence of the above lemma, we have the following corollary, which is an important
ingredient in the proof of our main theorems.

Corollary 2.1. Let f(z) := |$|—§ Fore € (0,1) and k € Z,., we denote
fe,k = fX{:c:ak+1<|x\<ak}'
Then f. . € Mb with

_dp 1
1 el = (L =" )o | fl| gy (2.2)

Proof. In view of Lemma [2.2] it suffices to prove that

dp

_ 1
ool = (1= 0)7 (| fll -

I feoll iz > yB(0,1)yé—i(/ |f(x)‘de>zl> _ (w2_1)2< q >i<1 _ Ty

{z:e<|z|<1} q—p
Hence, by Lemma [2.T] the desired inequality follows. ]

We are now ready to state our main results. Our first theorem is the following.

We observe that

Theorem 2.1. For 1 < p < q < oo, the Morrey space M¥ is not uniformly non-t} for
any n = 2, that is, for each 6 € (0,1), there exist Iy, Fy, ..., F, € M? depending on & with
| Eillpe =1 fori=1,2,...,n, such that

[ FL £ Fp & & Follave > n(1—6)
for all choices of signs.
Proof. To understand the idea of the proof, let us first illustrate how the proof goes for n = 3.
q d

Given § € (0,1), we choose ¢ € (0,(1 — (1 — 0)?)@-a). For f(z) := |z| "« and k € Z,, put
fs,k = fX{a::ek+1<|z|<sk}- NOW Write

fl = (+17 +1? +17 +1) = f6,3 + f€,2 + fs,l + fz—:,07

f2 = (+17 +17 _17 _1> = fe,3 + f€,2 - fs,l - f€,07

f3=(+1L, =1L, +1,-1) = fo3 — fea + fo1 — feo
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Observe that || fillve = || fX{aet<fal<1yllmz for i = 1,2, 3, and that
3fe3 < |fi+ f2a+ f3] < 3fX{:c:a4<|z\<1}>
3feo < |1+ fo— f3] <3 Xqaetc|ol<1}s
3fer < |fi— fz + f3] < 3fX(met<ial<1}
3feo < |fi— fo— fs| <3f

By virtue of Corollary - we have

3(1— %) [fllae < [1fi £ fa £ f3llame < 3 X @et<ioi<ylae

for all choices of signs. For ¢ = 1,2, 3, define

X{zet<|x|<1}-

F;, .= /i )
1fill aez

Then, || Fil[pp =1 for i = 1,2,3, and

_dp 1
I o follag 30— 0 1fllagg
1 X et <ttty lae ~ | fll pez

”FliFQZEFgHM:g: >3(1—5)
This proves that M? is not uniformly non-£3.

In order to reveal the pattern, we shall now present the proof for n = 4. With similar
notations as above, we write

= (4+1,+1,+1,+1,+1, +1 +1 +1),
= (+1,4+1,+1,+1,-1,— -1),
= (+1,+1,-1, -1, +1, +1 —-1),
f4 = (+1,—1,+1,—1,+1 -1, +1 -1),

where the i-th term corresponds to the sign of f.s_; for i =1,2,...,8. Observe that

[ fill vz = | X qaies <lat<1y Lz
fori=1,...,4, and that

Afen <|fi+ fo+ fo+ ful <AfX(wes<lal<1)s
dfes < |fr 4 fo+ f3 — fa] <AfX{2ed<ial<1)s
Afcs < | i+ fo— fo+ ful <AFX(@es<pz)<1)s
dfea <|fr 4 fo— fs = fa| <A X(wes<lol<1}>
Afen <|fi = fo+ f3 + fa] <AfX{ae5<ial<1)s
4fe2 < |f1 f2 + f3 = fa] < AfX(wes<ial<)
A4feq < fi — fs 4 fa] <AfX{2e8<ial<1}s
4feo0 < |f1 — fs = ful] <AFX(res<iul<1}-

