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ON ASYMPTOTIC CONVERGENCE OF

POLYNOMIAL COLLOCATION METHOD

FOR ONE CLASS OF SINGULAR

INTEGRO-DIFFERENTIAL EQUATIONS

A.I. FEDOTOV

Abstract. Among the approximate methods for solving the operator equations, the most
used methods are collocation and Galerkin methods. Each of them has their own advantages
and disadvantages. For instance, Galerkin methods are used for the equations in Hilbert
spaces. The estimates for the errors of the solutions obtained by these methods have the
order of the best approximations of the exact solutions. However, Galerkin methods are not
always constructive, as for their implementation one needs to calculate integrals and this is
not always possible to do explicitly. Collocation methods are used for the equations in the
spaces of continuous functions and thus are always constructive. However, the estimates
for the errors obtained by collocation methods are usually worse than those of the best
approximation of the exact solutions.

In the present paper, we justify a polynomial collocation method for one class of singular
integro-differential equations on an interval. For the justification, the technic of reducing
the polynomial collocation method to Galerkin method is used for the first time for such
equations. This technique was first used by the author to justify the polynomial collocation
method for a wide class of periodic singular integro-differential and pseudo-differential
equations. For the equations on a open interval, this approach is used for the first time.
Also for the first time we prove that the interpolative Lagrange operator is bounded in the
Sobolev spaces 𝐻𝑠

𝑞 , 𝑠 >
1
2 , with the Chebyshev weight function of the second kind. Exactly

this result gives an opportunity to show that in non-periodic the polynomial collocation
method provides the same convergence rate as the Galerkin method.

Keywords: singular integro-differential equations, justification of the approximate meth-
ods.
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1. Introduction

In [1], Arnold and Wendland proposed an original approach for justification of the spline-
collocation method for periodic pseudo-differential equations in Sobolev spaces. The justifica-
tion is based on the equivalence of the spline-collocation method and a modified Galerkin-Petrov
method; the latter was justified by reducing it to the standard Galerkin method. In works [2]–
[6], this approach was employed in justifying the spline-collocation methods for various classes
of singular integral and pseudo-differential equations. It was shown that a strong ellipticity is
a sufficient and, in some cases [7],[8], a necessary condition for the convergence of the spline-
collocation method.
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In work [9], we justified a polynomial collocation method for wide classes of singular integro-
differential equations, periodic pseudo-differential equations and systems of pseudo-differential
equations in Sobolev spaces. The results of that work showed that the polynomial colloca-
tion method converged for a wider class of singular equations than in the case of the spline-
collocations. Namely, it was shown that the polynomial collocation method converges for all
elliptic equations, and not only for strongly elliptic ones. Moreover, the convergence rate of the
polynomial collocation method increases unboundedly as the smoothness of the exact solution
improves, while the growth of the convergence rate of the spline-collocation method is bounded
by the order of the employed splains.

In the present work the approach of [9] is used for justifying the polynomial collocation
method for a singular integro-differential equation in a non-periodic case. We prove the con-
vergence of the method and obtain the estimates for the errors of approximate solutions.

2. Formulation of problem

We consider a singular integro-differential equation

𝑥′(𝑡) +
𝜆

𝜋

1∫︁
−1

𝑥(𝜏)𝑑𝜏√
1 − 𝜏 2(𝜏 − 𝑡)

= 𝑦(𝑡), |𝑡| < 1, (1)

with the condition
1∫︁

−1

𝑥(𝜏)𝑑𝜏√
1 − 𝜏 2

= 0. (2)

Here 𝑥 is a sought function on the segment [−1, 1], 𝑦 is a given function on the interval (−1, 1),
𝜆 is a given real number, and the singular integral is treated in the sense of Cauchy-Lebesgue
principal value.

3. Auxiliary results

In this section we provide three lemmata needed in what follows. The proof of the first
lemma was given, for instance, in [10], while the second was proved in [11]. The results of the
third lemma are new and its proof is provided.

Lemma 1. We denote by 𝐷 and 𝑉 linear operators acting from a Banach space 𝑋 into a
Banach space 𝑌 . Assume that the operator 𝐷 is invertible and the condition

‖𝑉 ‖𝑋→𝑌 ‖𝐷−1‖𝑌→𝑋 < 1

is satisfied. Then the operator 𝐷 + 𝑉 : 𝑋 → 𝑌 is also invertible and the estimate

‖(𝐷 + 𝑉 )−1‖𝑌→𝑋 6
‖𝐷−1‖𝑌→𝑋

1 − ‖𝑉 ‖𝑋→𝑌 ‖𝐷−1‖𝑌→𝑋

holds true.

Let 𝑋 and 𝑌 be again Banach space and let 𝑋𝑛 ⊂ 𝑋, 𝑌𝑛 ⊂ 𝑌 , 𝑛 = 1, 2, . . ., be their
subspaces. We consider the equations

𝐾𝑥 = 𝑦, 𝐾 : 𝑋 → 𝑌, (3)

𝐾𝑛𝑥𝑛 = 𝑦𝑛, 𝐾𝑛 : 𝑋𝑛 → 𝑌𝑛, 𝑛 = 1, 2, . . . , (4)

where 𝐾 and 𝐾𝑛, 𝑛 = 1, 2, . . . , are linear bounded operators.
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Lemma 2. Suppose that the operator 𝐾 : 𝑋 → 𝑌 is invertible and the operators 𝐾𝑛,
𝑛 = 1, 2, . . . , converge uniformly to this operator:

‖𝐾 −𝐾𝑛‖𝑋𝑛→𝑌 → 0 as 𝑛 → ∞.

If dim𝑋𝑛 = dim𝑌𝑛, 𝑛 = 1, 2, . . . , then for all 𝑛 obeying the condition

𝑞𝑛 = ‖𝐾−1‖𝑌→𝑋‖𝐾 −𝐾𝑛‖𝑋𝑛→𝑌 < 1,

approximate equations (4) have unique solutions 𝑥*
𝑛 ∈ 𝑋𝑛 for all right hand sides 𝑦𝑛 ∈ 𝑌𝑛 and

the estimate

‖𝑥* − 𝑥*
𝑛‖𝑋 6

‖𝐾−1‖𝑌→𝑋

1 − 𝑞𝑛
(‖𝑦 − 𝑦𝑛‖𝑌 + 𝑞𝑛‖𝑦‖𝑌 ),

holds, where 𝑥* = 𝐾−1𝑦 is an exact solution of equation (3).

