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ON ZEROS OF POLYNOMIAL

SUBHASIS DAS

Abstract. For a given polynomial

𝑃 (𝑧) = 𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 + 𝑎𝑛−2𝑧

𝑛−2 + · · · + 𝑎1𝑧 + 𝑎0

with real or complex coefficients, the Cauchy bound

|𝑧| < 1 + 𝐴, 𝐴 = max
06𝑗6𝑛−1

|𝑎𝑗 |

does not reflect the fact that for 𝐴 tending to zero, all the zeros of 𝑃 (𝑧) approach the
origin 𝑧 = 0. Moreover, Guggenheimer (1964) generalized the Cauchy bound by using a
lacunary type polynomial

𝑝 (𝑧) = 𝑧𝑛 + 𝑎𝑛−𝑝𝑧
𝑛−𝑝 + 𝑎𝑛−𝑝−1𝑧

𝑛−𝑝−1 + · · · + 𝑎1𝑧 + 𝑎0, 0 < 𝑝 < 𝑛.

In this paper we obtain new results related with above facts. Our first result is the best
possible. For the case as 𝐴 tends to zero, it reflects the fact that all the zeros of P(z)
approach the origin 𝑧 = 0; it also sharpens the result obtained by Guggenheimer. The rest
of the related results concern zero-free bounds giving some important corollaries. In many
cases the new bounds are much better than other well-known bounds.
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1. Introduction and statement of results

Let

𝑃 (𝑧) = 𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 + 𝑎𝑛−2𝑧

𝑛−2 + · · · + 𝑎1𝑧 + 𝑎0

be a polynomial of degree 𝑛. A classical result by Cauchy [6, Ch. VI, Sect. 27, Thm. 27.2]
concerning the bounds for the moduli of the zeros of a polynomial can be stated as follows.

Theorem A. All the zeros of 𝑃 (𝑧) lie in the disc

|𝑧| < 1 + 𝐴, (1.1)

where

𝐴 = max
06𝑗6𝑛−1

|𝑎𝑗| .

Joyal, Labelle and Rahman [1] improved Cauchy bound (1.1) and proved the following the-
orem.

Theorem B. If 𝐵 = max
06𝑘6𝑛−2

|𝑎𝑘|, then all the zeros of 𝑃 (𝑧) lie in the disc

|𝑧| 6 1

2

[︂
1 + |𝑎𝑛−1| +

√︁
(1 − |𝑎𝑛−1|)2 + 4𝐵

]︂
S. Das, On zeros of polynomial.
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Datt and Govil [3] improved Cauchy bound (1.1) and obtained the following result.
Theorem C. All the zeros of 𝑃 (𝑧) lie in the ring-shaped region

|𝑎0|
2 (1 + 𝐴)𝑛−1 (1 + 𝑛𝐴)

6 |𝑧| 6 1 + 𝐴

(︂
1 − 1

(1 + 𝐴)𝑛

)︂
.

One more improvement of Cauchy bound (1.1) was made by Jain [8], who proved the following
statement.

Theorem D. All the zeros of 𝑃 (𝑧) with 𝑎𝑛−1 = 𝑎𝑛−2 = 0 lie in the disc

|𝑧| < 2
2
9 (1 + 𝐵)

1
3 ,

except for 𝐵 > 1, |𝑎𝑗| = 𝐵 for some 𝑗, 0 6 𝑗 6 𝑛 − 3 and |𝑎𝑖| 6 𝛼 = 2
1
3 − 1 for all 𝑖 ̸= 𝑗,

𝑖 ∈ {0, 1, 2, . . . , 𝑛− 3}. In the latter case, all the zeros of 𝑃 (𝑧) lie in the disc

|𝑧| < (1 + 𝐵)
1
3 .

Guggenheimer [5] generalized the Cauchy bound (1.1) by using a class of lacunary type
polynomial

𝑝 (𝑧) = 𝑧𝑛 + 𝑎𝑛−𝑝𝑧
𝑛−𝑝 + 𝑎𝑛−𝑝−1𝑧

𝑛−𝑝−1 + · · · + 𝑎1𝑧 + 𝑎0, 0 < 𝑝 < 𝑛,

and proved the following theorem.

