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ON ZEROS OF POLYNOMIAL

SUBHASIS DAS

Abstract. For a given polynomial
P(z)=2"+ Un-12""1 4 ap,22""2+ -+ a1z +ag
with real or complex coefficients, the Cauchy bound

2| <1+ A, A= max |aj
0<j<n—1

does not reflect the fact that for A tending to zero, all the zeros of P (z) approach the
origin z = 0. Moreover, Guggenheimer (1964) generalized the Cauchy bound by using a
lacunary type polynomial

p(z) =2"+anpz" P+ anfpflzn_p_l + -4 a1z + ao, 0O<p<n.

In this paper we obtain new results related with above facts. Our first result is the best
possible. For the case as A tends to zero, it reflects the fact that all the zeros of P(z)
approach the origin z = 0; it also sharpens the result obtained by Guggenheimer. The rest
of the related results concern zero-free bounds giving some important corollaries. In many
cases the new bounds are much better than other well-known bounds.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let
P(2) = 2"+ an12"  F po2" 2+ -+ a1z + ag
be a polynomial of degree n. A classical result by Cauchy [6, Ch. VI, Sect. 27, Thm. 27.2]
concerning the bounds for the moduli of the zeros of a polynomial can be stated as follows.

Theorem A. All the zeros of P(z) lie in the disc
2| <144, (1.1)
where
A= max |a;|.

0gjsn—1

Joyal, Labelle and Rahman [1] improved Cauchy bound (1.1]) and proved the following the-
orem.

Theorem B. If B = JJnax lak|, then all the zeros of P (z) lie in the disc

1
1< 5 [1+ bl 0= a4 48
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Datt and Govil [3] improved Cauchy bound ([1.1]) and obtained the following result.
Theorem C. All the zeros of P (z) lie in the ring-shaped region

()
<zl <1+A4(1— ——r ).
2(14+ A" (14 nA) & (14 A)

One more improvement of Cauchy bound (1.1)) was made by Jain [8], who proved the following
statement.

Theorem D. All the zeros of P(z) with a,—1 = an—o = 0 lie in the disc
2| < 25 (1+ B)3,
except for B > 1,|a;| = B for some j, 0 < j < n—3 and |a;] < a = 25 — 1 for all i # j,
i€{0,1,2,...,n—3}. In the latter case, all the zeros of P (z) lie in the disc
2] < (1+ B)5 .

Guggenheimer [5] generalized the Cauchy bound (1.1)) by using a class of lacunary type

polynomial
p(2) =2"+anp2" P4 anp 12" P+ +arz4+a, 0<p<n,

and proved the following theorem.

Theorem E. All the zeros of p(z) lie in the disc

2| <9,
where 6 > 1 1is the only positive root of the equation
s R
and
Q"= mmax la.

In this paper, we obtain three bounds of Cauchy type. The bound in Theorem [I.1] is best
possible and sharpen of the Theorem E. Also, in many cases, the bound in Theorem is
better than some other known bounds. The bounds in Theorem [I.2] and Theorem [I.3] are zero
free. More precisely, we prove

Theorem 1.1. All the zeros of p(z) lie in the disc
2] < 6Q%,

where dy € (1,2) provided @ > 1, otherwise, 6y € (1,00) is the greatest positive root of the
equation

n+1 n\ntl n n\" n—p+1 n\ 7+ n
¢ (QF) —an(@F) —grt(@F) T 4@ =0
Remark 1.1. As Q — 0, all zeroes of p(z) approach the origin z = 0.

Remark 1.2. The bound 6,Q7 in Theorem is the best possible and it is attained at the
polynomial
p(z)=2"—Q" (" P+2"P 2 +1).

