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NONPOTENTIALITY OF SOBOLEV SYSTEM AND
CONSTRUCTION OF SEMIBOUNDED FUNCTIONAL

V.M. SAVCHIN, P.T. TRINH

Abstract. Works by S.L. Sobolev on small-amplitude oscillations of a rotating fluid in
1940’s stimulated a great interest to such problems. After the publications of his works, I.G.
Petrovsky emphasized the importance of studying general differential equations and systems
not resolved with respect to the higher-order time derivative. In this connection, it is natural
to study the issue on the existence of their variational formulations. It can be considered as
the inverse problem of the calculus of variations. The main goal of this work is to study this
problem for the Sobolev system. A key object is the criterion of potentiality. On this base,
we prove a nonpotentiality for the operator of a boundary value problem for the Sobolev
system of partial differential equations with respect to the classical bilinear form. We show
that this system does not admit a matrix variational multiplier of the given form. Thus, the
equations of the Sobolev system cannot be deduced from a classical Hamilton principle. We
pose the question that whether there exists a functional semibounded on solutions of the
given boundary value problem. Then we propose an algorithm for a constructive determining
such functional. The main advantage of the constructed functional action is applications of
direct variational methods.
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1. INTRODUCTION

We consider the following Sobolev system of partial differential equations [I]

- oul op
1 _ow o5 OD 1
N-(u,p) = 5 U +8x1 F,
ou? dp
2 _ow 4, 9P o
N*(u,p) = 5 T4t 53 F,
- ou®  Op (1.1)
3 _ouw 9P _ 3
out  ou?  oud

_ 4
oot T Tam

(z,t) = (2", 2%, 2% 1) € Qr = Q x (0,T),

where the components u', u?, u® of the vector u, and p are unknown functions, the domain
Q) C R? is bounded by the smooth surface 092, F?, i = 1,4, are given continuous functions on

Qr-
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108 V.M. SAVCHIN, P.T. TRINH

Denoting F = (F', F2, F3 F*), N = (N', N2, N3, NY),N = N — F, we let
D(N) = {(u,p) ut € CHQr), p € CHQ); u'|imo = uh(x', 2*, 2%),

. . _ 1.2
u’L|t:T:u’i(CCl,x27x3)’ 2'21’3’ p’aQ:O}7 ( )
where uf(z) € C(Q), i =1,3, j = 0,1, are given functions, Q = QU 9, Qp = Q x [0,T].
Denoting by & the unit vector (0,0, 1), we represent system ([1.1)) in form [I]:
Ni(u,p) = 81; —[uxk}wa—ﬁ:w, i=T1,3, s
3 v .
~ ou’
N* = = P
(u,p) 2 o

This system describes small oscillations of a rotating fluid. In [1]], there was proved the existence
of a solution of in a Hilbert space H as well as its continued dependence on the initial
data. The Cauchy problem in an unbounded space was solved in an explicit form.

The work of S.L. Sobolev was continued by P.A Aleksandryan, T.I. Zelenyan,
V.N. Maslennikova, and others, see [2] and the references therein. The Sobolev system in the
case of two space variables was studied in [3]. By means of the Fourier transform, the solution
of the Cauchy problem was obtained in the form of convolutions with kernels having locally
integrable properties. The asymptotic behavior of this solution for large values of time was
studied.

The problem of existence of variational formulation, Hamilton principle for (1.1)), (1.2), was
not been studied before. In modern interpretation [4], it can be considered as an inverse problem
of the calculus of variations (IPCV). The main aim of this paper is to study the existence of

solutions of IPCV for problem (.1]), (1.2).

2. NONPOTENTIALITY OF SOBOLEV SYSTEM

Let U, V be normed linear spaces over the field of real numbers R, U C V; 0y and 0y be
the zero element in U and V respectively; N: D(N) C U — R(N) C V be an arbitrary twice
Gateaux differentiable operator with the domain D(NV) and the range R(N).

We denote by N, the first Gateaux derivative of N at the point uw € D(N) defined by the
formula [5]

d
N/ h = EN(U +eh)|cmo = ON(u, h).

The mapping ®(u;-,-): V x U — R linear in each argument and depending on the parameter
u € U is called a local bilinear form.
The derivative @/ (h;v, g) is defined as

d
P! (h;v,g) = %fb(u + eh; v, g)|c=o-

A function @ is called a nonlocal bilinear form if it is independent of the parameter u, that
is, ®(u;-,-) = (-,-). Then @/ (h;v,g) = 0.

