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NONPOTENTIALITY OF SOBOLEV SYSTEM AND

CONSTRUCTION OF SEMIBOUNDED FUNCTIONAL

V.M. SAVCHIN, P.T. TRINH

Abstract. Works by S.L. Sobolev on small-amplitude oscillations of a rotating fluid in
1940’s stimulated a great interest to such problems. After the publications of his works, I.G.
Petrovsky emphasized the importance of studying general differential equations and systems
not resolved with respect to the higher-order time derivative. In this connection, it is natural
to study the issue on the existence of their variational formulations. It can be considered as
the inverse problem of the calculus of variations. The main goal of this work is to study this
problem for the Sobolev system. A key object is the criterion of potentiality. On this base,
we prove a nonpotentiality for the operator of a boundary value problem for the Sobolev
system of partial differential equations with respect to the classical bilinear form. We show
that this system does not admit a matrix variational multiplier of the given form. Thus, the
equations of the Sobolev system cannot be deduced from a classical Hamilton principle. We
pose the question that whether there exists a functional semibounded on solutions of the
given boundary value problem. Then we propose an algorithm for a constructive determining
such functional. The main advantage of the constructed functional action is applications of
direct variational methods.
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1. Introduction

We consider the following Sobolev system of partial differential equations [1]

𝑁̃1(𝑢, 𝑝) ≡ 𝜕𝑢1

𝜕𝑡
− 𝑢2 +

𝜕𝑝

𝜕𝑥1
= 𝐹 1,

𝑁̃2(𝑢, 𝑝) ≡ 𝜕𝑢2

𝜕𝑡
+ 𝑢1 +

𝜕𝑝

𝜕𝑥2
= 𝐹 2,

𝑁̃3(𝑢, 𝑝) ≡ 𝜕𝑢3

𝜕𝑡
+

𝜕𝑝

𝜕𝑥3
= 𝐹 3,

𝑁̃4(𝑢, 𝑝) ≡ 𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢2

𝜕𝑥2
+

𝜕𝑢3

𝜕𝑥3
= 𝐹 4,

(𝑥, 𝑡) = (𝑥1, 𝑥2, 𝑥3, 𝑡) ∈ 𝑄𝑇 = Ω × (0, 𝑇 ),

(1.1)

where the components 𝑢1, 𝑢2, 𝑢3 of the vector 𝑢, and 𝑝 are unknown functions, the domain
Ω ⊂ R3 is bounded by the smooth surface 𝜕Ω, 𝐹 𝑖, 𝑖 = 1, 4, are given continuous functions on
𝑄𝑇 .
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Denoting 𝐹 = (𝐹 1, 𝐹 2, 𝐹 3, 𝐹 4), 𝑁̃ = (𝑁̃1, 𝑁̃2, 𝑁̃3, 𝑁̃4), 𝑁 = 𝑁̃ − 𝐹 , we let

𝐷(𝑁) =
{︀

(𝑢, 𝑝) :𝑢𝑖 ∈ 𝐶1(𝑄𝑇 ), 𝑝 ∈ 𝐶1(Ω); 𝑢𝑖|𝑡=0 = 𝑢𝑖
0(𝑥

1, 𝑥2, 𝑥3),

𝑢𝑖|𝑡=𝑇 = 𝑢𝑖
1(𝑥

1, 𝑥2, 𝑥3), 𝑖 = 1, 3, 𝑝|𝜕Ω = 0
}︀
,

(1.2)

where 𝑢𝑖
𝑗(𝑥) ∈ 𝐶(Ω), 𝑖 = 1, 3, 𝑗 = 0, 1, are given functions, Ω = Ω ∪ 𝜕Ω, 𝑄𝑇 = Ω × [0, 𝑇 ].

Denoting by 𝑘 the unit vector (0, 0, 1), we represent system (1.1) in form [1]:

𝑁̃ 𝑖(𝑢, 𝑝) ≡ 𝜕𝑢𝑖

𝜕𝑡
− [𝑢× 𝑘]𝑖 +

𝜕𝑝

𝜕𝑥𝑖
= 𝐹 𝑖, 𝑖 = 1, 3,

𝑁̃4(𝑢, 𝑝) ≡
3∑︁

𝑖=1

𝜕𝑢𝑖

𝜕𝑥𝑖
= 𝐹 4.

(1.3)

This system describes small oscillations of a rotating fluid. In [1], there was proved the existence
of a solution of (1.1) in a Hilbert space 𝐻 as well as its continued dependence on the initial
data. The Cauchy problem in an unbounded space was solved in an explicit form.
The work of S.L. Sobolev was continued by P.A Aleksandryan, T.I. Zelenyan,

V.N. Maslennikova, and others, see [2] and the references therein. The Sobolev system in the
case of two space variables was studied in [3]. By means of the Fourier transform, the solution
of the Cauchy problem was obtained in the form of convolutions with kernels having locally
integrable properties. The asymptotic behavior of this solution for large values of time was
studied.
The problem of existence of variational formulation, Hamilton principle for (1.1), (1.2), was

not been studied before. In modern interpretation [4], it can be considered as an inverse problem
of the calculus of variations (IPCV). The main aim of this paper is to study the existence of
solutions of IPCV for problem (1.1), (1.2).

2. Nonpotentiality of Sobolev system

Let 𝑈 , 𝑉 be normed linear spaces over the field of real numbers R, 𝑈 ⊆ 𝑉 ; 0𝑈 and 0𝑉 be
the zero element in 𝑈 and 𝑉 respectively; 𝑁 : 𝐷(𝑁) ⊆ 𝑈 → 𝑅(𝑁) ⊆ 𝑉 be an arbitrary twice
Gâteaux differentiable operator with the domain 𝐷(𝑁) and the range 𝑅(𝑁).
We denote by 𝑁 ′

𝑢 the first Gâteaux derivative of 𝑁 at the point 𝑢 ∈ 𝐷(𝑁) defined by the
formula [5]

𝑁 ′
𝑢ℎ =

𝑑

𝑑𝜀
𝑁(𝑢 + 𝜀ℎ)|𝜀=0 = 𝛿𝑁(𝑢, ℎ).

The mapping Φ(𝑢; ·, ·): 𝑉 ×𝑈 → R linear in each argument and depending on the parameter
𝑢 ∈ 𝑈 is called a local bilinear form.
The derivative Φ′

𝑢(ℎ; 𝑣, 𝑔) is defined as

Φ′
𝑢(ℎ; 𝑣, 𝑔) =

𝑑

𝑑𝜀
Φ(𝑢 + 𝜀ℎ; 𝑣, 𝑔)|𝜀=0.