Remark 1.3. Theorem[1.1]is an improvement of Theorem E, which can be seen by observing

that
o)™ (@) - 08 (@)~ s )™ @)

1
+Q"

— 5n+1 _ 5= (5nfp+1 <Q;)p T Qn — 5n*p+1 (6? _ 5?*1 _ Qn) 4 Qn — Qn > 07

n+
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FIGURE 1. Variation of ¢, as p varies from 1 to 99.

which implies
S0 <0Q7r, de Qv <.
Remark 1.4. In many cases, the Theorem gwes a better bound than those in previous
results. In order to demonstrate this, we consider the polynomial
p(2) = 2° + a2® + a1z + ay,

with |ag| = 8,|a1] = 2,|az| = 6. Here n=5, p=3 and Q™ = 8. By Theorem [I.1], we obtain
do = 1.17174 and all the zeros of p(z) lie in |z| < 2.34349, whereas all the zeros of p(z) lie in
the regions

|z| <9, by Theorem A
|z| < 3.37, by Theorem B
|z| < 8.989, by Theorem C
|z < 2.426, by Theorem D
|z| < 2.3948, by Theorem E
|z] < 8.999, by [4, Thm. 1]
|z| < 6.75, by [9, Thm. 1].

Example 1. Theorem[I.]] gives an idea for finding the bound of zeros for a class of lacunary
type of polynomials

n—p
Q") = {p(z) =z +]Z;asz pdnaxJax] < Q } 0<p<n.

By Theorem all the zeros of each polynomial of the class T2 (Q™) always lie in the region
|z| < 5Q7. Itis very difficult to find the value of &g for each non-negative real value of Q™, asn
15 a fizxed natural number and p varies from 0 < p < n. Here we consider an example by choosing
Q" =10 and n = 100 and we draw a picture for the variation of §, when p varies from 1 to 99,
see Figure 1. Once we determine the value of &y for a particular value of p (0 < p < 100), we
can easily obtain the bound of each polynomial from the class of polynomials T, (10).

In particular, for p = 17, the value of dy is 1.09786. Using Theorem we see that all zeros
of each polynomial in the class U1}, (10) lie in the region

2| < 1.25709.
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Theorem 1.2. All the zeros of p (z) with |ag| # 0 never vanish in the region

1
|Z|< 7
to

where to (> 1) is the greatest positive root of the equation
lao| t"* = (Ja] + Q") t" —t +1=0.
With the help of Theorem [1.1]and Theorem we can easily obtain the following Corollary.
Corollary 1.1. All zeroes of the polynomial p(z) with |ag| # 0 lie in the ring-shaped region
1 n
— < |Z| < 60Qp7
to
where &g and tg are the greatest positive roots of the equations
n+1 n n n\" n—p+1 n il n
¢ (QF) T —a(QF) —at(QF) T 4@ =0
and

|ao| "+ — (Jag] + Q™) " =t +1 =0,
respectively.

Theorem 1.3. All the zeros of p(z) with |ag| # 0 never vanish in the disc

zZ| <
|| T

provided
@ < min {1,2? |a0|2} :

One can easily obtain the following corollaries by using Theorem [1.3]
Corollary 1.2. If

|6Ln—3 — Qp—10p—2 + Ap—1 (ai_l — an—?)‘ # 0, |a0 (ai_l - an—2)| #0

and
n+2 9
r +2 Sgilgarfi-2 |an—p — Op—10p—p+1 + Ap—p+2 (an—l — an_2)|
with a_y = a_y = 0, then the polynomial P (z) of degree n > 3 never vanish in the region
2] < !
z
. r
]. + ’ao(a‘%—l_an72)‘
provided

I' < min {1, 23 ‘ao (ai_l — an_g)‘} )
The Corollary [I.2] can be easily obtained by using Theorem [1.3] on the polynomial
R(z)= (" —ap_1z2+a>_, —an2) P(2).

Corollary 1.3. The polynomial P (z) of degree n > 4 never vanish in the region

1
2] < 1 T
|a0(2an_1an_2*an—3*a%_1)|
provided
T < min {1, 21 ’ao (2%71%72 — Qp-3 — a271)|} )
where
‘ao (2an—la'n—2 — Qp-3 — ai—l)‘ # 0, ¢ # 0, T = max |[n,,

4<p<n+3
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(=0Qp_4— Up_10p_3+ Qp_o (‘%2171 — an_Q) + ap—1 (2an_1an_2 — Qy_3 — 0271) ,
Np = Qp—p — Ap—10p—pt1 + Ap_py2 (ai_l — an,g) + Up—p+3 (Qan,lan,g — Qp_3 — afl_l)
with a_1 = a_9 =a_3 = 0.
The Corollary [I.3] obtained by using Theorem [1.3] on the polynomial
R(z) = (23 — p12® + (ai,l — an_Q) 24+ 2ap 1Gp_9 — Qp_3 — aifl) P(z).
2. PROOF OF THEOREMS