Theorem E. All the zeros of 𝑝(𝑧) lie in the disc

|𝑧| < 𝛿,

where 𝛿 > 1 is the only positive root of the equation

𝑡𝑝 − 𝑡𝑝−1 = 𝑄𝑛

and
𝑄𝑛 = max

06𝑘6𝑛−𝑝
|𝑎𝑘| .

In this paper, we obtain three bounds of Cauchy type. The bound in Theorem 1.1 is best
possible and sharpen of the Theorem E. Also, in many cases, the bound in Theorem 1.1 is
better than some other known bounds. The bounds in Theorem 1.2 and Theorem 1.3 are zero
free. More precisely, we prove

Theorem 1.1. All the zeros of 𝑝(𝑧) lie in the disc

|𝑧| 6 𝛿0𝑄
𝑛
𝑝 ,

where 𝛿0 ∈ (1, 2) provided 𝑄 > 1, otherwise, 𝛿0 ∈ (1,∞) is the greatest positive root of the
equation

𝑞𝑛+1
(︁
𝑄

𝑛
𝑝

)︁𝑛+1

− 𝑞𝑛
(︁
𝑄

𝑛
𝑝

)︁𝑛
− 𝑞𝑛−𝑝+1

(︁
𝑄

𝑛
𝑝

)︁𝑛+1

+ 𝑄𝑛 = 0.

Remark 1.1. As 𝑄 → 0, all zeroes of 𝑝(𝑧) approach the origin 𝑧 = 0.

Remark 1.2. The bound 𝛿0𝑄
𝑛
𝑝 in Theorem 1.1 is the best possible and it is attained at the

polynomial
𝑝 (𝑧) = 𝑧𝑛 −𝑄𝑛

(︀
𝑧𝑛−𝑝 + 𝑧𝑛−𝑝−1 + · · · + 𝑧 + 1

)︀
.

Remark 1.3. Theorem 1.1 is an improvement of Theorem E, which can be seen by observing
that (︁

𝛿𝑄−𝑛
𝑝

)︁𝑛+1 (︁
𝑄

𝑛
𝑝

)︁𝑛+1

−
(︁
𝛿𝑄−𝑛

𝑝

)︁𝑛 (︁
𝑄

𝑛
𝑝

)︁𝑛
−
(︁
𝛿𝑄−𝑛

𝑝

)︁𝑛−𝑝+1 (︁
𝑄

𝑛
𝑝

)︁𝑛+1

+ 𝑄𝑛

= 𝛿𝑛+1 − 𝛿𝑛 − 𝛿𝑛−𝑝+1
(︁
𝑄

𝑛
𝑝

)︁𝑝
+ 𝑄𝑛 = 𝛿𝑛−𝑝+1

(︀
𝛿𝑝 − 𝛿𝑝−1 −𝑄𝑛

)︀
+ 𝑄𝑛 = 𝑄𝑛 > 0,
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Figure 1. Variation of 𝛿, as 𝑝 varies from 1 to 99.

which implies

𝛿0 < 𝛿𝑄−𝑛
𝑝 , i.e. 𝛿0𝑄

𝑛
𝑝 < 𝛿.

Remark 1.4. In many cases, the Theorem 1.1 gives a better bound than those in previous
results. In order to demonstrate this, we consider the polynomial

𝑝 (𝑧) = 𝑧5 + 𝑎2𝑧
2 + 𝑎1𝑧 + 𝑎0,

with |𝑎0| = 8, |𝑎1| = 2, |𝑎2| = 6. Here n=5, p=3 and 𝑄𝑛 = 8. By Theorem 1.1, we obtain
𝛿0 = 1.17174 and all the zeros of 𝑝 (𝑧) lie in |𝑧| 6 2.34349, whereas all the zeros of 𝑝 (𝑧) lie in
the regions

|𝑧| < 9, by Theorem A

|𝑧| < 3.37, by Theorem B

|𝑧| < 8.989, by Theorem C

|𝑧| < 2.426, by Theorem D

|𝑧| < 2.3948, by Theorem E

|𝑧| < 8.999, by [4, Thm. 1]

|𝑧| < 6.75, by [9, Thm. 1].