A function Φ is called a nonlocal bilinear form if it is independent of the parameter 𝑢, that
is, Φ(𝑢; ·, ·) ≡ ⟨·, ·⟩. Then Φ′

𝑢(ℎ; 𝑣, 𝑔) ≡ 0.
We say that ⟨·, ·⟩ : 𝑉 × 𝑈 → R is a non-degenerate nonlocal bilinear form if
1) the condition ⟨𝑣, 𝑔⟩ = 0 for all 𝑔 ∈ 𝑈 implies that 𝑣 = 0𝑉 ;
2) the condition ⟨𝑣, 𝑔⟩ = 0 for all 𝑣 ∈ 𝑉 implies that 𝑔 = 0𝑈 .

Definition 2.1. The operator 𝑁 : 𝐷(𝑁) ⊆ 𝑈 → 𝑉 is said to be potential on the set 𝐷(𝑁)
with respect to a local bilinear form Φ(𝑢; ·, ·) : 𝑉 × 𝑈 → R if there exists a functional 𝐹𝑁 :
𝐷(𝐹𝑁) = 𝐷(𝑁) → R such that 𝛿𝐹𝑁 [𝑢, ℎ] = Φ(𝑢;𝑁(𝑢), ℎ) for all 𝑢 ∈ 𝐷(𝑁), ℎ ∈ 𝐷(𝑁 ′

𝑢). Here
𝐹𝑁 is called the potential of the operator 𝑁 .

Further, we shall make use of the following theorem.
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Theorem 2.1. [6] Let 𝑁 : 𝐷(𝑁) ⊆ 𝑈 → 𝑉 be a Gâteaux differentiable operator on the

convex set 𝐷(𝑁) and a local bilinear form Φ(𝑢; ·, ·) : 𝑉 × 𝑈 → R be such that for all fixed

elements 𝑢 ∈ 𝐷(𝑁) and ℎ, 𝑔 ∈ 𝐷(𝑁 ′
𝑢) the function 𝜙(𝜀) ≡ Φ (𝑢 + 𝜀ℎ;𝑁(𝑢 + 𝜀ℎ), 𝑔) belongs to

𝐶1[0, 1]. Then the potentiality of the operator 𝑁 on 𝐷(𝑁) with respect to Φ is equivalent to

𝐽𝑁,ℎ,𝑔(𝑢) ≡ Φ(𝑢;𝑁 ′
𝑢ℎ, 𝑔) + Φ′

𝑢(ℎ;𝑁(𝑢), 𝑔) = Φ(𝑢;𝑁 ′
𝑢𝑔, ℎ) + Φ′

𝑢(𝑔;𝑁(𝑢), ℎ) (2.1)

for all 𝑢 ∈ 𝐷(𝑁), 𝑔, ℎ ∈ 𝐷(𝑁 ′
𝑢). In this case

𝐹𝑁 [𝑢] =

1∫︁
0

Φ (𝑢(𝜆);𝑁(𝑢(𝜆)), 𝑢− 𝑢0) 𝑑𝜆 + 𝐹𝑁 [𝑢0], (2.2)

where 𝑢(𝜆) ≡ 𝑢0 + 𝜆(𝑢− 𝑢0) and 𝑢0 is an arbitrary fixed element from 𝐷(𝑁).

Condition (2.1) is called the criterion of the potentiality for the operator 𝑁 with respect to
the local bilinear form Φ. In physics literature, functional (2.2) is called the action functional,
or action for short.

Remark 2.1. If Φ is a nonlocal bilinear form, then (2.1) becomes

⟨𝑁 ′
𝑢ℎ, 𝑔⟩ = ⟨𝑁 ′

𝑢𝑔, ℎ⟩ for all 𝑢 ∈ 𝐷(𝑁), 𝑔, ℎ ∈ 𝐷(𝑁 ′
𝑢). (2.3)

Let us introduce a classical nonlocal bilinear form by

Φ1(𝑣, 𝑔) = ⟨𝑣, 𝑔⟩ =

∫︁
𝑄𝑇

4∑︁
𝑖=1

𝑣𝑖(𝑥, 𝑡)𝑔𝑖(𝑥, 𝑡)𝑑𝑥𝑑𝑡. (2.4)

Theorem 2.2. Operator (1.1) is not potential on set (1.2) with respect to nonlocal bilinear
form (2.4).

Proof. By (1.1) we find the Gâteaux derivative

𝑁 ′
𝑢 =

⎛⎜⎜⎝
𝜕
𝜕𝑡

−1 0 𝜕
𝜕𝑥1

1 𝜕
𝜕𝑡

0 𝜕
𝜕𝑥2

0 0 𝜕
𝜕𝑡

𝜕
𝜕𝑥3

𝜕
𝜕𝑥1

𝜕
𝜕𝑥2

𝜕
𝜕𝑥3 0

⎞⎟⎟⎠ .

In accordance with conditions (1.2), we have

𝐷(𝑁 ′
𝑢) =

{︀
(ℎ1, ℎ2, ℎ3, ℎ4) :ℎ𝑖 ∈ 𝐶1(𝑄𝑇 )𝑖 = 1, 3, ℎ4 ∈ 𝐶1(Ω); ℎ𝑖|𝑡=0 = 0,

ℎ𝑖|𝑡=𝑇 = 0, 𝑖 = 1, 3, ℎ4|𝜕Ω = 0
}︀
.

Let us prove that operator (1.1) does not satisfy criterion (2.3).
Denoting by ℎ′ = (ℎ1, ℎ2, ℎ3) and 𝑔′ = (𝑔1, 𝑔2, 𝑔3), we get

Φ1(𝑁
′
𝑢ℎ, 𝑔) =

∫︁
𝑄𝑇

[︃
3∑︁

𝑖=1

(︂
𝜕ℎ𝑖

𝜕𝑡
− [ℎ′ × 𝑘]𝑖 +

𝜕ℎ4

𝜕𝑥𝑖

)︂
𝑔𝑖 +

3∑︁
𝑖=1

𝜕ℎ𝑖

𝜕𝑥𝑖
𝑔4

]︃
𝑑𝑥𝑑𝑡.