In what follows, as usually, by N we denote the set of natural numbers, N0 is the set of
natural numbers with the zero, and R is the set of real numbers.

By 𝑇𝑙(𝑡) = cos(𝑙 arccos 𝑡), 𝑙 ∈ N0, 𝑡 ∈ [−1, 1], we denote the system of Chebyshev polynomials

of first kind orthogonal on [−1, 1] with the weight 𝑝(𝑡) = (1 − 𝑡2)−
1
2 , 𝑡 ∈ [−1, 1].

By

𝑈𝑙(𝑡) =
sin((𝑙 + 1) arccos 𝑡)

sin(arccos 𝑡)
, 𝑙 ∈ N0, 𝑡 ∈ [−1, 1],

we denote the system of Chebyshev polynomials of second kind orthogonal on [−1, 1] with the

weight 𝑞(𝑡) = (1 − 𝑡2)
1
2 , 𝑡 ∈ [−1, 1].

We denote by 𝐻𝑠+1
𝑝 the Sobolev space of order 𝑠 + 1 ∈ R with the weight 𝑝, that is, the

closure of the set of all smooth real functions on the segment [−1, 1] in the norm

‖𝑥‖𝐻𝑠+1
𝑝

=

{︃∑︁
𝑙∈N0

𝑙2(𝑠+1)̂︀𝑥2(𝑙)

}︃ 1
2

, 𝑙 =

{︂
𝑙, 𝑙 ∈ N,
1, 𝑙 = 0,

(5)

and

̂︀𝑥(0) =
1

𝜋

1∫︁
−1

𝑝(𝜏)𝑥(𝜏)𝑑𝜏, ̂︀𝑥(𝑙) =
2

𝜋

1∫︁
−1

𝑝(𝜏)𝑥(𝜏)𝑇𝑙(𝜏)𝑑𝜏, 𝑙 ∈ N,

are the Fourier coefficients of a function 𝑥 over the system of polynomials {𝑇𝑙}𝑙∈N0 . In the
space 𝐻𝑠+1

𝑝 we define the scalar product

⟨𝑓, 𝑔⟩𝐻𝑠+1
𝑝

=
∑︁
𝑙∈N0

𝑙2(𝑠+1) ̂︀𝑓(𝑙)̂︀𝑔(𝑙), 𝑓, 𝑔 ∈ 𝐻𝑠+1
𝑝 .

Being equipped with this scalar product, the space 𝐻𝑠+1
𝑝 becomes a Hilbert one, and norm (5)

is expressed via the scalar product:

‖𝑥‖𝐻𝑠+1
𝑝

=
√︁

⟨𝑥, 𝑥⟩𝐻𝑠+1
𝑝

, 𝑥 ∈ 𝐻𝑠+1
𝑝 .

We denote by 𝐻𝑠
𝑞 the Sobolev space of order 𝑠 ∈ R with a weight 𝑞, that is, the closure of

all smooth real-valued functions defined on the interval (−1, 1) in the norm

‖𝑦‖𝐻𝑠
𝑞

=

{︃∑︁
𝑙∈N0

(𝑙 + 1)2𝑠̂︀𝑦2(𝑙)}︃ 1
2

, (6)

where

̂︀𝑦(𝑙) =
2

𝜋

1∫︁
−1

𝑞(𝜏)𝑦(𝜏)𝑈𝑙(𝜏)𝑑𝜏, 𝑙 ∈ N0,
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are the Fourier coefficients of the function 𝑦 over the system of the polynomials {𝑈𝑙}𝑙∈N0 . In
the space 𝐻𝑠

𝑞 we also define a scalar product

⟨𝑓, 𝑔⟩𝐻𝑠
𝑞

=
∑︁
𝑙∈N0

(𝑙 + 1)2𝑠 ̂︀𝑓(𝑙)̂︀𝑔(𝑙), 𝑓, 𝑔 ∈ 𝐻𝑠
𝑞 .

With such scalar product, the space 𝐻𝑠
𝑞 becomes a Hilbert one, and norm (6) is expressed via

this scalar product

‖𝑦‖𝐻𝑠
𝑞

=
√︁

⟨𝑦, 𝑦⟩𝐻𝑠
𝑞
, 𝑦 ∈ 𝐻𝑠

𝑞 .

Hereafter we assumee that the inequality 𝑠 > 1
2

holds. Under this assumption, see, for
instance, [13], the space 𝐻𝑠

𝑞 is embedded into the space of continuous functions, while the space

𝐻𝑠+1
𝑝 is embedded into the space of the functions with a first continuous derivative.
We fix 𝑛 ∈ N0 and we denote by

(𝑃𝑛𝑦)(𝑡) =
𝑛∑︁

𝑘=0

𝑦(𝑡𝑘)𝜉𝑘(𝑡), 𝑡 ∈ [−1, 1], (7)

the Lagrange interpolation polynomial of the function 𝑦 ∈ 𝐻𝑠
𝑞 over the nodes

𝑡𝑘 = cos
𝜋(𝑘 + 1)

𝑛 + 2
, 𝑘 = 0, 1, . . . , 𝑛. (8)

Here

𝜉𝑘(𝑡) =
𝑈𝑛+1(𝑡)

(𝑡− 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

, 𝑘 = 0, 1, . . . , 𝑛, 𝑡 ∈ [−1, 1],

are fundamental polynomials corresponding to nodes (8). In [14], we proved a boundedness of
the norm of the Lagrange operator in the pair of Sobolev spaces (𝐻𝑠

𝑝 , 𝐻
𝑠
𝑝), 𝑠 > 1

2
.

The following lemma establishes the boundedness of the norm of the Lagrange operator 𝑃𝑛

in the pair of Sobolev spaces (𝐻𝑠
𝑞 , 𝐻

𝑠
𝑞 ), 𝑠 > 1

2
.