Example 1. Theorem 1.1 gives an idea for finding the bound of zeros for a class of lacunary
type of polynomials

Γ𝑝
𝑛 (𝑄𝑛) =

{︃
𝑝 (𝑧) = 𝑧𝑛 +

𝑛−𝑝∑︁
𝑗=0

𝑎𝑗𝑧
𝑗 : max

06𝑘6𝑛−𝑝
|𝑎𝑘| 6 𝑄𝑛

}︃
, 0 < 𝑝 < 𝑛.

By Theorem 1.1, all the zeros of each polynomial of the class Γ𝑝
𝑛 (𝑄𝑛) always lie in the region

|𝑧| 6 𝛿0𝑄
𝑛
𝑝 . It is very difficult to find the value of 𝛿0 for each non-negative real value of 𝑄𝑛, as 𝑛

is a fixed natural number and 𝑝 varies from 0 < 𝑝 < 𝑛. Here we consider an example by choosing
𝑄𝑛 = 10 and 𝑛 = 100 and we draw a picture for the variation of 𝛿, when 𝑝 varies from 1 to 99,
see Figure 1. Once we determine the value of 𝛿0 for a particular value of 𝑝 (0 < 𝑝 < 100), we
can easily obtain the bound of each polynomial from the class of polynomials Γ𝑝

100 (10).
In particular, for 𝑝 = 17, the value of 𝛿0 is 1.09786. Using Theorem 1.1, we see that all zeros

of each polynomial in the class Γ17
100 (10) lie in the region

|𝑧| 6 1.25709.
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Theorem 1.2. All the zeros of 𝑝 (𝑧) with |𝑎0| ≠ 0 never vanish in the region

|𝑧| 6 1

𝑡0
,

where 𝑡0 (> 1) is the greatest positive root of the equation

|𝑎0| 𝑡𝑛+1 − (|𝑎0| + 𝑄𝑛) 𝑡𝑛 − 𝑡 + 1 = 0.

With the help of Theorem 1.1 and Theorem 1.2, we can easily obtain the following Corollary.

Corollary 1.1. All zeroes of the polynomial 𝑝(𝑧) with |𝑎0| ≠ 0 lie in the ring-shaped region

1

𝑡0
< |𝑧| 6 𝛿0𝑄

𝑛
𝑝 ,

where 𝛿0 and 𝑡0 are the greatest positive roots of the equations

𝑞𝑛+1
(︁
𝑄

𝑛
𝑝

)︁𝑛+1

− 𝑞𝑛
(︁
𝑄

𝑛
𝑝

)︁𝑛
− 𝑞𝑛−𝑝+1

(︁
𝑄

𝑛
𝑝

)︁𝑛+1

+ 𝑄𝑛 = 0

and
|𝑎0| 𝑡𝑛+1 − (|𝑎0| + 𝑄𝑛) 𝑡𝑛 − 𝑡 + 1 = 0,

respectively.

Theorem 1.3. All the zeros of 𝑝 (𝑧) with |𝑎0| ≠ 0 never vanish in the disc

|𝑧| < 1

1 + 𝑄
|𝑎0|

provided
𝑄 < min

{︀
1, 2𝑝 |𝑎0|2

}︀
.

One can easily obtain the following corollaries by using Theorem 1.3.

Corollary 1.2. If⃒⃒
𝑎𝑛−3 − 𝑎𝑛−1𝑎𝑛−2 + 𝑎𝑛−1

(︀
𝑎2𝑛−1 − 𝑎𝑛−2

)︀⃒⃒
̸= 0,

⃒⃒
𝑎0
(︀
𝑎2𝑛−1 − 𝑎𝑛−2

)︀⃒⃒
̸= 0

and
Γ𝑛+2 = max

36𝑝6𝑛+2

⃒⃒
𝑎𝑛−𝑝 − 𝑎𝑛−1𝑎𝑛−𝑝+1 + 𝑎𝑛−𝑝+2

(︀
𝑎2𝑛−1 − 𝑎𝑛−2

)︀⃒⃒
with 𝑎−1 = 𝑎−2 = 0, then the polynomial 𝑃 (𝑧) of degree 𝑛 > 3 never vanish in the region

|𝑧| < 1

1 + Γ

|𝑎0(𝑎2𝑛−1−𝑎𝑛−2)|
provided

Γ < min
{︀

1, 23
⃒⃒
𝑎0
(︀
𝑎2𝑛−1 − 𝑎𝑛−2

)︀⃒⃒}︀
.