Using the chain rule, we obtain

Φ1(𝑁
′
𝑢ℎ, 𝑔) =

∫︁
𝑄𝑇

3∑︁
𝑖=1

[︂
𝐷𝑡(ℎ

𝑖𝑔𝑖) − ℎ𝑖𝜕𝑔
𝑖

𝜕𝑡
− [ℎ′ × 𝑘]𝑖𝑔𝑖 + 𝐷𝑥𝑖(ℎ4𝑔𝑖)

− ℎ4 𝜕𝑔
𝑖

𝜕𝑥𝑖
+ 𝐷𝑥𝑖(ℎ𝑖𝑔4) − ℎ𝑖𝜕𝑔

4

𝜕𝑥𝑖

]︂
𝑑𝑥𝑑𝑡 for all ℎ, 𝑔 ∈ 𝐷(𝑁 ′

𝑢),
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where 𝐷𝑡 =
𝜕

𝜕𝑡
, 𝐷𝑥𝑖 =

𝜕

𝜕𝑥𝑖
.

By virtue of the Divergence theorem and the condition ℎ ∈ 𝐷(𝑁 ′
𝑢), we have

𝑇∫︁
0

∫︁
Ω

[︀
𝐷𝑥1(ℎ

4𝑔1) + 𝐷𝑥2(ℎ
4𝑔2) + 𝐷𝑥3(ℎ

4𝑔3)
]︀
𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑡

=

𝑇∫︁
0

⎛⎝∫︁
𝜕Ω

ℎ4𝑔1 𝑑𝑥2𝑑𝑥3 +

∫︁
𝜕Ω

ℎ4𝑔2 𝑑𝑥1𝑑𝑥3 +

∫︁
𝜕Ω

ℎ4𝑔3 𝑑𝑥1𝑑𝑥2

⎞⎠ 𝑑𝑡 = 0.

Similarly, we have

𝑇∫︁
0

∫︁
Ω

[︀
𝐷𝑥1(ℎ

1𝑔4) + 𝐷𝑥2(ℎ
2𝑔4) + 𝐷𝑥3(ℎ

3𝑔4)
]︀
𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑡

=

𝑇∫︁
0

⎛⎝∫︁
𝜕Ω

ℎ1𝑔4 𝑑𝑥2𝑑𝑥3 +

∫︁
𝜕Ω

ℎ2𝑔4 𝑑𝑥1𝑑𝑥3 +

∫︁
𝜕Ω

ℎ3𝑔4 𝑑𝑥1𝑑𝑥2

⎞⎠ 𝑑𝑡 = 0,

and ∫︁
𝑄𝑇

[︀
𝐷𝑡(ℎ

1𝑔1) + 𝐷𝑡(ℎ
2𝑔2) + 𝐷𝑡(ℎ

3𝑔3)
]︀
𝑑𝑥𝑑𝑡 =

∫︁
Ω

3∑︁
𝑖=1

(ℎ𝑖𝑔𝑖)|𝑡=𝑇
𝑡=0 𝑑𝑥 = 0.

Applying the above results, we get

Φ1(𝑁
′
𝑢ℎ, 𝑔) =

∫︁
𝑄𝑇

[︃
3∑︁

𝑖=1

(︂
−ℎ𝑖𝜕𝑔

𝑖

𝜕𝑡
− [ℎ′ × 𝑘]𝑖𝑔𝑖 − ℎ𝑖𝜕𝑔

4

𝜕𝑥𝑖

)︂
−

3∑︁
𝑖=1

𝜕𝑔𝑖

𝜕𝑥𝑖
ℎ4

]︃
𝑑𝑥𝑑𝑡. (2.5)

On the other hand, we have

Φ1(𝑁
′
𝑢𝑔, ℎ) =

∫︁
𝑄𝑇

[︃
3∑︁

𝑖=1

(︂
𝜕𝑔𝑖

𝜕𝑡
− [𝑔′ × 𝑘]𝑖 +

𝜕𝑔4

𝜕𝑥𝑖

)︂
ℎ𝑖 +

3∑︁
𝑖=1

𝜕𝑔𝑖

𝜕𝑥𝑖
ℎ4

]︃
𝑑𝑥𝑑𝑡. (2.6)

In (2.5), the coefficient at ℎ4 is −
3∑︁

𝑖=1

𝜕𝑔𝑖

𝜕𝑥𝑖
and in (2.6) it is

3∑︁
𝑖=1

𝜕𝑔𝑖

𝜕𝑥𝑖
. Hence Φ1(𝑁

′
𝑢ℎ, 𝑔) is not

indentically equal to Φ1(𝑁
′
𝑢𝑔, ℎ). Thus, criterion (2.3) is not satisfied.

In view of Theorem 2.2, the following question arises. Does there exist a bilinear form such
that the operator 𝑁 of problem (1.1), (1.2) is potential with respect to this form? The answer
is given in Section 3.

Before that, let us study the existence of the matrix variational multiplier for operator (1.1).

Definition 2.2. An invertible linear operator 𝑀 : 𝐷(𝑀) ⊂ 𝑅(𝑁) → 𝑉 is called a varia-

tional multiplier for the operator 𝑁 : 𝐷(𝑁) ⊂ 𝑈 → 𝑉 if the operator 𝑁̂ = 𝑀𝑁 is potential on
the set 𝐷(𝑁) with respect to the given bilinear form.

Theorem 2.3. There is no matrix variational multiplier 𝑀 = {𝑚𝑖𝑗(𝑥, 𝑡)}4𝑖,𝑗=1 for operator

𝑁 (1.1).

Proof. Suppose that there exists a matrix variational multiplier

𝑀 = {𝑚𝑖𝑗(𝑥, 𝑡)}4𝑖,𝑗=1
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for (1.1). Then the operator 𝑁̂(𝑢) = 𝑀𝑁(𝑢) is potential with respect to classical bilinear form
(2.4).

Denoting 𝑚𝑖𝑗 ≡ 𝑚𝑖𝑗(𝑥, 𝑡) we get

Φ1

(︁
𝑁̂ ′

𝑢ℎ, 𝑔
)︁

=

∫︁
𝑄𝑇

4∑︁
𝑖=1

4∑︁
𝑟=1

𝑚𝑖𝑟𝑁
′𝑟
𝑢 ℎ𝑔

𝑖𝑑𝑥𝑑𝑡

=

∫︁
𝑄𝑇

4∑︁
𝑖=1

3∑︁
𝑟=1

[︂(︂
𝜕ℎ𝑟

𝜕𝑡
− [ℎ′ × 𝑘]𝑟 +

𝜕ℎ4

𝜕𝑥𝑟

)︂
𝑔𝑖𝑚𝑖𝑟 +

𝜕ℎ𝑟

𝜕𝑥𝑟
𝑔𝑖𝑚𝑖4

]︂
𝑑𝑥𝑑𝑡.