Lemma 3. For each 𝑛 ∈ N0 and 𝑠 ∈ R, 𝑠 > 1
2
, the estimate holds:

‖𝑃𝑛‖𝐻𝑠
𝑞→𝐻𝑠

𝑞
<
√︀

1 + 𝜁(2𝑠),

where 𝜁(𝑡) =
∑︀∞

𝑗=1 𝑗
−𝑡 is the Riemann zeta-function being bounded and decreasing as 𝑡 > 1.

Proof. We take an arbitrary function 𝑦 ∈ 𝐻𝑠
𝑞 , 𝑠 > 1

2
. Employing the identity

𝑈 ′
𝑛+1(𝑡) =

𝑡𝑈𝑛+1(𝑡) − (𝑛 + 2)𝑇𝑛+2(𝑡)

1 − 𝑡2
, 𝑛 ∈ N0, 𝑡 ∈ [−1, 1], (9)

and a known relation, see, for instance, [12],

1

𝜋

1∫︁
−1

𝑞(𝜏)𝑈𝑛+1(𝜏)𝑑𝜏

𝜏 − 𝑡
= −𝑇𝑛+2(𝑡), 𝑛 ∈ N0, 𝑡 ∈ [−1, 1], (10)

we calculate the Fourier coefficients of polynomial (7).
As 0 6 𝑙 6 𝑛, we obtain

(̂︂𝑃𝑛𝑦)(𝑙) =
2

𝜋

1∫︁
−1

𝑞(𝜏)(𝑃𝑛𝑦)(𝜏)𝑈𝑙(𝜏)𝑑𝜏

=
2

𝜋

1∫︁
−1

𝑞(𝜏)
𝑛∑︁

𝑘=0

𝑦(𝑡𝑘)
𝑈𝑛+1(𝜏)𝑈𝑙(𝜏)𝑑𝜏

(𝜏 − 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)
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=
𝑛∑︁

𝑘=0

𝑦(𝑡𝑘)

⎛⎝ 2

𝜋

1∫︁
−1

𝑞(𝜏)𝑈𝑛+1(𝜏)(𝑈𝑙(𝜏) − 𝑈𝑙(𝑡𝑘))𝑑𝜏

(𝜏 − 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

+
2

𝜋
𝑈𝑙(𝑡𝑘)

1∫︁
−1

𝑞(𝜏)𝑈𝑛+1(𝜏)𝑑𝜏

(𝜏 − 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

⎞⎠ .

Since (𝑈𝑙(𝜏) − 𝑈𝑙(𝑡𝑘))/(𝜏 − 𝑡𝑘), 𝜏 ∈ [−1, 1], is a polynomial of degree 𝑙 − 1 < 𝑛 + 1, by the
orthogonality we get

1∫︁
−1

𝑞(𝜏)𝑈𝑛+1(𝜏)(𝑈𝑙(𝜏) − 𝑈𝑙(𝑡𝑘))𝑑𝜏

(𝜏 − 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

= 0, 𝑘 = 0, 1, . . . , 𝑛.

Employing relations (9) and (10), we find

1

𝜋

1∫︁
−1

𝑞(𝜏)𝑈𝑛+1(𝜏)𝑑𝜏

(𝜏 − 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

=
sin2 𝜋(𝑘 + 1)

𝑛 + 2
𝑛 + 2

, 𝑘 = 0, 1, . . . , 𝑛,

we finally obtain:

(̂︂𝑃𝑛𝑦)(𝑙) =
2

𝑛 + 2

𝑛∑︁
𝑘=0

𝑦(𝑡𝑘) sin2 𝜋(𝑘 + 1)

𝑛 + 2
𝑈𝑙(𝑡𝑘), 0 6 𝑙 6 𝑛. (11)

For other values 𝑙, 𝑛 < 𝑙, the Fourier coefficients of polynomial (7) vanish. Indeed, taking
into consideration that 𝑡𝑘, 𝑘 = 0, 1, . . . , 𝑛, are the zeroes of the polynomials 𝑈𝑛+1, we get:

(̂︂𝑃𝑛𝑦)(𝑙) =
2

𝜋

1∫︁
−1

𝑞(𝜏)(𝑃𝑛𝑦)(𝜏)𝑈𝑙(𝜏)𝑑𝜏 =
2

𝜋

𝑛∑︁
𝑘=0

𝑦(𝑡𝑘)

1∫︁
−1

𝑞(𝜏)𝑈𝑛+1(𝜏)𝑈𝑙(𝜏)𝑑𝜏

(𝜏 − 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

=
2

𝜋

𝑛∑︁
𝑘=0

𝑦(𝑡𝑘)

1∫︁
−1

𝑞(𝜏)(𝑈𝑛+1(𝜏) − 𝑈𝑛+1(𝑡𝑘))𝑈𝑙(𝜏)𝑑𝜏

(𝜏 − 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

, 𝑛 < 𝑙.

And since (𝑈𝑛+1(𝜏) − 𝑈𝑛+1(𝑡𝑘))/(𝜏 − 𝑡𝑘), 𝑘 = 0, 1, . . . , 𝑛, are polynomials of degree less than 𝑙,
by the orthogonality we obtain

1∫︁
−1

𝑞(𝜏)(𝑈𝑛+1(𝜏) − 𝑈𝑛+1(𝑡𝑘))𝑈𝑙(𝜏)𝑑𝜏

(𝜏 − 𝑡𝑘)𝑈 ′
𝑛+1(𝑡𝑘)

= 0, 𝑘 = 0, 1, . . . , 𝑛,

and therefore,

(̂︂𝑃𝑛𝑦)(𝑙) = 0, 𝑛 < 𝑙. (12)

By the definition of the norm in the space 𝐻𝑠
𝑞 and in view of identities (12) we have:

‖𝑃𝑛𝑦‖2𝐻𝑠
𝑞

=
∑︁
06𝑙6𝑛

(𝑙 + 1)2𝑠(̂︂𝑃𝑛𝑦)2(𝑙). (13)

Now we are going to calculate the coefficients (̂︂𝑃𝑛𝑦)(𝑙) only for 𝑙 obeying 0 6 𝑙 6 𝑛. In (11)
we replace the values of the functions 𝑦 at nodes (8) by the values of its Fourier series. As a
result, for all 0 6 𝑙 6 𝑛 we find:

(̂︂𝑃𝑛𝑦)(𝑙) =
2

𝑛 + 2

𝑛∑︁
𝑘=0

∑︁
𝑚∈N0

̂︀𝑦(𝑚) sin2 𝜋(𝑘 + 1)

𝑛 + 2
𝑈𝑚(𝑡𝑘)𝑈𝑙(𝑡𝑘)
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=
∑︁
𝑚∈N0

̂︀𝑦(𝑚)
2

𝑛 + 2

𝑛∑︁
𝑘=0

sin
𝜋(𝑚 + 1)(𝑘 + 1)

𝑛 + 2
sin

𝜋(𝑙 + 1)(𝑘 + 1)

𝑛 + 2

=
1

𝑛 + 2

∑︁
𝑚∈N0

̂︀𝑦(𝑚)
𝑛∑︁

𝑘=0

(︂
cos

𝜋(𝑚− 𝑙)(𝑘 + 1)

𝑛 + 2
− cos

𝜋(𝑚 + 𝑙 + 2)(𝑘 + 1)

𝑛 + 2

)︂

=
1

𝑛 + 2

∑︁
𝑚∈N

̂︀𝑦(𝑚− 1)

(︃
sin (2𝑛+3)𝜋(𝑚−(𝑙+1))

2(𝑛+2)

sin 𝜋(𝑚−(𝑙+1))
2(𝑛+2)

−
sin (2𝑛+3)𝜋(𝑚+(𝑙+1))

2(𝑛+2)

sin 𝜋(𝑚+(𝑙+1))
2(𝑛+2)

)︃
, 0 6 𝑙 6 𝑛.

Representing the numerators in the expressions in the latter brackets as

sin
(2𝑛 + 3)𝜋(𝑚− (𝑙 + 1))

2(𝑛 + 2)
= sin𝜋(𝑚− (𝑙 + 1)) cos

𝜋(𝑚− (𝑙 + 1))

2(𝑛 + 2)

− cos 𝜋(𝑚− (𝑙 + 1)) sin
𝜋(𝑚− (𝑙 + 1))

2(𝑛 + 2)

= sin𝜋(𝑚− (𝑙 + 1)) cos
𝜋(𝑚− (𝑙 + 1))

2(𝑛 + 2)

+ (−1)𝑚−𝑙 sin
𝜋(𝑚− (𝑙 + 1))

2(𝑛 + 2)
, 𝑚 ∈ N0, 0 6 𝑙 6 𝑛,

sin
(2𝑛 + 3)𝜋(𝑚 + (𝑙 + 1))

2(𝑛 + 2)
= sin𝜋(𝑚 + (𝑙 + 1)) cos

𝜋(𝑚 + (𝑙 + 1))

2(𝑛 + 2)

− cos 𝜋(𝑚 + (𝑙 + 1)) sin
𝜋(𝑚 + (𝑙 + 1))

2(𝑛 + 2)

= sin𝜋(𝑚 + (𝑙 + 1)) cos
𝜋(𝑚 + (𝑙 + 1))

2(𝑛 + 2)

+ (−1)𝑚−𝑙 sin
𝜋(𝑚 + (𝑙 + 1))

2(𝑛 + 2)
, 𝑚 ∈ N0, 0 6 𝑙 6 𝑛,

we obtain

(̂︂𝑃𝑛𝑦)(𝑙) =
1

2(𝑛 + 2)

∑︁
𝑚∈N

̂︀𝑦(𝑚− 1)

(︃
sin 𝜋(𝑚− (𝑙 + 1))

sin 𝜋(𝑚−(𝑙+1))
2(𝑛+2)

cos
𝜋(𝑚− (𝑙 + 1))

2(𝑛 + 2)

− sin 𝜋(𝑚 + (𝑙 + 1))

sin
𝜋(𝑚 + (𝑙 + 1))

2(𝑛 + 2)

cos
𝜋(𝑚 + (𝑙 + 1))

2(𝑛 + 2)

⎞⎟⎟⎠ , 0 6 𝑙 6 𝑛.

Since

sin 𝜋(𝑚− (𝑙 + 1))

sin 𝜋(𝑚−(𝑙+1))
2(𝑛+2)

cos
𝜋(𝑚− (𝑙 + 1))

2(𝑛 + 2)

=

{︂
(−1)𝜇2(𝑛 + 2) as 𝑚− (𝑙 + 1) = 2(𝑛 + 2)𝜇,

0) as 𝑚− (𝑙 + 1) ̸= 2(𝑛 + 2)𝜇,
𝜇 ∈ N0,

sin 𝜋(𝑚 + (𝑙 + 1))

sin 𝜋(𝑚+(𝑙+1))
2(𝑛+2)

cos
𝜋(𝑚 + (𝑙 + 1))

2(𝑛 + 2)

=

{︂
(−1)𝜇2(𝑛 + 2) as 𝑚 + (𝑙 + 1) = 2(𝑛 + 2)𝜇,

0 as 𝑚 + (𝑙 + 1) ̸= 2(𝑛 + 2)𝜇,
𝜇 ∈ N,
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then

(̂︂𝑃𝑛𝑦)(𝑙) =
∑︁
𝜇∈N0

(−1)𝜇̂︀𝑦(2(𝑛 + 2)𝜇 + 𝑙) +
∑︁
𝜇∈N

(−1)𝜇−1̂︀𝑦(2(𝑛 + 2)𝜇− 𝑙 − 2)), 0 6 𝑙 6 𝑛.