The Corollary 1.2 can be easily obtained by using Theorem 1.3 on the polynomial

𝑅 (𝑧) =
(︀
𝑧2 − 𝑎𝑛−1𝑧 + 𝑎2𝑛−1 − 𝑎𝑛−2

)︀
𝑃 (𝑧) .

Corollary 1.3. The polynomial 𝑃 (𝑧) of degree 𝑛 > 4 never vanish in the region

|𝑧| < 1

1 + ϒ

|𝑎0(2𝑎𝑛−1𝑎𝑛−2−𝑎𝑛−3−𝑎3𝑛−1)|
provided

Υ < min
{︀

1, 24
⃒⃒
𝑎0
(︀
2𝑎𝑛−1𝑎𝑛−2 − 𝑎𝑛−3 − 𝑎3𝑛−1

)︀⃒⃒}︀
,

where ⃒⃒
𝑎0
(︀
2𝑎𝑛−1𝑎𝑛−2 − 𝑎𝑛−3 − 𝑎3𝑛−1

)︀⃒⃒
̸= 0, |𝜁| ≠ 0, Υ𝑛+3 = max

46𝑝6𝑛+3
|𝜂𝑝| ,
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𝜁 = 𝑎𝑛−4 − 𝑎𝑛−1𝑎𝑛−3 + 𝑎𝑛−2

(︀
𝑎2𝑛−1 − 𝑎𝑛−2

)︀
+ 𝑎𝑛−1

(︀
2𝑎𝑛−1𝑎𝑛−2 − 𝑎𝑛−3 − 𝑎3𝑛−1

)︀
,

𝜂𝑝 = 𝑎𝑛−𝑝 − 𝑎𝑛−1𝑎𝑛−𝑝+1 + 𝑎𝑛−𝑝+2

(︀
𝑎2𝑛−1 − 𝑎𝑛−2

)︀
+ 𝑎𝑛−𝑝+3

(︀
2𝑎𝑛−1𝑎𝑛−2 − 𝑎𝑛−3 − 𝑎3𝑛−1

)︀
with 𝑎−1 = 𝑎−2 = 𝑎−3 = 0.

The Corollary 1.3 obtained by using Theorem 1.3 on the polynomial

𝑅 (𝑧) =
(︀
𝑧3 − 𝑎𝑛−1𝑧

2 +
(︀
𝑎2𝑛−1 − 𝑎𝑛−2

)︀
𝑧 + 2𝑎𝑛−1𝑎𝑛−2 − 𝑎𝑛−3 − 𝑎3𝑛−1

)︀
𝑃 (𝑧) .

2. Proof of theorems

Proof of Theorem 1.1. As |𝑧| > 1, we have

|𝑝 (𝑧)| > |𝑧|𝑛 −𝑄𝑛 |𝑧|
𝑛−𝑝+1 − 1

|𝑧| − 1
=

1

|𝑧| − 1

{︀
|𝑧|𝑛+1 − |𝑧|𝑛 −𝑄𝑛 |𝑧|𝑛−𝑝+1 + 𝑄𝑛

}︀
.

We introduce a function
𝑓 (𝑡) = 𝑡𝑛+1 − 𝑡𝑛 −𝑄𝑛𝑡𝑛−𝑝+1 + 𝑄𝑛.

For 𝑞 > 0 we get

𝑓
(︁
𝑞𝑄

𝑛
𝑝

)︁
=
(︁
𝑞𝑄

𝑛
𝑝

)︁𝑛+1

−
(︁
𝑞𝑄

𝑛
𝑝

)︁𝑛
−𝑄𝑛

(︁
𝑞𝑄

𝑛
𝑝

)︁𝑛−𝑝+1

+ 𝑄𝑛

=𝑞𝑛+1
(︁
𝑄

𝑛
𝑝

)︁𝑛+1

− 𝑞𝑛
(︁
𝑄

𝑛
𝑝

)︁𝑛
− 𝑞𝑛−𝑝+1

(︁
𝑄

𝑛
𝑝

)︁𝑛+1

+ 𝑄𝑛

=𝑞𝑛
(︁
𝑄

𝑛
𝑝

)︁𝑛+1
(︂
𝑞 − 1

𝑄
𝑛
𝑝

− 1

𝑞𝑝−1

)︂
+ 𝑄𝑛.