Using the chain rule, we obtain

Φ1

(︁
𝑁̂ ′

𝑢ℎ, 𝑔
)︁

=

∫︁
𝑄𝑇

4∑︁
𝑖=1

3∑︁
𝑟=1

[︂
𝐷𝑡(ℎ

𝑟𝑔𝑖𝑚𝑖𝑟) − ℎ𝑟𝑔𝑖
𝜕𝑚𝑖𝑟

𝜕𝑡
− ℎ𝑟 𝜕𝑔

𝑖

𝜕𝑡
𝑚𝑖𝑟 − [ℎ′ × 𝑘]𝑟𝑔𝑖𝑚𝑖𝑟

+ 𝐷𝑥𝑟(ℎ4𝑔𝑖𝑚𝑖𝑟) − ℎ4𝑔𝑖
𝜕𝑚𝑖𝑟

𝜕𝑥𝑟
− ℎ4 𝜕𝑔

𝑖

𝜕𝑥𝑟
𝑚𝑖𝑟

+ 𝐷𝑥𝑟(ℎ𝑟𝑔𝑖𝑚𝑖4) − ℎ𝑟𝑔𝑖
𝜕𝑚𝑖4

𝜕𝑥𝑟
− ℎ𝑟 𝜕𝑔

𝑖

𝜕𝑥𝑟
𝑚𝑖4

]︂
𝑑𝑥𝑑𝑡.

Since ℎ, 𝑔 ∈ 𝐷(𝑁 ′
𝑢), we get:∫︁
𝑄𝑇

4∑︁
𝑖=1

3∑︁
𝑟=1

𝐷𝑡(ℎ
𝑟𝑔𝑖𝑚𝑖𝑟)𝑑𝑥𝑑𝑡 =

∫︁
Ω

4∑︁
𝑖=1

3∑︁
𝑟=1

(ℎ𝑟𝑔𝑖𝑚𝑖𝑟)|𝑡=𝑇
𝑡=0 𝑑𝑥 = 0,

and ∫︁
𝑄𝑇

4∑︁
𝑖=1

[︀
𝐷𝑥1(ℎ4𝑔𝑖𝑚𝑖1) + 𝐷𝑥2(ℎ4𝑔𝑖𝑚𝑖2) + 𝐷𝑥3(ℎ4𝑔𝑖𝑚𝑖3)

]︀
𝑑𝑥𝑑𝑡

=

∫︁ 𝑇

0

4∑︁
𝑖=1

⎡⎣∫︁
𝜕Ω

ℎ4𝑔𝑖𝑚𝑖1 𝑑𝑥
2𝑑𝑥3 +

∫︁
𝜕Ω

ℎ4𝑔𝑖𝑚𝑖2 𝑑𝑥
1𝑑𝑥3 +

∫︁
𝜕Ω

ℎ4𝑔𝑖𝑚𝑖3 𝑑𝑥
1𝑑𝑥2

⎤⎦ 𝑑𝑡 = 0,

and ∫︁
𝑄𝑇

4∑︁
𝑖=1

[︀
𝐷𝑥1(ℎ1𝑔𝑖𝑚𝑖4) + 𝐷𝑥2(ℎ2𝑔𝑖𝑚𝑖4) + 𝐷𝑥3(ℎ3𝑔𝑖𝑚𝑖4)

]︀
𝑑𝑥𝑑𝑡 =

=

∫︁ 𝑇

0

4∑︁
𝑖=1

⎡⎣∫︁
𝜕Ω

ℎ1𝑔𝑖𝑚𝑖4 𝑑𝑥
2𝑑𝑥3 +

∫︁
𝜕Ω

ℎ2𝑔𝑖𝑚𝑖4 𝑑𝑥
1𝑑𝑥3 +

∫︁
𝜕Ω

ℎ3𝑔𝑖 𝑑𝑥1𝑑𝑥2𝑚𝑖4

⎤⎦ 𝑑𝑡 = 0.

Applying the above results, we obtain:

Φ1

(︁
𝑁̂ ′

𝑢ℎ, 𝑔
)︁

=

∫︁
𝑄𝑇

4∑︁
𝑖=1

3∑︁
𝑟=1

[︂
− ℎ𝑟𝑔𝑖

𝜕𝑚𝑖𝑟

𝜕𝑡
− ℎ𝑟 𝜕𝑔

𝑖

𝜕𝑡
𝑚𝑖𝑟 − [ℎ′ × 𝑘]𝑟𝑔𝑖𝑚𝑖𝑟

− ℎ4𝑔𝑖
𝜕𝑚𝑖𝑟

𝜕𝑥𝑟
− ℎ4 𝜕𝑔

𝑖

𝜕𝑥𝑟
𝑚𝑖𝑟 − ℎ𝑟𝑔𝑖

𝜕𝑚𝑖4

𝜕𝑥𝑟
− ℎ𝑟 𝜕𝑔

𝑖

𝜕𝑥𝑟
𝑚𝑖4

]︂
𝑑𝑥𝑑𝑡

= −
∫︁
𝑄𝑇

{︃
3∑︁

𝑟=1

ℎ𝑟

[︂ 3∑︁
𝑖=1

(︂
𝜕𝑔𝑖

𝜕𝑡
𝑚𝑖𝑟 +

𝜕𝑔𝑖

𝜕𝑥𝑟
𝑚𝑖4 + 𝑔𝑖𝑄1,𝑖𝑟

)︂



112 V.M. SAVCHIN, P.T. TRINH

+

(︂
𝜕𝑔4

𝜕𝑡
𝑚4𝑟 +

𝜕𝑔4

𝜕𝑥𝑟
𝑚44 + 𝑔4𝑄1,4𝑟

)︂]︂
+ ℎ4

3∑︁
𝑟=1

[︂ 3∑︁
𝑖=1

(︂
𝜕𝑔𝑖

𝜕𝑥𝑟
𝑚𝑖𝑟 + 𝑔𝑖

𝜕𝑚𝑖𝑟

𝜕𝑥𝑟

)︂
+ +

(︂
𝜕𝑔4

𝜕𝑥𝑟
𝑚4𝑟 + 𝑔4

𝜕𝑚4𝑟

𝜕𝑥𝑟

)︂]︂}︃
𝑑𝑥𝑑𝑡,

where

𝑄1,𝑖𝑟 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑚𝑖1

𝜕𝑡
+

𝜕𝑚𝑖4

𝜕𝑥1
−𝑚𝑖2 𝑟 = 1,

𝜕𝑚𝑖2

𝜕𝑡
+

𝜕𝑚𝑖4

𝜕𝑥2
+ 𝑚𝑖1 𝑟 = 2,

𝜕𝑚𝑖3

𝜕𝑡
+

𝜕𝑚𝑖4

𝜕𝑥3
, 𝑟 = 3,

𝑖 = 1, 4.