Returning back to (13), we find:

‖𝑃𝑛𝑦‖2𝐻𝑠
𝑞

=
∑︁

16𝑙6𝑛+1

𝑙2𝑠

(︃∑︁
𝜇∈N0

(−1)𝜇̂︀𝑦(2(𝑛 + 2)𝜇 + 𝑙 − 1)

+
∑︁
𝜇∈N

(−1)𝜇−1̂︀𝑦(2(𝑛 + 2)𝜇− 𝑙 − 1)

)︃2

62
∑︁

16𝑙6𝑛+1

𝑙2𝑠

(︃∑︁
𝜇∈N0

(−1)𝜇̂︀𝑦(2(𝑛 + 2)𝜇 + 𝑙 − 1)

)︃2

+ 2
∑︁

16𝑙6𝑛+1

𝑙2𝑠

(︃∑︁
𝜇∈N

(−1)𝜇−1̂︀𝑦(2(𝑛 + 2)𝜇− 𝑙 − 1)

)︃2

=2
∑︁

16𝑙6𝑛+1

(︃∑︁
𝜇∈N0

(−1)𝜇
𝑙𝑠(2(𝑛 + 2)𝜇 + 𝑙 − 1)𝑠

(2(𝑛 + 2)𝜇 + 𝑙 − 1)𝑠
̂︀𝑦(2(𝑛 + 2)𝜇 + 𝑙 − 1)

)︃2

+ 2
∑︁

16𝑙6𝑛+1

(︃∑︁
𝜇∈N

(−1)𝜇−1 𝑙
𝑠(2(𝑛 + 2)𝜇− 𝑙 − 1)𝑠

(2(𝑛 + 2)𝜇− 𝑙 − 1)𝑠
̂︀𝑦(2(𝑛 + 2)𝜇− 𝑙 − 1)

)︃2

62
∑︁

16𝑙6𝑛+1

(︃∑︁
𝜇∈N0

𝑙2𝑠

(2(𝑛 + 2)𝜇 + 𝑙 − 1)2𝑠

·
∑︁
𝜇∈N0

(2(𝑛 + 2)𝜇 + 𝑙 − 1)2𝑠̂︀𝑦2(2(𝑛 + 2)𝜇 + 𝑙 − 1)

)︃

+ 2
∑︁

16𝑙6𝑛+1

(︃∑︁
𝜇∈N

𝑙2𝑠

(2(𝑛 + 2)𝜇− 𝑙 − 1)2𝑠

·
∑︁
𝜇∈N

(2(𝑛 + 2)𝜇− 𝑙 − 1)2𝑠̂︀𝑦2(2(𝑛 + 2)𝜇− 𝑙 − 1)

)︃

6‖𝑦‖2𝐻2
𝑞

(︃
max

16𝑙6𝑛+1

∑︁
𝜇∈N0

𝑙2𝑠

(2(𝑛 + 2)𝜇 + 𝑙 − 1)2𝑠
+ max

16𝑙6𝑛+1

∑︁
𝜇∈N

𝑙2𝑠

(2(𝑛 + 2)𝜇− 𝑙 − 1)2𝑠

)︃
.

Let us estimate separately the maxima of the sums in the last expressions. For the first sum
we have:

max
16𝑙6𝑛+1

∑︁
𝜇∈N0

𝑙2𝑠

(2(𝑛 + 2)𝜇 + 𝑙 − 1)2𝑠
6

(︂
𝑛 + 1

𝑛 + 2

)︂2𝑠

max
16𝑙6𝑛+1

∑︁
𝜇∈N0

(︂
2𝜇 +

𝑙 − 1

𝑛 + 2

)︂−2𝑠

6 1 + max
16𝑙6𝑛+1

∑︁
𝜇∈N

(︂
2𝜇 +

𝑙 − 1

𝑛 + 2

)︂−2𝑠

6 1 +
∑︁
𝜇∈N

(2𝜇)−2𝑠.

(14)
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For the second sum we find:

max
16𝑙6𝑛+1

∑︁
𝜇∈N

𝑙2𝑠

(2(𝑛 + 2)𝜇− 𝑙 − 1)2𝑠
6

(︂
𝑛 + 1

𝑛 + 2

)︂2𝑠

max
16𝑙6𝑛+1

∑︁
𝜇∈N

(︂
2𝜇− 𝑙 + 1

𝑛 + 2

)︂−2𝑠

6
∑︁
𝜇∈N

(2𝜇− 1)−2𝑠.

(15)

Substituting (14) and (15) into (13), we get:

‖𝑃𝑛𝑦‖2𝐻𝑠
𝑞
6 (1 + 𝜁(2𝑠))‖𝑥‖2𝐻𝑠

𝑞
, 𝑠 >

1

2
.

The proof is complete.

We denote by 𝐸𝑛(𝑦)𝑠𝑞 the best approximation of a function 𝑦 ∈ 𝐻𝑠
𝑞 by algebraic polynomials

in the norm of the space 𝐻𝑠
𝑞 . It is known that the best approximation in the Hilbert space is

given by a partial sum of its Fourier series:

𝐸𝑛(𝑦)𝑠𝑞 = ‖𝑦 −𝑄𝑛𝑦‖𝐻𝑠
𝑞
, (𝑄𝑛𝑦)(𝑡) =

∑︁
06𝑙6𝑛

̂︀𝑦(𝑙)𝑈𝑙(𝑡), 𝑡 ∈ (−1, 1).

Corollary 1. For each function 𝑦 ∈ 𝐻𝑠
𝑞 , 𝑠 >

1
2
, and each 𝑛 ∈ N0 the estimate holds:

‖𝑦 − 𝑃𝑛𝑦‖𝐻𝑠
𝑞
6 (1 +

√︀
1 + 𝜁(2𝑠))𝐸𝑛(𝑦)𝑠𝑞.

Proof. We take arbitrary functions 𝑦 ∈ 𝐻𝑠
𝑞 , 𝑠 > 1

2
, and a number 𝑛 ∈ N0. The statement of

the corollary is implied the chain of inequalities:

‖𝑦 − 𝑃𝑛𝑦‖𝐻𝑠
𝑞
6‖𝑦 −𝑄𝑛𝑦‖𝐻𝑠

𝑞
+ ‖𝑄𝑛𝑦 − 𝑃𝑛𝑦‖𝐻𝑠

𝑞

6𝐸𝑛(𝑦)𝑠𝑞 + ‖𝑃𝑛‖𝐻𝑠
𝑞→𝐻𝑠

𝑞
‖𝑦 −𝑄𝑛𝑦‖𝐻𝑠

𝑞

6(1 +
√︀

1 + 𝜁(2𝑠))𝐸𝑛(𝑦)𝑠𝑞.