(2.1)

Denote

𝑔 (𝑞) = 𝑓
(︁
𝑞𝑄

𝑛
𝑝

)︁
= 𝑞𝑛+1

(︁
𝑄

𝑛
𝑝

)︁𝑛+1

− 𝑞𝑛
(︁
𝑄

𝑛
𝑝

)︁𝑛
− 𝑞𝑛−𝑝+1

(︁
𝑄

𝑛
𝑝

)︁𝑛+1

+ 𝑄𝑛.

We have

𝑔 (0) =
(︁
𝑄

𝑛
𝑝

)︁𝑝
and

𝑔 (1) =
(︁
𝑄

𝑛
𝑝

)︁𝑝
−
(︁
𝑄

𝑛
𝑝

)︁𝑛
,

which is negative as 𝑄 > 1 and is positive as 0 < 𝑄 < 1. In particular, as 𝑄 = 1, the value
𝑔 (𝑞) can be written as

𝑔 (𝑞) = (𝑞 − 1) 𝑟 (𝑞) ,

where
𝑟 (𝑞) = 𝑞𝑛 −

(︀
1 + 𝑞 + · · · + 𝑞𝑛−𝑝

)︀
with

𝑟 (1) = − (𝑛− 𝑝) < 0, 𝑟 (2) = 2𝑛 − 2𝑛−𝑝+1 + 1 > 0,

which shows that 𝑔 (𝑞) = 0 has two positive roots, one of which is 1 and other, say 𝛿0 in (1, 2).
Therefore,

𝑔 (𝑞) > 0

if 𝑞 > 𝛿0. Hence,
𝑓 (𝑡) > 0

as 𝑡 > 𝛿0𝑄
𝑛
𝑝 and 𝑄 = 1. This implies the desired result.

As 𝑄 > 1, the equation 𝑔 (𝑞) = 0 has two positive roots, one of which is 𝑄−𝑛
𝑝 ∈ (0, 1) and

the other, say 𝛿0, belongs to (1, 2) by (2.1). In this case,

𝑔 (𝑞) > 0

if 𝑞 > 𝛿0, which implies that
𝑓 (𝑡) > 0
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if 𝑡 > 𝛿0𝑄
𝑛
𝑝 . This leads us to the desired result.

As 0 < 𝑄 < 1, the equation 𝑔 (𝑞) = 0 has two positive roots, one of which is 𝑄−𝑛
𝑝 > 1 and

the other, say 𝑡0, lies in (1,∞). Let 𝛿0 be the greatest positive root of 𝑔 (𝑞) = 0. Then

𝑔 (𝑞) > 0

if 𝑞 > 𝛿0. Thus,
𝑓 (𝑡) > 0

if 𝑡 > 𝛿0𝑄
𝑛
𝑝 and this leads us to the desired result.

Proof of Theorem 1.2. Consider

𝑅 (𝑧) = 𝑎0𝑧
𝑛 + 𝑎1𝑧

𝑛−1 + 𝑎2𝑧
𝑛−2 + · · · + 𝑎𝑛−𝑝𝑧

𝑝 + 1.

As |𝑧| > 1, we have

|𝑅 (𝑧)| > |𝑎0| |𝑧|𝑛 −𝑄𝑛 |𝑧|𝑝 |𝑧|
𝑛−𝑝 − 1

|𝑧| − 1
− 1 > |𝑎0| |𝑧|𝑛 −

𝑄𝑛 |𝑧|𝑛

|𝑧| − 1
− 1

=
1

|𝑧| − 1

{︀
|𝑎0| |𝑧|𝑛+1 − (|𝑎0| + 𝑄𝑛) |𝑧|𝑛 − |𝑧| + 1

}︀
.