On the other hand, we have

Φ1

(︁
𝑁̂ ′

𝑢𝑔, ℎ
)︁

=

∫︁
𝑄𝑇

4∑︁
𝑖=1

4∑︁
𝑟=1

𝑚𝑖𝑟𝑁
′𝑟
𝑢 𝑔ℎ

𝑖 𝑑𝑥𝑑𝑡

=

∫︁
𝑄𝑇

4∑︁
𝑖=1

3∑︁
𝑟=1

[︂
ℎ𝑖

(︂
𝜕𝑔𝑟

𝜕𝑡
− [𝑔′ × 𝑘]𝑟 +

𝜕𝑔4

𝜕𝑥𝑟

)︂
𝑚𝑖𝑟 + ℎ𝑖 𝜕𝑔

𝑟

𝜕𝑥𝑟
𝑚𝑖4

]︂
𝑑𝑥𝑑𝑡

=

∫︁
𝑄𝑇

{︃
3∑︁

𝑟=1

ℎ𝑟

3∑︁
𝑖=1

(︂
𝜕𝑔𝑖

𝜕𝑡
𝑚𝑟𝑖 − [𝑔′ × 𝑘]𝑖𝑚𝑟𝑖 +

𝜕𝑔4

𝜕𝑥𝑖
𝑚𝑟𝑖 +

𝜕𝑔𝑖

𝜕𝑥𝑖
𝑚𝑟4

)︂

+ ℎ4

3∑︁
𝑟=1

(︂
𝜕𝑔𝑟

𝜕𝑡
𝑚4𝑟 − [𝑔′ × 𝑘]𝑖𝑚4𝑖 +

𝜕𝑔4

𝜕𝑥𝑟
𝑚4𝑟 +

𝜕𝑔𝑟

𝜕𝑥𝑟
𝑚44

)︂}︃
𝑑𝑥𝑑𝑡.

Hence,

Φ1

(︁
𝑁̂ ′

𝑢ℎ, 𝑔
)︁
− Φ1

(︁
𝑁̂ ′

𝑢𝑔, ℎ
)︁

= −
∫︁
𝑄𝑇

{︃
3∑︁

𝑟=1

ℎ𝑟

[︂ 3∑︁
𝑖=1

(︂
𝜕𝑔𝑖

𝜕𝑡
(𝑚𝑖𝑟 + 𝑚𝑟𝑖) + +

𝜕𝑔𝑖

𝜕𝑥𝑟
𝑚𝑖4

+
𝜕𝑔4

𝜕𝑥𝑖
𝑚𝑟𝑖 +

𝜕𝑔𝑖

𝜕𝑥𝑖
𝑚𝑟4 + 𝑔𝑖𝑄1,𝑖𝑟 − [𝑔′ × 𝑘]𝑖𝑚𝑟𝑖

)︂
+

(︂
𝜕𝑔4

𝜕𝑡
𝑚4𝑟 +

𝜕𝑔4

𝜕𝑥𝑟
𝑚44 + 𝑔4𝑄1,4𝑟

)︂]︂
+ ℎ4

3∑︁
𝑟=1

[︂ 3∑︁
𝑖=1

(︂
𝜕𝑔𝑟

𝜕𝑡
𝑚4𝑟 +

𝜕𝑔𝑖

𝜕𝑥𝑟
𝑚𝑖𝑟 +

𝜕𝑔𝑟

𝜕𝑥𝑟
𝑚44

+
𝜕𝑔4

𝜕𝑥𝑟
𝑚4𝑟 + 𝑔𝑖

𝜕𝑚𝑖𝑟

𝜕𝑥𝑟
− [𝑔′ × 𝑘]𝑖𝑚4𝑖

)︂
+

(︂
𝜕𝑔4

𝜕𝑥𝑟
𝑚4𝑟 + 𝑔4

𝜕𝑚4𝑟

𝜕𝑥𝑟

)︂]︂}︃
𝑑𝑥𝑑𝑡.

(2.7)

According to criterion (2.3) it must be

Φ1

(︁
𝑁̂ ′

𝑢ℎ, 𝑔
)︁
− Φ1

(︁
𝑁̂ ′

𝑢𝑔, ℎ
)︁

= 0 for all 𝑢 ∈ 𝐷(𝑁), ℎ, 𝑔 ∈ 𝐷(𝑁 ′
𝑢).
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Due to an arbitrary choice of the functions ℎ𝑖, 𝑖 = 1, 4, by (2.7) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑︁
𝑖=1

(︂
𝜕𝑔𝑖

𝜕𝑡
(𝑚𝑖𝑟 + 𝑚𝑟𝑖) +

𝜕𝑔𝑖

𝜕𝑥𝑟
𝑚𝑖4 +

𝜕𝑔4

𝜕𝑥𝑖
𝑚𝑟𝑖 +

𝜕𝑔𝑖

𝜕𝑥𝑖
𝑚𝑟4

+ 𝑔𝑖𝑄1,𝑖𝑟 − [𝑔′ × 𝑘]𝑖𝑚𝑟𝑖

)︂
+

(︂
𝜕𝑔4

𝜕𝑡
𝑚4𝑟 +

𝜕𝑔4

𝜕𝑥𝑟
𝑚44 + 𝑔4𝑄1,4𝑟

)︂
= 0, 𝑟 = 1, 3,

3∑︁
𝑟=1

[︂ 3∑︁
𝑖=1

(︂
𝜕𝑔𝑟

𝜕𝑡
𝑚4𝑟 +

𝜕𝑔𝑖

𝜕𝑥𝑟
𝑚𝑖𝑟 +

𝜕𝑔𝑟

𝜕𝑥𝑟
𝑚44 +

𝜕𝑔4

𝜕𝑥𝑟
𝑚4𝑟

+ 𝑔𝑖
𝜕𝑚𝑖𝑟

𝜕𝑥𝑟
− [𝑔′ × 𝑘]𝑖𝑚4𝑖

)︂
+

(︂
𝜕𝑔4

𝜕𝑥𝑟
𝑚4𝑟 + 𝑔4

𝜕𝑚4𝑟

𝜕𝑥𝑟

)︂]︂
= 0.

Hence, thanks to the arbitrary choice of the functions 𝑔𝑖, 𝑖 = 1, 4, we get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑚𝑖𝑟 + 𝑚𝑟𝑖 = 0,

𝑚𝑖4 = 0,

𝑚𝑟𝑖 = 0,

𝑚4𝑟 = 0,

𝑚44 = 0,

where 𝑖 = 1, 3, 𝑟 = 1, 3. Finally, 𝑚𝑖𝑗(𝑥, 𝑡) = 0, 𝑖, 𝑗 = 1, 4, and therefore, 𝑀 = 0. This
contradicts to our initial assumption. The proof is complete.