Proof of Theorem[I.1l As |z| > 1, we have
| |n p+1 1
p(2) = 2" — Q"

2] =1
We introduce a function

1 n+1 n n n—p+1 n
= e - @ T )

f (t) — thrl — Qntn7p+1 4 Qn
For ¢ > 0 we get

7(0Q8) = (a08)" — (4@3) @ (F) e
—¢ (0 ( >n+1 " (Q%> L <Q§>n+1 + Q" (2.1)
=q" (Q3>n+1 (q - Ql; - ql ) + Q"
Denote
9(q) =7 (qéﬁ) =q¢""! (Qﬂ)n+1 q" (Cﬁ) —q (Qz)n+1 +Q"
We have

and >
@) (

which is negative as () > 1 and is positive as 0 < () < 1. In particular, as () = 1, the value
g (q) can be written as
9(@)=(g—=1r(q),

where
r(@)=q¢"-(1+qg+ - +¢"7")
with
r()=—(m-p) <0, 7r(2)=2"-2"""41>0,

which shows that g (¢) = 0 has two positive roots, one of which is 1 and other, say dq in (1, 2).
Therefore,

g9(g) >0
if ¢ > 69. Hence,

f)>0

ast > 50Q% and ) = 1. This implies the desired result.
As @ > 1, the equation g (¢) = 0 has two positive roots, one of which is @ » € (0,1) and
the other, say dg, belongs to (1,2) by (2.1). In this case,

9(q) >0
if ¢ > &g, which implies that
f(t)>0
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if t > 5OQ%. This leads us to the desired result.
As 0 < @ < 1, the equation g (q) = 0 has two positive roots, one of which is @~ » > 1 and
the other, say tg, lies in (1,00). Let &y be the greatest positive root of g (¢) = 0. Then

9(q) >0
if ¢ > 99. Thus,
f(t)>0
if t > 5062% and this leads us to the desired result. O

Proof of Theorem [1.3. Consider
R(z) = apz" + az" a4+ Ap—p2¥ + 1.
As |z| > 1, we have

277 —1 n_ Q2"

—-1>
- el -

{laol [2""" = (lao] + Q") |2[" —|2] + 1} .

R (2)] = lao| 2" — Q" 2" = ———
1
2| -1

The equation

|ao| t"* = (Jao| + Q)" —t+1=0
obviously has exactly two positive roots, one lies in (0, 1) and the other is in (1, 00). Let 5 > 1
be the greatest positive root of the above equation. Then

lag| "t — (lag] + Q™) t" —t+1>=0  forall t >t
So, |R(z)| > 0if |z] > to and this proves the desired result. O
Proof of Theorem[1.3. Consider
R(2) =ap2" +a12" "+ a2 4+ a, 2P + 1
As |z] > 1, we get

n n p|Z’n7p_1
[R(2)] = |aol |2|" — Q" |2| |Z|—_1—1

1
= Aol =17 = (ool + @) |ol" = @ | — || + 1}
We consider the function .
g =11,
where
J () = lao| "+ = (lag| + Q™) t" — Q™" —t + 1,
We obtain
o (14 ) =wl () ot { () - (e ) -
|aol |aol |aol |aol
— Jaol (”%) g 0|< +—) Q" Jaol <1+%) 1
Q n— ’a0| |aol ?
(1 ) =@l (14 2 ) g (e o) -
:|a0\<1+|6%) (1-Q" ") +(2 o >>0
0
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provided

Q < min {1,2° |a0]2}.

Clearly, f(t) = 0 has exactly two positive roots with

f(0) >0, f() <o, f(c0) > 0.

In this case,

f (1_‘_2) >0 if ngin{1,2p|ao|2},

\a0|

which implies that

Q

g(t)>0 forall t>1+—
|aol

provided @) < min {1, 2P |a0|2}. Therefore,

|R(z)| >0 forall t>1+£

if @ < min{1,2”|ao|*}
ol

and this completes the proof. O]
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