We say that (-,-) : V x U — R is a non-degenerate nonlocal bilinear form if

1) the condition (v,g) = 0 for all g € U implies that v = Oy;

2) the condition (v, g) = 0 for all v € V implies that g = 0.

Definition 2.1. The operator N : D(N) C U — V is said to be potential on the set D(N)
with respect to a local bilinear form ®(u;-,-) : V x U — R if there exists a functional Fy :
D(Fy) = D(N) — R such that 6 Fy[u, h] = ®(u; N(u),h) for allw € D(N), h € D(N]). Here
Fn s called the potential of the operator N.

Further, we shall make use of the following theorem.
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Theorem 2.1. [6] Let N : D(N) C U — V be a Gateauz differentiable operator on the
convexr set D(N) and a local bilinear form ®(u;-,-) : V- x U — R be such that for all fized
elements uw € D(N) and h,g € D(N)) the function p(c) = ® (u+ h; N(u+ ch), g) belongs to
C10,1]. Then the potentiality of the operator N on D(N) with respect to ® is equivalent to

Inng() = ®(u; Nyh, g) + &, (h; N(u),g) = ®(u; Nug, h) + ¥, (g; N(u),h)  (2.1)
for alluw € D(N), g,h € D(N}). In this case
Fylu] = /@(U(A);N(u()\)),u—uo) d\ + Fnug), (2.2)

0

where u(\) = ug + AN(u — ug) and ug is an arbitrary fized element from D(N).

Condition ([2.1]) is called the criterion of the potentiality for the operator N with respect to
the local bilinear form ®. In physics literature, functional (2.2)) is called the action functional,
or action for short.

Remark 2.1. If ® is a nonlocal bilinear form, then (2.1)) becomes
(Nih,g) = (Nig,h)  forall ueD(N), g,heD(N).

Let us introduce a classical nonlocal bilinear form by

Q4 (v,9) = (v,9) = /Zvi(x,t)gi(az,t)da:dt.
Qr =1

Theorem 2.2. Operator (1.1)) is not potential on set (1.2)) with respect to nonlocal bilinear
form @3).

Proof. By ([1.1)) we find the Gateaux derivative

2 -1 0 %
, 1 2 o0 9
N, 0 %t 9 8@
ot ox3
o o Y%
oxl  0x2 09x3

In accordance with conditions (1.2]), we have
D(N,) = {(n',1* h* h*) :h' € CY(Qr)i =1,3, h* € C'(Q); h'|s—o =0,
Wler =0, i=1,3, h'|po = 0}.

Let us prove that operator (1.1)) does not satisfy criterion ([2.3]).
Denoting by k' = (h', h? h3) and ¢’ = (¢', g2, ¢°), we get

, oh' ot . <
Qr =1

ot
Using the chain rule, we obtain

3

D

=1

Oh'
ox'

(R x k)" + g4] dzdt.

3

OuNhg) = [ D] [thgﬂ — W [ X K'g' + Dos(g)
Qr =!
g ; ,0g*
— h* ==+ Di(h'g") — h' == for all D(N,
hax’+ +i(high) h(’?az’ dxdt for all h,g € D(N,),
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0 0

o’ "t Oxt
By virtue of the Divergence theorem and the condition h € D(N]), we have

where D, =

T
// [Dy, (h*g") + Dy, (h*g®) + Doy (h'g®)] da'dz?da’dt
0 Q

T

:/ /h491 dz?dz® + /fﬁlg2 daotda® + /h493 detds? | dt = 0.
0 Q 9 o9
Similarly, we have

T
/ / [Dy, (h'g") + Dy, (R?g") + Dy, (RPg")] da'dz’da®dt
0 Q

T
/ /hlg4 d$2dl'3 + /h2g4 dxldlﬁ + /h3g4 dl’ldl'Q dt = O,
0 9] 0N 0N
and

(h'g")liZo dz = 0.
1

/ [Di(h'g") + Dy(h*g?) + Dy(hg®)] dadt :/
QT Q !
Applying the above results, we get

3 .
/ Za ! / 11 7
B(Nihog) = [ [} :(—ha—i—[h % Kigh — h
Qr =1

On the other hand, we have

1(Nug. 1) :/ [i (%{ —[g' x K +

Qr =1

3

dg* - dg' 4
&Ui) — Z (%cih dxdt. (2.5)
i=1

99"\ - 99" 4
- | h' —h"| dxdt. 2.
axz) + ; i L (2.6)

3

0y’ N
In (2.5), the coefficient at h* is — ZZI 8_571 and in (2.6 it is ZZI 8_9951 Hence ®;(N/h, g) is not
indentically equal to ®1(V, g, h). Thus, criterion (2.3]) is not satisfied. O

In view of Theorem [2.2] the following question arises. Does there exist a bilinear form such

that the operator N of problem ([1.1)), (1.2]) is potential with respect to this form? The answer
is given in Section 3.