3. Construction of a semibounded functional

We have already proved that operator (1.1) is not potential with respect to nonlocal bilinear
form (2.4) and there is no matrix variational multiplier of the given type. We need the following
theorem later on.

We consider an arbitrary equation

𝑁(𝑢) = 0𝑉 , 𝑢 ∈ 𝐷(𝑁) ⊆ 𝑈 ⊆ 𝑉, (3.1)

where the operator 𝑁 in the general case is nonpotential with respect to a fixed nonlocal bilinear
form Φ1(·, ·) ≡ ⟨·, ·⟩ : 𝑉 × 𝑉 → R.

Theorem 3.1. [7] Let
1) 𝑁 : 𝐷(𝑁) ⊆ 𝑈 → 𝑉 be a twice Gâteaux differentiable operator on the convex set 𝐷(𝑁);
2) ⟨·, ·⟩ : 𝑉 × 𝑉 → R be a given nonlocal bilinear form;
3) 𝐶 : 𝐷(𝐶) ⊇ 𝑅(𝑁) → 𝑉 be an arbitrary invertible linear symmetric operator, such that for

all fixed elements 𝑢 ∈ 𝐷(𝑁) and 𝑔, ℎ ∈ 𝐷(𝑁 ′
𝑢) the function 𝜙(𝜀) ≡

⟨︀
𝑁(𝑢 + 𝜀ℎ), 𝐶𝑁 ′

𝑢+𝜀ℎ𝑔
⟩︀
is in

𝐶1[0, 1]. Then the operator 𝑁 is potential on 𝐷(𝑁) with respect to the following local bilinear
form

Φ(𝑢; 𝑣, 𝑔) = ⟨𝑣, 𝐶𝑁 ′
𝑢𝑔⟩ . (3.2)

The corresponding functional is given by

𝐹𝑁 [𝑢] =
1

2
⟨𝑁(𝑢), 𝐶𝑁(𝑢)⟩ . (3.3)

We observe that
𝛿𝐹𝑁 [𝑢, ℎ] = Φ(𝑢;𝑁(𝑢), ℎ) = ⟨𝑁(𝑢), 𝐶𝑁 ′

𝑢ℎ⟩ .
Denoting the adjoint operator for 𝑁 ′

𝑢 by 𝑁 ′*
𝑢 and assuming that 𝑅(𝐶) ⊆ 𝐷(𝑁 ′*

𝑢 ), by the above
identity we obtain:

𝛿𝐹𝑁 [𝑢, ℎ] = ⟨𝑁 ′*
𝑢 𝐶𝑁(𝑢), ℎ⟩

for all 𝑢 ∈ 𝐷(𝑁), ℎ ∈ 𝐷(𝑁 ′
𝑢).
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Assuming that 𝐷(𝑁 ′
𝑢) = 𝑈 and ⟨·, ·⟩ : 𝑉 × 𝑉 → R is a nonsingular continuous in each

variable nonlocal bilinear form, we get 𝛿𝐹𝑁 [𝑢, ℎ] = 0 𝑢 ∈ 𝐷(𝑁) for all ℎ ∈ 𝐷(𝑁 ′
𝑢) if and only if

𝑁1(𝑢) ≡ 𝑁 ′*
𝑢 𝐶𝑁(𝑢) = 0𝑉 , 𝑢 ∈ 𝐷(𝑁). (3.4)

Thus, the operator 𝑁1 is potential on 𝐷(𝑁) with respect to the nonlocal bilinear form Φ1

and the operator 𝑁 is potential on 𝐷(𝑁) with respect to bilinear form (3.2).
If 𝑁 ′*

𝑢 is an invertible operator, then problems (3.1) and (3.4) are equivalent in the following
sense: if 𝑢̃ is a solution to one of them, then 𝑢̃ is a solution to the other, that is,

𝑁(𝑢̃) = 0𝑉 if and only if 𝑁1(𝑢̃) = 0𝑉 .

In this case functional (3.3) provides an indirect variational statement of problem (3.1).
If the operator 𝐶 is positive definite with respect to a nonlocal bilinear form ⟨·, ·⟩ : 𝑉 ×𝑉 → R,

i.e.,

⟨𝑣, 𝐶𝑣⟩ > 𝑘 ‖𝑣‖ for all 𝑣 ∈ 𝐷(𝐶),

where 𝑘 > 0, then

𝐹𝑁 [𝑢] > 0 for all 𝑢 ∈ 𝐷(𝑁)

and 𝐹𝑁 [𝑢̃] = 0 ⇔ 𝑢̃ is a solution of (3.1). Thus, in this case formula (3.3) specifies a semi-
bounded functional whose mininum is attained on the solutions to problem (3.1).

Note that functional (3.3) was obtained in another way in [8] while resolving one of the
statements of the inverse problem in the calculus of variations.

We return back to problem (1.1), (1.2). We find the adjoint operator for 𝑁 ′
𝑢:

𝑁 ′*
𝑢 =

⎛⎜⎜⎝
− 𝜕

𝜕𝑡
1 0 − 𝜕

𝜕𝑥1

−1 − 𝜕
𝜕𝑡

0 − 𝜕
𝜕𝑥2

0 0 − 𝜕
𝜕𝑡

− 𝜕
𝜕𝑥3

− 𝜕
𝜕𝑥1 − 𝜕

𝜕𝑥2 − 𝜕
𝜕𝑥3 0

⎞⎟⎟⎠ ,

𝐷(𝑁 ′*) =
{︀

(𝑣1, 𝑣2, 𝑣3, 𝑣4) : 𝑣𝑖 ∈ 𝐶1(𝑄𝑇 ), 𝑖 = 1, 3), 𝑣4 ∈ 𝐶1(Ω);

𝑣𝑖|𝑡=0 = 0, 𝑣𝑖|𝑡=𝑇 = 0(𝑖 = 1, 3), 𝑣4|𝜕Ω = 0
}︀
.