4. Analysis of solvability

We write problem (1), (2) as an operator equation:

𝐾𝑥 ≡ 𝐷𝑥 + 𝑉 𝑥 = 𝑦, 𝐾 : 𝑋 → 𝑌,

𝑋 =

⎧⎨⎩𝑥 ∈ 𝐻𝑠+1
𝑝 |

1∫︁
−1

𝑥(𝜏)𝑑𝑥√
1 − 𝜏 2

= 0

⎫⎬⎭ , 𝑌 = 𝐻𝑠
𝑞 .

(𝐷𝑥)(𝑡) = 𝑥′(𝑡), (𝑉 𝑥)(𝑡) =
𝜆

𝜋

1∫︁
−1

𝑥(𝜏)𝑑𝜏√
1 − 𝜏 2(𝜏 − 𝑡)

, 𝑡 ∈ (−1, 1).

Theorem 1. For all 𝜆, |𝜆| < 1, problem (1), (2) is uniquely solvable for arbitrary right hand
side 𝑦 ∈ 𝑌 and the estimate

‖𝐾−1‖𝑌→𝑋 6 (1 − |𝜆|)−1

holds.

Proof. First we are going to show that the operator 𝐷 : 𝑋 → 𝑌 is invertible and

‖𝐷‖𝑋→𝑌 = ‖𝐷−1‖𝑌→𝑋 = 1.
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Indeed, we take arbitrary functions 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 and write them as Fourier series in the
corresponding spaces:

𝑥(𝑡) =
∑︁
𝑙∈N

̂︀𝑥(𝑙)𝑇𝑙(𝑡), 𝑡 ∈ [−1, 1], 𝑦(𝑡) =
∑︁
𝑙∈N0

̂︀𝑦(𝑙)𝑈𝑙(𝑡), 𝑡 ∈ (−1, 1).

In this case equation

𝐷𝑥 = 𝑦, 𝐷 : 𝑋 → 𝑌, (16)

becomes an infinite system of equations

𝑙̂︀𝑥(𝑙)𝑈𝑙−1(𝑡) = ̂︀𝑦(𝑙 − 1)𝑈𝑙−1(𝑡), 𝑙 ∈ N, 𝑡 ∈ (−1, 1),

and its solution is the function

𝑥(𝑡) =
∑︁
𝑙∈N

𝑙−1̂︀𝑦(𝑙 − 1)𝑇𝑙(𝑡), 𝑡 ∈ [−1, 1].

Since the element 𝑦 ∈ 𝑌 is arbitrary, this implies the invertibility of the operator 𝐷 : 𝑋 → 𝑌 .
Let us find the norms of the operators 𝐷 : 𝑋 → 𝑌 and 𝐷−1 : 𝑌 → 𝑋. For an arbitrary

element 𝑥 ∈ 𝑋 we have

‖𝐷𝑥‖2𝑌 =
∑︁
𝑙∈N0

(𝑙 + 1)2𝑠((𝑙 + 1)̂︀𝑥(𝑙 + 1))2 =
∑︁
𝑙∈N

𝑙2(𝑠+1)̂︀𝑥2(𝑙) = ‖𝑥‖2𝑋 .

For an arbitrary element 𝑦 ∈ 𝑌 we find:

‖𝐷−1𝑦‖2𝑋 =
∑︁
𝑙∈N

𝑙2(𝑠+1)(𝑙−1̂︀𝑦(𝑙 − 1))2 =
∑︁
𝑙∈N0

(𝑙 + 1)2𝑠̂︀𝑦2(𝑙) = ‖𝑦‖2𝑌 .

This means that

‖𝐷‖𝑋→𝑌 = ‖𝐷−1‖𝑌→𝑋 = 1.

Our next step to find the norm of the operator 𝑉 : 𝑋 → 𝑌 . We again choose an arbitrary
element 𝑥 ∈ 𝑋:

𝑥(𝑡) =
∑︁
𝑙∈N

̂︀𝑥(𝑙)𝑇𝑙(𝑡), 𝑡 ∈ [−1, 1],

and apply the operator 𝑉 to this element. Since

1

𝜋

1∫︁
−1

𝑇𝑙(𝜏)𝑑𝜏√
1 − 𝜏 2(𝜏 − 𝑡)

= 𝑈𝑙−1(𝑡), 𝑙 ∈ N, 𝑡 ∈ [−1, 1],

see, for instance, [12], then

(𝑉 𝑥)(𝑡) =
𝜆

𝜋

∑︁
𝑙∈N

̂︀𝑥(𝑙)

1∫︁
−1

𝑇𝑙(𝜏)𝑑𝜏√
1 − 𝜏 2(𝜏 − 𝑡)

= 𝜆
∑︁
𝑙∈N

̂︀𝑥(𝑙)𝑈𝑙−1(𝑡), 𝑡 ∈ (−1, 1),

and the norm of the function 𝑉 𝑥 in the space 𝑌 is estimated as follows:

‖𝑉 𝑥‖2𝑌 = 𝜆2
∑︁
𝑙∈N0

(𝑙 + 1)2𝑠̂︀𝑥2(𝑙 + 1) 6 𝜆2
∑︁
𝑙∈N

𝑙2(𝑠+1)̂︀𝑥2(𝑙) = 𝜆2‖𝑥‖2𝑋 .

Hence, ‖𝑉 ‖𝑋→𝑌 6 |𝜆|. By Lemma 1, the operator 𝐾 = 𝐷 + 𝑉 : 𝑋 → 𝑌 is invertible for all 𝜆,
|𝜆| < 1 and the estimate

‖𝐾−1‖𝑌→𝑋 6 (1 − |𝜆|)−1, |𝜆| < 1,

holds true. The proof is complete.
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5. Galerkin method

We fix 𝑛 ∈ N0. We seek an approximate solution to problem (1), (2) as a partial sum of the
Fourier series

𝑥𝑛+1(𝑡) =
∑︁

16𝑙6𝑛+1

̂︀𝑥𝑛+1(𝑙)𝑇𝑙(𝑡), 𝑡 ∈ [−1, 1]. (17)

We determine unknown coefficients ̂︀𝑥𝑛+1(𝑙), 𝑙 = 1, 2, . . . , 𝑛+ 1, by the Galerkin method via the
system of equations:

𝑙̂︀𝑥𝑛+1(𝑙) + 𝜆̂︀𝑥𝑛(𝑙) = ̂︀𝑦(𝑙 − 1), 1 6 𝑙 6 𝑛 + 1, (18)

where

̂︀𝑦(𝑙) =
2

𝜋

1∫︁
−1

𝑞(𝜏)𝑦(𝜏)𝑈𝑙(𝜏)𝑑𝜏, 0 6 𝑙 6 𝑛,

are the Fourier coefficients of the function 𝑦 over the system of polynomials {𝑈𝑙}𝑙∈N0 .