Before that, let us study the existence of the matrix variational multiplier for operator (|1.1)).

Definition 2.2. An invertible linear operator M : D(M) C R(N) — V is called a varia-

tional multiplier for the operator N : D(N) C U — V if the operator N = M N 1is potential on
the set D(N) with respect to the given bilinear form.

Theorem 2.3. There is no matriz variational multiplier M = {mij(a:,t)}?jzl for operator
N ().

Proof. Suppose that there exists a matrix variational multiplier

M = {my;(z,t)};

1,j=1
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for (T.1)). Then the operator N(u) = M N (u) is potential with respect to classical bilinear form
29,

Denoting m;; = my;(z,t) we get

®, N’h g / ZZmWN”"hg dzdt

i=1 r=1

4 3
oh” , , Oh4 ; Oh" .
_/ZZ[( ot _[h Xk‘] +awr)9mir+%gmi4 dzdt.

Qr i=1 r=1

Using the chain rule, we obtain

d, (N{Lh, g) = /ZZ [ th’mzr thZ aat K aaglmir — [h’ X k]rgimir

; om; dg'
Dxr h4 % i h4 i h4
+ Dar(Wgimir) =g 5o = Wog
i 8mz4 ag
D,r(h"g'm; hg'——— — h" dzdt.
+ x ( g mz4) 8x7“ 8 X

Since h, g € D(N)), we get:

4 3
/ZZDt R"g'my, ) dzdt = /ZZ h"g'mi) | dx = 0,

=1 r=1 Q =1 r=1
/ Z o (Rigimin) + Dy (hg'mas) + Dys(htg'mys)] dwdt

T
:/ Z /h4gimi1 d:chx?’—i-/h‘lgimiQ dxldx3+/h4gimi3 drtdz?| dt =0,
= 89 89

and
4

/Z (D1 (h'g'mis) + Dy2(h*g'mis) + Dya(h*g'mis)] dadt =

1
Qr "

T 4
:/ Z /hlgimM dxzdx3+/h29imi4 dxlda:?’—l—/hggi detdx®my | dt = 0.
=1 |50 o0 0
Applying the above results, we obtain:
3

(I)l N/h g /§ :E :|: hr Zamzr _hraa [h/Xk]Tgimi,«
=1 r=1
Om; dg" Omiy g’
_prg Dl pa 89 — W g —= — h"——myy | dzdt
R gzt Oar m‘*] v

3 3 g g
/ { 2 {Z_l ( ot i+ gt le“)
Qr B
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dg* dg*
+ <8_gtm4r agrm44 +9'Q 4r>:|

+h423: 23: 09" v g2 L (09 1IN T
c~ \ Oa" i T oI T ’

where
(Omi1  Omig 1
ot | ot 2 T
om; om; —
Ql,ir = 212 877;24 + mip r = 2, 1= 1,4
Omis Omia _3
or T a8 e

On the other hand, we have

P, ( ) /ZZmWN”ghz dxdt

=1 r=1

4 3
- i (99" ! r dg* ;09"

Qr
3 3 - )
T agZ / 7 ag4 392
:/{Zh z}(%m”“[g XKl i g
Qr = =
4 5 ag” - dg* ag”
/ 7
+h ; (Emh - [g X k] my; + %m@« + 8:):7"77’144> dxdt.
Hence
3 3 dg' g’
Or r=1 =1
8 4 i . '
+ %mr + agzmﬂ; +9'Qrir — [9' X k]lmm)
a 4 a 4
+ <a—gtm4r + B gy + g Qs 4'r>:|
& dg" dg' dg" 2D
4 g 99 . 99
o ; {; < ot " e g
694 iamir

e myy + g a$ [g X k] m4z)