We define an operator 𝐶 on 𝑅(𝑁) by the formula

(𝐶𝑣)𝑗(𝑥, 𝑡) =

∫︁
𝑄𝑇

𝐾(𝑥, 𝑡, 𝑦, 𝜏)𝜑𝑗(𝑥, 𝑡)𝜑𝑗(𝑦, 𝜏)𝑣𝑗(𝑦, 𝜏) 𝑑𝑦𝑑𝜏 𝑗 = 1, 4, (3.5)

where

𝐾(𝑥, 𝑡, 𝑦, 𝜏) ≡ 𝐾 = exp

(︃
3∑︁

𝑖=1

𝑥𝑖𝑦𝑖 + 𝑡𝜏

)︃
, (3.6)

where 𝜑𝑖, 𝑖 = 1, 4, are arbitrary functions in the class 𝐶1(𝑄𝑇 ) such that

𝜑𝑖(𝑥, 𝑡) ̸= 0 as (𝑥, 𝑡) ∈ 𝑄𝑇 , 𝜑𝑖|𝑡=0 = 0, 𝜑𝑖|𝑡=𝑇 = 0, 𝑖 = 1, 3; 𝜑4|𝜕Ω = 0.

With the above choice of the functions 𝜑1, 𝜑2, 𝜑3, 𝜑4 we have 𝐶𝑣 ∈ 𝐷(𝑁 ′*
𝑢 ). It is also easy to

see that operator (3.5) is symmetric on 𝑅(𝑁).
We are going to show that it is positive definite. In order to do this, we find the expansion

of function (3.6) into the Maclaurin series

𝐾 =
∞∑︁

|𝛼|=0

1

(𝛼!)2
(𝑥1)𝛼1 · · · (𝑥3)𝛼3𝑡𝛼4(𝑦1)𝛼1 · · · (𝑦3)𝛼3𝜏𝛼4 .



NONPOTENTIALITY OF SOBOLEV SYSTEM . . . 115

Here 𝛼 = (𝛼1, · · · , 𝛼4), 𝛼𝑖, 𝑖 = 1, 4, are nonnegative integers, |𝛼| =
4∑︀

𝑖=1

𝛼𝑖, 𝛼! = 𝛼1! . . . 𝛼4!.

Using this series, we find

Φ1(𝑣, 𝐶𝑣) =

∫︁
𝑄𝑇

4∑︁
𝑗=1

𝑣𝑗(𝑥, 𝑡)

∫︁
𝑄𝑇

𝐾(𝑥, 𝑡, 𝑦, 𝜏)𝜑𝑗(𝑥, 𝑡)𝜑𝑗(𝑦, 𝜏)𝑣𝑗(𝑦, 𝜏)𝑑𝑦𝑑𝜏𝑑𝑥𝑑𝑡

=
4∑︁

𝑗=1

∞∑︁
|𝛼|=0

1

(𝛼!)2

∫︁
𝑄𝑇

(𝑥1)𝛼1 · · · (𝑥3)𝛼3𝑡𝛼4𝜑𝑗(𝑥, 𝑡)𝑣𝑗(𝑥, 𝑡) 𝑑𝑥𝑑𝑡

×
∫︁
𝑄𝑇

(𝑦1)𝛼1 · · · (𝑦3)𝛼3𝜏𝛼4𝜑𝑗(𝑦, 𝜏)𝑣𝑗(𝑦, 𝜏) 𝑑𝑦𝑑𝜏

≡
4∑︁

𝑗=1

∞∑︁
|𝛼|=0

1

(𝛼!)2
(𝑀𝛼1···𝛼4𝑗)2 > 0.

We note that all 𝑀𝛼1···𝛼4𝑗 vanish simultaneously if and only if 𝑣𝑗 = 0, 𝑗 = 1, 4 in 𝑄𝑇 [9].
Therefore, if 𝑣 ̸= 0𝑉 then Φ1(𝑣, 𝐶𝑣) > 0. Thus, the operator 𝐶 of form (3.5) is positive definite
and invertible.

Denoting 𝐾 ≡ 𝐾(𝑥, 𝑡, 𝑦, 𝜏), from (1.3) and (3.5) we get

(𝐶𝑁(𝑢))𝑖(𝑥, 𝑡) =

∫︁
𝑄𝑇

𝐾𝜑𝑖(𝑥, 𝑡)𝜑𝑖(𝑦, 𝜏)

[︂
𝜕𝑢𝑖(𝑦, 𝜏)

𝜕𝜏
− [𝑢(𝑦, 𝜏) × 𝑘]𝑖 +

𝜕𝑝(𝑦)

𝜕𝑦𝑖
− 𝐹 𝑖

]︂
𝑑𝑦𝑑𝜏, 𝑖 = 1, 3,

(𝐶𝑁(𝑢))4(𝑥, 𝑡) =

∫︁
𝑄𝑇

𝐾𝜑4(𝑥, 𝑡)𝜑4(𝑦, 𝜏)

[︃
3∑︁

𝑖=1

𝜕𝑢𝑖(𝑦, 𝜏)

𝜕𝑦𝑖
− 𝐹 4

]︃
𝑑𝑦𝑑𝜏.

Using the chain rule, we obtain

(𝐶𝑁(𝑢))𝑖(𝑥, 𝑡) =

∫︁
𝑄𝑇

[︂
− 𝜑𝑖(𝑥, 𝑡)𝑢𝑖(𝑦, 𝜏)𝐷𝜏

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀
−𝐾𝜑𝑖(𝑥, 𝑡)𝜑𝑖(𝑦, 𝜏)[𝑢(𝑦, 𝜏) × 𝑘]𝑖 − 𝑝(𝑦)𝜑𝑖(𝑥, 𝑡)𝐷𝑦𝑖

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀
−𝐾𝜑𝑖(𝑥, 𝑡)𝜑𝑖(𝑦, 𝜏)𝐹 𝑖

]︂
𝑑𝑦𝑑𝜏, 𝑖 = 1, 3,

(𝐶𝑁(𝑢))4(𝑥, 𝑡) =

∫︁
𝑄𝑇

[︂
−

3∑︁
𝑗=1

𝜑4(𝑥, 𝑡)𝑢𝑗(𝑦, 𝜏)𝐷𝑦𝑗
[︀
𝐾𝜑4(𝑦, 𝜏)

]︀
−𝐾𝜑4(𝑥, 𝑡)𝜑4(𝑦, 𝜏)𝐹 4

]︂
𝑑𝑦𝑑𝜏.