Theorem 2. For arbitrary fixed 𝜆 ∈ R, |𝜆| < 1 and 𝑛 ∈ N0, system of equations (18) of the
Galerkin method for problem (1), (2) is uniquely solvablê︀𝑥*

𝑛+1(𝑙) = (𝑙 + 𝜆)−1̂︀𝑦(𝑙 − 1), 1 6 𝑙 6 𝑛 + 1,

and the approximate solutions

𝑥*
𝑛+1(𝑡) =

∑︁
16𝑙6𝑛+1

̂︀𝑥*
𝑛+1(𝑙)𝑇𝑙(𝑡), 𝑡 ∈ [−1, 1],

converge to the exact solution 𝑥* of problem (1), (2) with the rate

‖𝑥* − 𝑥*
𝑛‖𝑋 6 (1 − |𝜆|)−1𝐸𝑛(𝑦)𝑠𝑞.

Proof. We denote by

𝑋𝑛 = span{𝑇𝑙}𝑛+1
𝑙=1 , 𝑌𝑛 = span{𝑈𝑙}𝑛𝑙=0

the subspaces of the spaces 𝑋 and 𝑌 , respectively. We write system of equations (18) as an
operator equation:

𝐾𝑛𝑥𝑛+1 ≡ 𝑄𝑛(𝐷𝑥𝑛+1 + 𝑉 𝑥𝑛+1) = 𝑄𝑛𝑦, 𝐾𝑛 : 𝑋𝑛 → 𝑌𝑛. (19)

By Theorem 1, under the assumptions of Theorem 2, the operator 𝐾 is invertible. Moreover,
dim𝑋𝑛 = dim𝑌𝑛 and 𝐾−𝐾𝑛 ≡ 0 on 𝑋𝑛, 𝑛 ∈ N0. This is why by Lemma 2, operator equation
(19) is uniquely solvable

𝑥*
𝑛+1(𝑡) =

∑︁
16𝑙6𝑛+1

(𝑙 + 𝜆)−1̂︀𝑦(𝑙 − 1)𝑇𝑙(𝑡), 𝑡 ∈ [−1, 1],

for arbitrary right hand side 𝑄𝑛𝑦 ∈ 𝑌𝑛 and an error of the approximate solution is estimated
as

‖𝑥* − 𝑥*
𝑛+1‖𝑋 6 ‖𝐾−1‖𝑌→𝑋‖𝑦 −𝑄𝑛𝑦‖𝑌 6 (1 − |𝜆|)−1𝐸𝑛(𝑦)𝑠𝑞.

The proof is complete.

Apart of all advantages of the Galerkin method, it has one essential disadvantage: it is not
constructive. Indeed, to find the Fourier coefficients of the right hand side in equation (1) we
need to find integrals, which can not be found explicitly for all functions. This is not the case of
the collocation method, but in some spaces, for instance, Hölder spaces or spaces of continuous
functions, this method has a worse convergence rate than the Galerkin method.

In the next section we show that in Sobolev spaces the convergence of the collocation method
is not worse than for the Galerkin method.
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6. Collocation method

We again fix 𝑛 ∈ N. As by the Galerkin method, we seek an approximate solution to problem
(1), (2) as partial sum of Fourier series (17), but know we find uknown coefficients {̂︀𝑥𝑛+1(𝑙)}𝑛+1

𝑙=1

by the collocation method via the system of equations

(𝐷𝑥𝑛+1)(𝑡𝑘) + (𝑉 𝑥𝑛+1)(𝑡𝑘) = 𝑦(𝑡𝑘), 𝑘 = 0, 1, . . . , 𝑛, (20)

over nodes (8).
Denoting 𝑤 = 𝐾𝑥𝑛+1 − 𝑦, we can write Galerkin method (18) as the system of equations

2

𝜋

1∫︁
−1

𝑞(𝜏)𝑤(𝜏)𝑈𝑙(𝜏)𝑑𝜏 = 0, 𝑙 = 0, 1, . . . , 𝑛, (21)

while collocation method (20) is written as the system of equations

𝑤(𝑡𝑘) = 0, 𝑘 = 0, 1, . . . , 𝑛. (22)

We approximate integrals (21) by interpolating quadrature sums:

2

𝜋

1∫︁
−1

𝑞(𝜏)(𝑃𝑛𝑤)(𝜏)𝑈𝑙(𝜏)𝑑𝜏 =
2

𝑛 + 2

𝑛∑︁
𝑘=0

𝑤(𝑡𝑘)𝑈𝑙(𝑡𝑘) sin2 𝜋(𝑘 + 1)

𝑛 + 2
, 𝑙 = 0, 1, . . . , 𝑛,

and we denote by

𝑟𝑙 =
2

𝜋

1∫︁
−1

𝑞(𝜏)𝑤(𝜏)𝑈𝑙(𝜏)𝑑𝜏 − 2

𝑛 + 2

𝑛∑︁
𝑘=0

𝑤(𝑡𝑘)𝑈𝑙(𝑡𝑘) sin2 𝜋(𝑘 + 1)

𝑛 + 2
, 𝑙 = 0, 1, . . . , 𝑛,

the tails of these quadrature sums. By numbers {𝑟𝑙}𝑛𝑙=0 we form a polynomial

(𝑅𝑛𝑤)(𝑡) =
𝑛∑︁

𝑙=0

𝑟𝑙𝑈𝑙(𝑡), 𝑡 ∈ [−1, 1].

We write Galerkin method (18) for the sought function 𝑤 −𝑅𝑛𝑤

2

𝜋

1∫︁
−1

𝑞(𝜏)(𝑤 −𝑅𝑛𝑤)(𝜏)𝑈𝑙(𝜏)𝑑𝜏 = 0, 𝑙 = 0, 1, . . . , 𝑛, (23)

System of equations (23) is called a modifier Galerkin-Petrov method for problem (1), (2).