According to criterion (2.3)) it must be

o, (N;h,g> — @, (N;g, h) =0 forall we D(N), h,ge DN
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Due to an arbitrary choice of the functions h?, i = 1,4, by (2.7) we obtain
( 3

g’ g’ dg" g’
Z( ot (mzr + mrz) + Ox" Mg + Ot My + i My
4 4 Oag* Oag* _
+9'Quir — ¢’ % k]zmm') + ( (9915 4r 8grm44 +9' 4r) =0, r=13,
S (<~ [ dg g dg" dg*
2 [Z (e e+ o+ g
: 0mir ’ ; 894 4 am47“
+ 9 5 — g X k'my r 9 —— 1| =0.
\ el [ ]m4> (a o 9 5
Hence, thanks to the arbitrary choice of the functions ¢¢, i = 1,4, we get
(mir +my; = 07
miy = 07
my; =0,
Mmyy = 07
\TTyq = 07
where i = 1,3, r = 1,3. Finally, m;;(z,t) = 0, i,j = 1,4, and therefore, M = 0. This
contradicts to our initial assumption. The proof is complete. O

3. CONSTRUCTION OF A SEMIBOUNDED FUNCTIONAL

We have already proved that operator is not potential with respect to nonlocal bilinear
form and there is no matrix variational multiplier of the given type. We need the following
theorem later on.

We consider an arbitrary equation

N(u) = 0y, ue D(N)CUCYV, (3.1)

where the operator N in the general case is nonpotential with respect to a fixed nonlocal bilinear

form ®,(-,-) =(-,): V xV = R.

Theorem 3.1. [7] Let

1) N:D(N)CU —V be atwice Gateaux differentiable operator on the convex set D(N);

2) (-,-) : VxV = R be a given nonlocal bilinear form;

3)C : D(C) 2 R(N) — V be an arbitrary invertible linear Symmetm'c operator, such that for
all fized elements w € D(N) and g,h € D(N]) the function o() = (N(u+eh),CN/,,g) is in
C10,1]. Then the operator N is potential on D(N) with respect to the following local bilinear
form

®(u;v, 9) = (v, CN,g) - (3.2)
The corresponding functional is given by
Fylu] = 5 (N (u), CN(w). (33
We observe that
dFy[u, h] = ®(u; N(u),h) = (N(u), CN}h) .
Denoting the adjoint operator for N, by N/* and assuming that R(C) C D(N/¥), by the above
identity we obtain:
dFy[u, h] = (N*C'N(u), h)
for all w € D(N), h € D(N)).



114 V.M. SAVCHIN, P.T. TRINH

Assuming that D(N!) = U and (-,-) : V x V — R is a nonsingular continuous in each
variable nonlocal bilinear form, we get 0 Fiy[u, h] = 0 v € D(N) for all h € D(N) if and only if

Ni(u) = N*CN(u) =0y,  u€ D(N). (3.4)

Thus, the operator N; is potential on D(N) with respect to the nonlocal bilinear form &,
and the operator N is potential on D(N) with respect to bilinear form (3.2).

If N* is an invertible operator, then problems and are equivalent in the following
sense: if @ is a solution to one of them, then # is a solution to the other, that is,

N(a) =0y if and only if Ny(@) = Oy.

In this case functional (3.3 provides an indirect variational statement of problem (3.1)).
If the operator C'is positive definite with respect to a nonlocal bilinear form (-, -) : VxV — R,
ie.,

(v,Cvy = k||v|| forall v e D(O),

where k£ > 0, then
Fy[u] >0  forall we D(N)

and Fyla) = 0 < @ is a solution of (3.1). Thus, in this case formula specifies a semi-
bounded functional whose mininum is attained on the solutions to problem (3.1]).

Note that functional was obtained in another way in [§] while resolving one of the
statements of the inverse problem in the calculus of variations.

We return back to problem (1.1)), (1.2). We find the adjoint operator for N:

_% 1 0 _agl

1% _]- _% 0 12
Ne=1 o o —2 3|

d g & @

—2 0

D(N™) = {(v,v*,v%, ") 10" € C1(Qp), i =T,

We define an operator C' on R(N) by the formula

(Cv)! (2,t) = /K(%t,Z/,T)W(SUJ)W(ZJ;T)Uj(yﬁ) dydr  j =14, (3.5)
Qr
where
3
K(x,t,y,7) = K = exp (Z 'yt + tT) , (3.6)
=1
where ¢, i = 1,4, are arbitrary functions in the class C'(Q;) such that
¢Z($,t> 7£ 0 as (.’,U, t) € QT7 (bi‘t:O = 07 ¢i’t:T = 07 1= mu ¢4|89 = 0.

With the above choice of the functions ¢!, ¢?, ¢*, ¢* we have Cv € D(N/*). Tt is also easy to

see that operator (3.5)) is symmetric on R(N).
We are going to show that it is positive definite. In order to do this, we find the expansion

of function (3.6) into the Maclaurin series

K= 30 e )y ()
laj=0 *



NONPOTENTIALITY OF SOBOLEV SYSTEM ... 115

4
= Z&i, al = 041!...054!.