(3.7)

Using formulae (1.3), (3.3), (3.7), we find the needed functional as follows

𝐹𝑁 [𝑢] =
1

2

∫︁
𝑄𝑇

∫︁
𝑄𝑇

{︃
3∑︁

𝑖=1

[︂(︁
− 𝜑𝑖(𝑥, 𝑡)𝑢𝑖(𝑦, 𝜏)𝐷𝜏

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀
−𝐾𝜑𝑖(𝑥, 𝑡)𝜑𝑖(𝑦, 𝜏)[𝑢(𝑦, 𝜏) × 𝑘]𝑖 − 𝑝(𝑦)𝜑𝑖(𝑥, 𝑡)𝐷𝑦𝑖

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀
−

−𝐾𝜑𝑖(𝑥, 𝑡)𝜑𝑖(𝑦, 𝜏)𝐹 𝑖
)︁(︁𝜕𝑢𝑖(𝑥, 𝑡)

𝜕𝑡
− [𝑢(𝑥, 𝑡) × 𝑘]𝑖 +

𝜕𝑝(𝑥)

𝜕𝑥𝑖
− 𝐹 𝑖

)︁]︂
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−
(︂ 3∑︁

𝑗=1

𝜑4(𝑥, 𝑡)𝑢𝑗(𝑦, 𝜏)𝐷𝑦𝑗
[︀
𝐾𝜑4(𝑦, 𝜏)

]︀
+ 𝐾𝜑4(𝑥, 𝑡)𝜑4(𝑦, 𝜏)𝐹 4

)︂

·
(︂ 3∑︁

𝑖=1

𝜕𝑢𝑖(𝑥, 𝑡)

𝜕𝑥𝑖
− 𝐹 4

)︂}︃
𝑑𝑦𝑑𝜏𝑑𝑥𝑑𝑡.

Using the chain rule, we get

𝐹𝑁 [𝑢] =
1

2

∫︁
𝑄𝑇

∫︁
𝑄𝑇

{︃
3∑︁

𝑖=1

(︀
𝑢𝑖(𝑥, 𝑡)𝐴1,𝑖 +

(︀
[𝑢(𝑥, 𝑡) × 𝑘]𝑖 + 𝐹 𝑖

)︀
𝐴2,𝑖 + 𝑝(𝑥)𝐴3,𝑖

)︀

+

(︃
3∑︁

𝑖=1

𝑢𝑖(𝑥, 𝑡)𝐵1,𝑖 + 𝐹 4𝐵2,𝑖

)︃}︃
𝑑𝑦𝑑𝜏𝑑𝑥𝑑𝑡,

(3.8)

where

𝐴1,𝑖 =𝑢𝑖(𝑦, 𝜏)𝐷𝑡

[︀
𝜑𝑖(𝑥, 𝑡)𝐷𝜏

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀]︀
+ [𝑢(𝑦, 𝜏) × 𝑘]𝑖𝜑𝑖(𝑦, 𝜏)𝐷𝑡

[︀
𝐾𝜑𝑖(𝑥, 𝑡)

]︀
+ 𝑝(𝑦)𝐷𝑡

[︀
𝜑𝑖(𝑥, 𝑡)𝐷𝑦𝑖

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀]︀
+ 𝜑𝑖(𝑦, 𝜏)𝐷𝑡

[︀
𝐾𝜑𝑖(𝑥, 𝑡)𝐹 𝑖

]︀
,

𝐴2,𝑖 =𝑢𝑖(𝑦, 𝜏)𝜑𝑖(𝑥, 𝑡)𝐷𝜏

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀
+ [𝑢(𝑦, 𝜏) × 𝑘]𝑖𝐾𝜑𝑖(𝑥, 𝑡)𝜑𝑖(𝑦, 𝜏)

+ 𝑝(𝑦)𝜑𝑖(𝑥, 𝑡)𝐷𝑦𝑖
[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀
+ 𝐾𝜑𝑖(𝑥, 𝑡)𝜑𝑖(𝑦, 𝜏)𝐹 𝑖,

𝐴3,𝑖 =𝑢𝑖(𝑦, 𝜏)𝐷𝑥𝑖

[︀
𝜑𝑖(𝑥, 𝑡)𝐷𝜏

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀]︀
+ 𝑝(𝑦)𝐷𝑥𝑖

[︀
𝜑𝑖(𝑥, 𝑡)𝐷𝑦𝑖

[︀
𝐾𝜑𝑖(𝑦, 𝜏)

]︀]︀
+ [𝑢(𝑦, 𝜏) × 𝑘]𝑖𝜑𝑖(𝑦, 𝜏)𝐷𝑥𝑖

[︀
𝐾𝜑𝑖(𝑥, 𝑡)

]︀
+ 𝜑𝑖(𝑦, 𝜏)𝐷𝑥𝑖

[︀
𝐾𝜑𝑖(𝑥, 𝑡)𝐹 𝑖

]︀
,

and

𝐵1,𝑖 =
3∑︁

𝑗=1

𝑢𝑗(𝑦, 𝜏)𝐷𝑥𝑖

[︀
𝜑4(𝑥, 𝑡)𝐷𝑦𝑗

(︀
𝐾𝜑4(𝑦, 𝜏)

)︀]︀
+ 𝜑4(𝑦, 𝜏)𝐷𝑥𝑖

[︀
𝐾𝜑4(𝑥, 𝑡)𝐹 4

]︀
,

𝐵2,𝑖 =
3∑︁

𝑗=1

𝑢𝑗(𝑦, 𝜏)𝜑4(𝑥, 𝑡)𝐷𝑦𝑗
(︀
𝐾𝜑4(𝑦, 𝜏)

)︀
+ 𝐾𝜑4(𝑥, 𝑡)𝜑4(𝑦, 𝜏)𝐹 4.

Thus, we have proved the following theorem.

Theorem 3.2. The functional of form (3.8) is semibounded on the solutions of problem
(1.1), (1.2).

Remark 3.1. Functional (3.8) possesses the following properties:
1) it is bounded below on set (1.2);
2) it takes a minimum value only on the solutions of problem (1.1), (1.2);
3) it does not involve the derivatives of unknown functions;
4) the set of its stationary points contains the solution set of problem (1.1), (1.2).
For specific details on solvability conditions for the type of problems under consideration,

uniqueness theorems, 𝐿𝑝-estimates for solutions the reader can see, for instance, [2].

4. Conclusions and future directions

The results of this paper can be summarized as follows.
(i) We studied the potentiality of the operator of the boundary value problem for the Sobolev

system of partial differential equations. We showed that it is not potential with respect to the
classical bilinear form. It means that the considered system cannot be obtained from Hamilton
variational principle.

(ii) The problem of the existence of a matrix variational multipler for (1.1) was studied. We
showed that there is no matrix variational multiplier with elements depending on 𝑥 and 𝑡.
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(iii) We posed the question that whether there exists a functional semibounded on solu-
tions of the given boundary value problem. We proposed an algorithm for the constructive
determination of such functional.

The main advantage of constructed functional (3.8) is in applications of direct variational
methods and its numerical performance.
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