Lemma 4. Collocation method (20) and modified Galerkin-Petrov method (23) are equiva-
lent in the sense that identities (22) hold if and only if identities (23) are satisfied.

Proof. We represent identities (23) as

2

𝜋

1∫︁
−1

𝑞(𝜏)(𝑤 −𝑅𝑛𝑤)(𝜏)𝑈𝑙(𝜏)𝑑𝜏 =
2

𝜋

1∫︁
−1

𝑞(𝜏)𝑤(𝜏)𝑈𝑙(𝜏)𝑑𝜏 − 𝑟𝑙

=
2

𝑛 + 2

𝑛∑︁
𝑘=0

𝑤(𝑡𝑘)𝑈𝑙(𝑡𝑘) sin2 𝜋(𝑘 + 1)

𝑛 + 2
= 0, 𝑙 = 0, 1, . . . , 𝑛.

Now identities (23) imply immediately identities (22).
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Assume that identities (23) hold. The matrix (𝑈𝑙(𝑡𝑘))𝑛𝑙,𝑘=0 is non-degenerate and this is why
a homogeneous system of equations

𝑛∑︁
𝑘=0

𝑤(𝑡𝑘)𝑈𝑙(𝑡𝑘) sin2 𝜋(𝑘 + 1)

𝑛 + 2
= 0, 𝑙 = 0, 1, . . . , 𝑛.

possesses the zero solution only:

𝑤(𝑡𝑘) sin2 𝜋(𝑘 + 1)

𝑛 + 2
= 0, 𝑘 = 0, 1, . . . , 𝑛.

Since

sin2 𝜋(𝑘 + 1)

𝑛 + 2
̸= 0, 𝑘 = 0, 1, . . . , 𝑛,

we get

𝑤(𝑡𝑘) = 0, 𝑘 = 0, 1, . . . , 𝑛.

The proof is complete.

Lemma 5. For each function 𝑤 ∈ 𝐻𝑠
𝑞 and each 𝑛 ∈ N0 the estimate holds:

‖𝑅𝑛𝑤‖𝐻𝑠
𝑞
6
√︀

1 + 𝜁(2𝑠)𝐸𝑛(𝑤)𝑠𝑞.

Proof. We fix a function 𝑤 ∈ 𝐻𝑠
𝑞 and a number 𝑛 ∈ N0. The coefficients 𝑟𝑙, 𝑙 = 0, 1, . . . , 𝑛, are

first 𝑛 + 1 Fourier coefficients of the function 𝑤 − 𝑃𝑛𝑤. This is why by Lemma 3 we get:

‖𝑅𝑛𝑤‖𝐻𝑠
𝑞

= ‖𝑄𝑛(𝑤 − 𝑃𝑛𝑤)‖𝐻𝑠
𝑞

= ‖𝑃𝑛(𝑄𝑛𝑤 − 𝑤)‖𝐻𝑠
𝑞
6
√︀

1 + 𝜁(2𝑠)𝐸𝑛(𝑤)𝑠𝑞.

The proof is complete.

Theorem 3. For all fixed 𝜆 ∈ R, |𝜆| < 1 and 𝑛 ∈ N0, system of equations (20) of the poly-
nomial collocation method has the unique solution {̂︀𝑥*

𝑛+1(𝑙)}𝑛+1
𝑙=1 and the approximate solutions

𝑥*
𝑛+1(𝑡) =

∑︁
16𝑙6𝑛+1

̂︀𝑥*
𝑛+1(𝑙)𝑇𝑙(𝑡), 𝑡 ∈ [−1, 1],

converge to the exact solution 𝑥* of problem (1), (2) with the rate

‖𝑥* − 𝑥*
𝑛‖𝑋 6 (1 − |𝜆|)−1𝐸𝑛(𝑦)𝑠𝑞.

Proof. Following Lemma 4, we write system of equations (20) of the polynomial collocation
method as system of equations (23) of the modifier Galerkin-Petrov method. In operator form,
system of equations (23) reads as 𝑄𝑛𝑤 = 𝑄𝑅𝑛𝑤. Making the inverse change 𝑤 = 𝐾𝑥𝑛+1 − 𝑦,
we obtain the equation

𝑄𝐾𝑥𝑛+1 = 𝑄𝑛(𝑦 + 𝑅𝑛𝑤) (24)

of the Galerkin method for the equation

𝐷𝑥 + 𝑉 𝑥 = 𝑦 + 𝑅𝑛𝑤.

By Lemma 2, the operator 𝐾𝑛 = 𝑄𝑛𝐾 is invertible on the pair of spaces (𝑋𝑛, 𝑌𝑛), and the
error of the approximate solution 𝑥*

𝑛+1 of equation (24) in the Galerkin method is estimated as
follows:

‖𝑥* − 𝑥*
𝑛+1‖𝑋 6(1 − |𝜆|)−1‖𝑦 −𝑅𝑛𝑤 −𝑄𝑛𝑦 + 𝑄𝑛𝑅𝑛𝑤‖𝑌

6(1 − |𝜆|)−1(‖𝑦 −𝑄𝑛𝑦‖𝑌 + ‖𝑅𝑛𝑤 −𝑄𝑛𝑅𝑛𝑤‖𝑌 ).

Since 𝑅𝑛 = 𝑄𝑛 −𝑄𝑛𝑃𝑛, then 𝑅𝑛𝑤 −𝑄𝑛𝑅𝑛𝑤 = 0, and this is why

‖𝑥* − 𝑥*
𝑛+1‖𝑋 6 (1 − |𝜆|)−1𝐸𝑛(𝑦)𝑠𝑞.

The proof is complete.
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7. Remark

Problem (1), (2) is of course a model, which was chosen just to demonstrate the method of
justification the collocation method by reducing it to the justification of Galerkin method. The
application of this approach for justifying the collocation method for more general equations,
for instance, for pseudo-differential equations on open-ended lines, requires a developing of the
theory of such equations. However, the developing of the theory of singular integro-differential
and pseudo-differential equations on open-ended contours is much behind of theory of such
equations in the periodic case. This restrains the developing of the justification theory for
approximate methods in this direction.
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