The equation
|𝑎0| 𝑡𝑛+1 − (|𝑎0| + 𝑄𝑛) 𝑡𝑛 − 𝑡 + 1 = 0

obviously has exactly two positive roots, one lies in (0, 1) and the other is in (1,∞). Let 𝑡0 > 1
be the greatest positive root of the above equation. Then

|𝑎0| 𝑡𝑛+1 − (|𝑎0| + 𝑄𝑛) 𝑡𝑛 − 𝑡 + 1 > 0 for all 𝑡 > 𝑡0.

So, |𝑅 (𝑧)| > 0 if |𝑧| > 𝑡0 and this proves the desired result.

Proof of Theorem 1.3. Consider

𝑅 (𝑧) = 𝑎0𝑧
𝑛 + 𝑎1𝑧

𝑛−1 + 𝑎2𝑧
𝑛−2 + · · · + 𝑎𝑛−𝑝𝑧

𝑝 + 1

As |𝑧| > 1, we get

|𝑅 (𝑧)| > |𝑎0| |𝑧|𝑛 −𝑄𝑛 |𝑧|𝑝 |𝑧|
𝑛−𝑝 − 1

|𝑧| − 1
− 1

=
1

|𝑧| − 1

{︀
|𝑎0| |𝑧|𝑛+1 − (|𝑎0| + 𝑄𝑛) |𝑧|𝑛 −𝑄𝑛 |𝑧|𝑝 − |𝑧| + 1

}︀
.

We consider the function

𝑔 (𝑡) =
𝑓 (𝑡)

𝑡− 1
,

where
𝑓 (𝑡) = |𝑎0| 𝑡𝑛+1 − (|𝑎0| + 𝑄𝑛) 𝑡𝑛 −𝑄𝑛𝑡𝑝 − 𝑡 + 1.

We obtain

𝑔

(︂
1 +

𝑄

|𝑎0|

)︂
= |𝑎0|

(︂
1 +

𝑄

|𝑎0|

)︂𝑛

−𝑄𝑛−1 |𝑎0|
{︂(︂

1 +
𝑄

|𝑎0|

)︂𝑛

−
(︂

1 +
𝑄

|𝑎0|

)︂𝑝}︂
− 1

= |𝑎0|
(︂

1 +
𝑄

|𝑎0|

)︂𝑛

−𝑄𝑛−1 |𝑎0|
(︂

1 +
𝑄

|𝑎0|

)︂𝑛

+ 𝑄𝑛−1 |𝑎0|
(︂

1 +
𝑄

|𝑎0|

)︂𝑝

− 1

> |𝑎0|
(︂

1 +
𝑄

|𝑎0|

)︂𝑛

−𝑄𝑛−1 |𝑎0|
(︂

1 +
𝑄

|𝑎0|

)︂𝑛

+
|𝑎0|2

𝑄

(︂
1 +

|𝑎0|
|𝑎0|

)︂𝑝

− 1

= |𝑎0|
(︂

1 +
𝑄

|𝑎0|

)︂𝑛 (︀
1 −𝑄𝑛−1

)︀
+

(︃
2𝑝 |𝑎0|2

𝑄
− 1

)︃
> 0
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provided
𝑄 6 min

{︀
1, 2𝑝 |𝑎0|2

}︀
.

Clearly, 𝑓(𝑡) = 0 has exactly two positive roots with

𝑓 (0) > 0, 𝑓 (1) < 0, 𝑓 (∞) > 0.

In this case,

𝑓

(︂
1 +

𝑄

|𝑎0|

)︂
> 0 if 𝑄 6 min

{︀
1, 2𝑝 |𝑎0|2

}︀
,

which implies that

𝑔 (𝑡) > 0 for all 𝑡 > 1 +
𝑄

|𝑎0|
provided 𝑄 6 min

{︀
1, 2𝑝 |𝑎0|2

}︀
. Therefore,

|𝑅 (𝑧)| > 0 for all 𝑡 > 1 +
𝑄

|𝑎0|
if 𝑄 6 min

{︀
1, 2𝑝 |𝑎0|2

}︀
and this completes the proof.
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