Taking the Morrey norms, we get

_dp 1
A1 =) flle < 1 £ fo £ f3 % fallae < Al X qwes<pol<iy e (2.3)

for all choices of signs. Taking F; : , we obtain ||[Fi[[ye = 1 fori =1,...,4. By our

HfH
choice of ¢ and the fact that || fi|| vz = ||fX;x;€8<|x|<1}||Mg fori=1,...,4, we get
||F1 + F+ F3 + F4||Mlq7 > 4(1 — 5)

Hence M? is not uniformly non-/}. Continuing the pattern, we see that M? is not uniformly
non-{} for n > 2. O
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3. n-TH VON NEUMANN-JORDAN CONSTANT AND n-TH JAMES CONSTANT

In this section we assume that n > 2. For a Banach space (X, ||-|/x), the n-th Von Neumann-
Jordan constant C’NJ (X) [9] and the n-th James constant O}")( X) [10] are defined by

Doyl £ Ealk . }
= cx;#£0,1=1,...,np,
2n= 137 ik

C’IEIZ)(X) = sup {
and

C§n) (X) := sup{ min{|[z; &+ --- £ x,||x : all possible choices of signs} :
; € Sy, z:ln}

respectively. In the definition of 01(\173) (X), the sum ), is taken over all possible choices of
signs.
We state some results about the two constants. The last one is specific for Morrey spaces.

Theorem 3.1. [9] For a general Banach space (X,| - ||x) we have 1 < Cl(\%( X)<n In
particular, C’I%) (X) =1 1if and only if X is a Hilbert space.
Theorem 3.2. [I0] For a Banach space (X, || ||x) in general, we have 1 < C’gn)(X) <n. If
dim(X) = oo, then \/n < C'(n (X) < n. For a Hilbert space (X, (-,-)x), we have an)(X) = /n.
Theorem 3.3. For a general Banach space (X, || - ||x) we have
[CF7 (0P < G (X).
Proof. For every z; € Sx, i =1,...,n, let

m = min{||z; £ - -- £ z,||x : all possible choices of signs}.
1

Then, clearly m < (H 2 =R = | X) , where the product is taken over all possible choices
of signs. Next, by the GM-QM inequality and the last inequality, we have

1 1
ry £ ka3 2 T R AN 1
< Zi” 1 1% _ Zj: |21 & 1% < (nCIEIrS)(X)) _
on—1 2n- IZZ lzall%

Taking the supremum over all z; € Sx, ¢ = 1,...,n, the desired inequality follows. O

Theorem 3.4. For 1 <p < q < oo, we have C§n) (MP) = C(n)(/\/lg) =n.

]

Proof. 1t follows immediately from Theorem [2.1| that C (/\/lp) = n. Combining this fact
and Theorem . we get C’g} (MP) > n. On the other hand, by Theorem . we have
o (/\/lp) n. Thus, C) (ME) =n. O

4. (CONCLUDING REMARKS

Before we end our paper, let us consider a Banach space (X, | - ||x) which is uniformly
n-convex, that is, for each ¢ € (0,n) there exists § € (0,1) such that for all xq,...,z, €
Sx with ||z £ -+ £ z,||x > € for all choices of signs except for ||z1 + -+ + z,||x, we have
|21 + -+ + 2,||x < (1 —3). This condition is stronger than the uniformly non-¢. condition,
as we state in the following theorem.

Theorem 4.1. If X is uniformly n-conver, then X is uniformly non-£}.

Proof. Take an € € (0,n) and choose a corresponding § € (0, 1) such that for all x,...,x, € Sx
with ||z; & -+ £ x,][x > ¢ for all choices of signs except for ||z; + --+ + x,||x, we have
|z + -+ zu|lx < n(l —9). Observe that if n(1 —§) > ¢, then we are done. Otherwise, we
choose dy € (0,9) such that n(1—dy) = e. This d satisfies the uniformly non-£} condition. [
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As a consequence of the above theorem and the fact that, for 1 < p < ¢ < oo, the Morrey
space M is not uniformly non-£1, we conclude that M? is not uniformly n-convex.
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