= 1,4, are nonnegative integers, |a/
i=1

Here v = (o, ,au), a4, i =

Using this series, we find

4
4 (v, Cv) /ZUJ z,t) /K x,t,y, 7)) (2, )¢ (y, 7)v (y, 7)dydrddt
Qr

Qr 771
=y Z / L (2308 (1, ) (w0, ) dadt
7=t lal= o QT
8 / (y") - (y°) 2 (y, T (y, 7) dydr
Qr

S (M) >,

j=

—_

We note that all M *4J vanish simultaneously if and only if v/ = 0, 5 = 1,4 in Qr [9].
Therefore, if v # 0y then ®(v, Cv) > 0. Thus, the operator C of form (3.5) is positive definite

and invertible.
Denoting K = K(z,t,y,7), from (1.3) and ( we get

(CN(u))(x,t) = /Kgbi(:ﬂ,t)gbi(yﬁ) [W — [u(y,7) x k] + 8g—é> F'| dydr, i=1,3,
(CON(u))*(z,t) /K¢ v, ) (y, T [Z ou'( y’ — FY dydr

Using the chain rule, we obtain

<0Nwwu¢w3/{ ¢, i (y, 7) D, [K 6 (y,7)]

Qr
— K¢'(x, )¢ (y, 7)[uly, 7) x k]' = p(y)¢' (2, t) Dy: [K' (y, 7)]
-wawwmﬂWPWa i=T3, .
N0 - [ |- Za%w ) Dy (K64 7))
Qr

—-f<¢4<x,t>¢4<y,7>ﬁ”] dyd.
Using formulae ((1.3)), (3.3)), (3.7 , we find the needed functional as follows

//{ (= w7, 160 7)

Qr QT
— K¢'(x,t)¢" (y, 7)[u(y, 7) x k' = p(y)¢' (x,t)Dyi [K ' (y, 7) | —

16150 ) (VD) oy 2D )]
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3

— <Z¢4(x,t)uj(y,T)Dyf [Ko'(y, )] + ch“(w,t)cb‘*(y,f)F‘l)

.(3M

— — F4) } dydrdxdt.
ozt

i=1
Using the chain rule, we get

// { Z (z,0)Ar; + ([u(z, t) X k" + F*) Ay; + p(x) As;)

i=1

Qr Qr (38)

3
+ (Z u'(x,t)By,; + F4Bg,i> } dydrdzdt,

where

)]] + ) X k]'¢"(y, 7) Dy [K¢'(x,1)]
T }+¢1 y,7)Dy [K' (2, t)F']

Ay =u'(y, )¢ (x,1) D, [KdD (y,7)] + [uly, 7) x k'K ¢ (2, )" (y, 7)

' ’ + Ko'(z, )¢ (y, ) F",

| +p(y)Dai [¢' (2, ) Dyi [K$'(y, 7)]]

(x,t)] + ¢'(y, 7) Do [K ¢ (2, ) F']

and

Bii =Y w(y,7)Dai [¢*(2,6) Dy (K (y,7))] + 6*(y, 7) Dai [K 6™ (x, 1) F*]

j=1

3
= "W (y. 7)o (@, 1) Dy (K (y. 7)) + Ko (z, )¢ (y, 7)F*
j=1
Thus, we have proved the following theorem.

Theorem 3.2. The functional of form (3.8) is semibounded on the solutions of problem
(L1, (L.2).

Remark 3.1. Functional (3.8) possesses the following properties:
1) it is bounded below on set (1.2));

2) it takes a minimum value only on the solutions of problem , ,'

3) it does not involve the derivatives of unknown functions;

4) the set of its stationary points contains the solution set of problem , .

For specific details on solvability conditions for the type of problems under consideration,
uniqueness theorems, L,-estimates for solutions the reader can see, for instance, [2].

4. (CONCLUSIONS AND FUTURE DIRECTIONS

The results of this paper can be summarized as follows.

(i) We studied the potentiality of the operator of the boundary value problem for the Sobolev
system of partial differential equations. We showed that it is not potential with respect to the
classical bilinear form. It means that the considered system cannot be obtained from Hamilton
variational principle.

(ii) The problem of the existence of a matrix variational multipler for was studied. We
showed that there is no matrix variational multiplier with elements depending on x and ¢.
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(iii) We posed the question that whether there exists a functional semibounded on solu-
tions of the given boundary value problem. We proposed an algorithm for the constructive
determination of such functional.

The main advantage of constructed functional is in applications of direct variational
methods and its numerical performance.
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